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FPGA based Blockchain System for Industrial IoT

Lei Xu, Lin Chen, Zhimin Gao, Hanyee Kim, Taeweon Suh, Weidong Shi

Abstract—Industrial IoT (IIoT) is critical for industrial infras-
tructure modernization and digitalization. Therefore, it is of
utmost importance to provide adequate protection of the IIoT
system. A modern IIoT system usually consists of a large
number of devices that are deployed in multiple locations and
owned/managed by different entities who do not fully trust each
other. These features make it harder to manage the system in
a coherent manner and utilize existing security mechanisms to
offer adequate protection. The emerging blockchain technology
provides a powerful tool for IIoT system management and
protection because the IIoT nature of distributed deployment
and involvement of multiple stakeholders fits the design philos-
ophy of blockchain well. Most existing blockchain construction
mechanisms are not scalable enough and too heavy for an IIoT
system. One promising way to overcome these limitations is
utilizing hardware based trusted execution environment (TEE)
in the blockchain construction. However, most of existing works
on this direction do not consider the characteristics of IIoT
devices (e.g., fixed functionality and limited supply) and face
several limitations when they are applied for IIoT system
management and protection, such as high energy consumption,
single root-of-trust, and low decentralization level. To mitigate
these challenges, we propose a novel field programmable gate
array (FPGA) based blockchain system. It leverages the FPGA
to build a simple but efficient TEE for IIoT devices, and
removes the single root-of-trust by allowing all stakeholders to
participate in the management of the devices. The FPGA based
blockchain system shifts the computation/storage intensive part
of blockchain management to more powerful computers but
still involves the IIoT devices in the block construction to
achieve a high level of decentralization. We implement the
major FPGA components of the design and evaluate the
performance of the whole system with a simulation tool to
demonstrate its feasibility for IIoT applications.

Index Terms—Industrial IoT, FPGA, TEE, blockchain

1. Introduction

Industrial IoT (IIoT) has become one of the fundamental
building blocks of Industrial 4.0 and the backbone to support
IT/OT convergence [1]. Due to its wide deployment and
importance to the digitalized industrial infrastructure, it
becomes more critical to provide adequate management and
security protection of the IIoT systems. Compared with other
IT systems, an IIoT system usually involves a large number
of devices that are owned and managed by different entities.
To adequately manage and protect the whole system, these

entities need to collaborate closely and verify that all other
entities are following the policies/rules to manage their IIoT
devices. However, these entities may have their own interests
and do not fully trust each other, and there is lack of a third
party that all entities trust to coordinate them.

Blockchain, which was first proposed to build cryp-
tocurrency systems without relying on a centralized third
party [2], sheds new light on IIoT management and pro-
tection, and many related applications are proposed, such
as nonrepudiation computing service for IIoT [3], IoT data
authentication [4], access control of an IoT system [5], and
accountability mechanism against information leakage [6].
While these techniques provide various useful features to im-
prove the management and security of the IIoT system, their
effectiveness heavily depends on the underlying blockchain
backbone.

Most existing general blockchain construction mech-
anisms are designed for computers and do not consider
the features of an IIoT system. Recently, several efforts
have been made to leverage a trusted execution environment
(TEE) for blockchain construction, such as proof-of-elapsed-
time [7] and improved Byzantine fault tolerant using TEE [8].
These blockchain systems usually provide better performance
without expensive computations, and are attractive for IIoT
systems. Most TEE based blockchain designs use Intel
SGX [9] as the underlying TEE, and have several limitations
for an IIoT blockchain: (i) High energy consumption. Intel
SGX processors are usually designed for laptops/desktop-
s/servers, which are power-hungry and not suitable for IIoT
devices powered by batteries. (ii) Single root-of-trust. For
Intel SGX and most other processors supporting TEE, the
vendor of the hardware is the root-of-trust and responsible
for processor management. If the vendor’s master secret
is compromised or the vendor colludes with an attacker,
the whole security design of such as system collapses. The
vendor can even disable a processor without the agreement
of the owner. (iii) Low decentralization level. It is possible to
deploy existing TEE based blockchain construction scheme
on computers and connect IIoT devices to these computers.
However, this architecture prevents the IIoT devices from
participating in the blockchain construction and causes a low
decentralization level.

To overcome these limitations, we proposed a field
programable gate array (FPGA) approach to enable TEE
based blockchain for IIoT. Under the framework of the new
blockchain system, each IIoT device is equipped with an
FPGA as TEE to control the transaction generation, and a
set of servers with more computation/storage/communication
capacity work together to collected generated transactions to



build the blockchain. The new scheme also includes a novel
FPGA design that removes the dependency on the vendor
as the root-of-trust, and allows the owner of the hardware
to fully control the system. Furthermore, the solution offers
better energy efficiency because of the way FPGAs work.

In summary, our contributions of the paper include:
• We propose a framework of using FPGA to build a

blockchain for IIoT applications, which utilizes the
FPGA as TEE on IIoT devices;

• We design a decentralized secure device enrollment
scheme that eliminates the dependency on the hardware
vendor as the root-of-trust, and a two-stage blockchain
construction mechanism that allows both the IIoT
devices and connected computers to contribute; and

• We analyze the security features of the proposed scheme
and conduct experiments on the resources cost, power
consumption, and overall performance to demonstrate
its practicability.

The rest of the paper is organized as follows: In Section 2,
we briefly review the background of blockchain and FPGA.
We present an overview of the FPGA based blockchain
construction scheme for IIoT in Section 3, and the detailed
design is given in Section 4. Section 5 analyzes the security
features of the scheme and gives the experiment results. We
review related works in Section 6 and conclude the work in
Section 7.

2. Background

In this section, we briefly introduce the background of
blockchain and FPGA.

Blockchain and its construction. A blockchain is a data
structure maintained by multiple parties together, where
information is organized as linked blocks and determined
by all participants together [2]. From the way of participant
management, a blockchain can be classified as permissionless
(public) or permissioned (private). A public blockchain
is open to everyone to join and there is no mechanism
to control the membership. On the other hand, a private
blockchain only allows authorized parties to participate and
needs administrators to manage all participants. Since an
IIoT system is not an open system, we consider private
blockchain in this paper.

FPGA. Field programmable gate arrays (FPGAs) are semi-
conductor devices that are built with a matrix of configurable
logic blocks (CLBs) connected via programmable intercon-
nections. CLBs are configured by bitstreams, which define
the functions of the FPGA. Once the FPGA is configured, the
functions are fixed and it works like an application specific
integrated circuit (ASIC). Since the functions of an IIoT
device are relatively fixed, the FPGA does not need to be
re-configured frequently.

Modern FPGAs also provide some useful security fea-
tures such as bitstream encryption [10] and anti-tamper
capability [11], which are utilized to build the FPGA based
blockchain for IIoT.

Figure 1. Overview of the FPGA based blockchain for IIoT systems. The
FPGA attached to an IIoT device converts the data to transactions and sends
to servers to build the blockchain. In practice, the IIoT device can also
query the blockchain to obtain information.

3. Overview of FPGA based Blockchain for
IIoT

This section gives an overview of the FPGA based
blockchain architecture for IIoT, and discusses the security
model and design goals.

3.1. System Overview

Three groups of participants are involved in the FPGA
based blockchain for IIoT:

• The set of IIoT devices D. An IIoT device D ∈ D
generates data and utilizes the equipped FPGA to
convert the original data to transactions and attaching
metadata for the transaction, which is used in blockchain
construction. In the remainder of the paper, we use the
term device or FPGA for an IIoT device equipped with
an FPGA.

• The set of servers S . Servers are responsible for most of
block construction and blockchain maintenance works.
A server S ∈ S receives transactions from devices,
packs them to blocks, and linked to the blockchain.
Multiple servers communicate with each other and use
a pre-defined consensus protocol to determine the order
of the newly created blocks.

• The set of administrators A. Administrators are re-
sponsible for adding and removing a participant (IIoT
device or server) to/from the system. The owners of the
devices/servers can play the role of administrators. Each
administrator A ∈ A is equipped with a public/private
key pair (pkA, skA), and they know each other’s public
key. Therefore, they can communicate with each other
securely by establishing encrypted and authenticated
channels.

Figure 1 depicts the high-level architecture of the FPGA
based blockchain for IIoT and the workflow. A typical IIoT
system is not open to the public, and all participants need to
be enrolled in the system before they can interact with the
system. As the whole system is owned by multiple entities,



corresponding administrators work together to decide whether
a device/server can participate the blockchain construction by
assigning public/private key pairs to them, i.e., a device/server
can participate the system only if it has a private key with
corresponding public key endorsed by all administrators.

IIoT devices are the data source of the blockchain system.
For an IIoT device, the FPGA board converts the data into
transactions and controls the submission of these transactions
to a connected server. The server then collaborates with other
peer servers to pack the transactions into a block and connects
it to the blockchain. There are different ways to utilize this
framework for blockchain construction, and we borrow the
idea of PoET for a concrete implementation in this paper.

3.2. Security Assumptions and Design Goals

Security assumptions. We assume each IIoT device is
equipped with an FPGA, and the FPGA is properly built
without any backdoor or trojan. Both the pre-built functions
of and the bitstream loaded into the FPGA are tamper-
resistant, i.e., an attacker cannot affect the execution of
a function or extract extra information. We also require that
the IIoT device and the FPGA board is securely connected
that the attacker cannot alter the data send from the IIoT
device to the FPGA. Note that we do not require a third
party to pre-install any secret value to the FPGA.

A server is not fully trusted, i.e., it may deviate from the
pre-defined protocols and try to add blocks to the blockchain
according to their preferences. We also assume at least one
administrator is honest and follows all pre-defined protocols.
Design goals. The major design goals of the FPGA based
blockchain for IIoT systems include: (i) Fully controllable
by the administrators of the system. Only administrators of
the IIoT devices and corresponding FPGAs can set up the
system without relying on any trusted third party, including
the vendor of the devices. (ii) Preserving desirable blockchain
features. The system should be built in a decentralized man-
ner and provide an immutability feature. (iii) Re-configurable
for different scenarios. The administrators should be able to
add and remove participants, and change the configuration
parameters of each participant to accommodate different
application scenarios.

4. Detailed Design

In this section, we present the detailed design of the
FPGA based blockchain for IIoT.

4.1. Cryptography Tools

The FPGA based blockchain for IIoT systems utilizes
several cryptography primitives to achieve the security goals.
In this paper, we use hash function SHA256, elliptic curve
based signature scheme ECDSA, and encryption scheme
ECIES [12]. A key derivation function (KDF) based on
SHA256 HMAC [13] is also utilized. The elliptic curve based
cryptographic primitives are selected because the public key
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Figure 2. The FPGA design. Components with red names are newly
introduced. These components work together with the bitstream to facilitate
the blockchain construction. The value generated by the PUF is specific to
the FPGA device and can only be fed into the KDF component as one of
its inputs. The design does not require the FPGA vendor to place a secret
value into the FPGA device, so end users do not need to trust the vendor
for proper secret values management.

can be easily generated from the private key. Specifically,
the KDF output is treated as an integer and used as a private
key directly, and the corresponding public key is calculated
by a scalar multiplication with the base point, which is a
public parameter. Another benefit of using the elliptic curve
cryptography suite is that ECIES uses a symmetric encryption
scheme such as AES as an integrated part to handle concrete
data encryption and decryption, which makes the scheme as
a whole is efficient. A multi-signature scheme [14] is also
used in the design, which aggregates multiple signatures on
the same message to save space. For design consistency, we
adopt an elliptic curve based multi-signature scheme [14].

4.2. The Design of the FPGA

The FPGA provides a TEE to prepare transactions and
enforce part of the blockchain construction mechanism that
is executed on the IIoT device side. Figure 2 depicts the
diagram of the FPGA design, and the main components work
as follows:

• PUF. The PUF can generate a secret value x that is
unique to the device and the generation process is hard
to be cloned [15]. x can only be accessed by several
predefined components of the FPGA that are tamper
resistant, such as the KDF. These components will never
disclose x, and only use it as part as their inputs. In
other words, x serves as the identity of the device in an
indirect way as it can only be generated by the specific
device itself.



• KDF. The KDF accepts more than one inputs and derives
a pseudo random number. In this work, we use the
HMAC based KDF, where the PUF output x is used
as the key, and the user needs to provide another input.
The one-wayness feature of KDF guarantees that even
if an adversary obtains the derived value, he/she cannot
recover the PUF generated value. The KDF output can
be used directly as a symmetric key or a seed of a
random number generator. To construct an elliptic curve
key pair, the KDF output can also be treated as an integer
to serve as a private key, and the corresponding public
key is calculated using a scalar multiplication with the
base point of the pre-defined elliptic curve.

• Bitstream loader. This component accepts a bitstream
encrypted using ECIES, and decrypts it using a corre-
sponding private key that is generated by KDF utilizing
PUF. Since ECIES already provides authenticity pro-
tection, this component also guarantees the integrity
of the loaded bitstream. Using asymmetric encryption
for bitstream encryption is different from the current
practice of using symmetric encryption such as AES and
MAC to protect bitstream because multiple parties are
involved in setting up the bitstream in the blockchain
scenario and these parties do not fully trust each other to
share a common secret (i.e., the symmetric encryption
and MAC keys).

These components are built into the FPGA in a secure
manner, i.e., they are only accessible through pre-determined
interfaces and an adversary cannot look into or affect the
execution processes of these components. Note that this
design does not require the vendor to embed a root secret
to an FPGA before delivering it to the end user, which
is essential for building a decentralized system. Under the
framework of FPGA based blockchain for IIoT, a KDF
generates two types of public/private key pairs: device key
and blockchain-specific key. There is only one key pair that
serves as the device key, which is unique to the device and
used to protect the communication with the outside world,
such as loading encrypted bitstream into the device. There
can be multiple key pairs as blockchain-specific keys, and
each key pair is unique to a blockchain running on the device.
If a device is involved in multiple blockchain instances, it
uses a dedicated key pair for each blockchain.

Figure 3 summarizes the use of PUF and KDF in device
enrollment and blockchain construction. More details are
discussed in the remainder of this section.

4.3. Bitstream Structure

A bitstream is loaded into an FPGA to help the IIoT
device prepare transactions that are submitted to servers
to build the blockchain. All administrators need to achieve
agreement on the bitstream contents, and a bitstream has the
following functions/data sections:

• Digital signature generation. This function is further
divided into two sub-functions. The first sub-function
is obtaining the private key from the KDF. Secret
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Figure 3. The role of PUF in the FPGA based blockchain for IIoT. The output
of the PUF is used for multiple purposes, including the bitstream encryption
key pair generation (device key), the blockchain key pair generation (this
key pair is specific for the bitstream, which defines a blockchain instance),
and the random number generator seed generation.

values from administrators are provided to KDF for
key generation, the process of which is discussed later.
The second sub-function is to use the private key to
sign a message and return the signature.

• Pseudo Random number generator (PRNG). This func-
tion utilizes the seed generated by the KDF and derives
a sequence of random values. This function also maps
the generated random value to a desired range, which
is defined in the metadata section of the bitstream.

• Clock. This function measures the past time from
a given point, and triggers other functions when a
predefined condition is met.

• Metadata. Metadata stores information that is specific
to the device and the blockchain, including values that
are used to derive the blockchain specific private key,
parameters for the random number generator, and other
information related to the configuration of the device.

• Transaction construction. This function embeds infor-
mation collected by devices into a transaction and adds
necessary information, such as the digital signature of
the transaction.

The construction of the bitstream and details on how these
functions/data are used in the blockchain construction are
discussed later.

4.4. Decentralized Device and Server Enrollment

One major advantage of the FPGA based blockchain for
IIoT systems is that the FPGA vendor is only responsible
for providing properly manufactured hardware that does not
have backdoors or trojans, but does not work as the root-
of-trust to put secret values in devices. After the device is
delivered, the administrator has full control of the device
and the vendor cannot impact the operation of the device.

Before a device can be used in the system, the adminis-
trators need to enroll it into the system by provisioning the
bitstream and corresponding key materials in a decentralized
manner, i.e., they need to work together and achieve consen-
sus on the task. For a device D ∈ D, all administrators in
A need to achieve an agreement to enroll it to the system,
and on the contents of the bitstream BS that will be loaded
into D. Three features should be guaranteed in this process:



• Binding. BS can and can only be loaded into the specific
device D so that if one believes a message is generated
by BS, he/she can safely assume that the message is
created by D.

• Involvement verifiability. Each administrator A ∈ A can
verify that he/she has agreed to add D into the system.

• Non-malleability. An adversary (who can be an adminis-
trator) cannot alternate an existing bitstream or generate
a new bitstream from existing ones without being
detected by an honest server that processes transactions
created by the compromised bitstream.

Device enrollment protocol. A device without a bitstream
cannot participate in the blockchain construction, so the
device enrollment process also includes the bitstream con-
struction/loading process. The device enrollment process
works as follows:

• The device D utilizes internal PUF and KDF to generate
a public/private key pair (pkDBSP, sk

D
BSP) for bitstream

protection, i.e., the device key for bitstream encryption
and decryption. Here the KDF takes two inputs, the PUF
value and the serial number of the device. pkDBSP also
serves as the device key and is released to all adminis-
trators. Note that it is the administrators’ responsibility
to guarantee that pkDBSP is generated by the device and
there is no man-in-the-middle attack. This can be done
by physically connecting to the device to obtain the
public key.

• Each administrator Ai ∈ A selects a random value sAi

for the bitstream BS and device D. If the same bitstream
is used for another device, the administrator needs to
select another random value.

• Ai encrypts sAi using ECIES encryption algorithm and
pkDBSP, the resulted is denoted as csAi

. ECIES provides
both confidentiality and authenticity protection.

• All administrators work together to attach metadata to
the bitstream BS, and the metadata field includes three
parts: (i) the list of identities of administrators in the
form of their public keys; (ii) the ciphertexts of random
values csAi

; and (iii) an aggregated signature σBS on
updated BS, which is generated by all administrators
together using the multi-signature scheme. The BS is
then encrypted with ECIES using pkDBSP and sent to the
device.

• D loads the encrypted bitstream BS using the bitstream
loader, where BS is decrypted using skDBSP and the result
is loaded into the program logic part of D.

• D uses all random values sAi
included in BS metadata

together with the internal PUF generated value as inputs
to KDF to generate another public/private key pair
(pkDBS, sk

D
BS) (the application specific key), which is used

for the blockchain construction. pkDBS is released to all
administrators.

• D generates a proof to each Ai to prove that his/her
selected random value sAi

is involved in the generation
of pkDBS. Specifically, D generates a signature σcs on
(pkDBS, {csAi

}) using private key skDBSP and shares the
signature with administrators.

• All administrators verify the signature σcs using the
public key pkDBSP, which they obtained directly from the
device D. Then they endorse the public key pkDBS by
signing it using their private keys and the multisignature
scheme, and D can use skDBS for interaction with other
components of the system for authentication and other
attestation purposes.

Note that all the operations carried out by D is determined
by the bitstream BS, which is verified by all administrators.
The encryption of BS can be done by any administrators, and
others can repeat the encryption process to verify that the
cipher-text of BS is correctly constructed before contributing
to the aggregated signature σBS.
Security analysis of the enrollment protocol. The en-
rollment protocol guarantees the three features described
at the beginning of Section 4.4: (i) Binding. The bitstream
protection key pair (pkDBSP, sk

D
BSP) is generated by the device

D and only D has access to the private key. Since the
bitstream is encrypted by pkDBSP, D and the bitstream are
bound. (ii) Involvement verifiability. An administrator only
endorses the public key pkDBS that is bound with the bitstream
after verifies that his/her secretly selected value is involved
in the generation of pkDBS, so he/she can verify his/her
involvement in the generation of the key pair (pkDBS, sk

D
BS),

which is essential to participate the blockchain operations.
(iii) Non-malleability. An adversary cannot modify an exist-
ing bitstream as its integrity is protected by a multi-signature
generated by all administrators. If an adversary manages
to generate a bitstream by him/herself and submits to the
device, he/she cannot endorse the public key pkDBS returned
by the device on behalf of other administrators. Therefore,
the non-malleability feature is guaranteed. After the device
is enrolled in the system, it can use skBS to generate digital
signatures to authenticate itself and generated messages.
Server enrollment. The server enrollment process is
simpler. Administrators generate a multi-signature on the
server selected public key and distribute both the key and
corresponding signature to other servers.

4.5. The Consensus Protocol

The FPGA based blockchain for IIoT system has both the
devices and servers involved in the blockchain construction.
We present a concrete implementation utilizing the idea
of proof-of-elapsed-time [7], [16]. Under this framework,
the IIoT devices do not participate blockchain construction
directly because they do not have the capability to collect
transactions from other devices to form blocks and store the
blockchain. Instead, IIoT devices only prepare transactions
for their own data and leave the blockchain construction
and storage job to the servers connected to IIoT devices.
Correspondingly, the execution of the consensus protocol is
divided into two phases: transaction construction and block
construction/storage. Therefore, the original design of PoET
cannot be applied directly.
Transaction construction. The FPGA controls the transac-
tion creation and submission of a device as follows:



• Based on the configuration parameters embedded in the
bitstream, the FPGA uses the PRNG to select a waiting
time tw which follows a predefined distribution U , and
the parameters of U are defined in the metadata section
of the bitstream. The seed for the random number
generator is provided by the KDF, which takes as
input both the PUF and the current time. Since the
device can only support limited time precision, U is
a discrete distribution. Although the random number
generator only gives uniformly distributed values, it is
possible to construct arbitrary waiting time distribution
using inverse transform sampling [17], which is also
implemented as part of the bitstream and does not affect
the FPGA based blockchain for IIoT framework.

• The clock function maintains the elapsed time since
tw is generated. When the elapsed time reaches tw,
the device can submit a transaction to the system. The
device constructs a transaction txD using the transaction
construction function included in the bitstream. The
transaction has three fields: (i) The payload, which is
used to store the IIoT device generated data. (ii) The
waiting time tw, which is created by the PRNG. (iii) The
authentication tag, which stores a digital signature on
the other fields and is generated using skDBS.

• The constructed transaction txD is then sent to connected
servers for further processing and being included in
the blockchain. This step does not require a device to
interact with others.

Block construction. Servers are responsible for putting
transactions onto the blockchain, and they disseminate
received transactions to other peer servers. After collecting
a certain number of transactions from devices, a server
packs them together to create a new block and links it
to its local blockchain. The server also broadcasts the new
block to other servers to include it in their local copies of
the blockchain. The number of transactions in a block is
determined by a predetermined parameter. Within the block,
multiple transactions are ordered based on their creation
and waiting time. Transactions with the same creation and
waiting time can be ordered by other metrics such as its
hash value. Besides the transactions, the constructed block
also has the following two fields: (i) The hash value of
the previous block. The purpose of the hash is to establish
the link between the new block and its predecessor block;
(ii) The digital signature. The server signs the newly created
block with its private key skS .
Block acceptance. After receiving a new block, a server
checks whether it is correctly formed: (i) All transactions
are generated and signed by legitimate devices and correctly
constructed; (ii) There is no replayed transactions in the
block, i.e., transactions that have been included in existing
blocks do not appear in the new block; (iii) It is linked to
the most recent block with the right hash value; and (iv) The
block signature is valid and generated by a known server. If
the received block passes all the tests, the server accepts it by
adding it to the end of his/her local copy of the blockchain.
Branch elimination. Due to the network latency and the

way devices and servers are connected, servers may receive
different transactions and produce different blocks, which
causes multiple branches in the system. In order to eliminate
extra branches in an efficient manner, the FPGA based
blockchain for IIoT adopts a multi-criteria strategy. If one
branch is just a predecessor of the other branch, the latter is
selected, which includes more blocks. If two branches are
different at the last block, the following criteria is applied:
(i) A block with a larger sum of waiting time has higher
priority; (ii) If two blocks have the same sum of waiting
time, the one with a transaction that has the earliest creation
time has higher priority; (iii) If the earliest creation time
is also the same, the one with a smaller hash value has
higher priority. By adopting this strategy, branches can be
eliminated at their early stages as one does not need to wait
for more blocks to be added to make the decision.

4.6. Detection of Compromised Devices

In an extreme case, an adversary may manage to break
the TEE of the device, and leverages the compromised device
as a stepping stone to attack the system. Since we use waiting
time to control the submission of transactions, the adversary
can manipulate the waiting time to gain advantages over
other devices on submitting transactions. To mitigate this
risk, servers who are responsible for putting transactions
into blocks run a statistical test to check whether the pattern
of a device submitting transactions follow the predefined
waiting time distribution. If the submission rate of a certain
device deviates too much from the distribution and exceeds
a predefined threshold, a server flags the event and removes
the device from the list of enrolled devices.

5. Analysis and Experiments

In this section, we analyze the performance and security
features of the proposed FPGA based blockchain for IIoT.

5.1. Security Analysis

Besides the basic security features of a blockchain like
immutability, the FPGA based blockchain for IIoT also
provides extra security features such as full user control
and high resilience.
Immutability. Immutability means an adversary cannot alter
transactions that have been added to the blockchain. Since a
legitimate private key used for signing transactions is safely
kept inside the FPGA TEE, an adversary cannot generate
fake transactions. He/she can only manipulate existing trans-
actions, e.g., changing the order of transactions/blocks and
removing an existing transaction. In order to achieve this
goal, the adversary needs to show to other servers that the
branch he/she builds has a higher priority than the legitimate
one. According to the strategy of branch elimination, the
likelihood of success is low due to two reasons: (i) Removing
one or more transactions only makes the branch priority
even lower; (ii) Reordering all the transactions into new



blocks can be easily detected. The probability that a server
is able to submit a block depends on the device waiting time
distribution and it is easy to detect if a server builds too
many blocks.
Full user control. A device is identified by a public/private
key pair (pkDBSP, sk

D
BSP), which is generated by the KDF

component using the onboard PUF as one of the inputs. The
private key is only available to some internal components
of the device and the vendor cannot extract it. Therefore,
the vendor cannot impersonate or revoke the device after it
is delivered to the end user. To guarantee the genuineness
of the corresponding public key, administrators physically
obtain public keys from devices and then endorse them using
a multi-signature scheme. Since these administrators own
the system, they do not have the incentive to cheat and other
participants can safely trust these certificates.
High resilience. The FPGA based blockchain for IIoT
enforces full agreement on participants’ membership, and
is resilient to rogue administrators as long as there is at
least one honest administrator in the system. Specifically, if
a subset of administrators is not cooperative and wants to
manipulate the system, they can try to add new servers and/or
new devices to the system that they can fully control without
the agreement of other administrators. In this case, legitimate
servers (i.e., servers that are added to the system following
the protocol) will not accept blocks created by these servers
controlled by rogue administrators as their public keys are
not endorsed by all administrators. The situation is the same
for IIoT devices. If a subset of administrators collude and
try to add a faked device to the system, all transactions
submitted by this device will be rejected by an honest server
as the signature of the transaction cannot be verified by a
correctly endorsed device public key.

The only way for an adversary to pass the signature
verification process to compromise the system is to break the
FPGA to manipulate the device, i.e., put fake information
into transactions and submit transactions at a faster rate.
Detection of fake transactions is out of the scope of the
FPGA based blockchain for IIoT but it can detect abnormal
submission rate using statistic test as discussed in Section 4.

5.2. Consensus Protocol Analysis

According to the design of the FPGA based blockchain
for IIoT, devices do not need to interact with others to submit
a transaction. The only limitation for a device is that it has
to wait for a randomly generated time period to submit a
new transaction. This method can be treated as a simulation
of PoW without the expensive mining process. In a PoW
scheme, one needs to wait until it successfully produces a
valid magic number to submit a block to the system. One
can usually assume this waiting time follows a uniform
distribution if each node randomly select their mining scope,
and the distribution parameter is determined by the level of
mining hardness.

For the FPGA based approach, the randomly generated
waiting time is not applied to control block submission

TABLE 1. RESOURCE UTILIZATION OF THE MAJOR COMPONENTS ON
THE FPGA.

Component #BRAMs
(18Kbit)

#DSPs
(48E)

#FFs #LUTs Exec
Time

PUF based
RNG

0 (0%) 0 (0%) 315
(0.06%)

128
(0.05%)

1 Cycle
(5ns)

Timer 0 (0%) 0 (0%) 35
(0.01%)

138
(0.05%)

N/A

256-bit pub-
lic key gen-
erator

0 (0%) 288
(11.42%)

125,164
(22.83%)

84,368
(30.78%)

N/A

Signature
generator

0 (0%) 320
(12.70%)

144,044
(26.28%)

99,189
(36.19%)

N/A

directly. Instead, a server waits for a certain number of
transactions to arrive and packs them into a block to submit.
The distribution of this waiting time depends on several
factors, including the distribution of device waiting time,
the number of devices in the system, the way devices and
servers are connected, and network latency. If servers’ waiting
times are too concentrated, i.e., a large number of servers
submit their blocks in a short time period, the probability of
collision increases, which means different blocks are added
after the same predecessor but finally only one of them will
be accepted by the whole system. A high collision rate will
decrease the performance of the system as more blocks are
abandoned during the process of adding new blocks. When
the server waiting time follows a uniform distribution, one
can expect a lower collision rate. We simulate this scenario
and present the experimental results in Section 5.4. We
refer the readers to [7] for a detailed analysis of a more
complicated distribution used in the original PoET, which
also applies here.

5.3. FPGA Bitstream Implementation and Cost

We implement major components of the bitstream using
Xilinx ZCU102 board and Vivado 2018.3 tool. All the
components are generated for targeting 200Mhz clock cycle.
TABLE 1 summarizes the resource utilization and execution
time.

• Random number generator. A strong or unpredictable
random number generator is essential for the security
of the system, otherwise, a catastrophe of security
penetration such as private key leakage may happen [18].
To prevent such kinds of attacks, we implemented a
PUF based True Random Number Generator (TRNG)
proposed by Sadr and Zolfaghari-Nejad [19].

• Timer: We implement a simple timer for waiting time.
A decrement counter and a control register are utilized
for the purpose.

• ECC 256-bit public key and ECDSA signature generator.
We select secp256r1 curve which has 256-bit private
key. Both public key generator and ECDSA signature
generator use the private key generated by the KDF
component.

We also measure the energy consumption of these
components. The random number generator consumes about



0.837W and the timer consumption is negligible. The public
key cryptography operations are relatively more expensive,
with the public key generator for 1.265W and the signature
generator for 1.358W.

5.4. Performance Simulation

For scalability, we use SimBlock [20] to simulate the
performance of FPGA based blockchain construction. Sim-
Block is an open-source blockchain simulator developed by
Tokyo Institute of Technology. SimBlock is configurable by
adjusting parameters, including node locations, node latency,
block rate, block size, etc. We conduct our simulation on an
Amazon EC2 t2.large type instance. We set the number of
servers to 600, distributed in 6 different regions. The average
latency between any two regions is 200 ms approximately.
The down/upload bandwidth for each server is simulated as
25Mbps to 600 Mbps. We change the source code to adopt
our consensus protocol as follows, which is based on the
block waiting time and earliest transaction time in a block.

C o l l e c t i o n s . s o r t ( b l o c k L i s t , new
Comparator<Block >(){

@Override
p u b l i c i n t compare ( Block a , Block b ) {

/ / F i r s t : check t h e b l o c k w a i t i n g
t ime

i n t o r d e r = Long . signum ( a .
g e t E l a p s e d T i m e ( ) − b .
g e t E l a p s e d T i m e ( ) ) ;

i f ( o r d e r != 0) r e t u r n o r d e r ;
/ / Second : check t h e e a r l i e s t

t r a n s a c t i o n t ime i n a b l o c k
o r d e r = Long . signum ( a .

g e t E a r l i e s t T x T i m e ( ) − b .
g e t E a r l i e s t T x T i m e ( ) ) ;

i f ( o r d e r != 0) r e t u r n o r d e r ;
/ / Compare hash v a l u e i f bo th v a l u e s

above a r e same
o r d e r = System . i d e n t i t y H a s h C o d e ( a ) −

System . i d e n t i t y H a s h C o d e ( b ) ;
r e t u r n o r d e r ;
}

} ) ;

The results are summarized in Figure 4. Success rate
indicates the rate where a block is added to the main chain
successfully without a collision. We can observe that when
the block rate is between 1 block per 2 minutes and 1
block per 10 minutes (Bitcoin’s block rate), our system can
maintain a high block success rate. The results show that our
system is scalable because when the servers receive blocks
at a higher rate, they can still achieve agreement on the
order of all received blocks. In the simulation, the block size
is set to 0.5 MB. We can further improve the throughput
by increasing the block size. Furthermore, the situation we
consider here is relatively extreme as a typical IIoT system
is usually deployed within a small area and has a smaller
number of servers.

Figure 4. Simulation results on the performance of FPGA based blockchain
for IIoT.

6. Related Works

In this section, we review related works on hardware
facilitated blockchain construction for IIoT.
Proof-of-work acceleration hardware. Proof-of-work is
still one of the major blockchain construction methods. To
accelerate the mining speed and gain advantages in the
competition with other miners, a variety of application-
specific integrated circuits (ASICs) are developed for cryp-
tocurrencies such as Bitcoin [21], [22]. FPGAs are also used
to accelerate mining [23]. This line of research focuses on
PoW performance improvement and has a different goal than
the scheme presented in this paper, which aims at removing
the single root-of-trust and offering a new way of hardware
based blockchain construction for IIoT.
Hardware based blockchain security enhance-
ment. CONFIDE utilizes a TEE to offer transaction
confidentiality in the consortium blockchain
environment [24]. Yuan et al. proposed a design to
implement private smart contract on public blockchain,
which used a TEE to build a confidential and secure off-chain
platform for private contracts storage and execution [25].
Ayoade et al. designed a secure IoT data management
scheme combining TEE and blockchain technology [26].
These works use SGX as the underlying TEE [9], and
do not work directly on IIoT devices. But they can be
integrated with the proposed scheme and run on the servers.
Therefore, they are complimentary to the FPGA based
blockchain system.
Hardware based blockchain construction. Several
blockchain construction schemes utilizing hardware, espe-
cially hardware based TEE, have been proposed. Intel PoET
utilizes the SGX to generate random waiting time to control
the priviladge of block producing [7]. The concept of proof-
of-luck also utilizes the SGX as a trusted random source
to [27]. Hardware based TEE is also used to improve existing
blockchain construction schemes such as proof-of-stake [28],



and BFT [8]. These works do not consider the initialization
of the TEE and rely on the vendor as the root-of-trust. The
decentralized enrollment scheme can be applied to these
schemes to remove the dependency on the vendor. The
other major difference is that the proposed scheme divides
the blockchain construction into two parts and allows the
IIoT devices to participate the process. This feature further
improves the decentralization level of the blockchain system.

7. Conclusion

Using hardware based TEE provides a new choice
for constructing an efficient blockchains for IIoT system
management and protection. The proposed FPGA based
blockchain framework leverages power efficient FPGAs to
build TEE for IIoT devices to support blockchain operation,
which does not rely on any third party as the root-of-trust. We
also provide one concrete blockchain construction mechanism
under this framework using the concept of proof-of-elapsed-
time. Besides the desirable feature of fully user controllability,
the FPGA is power efficient and fits the energy constrained
IIoT environment. The cost and efficiency of the FPGA based
blockchain for IIoT are also verified by experiments and
simulation.
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