
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

10-2020

The Majority Rule: A General Protection on Recommender System The Majority Rule: A General Protection on Recommender System

Lei Xu
The University of Texas Rio Grande Valley, lei.xu@utrgv.edu

Lin Chen

Martin Flores
The University of Texas Rio Grande Valley

Hansheng Lei
The University of Texas Rio Grande Valley

Liyu Zhang
The University of Texas Rio Grande Valley

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lei Xu, Lin Chen, Martin Flores, Hansheng Lei, Liyu Zhang, Mahmoud K. Quweider, Fitratullah Khan, and
Weidong Shi. 2020. The Majority Rule: A General Protection on Recommender System. In Proceedings of
the 1st ACM Workshop on Security and Privacy on Artificial Intelligence (SPAI '20). Association for
Computing Machinery, New York, NY, USA, 40–46. DOI:https://doi.org/10.1145/3385003.3410923

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Authors Authors
Lei Xu, Lin Chen, Martin Flores, Hansheng Lei, Liyu Zhang, Mahmoud K. Quweider, Fitratullah Khan, and
Weidong Shi

This conference proceeding is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/cs_fac/38

https://scholarworks.utrgv.edu/cs_fac/38

The Majority Rule: A General Protection on
Recommender System

Lei Xu
xuleimath@gmail.com

University of Texas Rio Grande Valley
Brownsville, TX

Lin Chen
chenlin198662@gmail.com
Texas Tech University

Lubbock, TX

Martin Flores
martin.flores05@utrgv.edu

University of Texas Rio Grande Valley
Brownsville, TX

Hangsheng Lei
hansheng.lei@utrgv.edu

University of Texas Rio Grande Valley
Brownsville, TX

Liyu Zhang
liyu.zhang@utrgv.edu

University of Texas Rio Grande Valley
Brownsville, TX

Mahmoud K. Quweider
mahmoud.quweider@utrgv.edu

University of Texas Rio Grande Valley
Brownsville, TX

Fitratullah Khan
fitra.khan@utrgv.edu

University of Texas Rio Grande Valley
Brownsville, TX

Weidong Shi
wshi3@central.uh.edu
University of Houston

Houston, TX

ABSTRACT
Recommender systems are widely used in a variety of scenarios,
including online shopping, social network, and contents distribu-
tion. As users rely more on recommender systems for information
retrieval, they also become attractive targets for cyber-attacks. The
high-level idea of attacking a recommender system is straightfor-
ward. An adversary selects a strategy to inject manipulated data
into the database of the recommender system to influence the rec-
ommendation results, which is also known as a profile injection
attack. Most existing works treat attacking and protection in a static
manner, i.e., they only consider the adversary’s behavior when an-
alyzing the influence without considering normal users’ activities.
However, most recommender systems have a large number of nor-
mal users who also add data to the database, the effects of which are
largely ignored when considering the protection of a recommender
system. We take normal users’ contributions into consideration
and analyze popular attacks against a recommender system. We
also propose a general protection framework under this dynamic
setting.

CCS CONCEPTS
• Security andprivacy; • Information systems→Recommender
systems;

KEYWORDS
Recommender system, protection, VRF

1 INTRODUCTION
The rate at which information is being created is still accelerating,
and people are relying on machines for information management
and process more than ever. Such applications include automatic
recommendation, website searching, and a variety of machine learn-
ing applications.

A recommender system [5] provides an effective way to help a
user to navigate through the mass data. Unlike a search engine, a
recommender system works in an active way, i.e., it pushes infor-
mation to the end user actively instead of waiting for the user’s
instruction to retrieve information. A typical recommendation pro-
cess consists of two steps: prediction and ranking. For prediction,
the recommender system utilizes existing records (e.g., user’s pro-
file and existing reviews on items) to generate scores on items that a
user does not have an existing review. The system then ranks these
items using predicted scores and pushes those with high scores to
the user.

Because the scores are generated based on users’ profile and
items with higher scores are recommended to the user first, the
probability that the user likes them and purchases/reads/listens is
high.

Automatic recommendation has been widely used in e-commerce
systems [15], news distribution [9], and music/movie suggestions [2,
18]. Already, 35 percent of what consumers purchase on Amazon
and 75 percent of what they watch on Netflix come from product
recommendations based on such algorithms [11].

Since the recommendation results have a close connection with
one’s financial interests (e.g., increasing an item’s exposure to poten-
tial customers), the security of the recommender system becomes

a critical issue. Besides utilizing the general attacking techniques
against the servers that host the recommender system to directly
control the recommendation results, an adversary can also influ-
ence the predictions by adding new reviews [12, 14, 17]. The second
type of attack is also known as profile injection and does not require
sophisticated tools to invade into the target system, which are usu-
ally easier to carry out. The non-invasive character of such attacks
also makes it harder to be detected. Two strategies are proposed to
mitigate the second type of attack:

• Anomaly detection. If the adversary’s behavior is different
from normal users, an anomaly detection algorithm can be
deployed in front of the recommender system to filter out
new records that are created by the adversary.
• Making the recommender system as a black-box. An adver-
sary usually relies on knowledge of the recommendation
algorithm and existing review records to construct new re-
views to maximize the attack impacts. Therefore, preventing
the adversary from learning the information can mitigate
the attack.

Both strategies have some limitations. For example, all anomaly
detection algorithms have a false positive rate, i.e., normal usersmay
be misclassified as adversaries and their reviews will be rejected,
which affects user experience and reduces the performance of the
recommender system. Making the recommender system as a black-
box does not have the misclassification issue but information (e.g.,
existing review values on items) is hidden from both adversaries
and normal users to increase the hardness for the adversary. This
also affects the user experience and is not desirable.

In this paper, a novel approach of recommender system protec-
tion that eliminates the above limitations is developed. The new
solution takes normal users’ behavior into consideration when
studying the attack impacts and our analyses demonstrate that
those reviews submitted by normal users can counteract the influ-
ence of the adversary, especially when only a small percentage of
reviews are produced by the adversary.We also design a mechanism
to enforce the limitation and prevent the adversary from submit-
ting a large number of reviews to dominate the system. Specifically,
the mechanism leverages cryptography primitives to link cyber
world activities (submitting new reviews) to physical world activi-
ties (computation), e.g., to submit a review, one has to finish some
computation task. Therefore, as long as the adversaries are only a
small fraction of all users, they cannot submit an overwhelming
amount of reviews.

In summary, our contributions in this works include:

• We prove and demonstrate that normal users’ activities can
mitigate the adversary’s attack against a recommender sys-
tem, especially when the adversary only contribute a small
percentage of reviews;
• We design a novel mechanism to prevent the adversary from
submitting a large number of reviews to manipulate the rec-
ommendation results regardless of the strategy the adversary
adopts. The new mechanism does not rely on any assump-
tion on anomaly detection, so it does not suffer from issues
like false positives.

2 THREATS AGAINST RECOMMENDER
SYSTEMS

This section presents the background of recommender systems and
typical attacking methods against a recommender system.

2.1 Recommender System
A typical recommender system involves two types of subjects, users
and items. A user can make reviews for an item. The information can
be organized as a matrix (rating matrix), where each row represents
a user and each column represents an item. A user’s review of an
item is a value of the matrix at the corresponding place. Given a user,
the recommender system provides an ordered recommendation list
of items that the user may be interested in.

The recommendation process can be further divided into two
phases, prediction and recommendation/ranking. During the pre-
diction phase, the system determines how much a user may like
an item that he/she does not have a review. For the recommen-
dation/ranking step, the system determines which items should
be pushed to the user. The second step is usually done by simply
ranking the predictions and selecting the tops to recommend to the
user. We only focus on the attack and protection of the prediction
step in this paper.

The nature of prediction is guessing a user’s attitude on an item
that he/she does not have a review. The prediction is usually com-
puted based on the rating matrix, i.e., existing reviews and users’
profiles. For example, if two users share a similar profile, then it
is more likely that they have the same preference. And the rec-
ommender system can use one user’s review for the other user
as a prediction. There are a variety of strategies to utilize exist-
ing information to calculate the prediction, such as collaborative
filtering [5], rating matrix factorization [6], and contents based
recommendation [10].

2.2 Attacks against a Recommender System
No matter how an attack is launched against the target recom-
mender system, the adversary usually aims to achieve one of the
purposes, item push and item nuke [14]. The goal of item push attack
is to promote the predications on targeted items, while the item
nuke attack tries to demote the predictions on selected items.

The adversary can attack the servers running the recommender
system directly to take over using various hacking techniques. The
adversary can then arbitrarily manipulate the recommendation
computation to push or nuke items. General system security en-
hancement methods such as installing patches frequently and run-
ning intrusion detection can help to prevent such attacks.

Another type of attack is less invasive. Since the prediction is
determined by the rating matrix where the items are reviews, the ad-
versary can influence prediction results by adding selected reviews
to achieve push or nuke purpose. For different recommendation
algorithms, the adversary needs to use different strategies to build
reviews to maximize the attack impacts.

The second type of attack poses a more serious threat to a rec-
ommender system as it is easier to launch such attacks, and hard
to detect if the adversary is careful enough. We only consider the
second type of attack in this work.

3 PROBLEM STATEMENT
We consider a recommender system S with 𝑛 users (𝑢1, 𝑢2, · · · , 𝑢𝑛),
and use 𝑣𝑢𝑖 ,𝑦 to denote the review value that user 𝑢𝑖 given to item
𝑦. The predicated review value for user 𝑢𝑖 on item 𝑦 is calculated
using Pearson’s correlation based collaborative filtering as follows:

𝑣𝑢𝑖 ,𝑦 = 𝑣𝑖 +
∑

𝑗 𝐶𝑖, 𝑗 (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)∑
𝑗 |𝐶𝑖, 𝑗 |

, (1)

where 𝑣𝑖 and 𝑣 𝑗 are the average review values of user 𝑢𝑖 and 𝑢 𝑗
respectively.

The Pearson’s correlation coefficient is a measure of similarity
between two users based on their reviews on common items, and
calculated as follows [5]:

𝐶𝑖, 𝑗 =

∑
𝑦 (𝑣𝑢𝑖 ,𝑦 − 𝑣𝑖) (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)√∑

𝑦 (𝑣𝑢𝑖 ,𝑦 − 𝑣𝑖)2
√∑

𝑦 (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)2
(2)

The value of 𝐶𝑖, 𝑗 lies in [−1, 1]. A value 1 implies that a linear
equation with positive slop describes the relationship between the
two users’ reviews, and −1 implies a linear equation with negative
slop describes the relationship.

After an adversary finishes the attack (i.e., adding new reviews
to the system which are constructed according to his/her purpose),
we use prediction shift to describe the effectiveness of the attack,
which is difference defined as:

P𝑦 =
∑
𝑢

(𝑣𝑢𝑖 ,𝑦 − 𝑣𝑢𝑖 ,𝑦), (3)

where 𝑣𝑢𝑖 ,𝑦 is the predicted review value of item 𝑦 for user 𝑢𝑖 after
the attack. Since 𝑣𝑢𝑖 ,𝑦 is a constant value before the attack, the
adversary only needs to maximize or minimize the term 𝑣𝑢𝑖 ,𝑦 for a
push or nuke attack.

This definition can be easily extended to the situation of multiple
adversaries. In the worst situation, these adversaries collaborate to
maximize the effectiveness of the attack. However, the prediction
shift defined in Equation (3) only considers the adversaries but
ignores the activities of normal users, which also contribute to the
database for the recommender system. In this work, we focus on
the following two problems:
• When both adversaries and normal users add new reviews
to the database of a recommender system, whether the effec-
tiveness of the attack will be changed or not. It is desirable
to have a quantitative analysis of the relationship between
the impact of the attack and the ratio of adversaries from all
users.
• If adversaries can generate an unlimited amount of review
values, they can manipulate the prediction in an arbitrary
way. It is desirable to design a mechanism to prevent an
adversary from submitting a huge amount of reviews.

4 ANALYSIS OF THE IMPACTS OF NORMAL
USERS

In this section, we analyze the impacts of normal users’ behavior on
the prediction shift when the recommender system is under attack.

We divide time into discrete epochs when analyzing the safety
of the recommender system. At the beginning of each epoch, both
normal users and adversaries can add new reviews to the system.

The recommender system generates new predictions at the end of
the epoch using the updated database. The adversary cannot control
or predict the behavior of normal users. In the following analysis,
we assume the adversary adopts the same strategy to generate
new reviews to push or nuke the target items without considering
normal users’ contribution to the database of the recommender
system.

4.1 Case 1: Inactive Target User
We divide all users of the system into three groups: 𝑆1 is the set
of collaborative adversaries who intentionally generate reviews
to manipulate the prediction, 𝑆2 is the set of normal users who
generate new reviews in the current epoch, and 𝑆3 is the set of
normal users who do not generate new reviews. We first consider
the situation that the target user 𝑢𝑖 ∈ 𝑆3, i.e., 𝑢𝑖 does not generate
new reviews during the current epoch.

In this case, the updated prediction value for user 𝑢𝑖 on item 𝑦

at the end of the epoch is given as follows:

𝑣𝑢𝑖 ,𝑥 = 𝑣𝑖 +
𝑋1 + 𝑋2 + 𝑋3∑

𝑗 ∈𝑆1 |𝐶𝑖, 𝑗 | +
∑

𝑗 ∈𝑆2 |𝐶𝑖, 𝑗 | +
∑

𝑗 ∈𝑆3 |𝐶𝑖, 𝑗 |
(4)

Here 𝑋1 =
∑

𝑗 ∈𝑆1 𝐶𝑖, 𝑗 (𝑣𝑢 𝑗 ,𝑥 − 𝑣 𝑗), 𝑋2 =
∑

𝑗 ∈𝑆2 𝐶𝑖, 𝑗 (𝑣𝑢 𝑗 ,𝑥 − 𝑣 𝑗), and
𝑋3 =

∑
𝑗 ∈𝑆1 𝐶𝑖, 𝑗 (𝑣𝑢 𝑗 ,𝑥 − 𝑣 𝑗). Since users in 𝑆3 do not add new

reviews, 𝑣𝑖 , 𝑋3 and
∑

𝑗 ∈𝑆3 |𝐶𝑖, 𝑗 | remain the same during the epoch.
Furthermore, adversaries launch the attack without considering
new reviews created by normal users and the user 𝑢𝑖 does not
change his/her profile during the epoch, so the values of 𝑋1 and∑

𝑗 ∈𝑆1 |𝐶𝑖, 𝑗 | are also the same during the epoch.
In summary, the only two terms that affect the effectiveness of an

attack within an epoch are𝑋2 and
∑

𝑗 ∈𝑆2 |𝐶𝑖, 𝑗 |, which are related to
normal users’ new reviews. Without loss of generality, we consider
the scenario where the goal of the adversary is to push an item 𝑥

for user 𝑢𝑖 , the nuke scenario can be analyzed in the same way.
Let 𝑐1 ← 𝑋1+𝑋3 and 𝑐2 ←

∑
𝑗 ∈𝑆1 |𝐶𝑖, 𝑗 |+

∑
𝑗 ∈𝑆3 |𝐶𝑖, 𝑗 |. To achieve

the goal of push, the adversary tries to maximize the prediction
value. Therefore, the attack effect is weakened if the new prediction
𝑣𝑢𝑖 ,𝑥 given in Equation (4) drops when the normal users’ activities
are taken into consideration. Specifically, the attack effect is reduced
when

𝑣𝑖 +
𝑐1
𝑐2

> 𝑣𝑖 +
𝑐1 + 𝑋2

𝑐2 +
∑

𝑗 ∈𝑆2 |𝐶𝑖, 𝑗 |
⇔

𝑐1
𝑐2

>
𝑐1 + 𝑋2

𝑐2 +
∑

𝑗 ∈𝑆2 |𝐶𝑖, 𝑗 |
⇔

𝑐1 · (𝑐2 +
∑
𝑗 ∈𝑆2

|𝐶𝑖, 𝑗 |) > 𝑐2 · (𝑐1 + 𝑋2) ⇔

𝑐1
𝑐2
(
∑
𝑗 ∈𝑆2

|𝐶𝑖, 𝑗 |) > 𝑋2 (5)

For a simplified case where {𝑢 𝑗 } = 𝑆2, the Pearson correlation
coefficient between 𝑢 𝑗 and the target user 𝑢𝑖 is

𝐶𝑖, 𝑗 =

∑
𝑦 (𝑣𝑢𝑖 ,𝑦 − 𝑣𝑖) (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)√∑

𝑦 (𝑣𝑢𝑖 ,𝑦 − 𝑣𝑖)2
√∑

𝑦 (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)2

=

∑
𝑦 𝑐𝑦 (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)√∑

𝑦 𝑐
2
𝑦

√∑
𝑦 (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)2

, (6)

where 𝑐𝑦 is a constant value, and 𝑋2 is calculated as

𝑋2 = 𝐶𝑖, 𝑗 (𝑣𝑢 𝑗 ,𝑥 − 𝑣 𝑗)

=
(𝑣𝑢 𝑗 ,𝑥 − 𝑣 𝑗) (

∑
𝑦 𝑐𝑦 (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗))√∑

𝑦 𝑐
2
𝑦

√∑
𝑦 (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)2

(7)

By plugging Equations (6) and (7) into Equation (5), we have
𝑐1
𝑐2

> (−1)𝑡 (𝑣𝑢 𝑗 ,𝑥 − 𝑣 𝑗). (8)

The value of 𝑡 ∈ {1, 2} is determined by Equation (6). Depending
on the review(s) newly created by 𝑢 𝑗 , Equation (8) can be either
true or false. For instance, if the user 𝑢 𝑗 has a low review value on
item 𝑥 and generates a high review value on another item in the
current epoch, it is very likely that 𝑣𝑢 𝑗 ,𝑥 − 𝑣 𝑗 < 0. In this case, if
we also have 𝑐1 > 0 and 𝑡 = 2, Equation (8) holds, and the normal
user’s activity does not weaken the adversary’s attack. On the other
hand, if 𝑢 𝑗 has a high review value on item 𝑥 and generates a new
review with a low value for another item, then the probability that
𝑣𝑢 𝑗 ,𝑥 − 𝑣 𝑗 > 0 becomes high. Equation (8) does not hold in this case,
which implies that the attack effect is offset by 𝑢 𝑗 ’s new activity.

4.2 Case 2: The Active Target User
The above analysis assumes the target user 𝑢𝑖 does not generate
new reviews during this epoch, and the situation becomes more
complex when𝑢𝑖 is also active. In this case, all terms in Equation (4)
can be affected by 𝑢𝑖 ’s new review. To evaluate the impacts on the
attack, we consider the difference between the two predictions, i.e.,
the prediction value that the attack is not affected by 𝑢𝑖 ’s activity
and the prediction value that the attack is affected by 𝑢𝑖 ’s new
review.

If 𝑢𝑖 generates a new review on exactly the item that the ad-
versary wants to push/nuke, the situation becomes trivial as the
adversary’s activity becomes irrelevant in this case. In the follow-
ing, we assume the adversary aims at pushing an item 𝑥 and 𝑢𝑖
generates a new review on an item 𝑦′ that is different from 𝑥 . The
difference is calculated as:

(𝑣𝑖 +
∑

𝑗 𝐶𝑖, 𝑗 (𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)∑
𝑗 |𝐶𝑖, 𝑗 |

) − (𝑣 ′𝑖 +
∑

𝑗 𝐶
′
𝑖, 𝑗
(𝑣𝑢 𝑗 ,𝑦 − 𝑣 𝑗)∑
𝑗 |𝐶 ′𝑖, 𝑗 |

) (9)

Here 𝐶𝑖, 𝑗 and 𝑣𝑖 are Pearson correlation coefficient and average
review value where 𝑢𝑖 is inactive, and 𝐶 ′

𝑖, 𝑗
and 𝑣 ′

𝑖
represent the

values where 𝑢𝑖 is active.
The newly added review on 𝑦′ affects both 𝑢𝑖 ’s average review

and the correlation values. If user 𝑢 𝑗 also has a review on 𝑦′, two
new terms are introduced to corresponding 𝐶 ′

𝑖, 𝑗
, i.e., (𝑣𝑢𝑖 ,𝑦′ − 𝑣 ′𝑖)

and (𝑣𝑢 𝑗 ,𝑦
′ − 𝑣 𝑗). According to the calculation given in Equation

(2), 𝐶 ′
𝑖, 𝑗

can be either larger or smaller than 𝐶𝑖, 𝑗 based on the value
of the new view on 𝑦′. If 𝑦′ is the only overlapped item that both
𝑢𝑖 and 𝑢 𝑗 reviewed, it creates a new correlation coefficient, which
can be any value in [−1, 1].

In summary, whether Equation (9) is positive or negative depends
on the newly generated review(s). If the adversary’s goal is to push
the item 𝑥 , a negative value of Equation (9) means the attack effect is
weakened. Similarly, a positive Equation (9) weakens a nuke attack.
In certain cases, the newly added reviews may also enhance the
attack impacts. But this is more like to happen when the adversary

wants to push a popular item or nuke an unpopular one, which
would not inflict much damage.

4.3 Impacts of Normal Users’ Activities for a
General Recommender System

The above analyses consider a specific recommender system that
is built using Pearson correlation coefficients for prediction calcu-
lation. However, the same core concept is also applicable to other
recommendation schemes. Under our security model, an adversary
can only manipulate the prediction values in the recommendation
process by adding carefully designed reviews. Based on the specific
prediction algorithm, the adversary can adopt a strategy on adding
new reviews to maximize the push/nuke effectiveness. For a given
recommender system, no matter what the underlying prediction
algorithm is, there are always reviews that can increase a predic-
tion and those can reduce a prediction. This must be true otherwise
the prediction values become monotonic, i.e., despite the users’
feedback, an item’s review only increases or decreases.

Generally, people have different opinions, and their reviews on
the same item may contradict with each other. In this case, their
impacts on the final prediction of such an item for another user
may counteract. There are two possibilities when considering the
impacts of normal users’ behavior on an attack:
• Case 2a. Normal users do not have a consensus on the item
and the reviews are polarized. In this case, it is relatively easy
for an adversary to manipulate the prediction in either way
(e.g., push or nuke). This is because reviews from normal
users with different opinions cancel each other’s impacts
and the adversary can work in a neutral environment with-
out any “noise”, which is to some extent equivalent to the
situation that the adversary is the only one who adds new
reviews to influence the prediction.
• Case 2b. Normal users have a general agreement on the item.
It is harder for an adversary to manipulate the prediction
in this case, especially when he/she wants to push an item
that is unpopular or nuke an item that is popular among
normal users. The adversary’s activity may still affect the
prediction (e.g., hindering the process of an item getting
more popular or unpopular) as his/her reviews will be taken
into consideration anyway when calculating the prediction.

Based on the nature of the items that the recommender system
manages, the likelihood of case 2a and case 2b can be different. For
examples, polarization of opinions (case 2a) is relatively common
on movies/books/music [1]. But for other types of items where
there are common objective criteria, case 2b is more common.

5 RESTRICTING ADVERSARIES’ CAPABILITY
In this section, we describe the solution to prevent an adversary
from creating a large number of reviews to affect the predictions in
the recommendation.

Most existing works use anomaly detection to prevent an adver-
sary from generating too many reviews. Approaches along with
this direction assume that an adversary behaves differently than a
normal user when he/she tries to maximize the influence to manip-
ulate the prediction. While this type of mechanisms are effective
for certain adversaries, it is not easy to have a general anomaly

detection method that works for all attack strategies. Furthermore,
if the adversary launches a Sybil attack [8] to create a large number
of users in the system, and each malicious user behaves exactly as
a normal user, there is no way for an anomaly detection scheme
to distinguish them. To overcome these challenges, we develop a
new mechanism that utilizes VDF, verifiable delay function [4] to
restrict the adversary’s capability on creating new reviews.

5.1 Verifiable Delay Function (VDF)
As the name suggested, a VDF is a function that requires a specified
number of sequential steps to calculate, and produces a unique
output that can be easily verified [4]. Based on the requirement
on the computation complexity, one can initialize a VDF instance
by providing a delay parameter, which reflects the number of se-
quential steps required to evaluate the function. More specifically,
a VDF scheme has three algorithms: setup, eval, and vrfy. setup
takes a security parameter _ and a delay parameter 𝑡 as inputs, and
outputs public parameters 𝑝𝑝 . eval(𝑝𝑝, 𝑥) → (𝜋,𝑦) represents the
VDF calculation process and the output is a pair (𝜋,𝑦), where 𝜋 is
a short proof to verify the computation. vrfy(𝑝𝑝, 𝑥,𝑦, 𝜋) efficiently
verifies that 𝑦 is the correct output on 𝑥 . Informally, a secure VDF
satisfies three requirements:

• One-to-one mapping. For every input 𝑥 , there is a unique 𝑦
that can pass the verification.
• Sequential. An honest party can calculate eval(𝑝𝑝, 𝑥) in 𝑡

sequential steps, and no adversary equipped with a parallel
computer that has a polynomial number of processors can
distinguish the output𝑦 from a random value in significantly
fewer steps.
• Efficiently verifiable. One with necessary information can
compute the function vrfy in a more efficient way compared
with eval, e.g., 𝑂 (𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑡)).

The above features remain valid even if an attacker can perform a
polynomial bounded amount of pre-computation.

VDF provides a mechanism to control the waiting time of an
entity with limited computation resources in the cyber world and
we leverage it to set the limit of the adversary to prevent he/she
from flooding the system with fake reviews.

5.2 Integration of VDF with Recommender
System

A recommender system works in a client-server model. While a
client can be malicious, we always assume the server is trusted, who
keeps user/item/review information and runs the recommendation
algorithm. The protocol of integrating a VDF with a recommender
system consists of the following algorithms:

• Initialization. This algorithm is executed by the server.
The server selects a VDF scheme, decides the desired com-
putation steps and other auxiliary information. It then runs
the algorithm setup to initialize the VDF, which outputs
public parameters for the other two functions eval and vrfy.
setup may require secure setup, i.e., secret information is
involved in the generation of public parameters and one
can compromise the security features of the VDF with such
information. This is not a problem for our scenario as we

Initialization

Publishing public information

Recommender
System

Submitting reviews with VDF result

Preparation of review &
computation of eval

Computation
of vrfy

User

Figure 1: Preventing an adversary from submitting an un-
limited number of reviews with VDF. Every time a user
submits a review to influence the recommendation result,
he/she also needs to finish a VDF evaluation. Note that the
protocol is independent of the underlyingVDF and canwork
with different VDF schemes.

assume the server is trusted, and only the server needs to
know the secret information to carry out the setup function.
• Submission. This algorithm is executed by a client, which
is a user of the recommender system. When a user 𝑢 (either
a normal user or an adversary) submits a review 𝑥 to the
system, 𝑢 also runs eval on the review to obtain an output
(𝜋,𝑦). In order to avoid the case that the adversary reuses
the computation result and submits the same reviewmultiple
times under different pseudonyms, Submission requires the
review 𝑥 to be pre-processed before feeding into eval. A sim-
ple pre-processing method is to apply a cryptography hash
function to the concatenation of the review and the identity
to obtain the input for eval, i.e., the user needs to compute
and send (eval(hash(𝑥 | |𝑖𝑑𝑢)), 𝑥, 𝑖𝑑𝑢) to the system.
• Verification. After receiving a new review together with
the VDF result from a user, the system runs Verification to
check whether the review should be accepted. The algorithm
if further divided into two steps: the first step is computing
the hash function, and the second step uses vrfy to determine
whether the received result is valid. If it passes this verifi-
cation, the corresponding review is added to the server’s
database, which stores all inputs to the recommender.
• Recommendation. This algorithm is run by the server, which
is the same as the original recommendation algorithm and
includes two functions, i.e., prediction and ranking. Note
that only reviews with valid VDF evaluation results will be
used in the prediction computing.

Figure 1 demonstrates the way VDF is used to restrict the submis-
sion of reviews.

5.3 Analysis on the Recommender System with
VDF

We analyze the recommender system with VDF from two perspec-
tives, security and performance.
Security. The recommender systemwith VDF described above does
not need to distinguish adversaries from normal users, and every
new review is processed in the same way. Furthermore, this scheme
establishes a connection between the computation resources a user
has and the number of new reviews he/she can submit, which is
similar to the case of Bitcoin [13]. We argue that the percentage of

reviews a user can submit is proportional to his/her computation
power.

We first demonstrate that there is no way for an adversary to
save any computation efforts to submit a new review to the system
if the underlying VDF is secure. According to the protocol given
in the previous section, an adversary cannot use replay attacks
directly to save computation effort, as the same review from the
same identity will only be accepted once. If the adversary can reduce
the computation cost by using all of his/her previous reviews and
carefully selected pseudonyms, such an adversary can be used to
build a distinguisherD to compromise the sequential feature of the
VDF because D can call this adversary to evaluate the constructed
input to verify whether the output is a random value. Intuitively,
the protocol enforces a one-to-one mapping between a review and
a VDF evaluation.

We then argue that the percentage of attacking reviews is pro-
portional to the percentage of computation power that adversaries
control. The one-to-one mapping between reviews and VDF eval-
uations guarantees that the adversary cannot gain any benefits
by creating a large pool of pseudonyms, and multiple adversaries
collude with each other cannot gain extra benefits. Therefore, as
long as the normal users are the majority, normal reviews are also
the majority, which can greatly mitigate the consequences caused
by those malicious reviews created by adversaries.

Performance. On the user side, an extra hash function and a VDF
evaluation are required. Although the VDF evaluation can be ex-
pensive, it does not affect a normal user much as in most cases
he/she only submits a limited number of reviews.

On the server side, an extra hash function and a VDF verification
are required. Compared with VDF evaluation (𝑂 (𝑡)), VDF verifica-
tion is much cheaper (𝑂 (𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑡))). Therefore, the new scheme
only introduces a limited amount of extra work for the server and
does not affect the performance much. However, this increases the
susceptibility of the scheme to denial-of-service attacks. Specif-
ically, adversaries can submit reviews without conducting VDF
evaluation, but using randomly generated values. The server then
needs to respond by executing the verification algorithm. Though
the server can detect and reject these reviews, they cause extra
computation on the server side at a low cost.

6 RELATEDWORKS
In this section, we briefly review related works on recommender
system attack and protection.

6.1 Attacking a Recommender System
While an adversary can attack a recommender system as a general
IT infrastructure, we focus on profile injections, i.e., noninvasive
attacks that try to manipulate the recommendation by adding care-
fully designed reviews. Lam and Riedl explored four open ques-
tions that will affect the effectiveness of profile injection (shilling
attack) [7]. Metha proposed a strategy for profile injection to maxi-
mize correlation with maximum users [12]. Yang et.al. converted
the profile injection strategy to a constrained linear optimization
problem for co-visitation recommender systems [17]. All their anal-
yses are based on the static model, i.e., normal users do not submit

any new reviews to change the landscape while the adversary is
attacking the recommender system.

6.2 Protecting a Recommender System
Various techniques have been proposed to protect a recommender
system, and there are two main strategies. The first strategy is
detecting attack activities. If the adversary behaves differently than
normal users, an anomaly detection algorithm may be able to catch
the adversary and reverse his/her newly added reviews. Bhaumik
et.al. proposed a method of detecting suspicious rating trends based
on statistical anomaly detection [3]. A classification approach was
developed in [16] to detect profile injection, which identifies a
number of attributes that can distinguish attack profiles in general.
This type of approaches suffer from two limitations: (i) False positive
instances. All anomaly detection mechanisms have false positives,
and it will affect user experience if a normal user is classified as an
adversary. (ii) Evolved adversary. The adversary can change his/her
behavior accordingly after learning the detection methods to avoid
being detected.

Another strategy is increasing the hardness of mounting an effec-
tive attack. In order to design efficient reviews to prepare the attack,
the adversary usually needs to gain a good understanding of the
existing database used to compute the recommendation. The major
limitations of this type of protection mechanism are: (i) Reducing
the usability of the system. The recommender system becomes less
useful when it hides too much information from the user. (ii) Non-
adaptable. Such a protection mechanism is usually specific to the
recommendation algorithm, and hard to be generalized to new
recommender systems.

7 CONCLUSION
Recommender systems are used in a wide range of applications
including product recommendation in e-commerce, automatic news
pushing, and customized music list generation. Due to its impor-
tance, recommender systems have become an attractive target for
cyber-attacks. Unlike those attacks utilizing software vulnerabili-
ties and other techniques to invade the system, an adversary can
easily exploit a recommender system by profile injection, i.e., in-
serting carefully designed reviews into the system to manipulate
the recommendation results, especially when he/she has a good
understanding of the target system. This type of attack creates a
challenge for designing a general purpose protection mechanism.
In this paper, we demonstrated that normal users’ activities can
counteract the effectiveness of a profile injection attack regardless
of the design of the recommender system. The effectiveness of this
mitigation depends on the percentage of reviews that the adversary
creates, and we propose a novel protocol to limit the review sub-
mission rate. This limitation does not affect normal users as they
do not have the motivation to submit a large number of reviews in
a short time period.

For future work, we plan to investigate more details on the
relationship between normal users’ activities and the adversary’s
attacks and conduct experiments to verify the theory.

REFERENCES
[1] Luca Amendola, Valerio Marra, and Miguel Quartin. 2015. The evolving percep-

tion of controversial movies. Palgrave Communications 1 (2015), 15038.

[2] Amos Azaria, Avinatan Hassidim, Sarit Kraus, Adi Eshkol, Ofer Weintraub, and
Irit Netanely. 2013. Movie recommender system for profit maximization. In
Proceedings of the 7th ACM conference on Recommender systems. ACM, 121–128.

[3] Runa Bhaumik, Chad Williams, Bamshad Mobasher, and Robin Burke. 2006.
Securing collaborative filtering against malicious attacks through anomaly de-
tection. In Proceedings of the 4th Workshop on Intelligent Techniques for Web
Personalization (ITWP’06), Boston, Vol. 6. 10.

[4] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable delay
functions. In Annual International Cryptology Conference. Springer, 757–788.

[5] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R
Gordon, and John Riedl. 1997. GroupLens: applying collaborative filtering to
Usenet news. Commun. ACM 40, 3 (1997), 77–87.

[6] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[7] Shyong K Lam and John Riedl. 2004. Shilling recommender systems for fun
and profit. In Proceedings of the 13th international conference on World Wide Web.
ACM, 393–402.

[8] Brian Neil Levine, Clay Shields, and N Boris Margolin. 2006. A survey of solutions
to the sybil attack. University of Massachusetts Amherst, Amherst, MA 7 (2006),
224.

[9] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized news
recommendation based on click behavior. In Proceedings of the 15th international
conference on Intelligent user interfaces. ACM, 31–40.

[10] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. 2011. Content-based
recommender systems: State of the art and trends. In Recommender systems
handbook. Springer, 73–105.

[11] Ian MacKenzie, Chris Meyer, and Steve Noble. 2013. How retailers can keep up
with consumers.

[12] Bhaskar Mehta. 2007. Unsupervised shilling detection for collaborative filtering.
In AAAI. 1402–1407.

[13] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[14] Michael P O’Mahony, Neil J Hurley, and Guénolé CM Silvestre. 2005. Recom-

mender systems: Attack types and strategies. In AAAI. 334–339.
[15] Kangning Wei, Jinghua Huang, and Shaohong Fu. 2007. A survey of e-commerce

recommender systems. In 2007 international conference on service systems and
service management. IEEE, 1–5.

[16] Chad A Williams, Bamshad Mobasher, and Robin Burke. 2007. Defending recom-
mender systems: detection of profile injection attacks. Service Oriented Computing
and Applications 1, 3 (2007), 157–170.

[17] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. 2017. Fake Co-visitation
Injection Attacks to Recommender Systems.. In NDSS.

[18] Kazuyoshi Yoshii, Masataka Goto, Kazunori Komatani, Tetsuya Ogata, and Hi-
roshi G Okuno. 2008. An efficient hybrid music recommender system using an
incrementally trainable probabilistic generative model. IEEE Transactions on
Audio, Speech, and Language Processing 16, 2 (2008), 435–447.

	The Majority Rule: A General Protection on Recommender System
	Recommended Citation
	Authors

	Abstract
	1 Introduction
	2 Threats against Recommender Systems
	2.1 Recommender System
	2.2 Attacks against a Recommender System

	3 Problem Statement
	4 Analysis of the Impacts of Normal Users
	4.1 Case 1: Inactive Target User
	4.2 Case 2: The Active Target User
	4.3 Impacts of Normal Users' Activities for a General Recommender System

	5 Restricting Adversaries' Capability
	5.1 Verifiable Delay Function (VDF)
	5.2 Integration of VDF with Recommender System
	5.3 Analysis on the Recommender System with VDF

	6 Related Works
	6.1 Attacking a Recommender System
	6.2 Protecting a Recommender System

	7 Conclusion
	References

