
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

3-2020

PrivateEx: Privacy Preserving Exchange of Crypto-assets on PrivateEx: Privacy Preserving Exchange of Crypto-assets on

Blockchain Blockchain

Lei Xu
The University of Texas Rio Grande Valley, lei.xu@utrgv.edu

Lin Chen

Zhimin Gao

Keshav Kasichainula

Miguel Fernandez
The University of Texas Rio Grande Valley

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Business Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Xu, Lei, Lin Chen, Zhimin Gao, Keshav Kasichainula, Miguel Fernandez, Bogdan Carbunar, and Weidong
Shi. 2020. “PrivateEx: Privacy Preserving Exchange of Crypto-Assets on Blockchain.” In Proceedings of the
35th Annual ACM Symposium on Applied Computing, 316–323. SAC ’20. New York, NY, USA: Association
for Computing Machinery. https://doi.org/10.1145/3341105.3373901.

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Authors Authors
Lei Xu, Lin Chen, Zhimin Gao, Keshav Kasichainula, Miguel Fernandez, Bogdan Carbunar, and Weidong Shi

This conference proceeding is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/cs_fac/37

https://scholarworks.utrgv.edu/cs_fac/37

PrivateEx: Privacy Preserving Exchange of Crypto-assets on
Blockchain

Lei Xu
University of Texas Rio Grande

Valley
xuleimath@gmail.com

Lin Chen
Texas Tech University

chenlin198662@gmail.com

Zhimin Gao
Auburn University at Montgomery

mtion@msn.com

Keshav Kasichainula
University of Houston

kkasicha@central.uh.edu

Miguel Fernandez
University of Texas Rio Grande

Valley
miguel.fernandez02@utrgv.edu

Bogdan Carbunar
Florida International University

carbunar@cs.fiu.edu

Weidong Shi
University of Houston
wshi3@central.uh.edu

ABSTRACT

Bitcoin introduces a new type of cryptocurrency that does not
rely on a central system to maintain transactions. Inspired by
the success of Bitcoin, all types of alt cryptocurrencies were
invented in recent years. Some of the new cryptocurrencies
focus on privacy enhancement, where transaction informa-
tion such as value and sender/receiver identity can be hidden,
such as Zcash and Monero. However, there are few schemes
to support multiple types of cryptocurrencies/assets and offer
privacy enhancement at the same time. The major challenge
for a multiple asset system is that it needs to support two-way
assets exchange between participants besides one-way asset
transfer. Thus, we propose a privacy-preserving exchange
scheme, PrivateEx, which preserves the privacy of the ex-
change of different assets. PrivateEx utilizes zero-knowledge
proof and a novel way to “lock” assets involved in the ex-
change to guarantee the correctness, fairness, and privacy
of exchange of assets in the system. We also implement a
prototype of PrivateEx and evaluate its performance to show
that it is practical with modern computers.

CCS CONCEPTS

� Security and privacy � Privacy-preserving proto-
cols; Domain-specific security and privacy architectures;

KEYWORDS

Crypto assets, exchange, privacy

1 INTRODUCTION
Since the invention of Bitcoin [11], a variety of blockchain
based cryptocurrency systems have been developed. By requir-
ing each participant to keep a local copy of the transactions
history, which are organized as blocks and linked one by one,
such a system can prevent double-spending without relying
on a centralized party. Although these schemes usually allow
a user to create multiple pseudonyms by him/herself, existing
works have demonstrated that one can establish the relation-
ships between the pseudonyms and even identify the user
behind a pseudonym [14]. Several efforts have been made
to enhance the privacy of blockchain based cryptocurrency
system, such as Zerocash [16], Monero [12], Dash [7] and
ValueShuffle on Bitcoin [15]. These schemes utilize different
cryptography tools to prevent a node disclosing payment re-
lated information, e.g., recipient/sender identities and amount
of cryptocurrency transferred. These blockchain based cryp-
tocurrency systems only support one type of asset, and it is
a natural idea to extend the concept to build multi-asset sys-
tems. A multi-asset system has two basic transaction types:
one-way transfer and two-way exchange. While the one-way
transfer is the same as those classical cryptocurrency systems,
the two-way exchange is more interesting and plays an impor-
tant role to help thrive the whole cryptocurrency ecosystem:
(i) It helps to break down the silos and enable more conve-
nient value flow; and (ii) It facilitates the creation of new
cryptocurrency systems as investigators can easily convert
existing cryptocurrencies to the new one. Currently, two-way
exchange is mainly done through following ways: centralized
exchange platforms and decentralized platforms. Centralized

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic L. Xu et al.

platforms such as Coinbase requires the users to fully trust
the platforms and disclose all exchange information to the
centralized platforms. A decentralized platform can utilize
smart contract to support two-way exchange. Although the
users don’t need to fully trust any single node, they still
need to expose all information about an exchange to the
public for them to verify and to guarantee the correctness
and fairness of the operation. For both cases, existing privacy
enhancement mechanisms for one-way transfer cannot be
applied directly.

To mitigate the privacy concern and fully unleash the
potential of blockchain based cryptocurrencies, we propose
a privacy-preserving exchange scheme, PrivateEx. The pro-
posed scheme would support privacy protection for exchange
operations in a multi-asset system. Under the PrivateEx
framework, different types of assets are first converted to
notes for exchange operations. Conversion to note would
guarantee the fairness of exchange, PrivateEx introduces
a locking structure on notes to be exchanged. The locking
mechanism allows any participant to take correct actions to
move forward and does not have the problem of deadlock.
PrivateEx also leverages zero-knowledge proof to allow the
blockchain participants to verify the correctness of trans-
actions without disclosing information about the exchange.
In summary, our contributions of the paper include: (i) We
formalize the privacy-preserving exchange and describe the
requirements of such a scheme; (ii) We develop a concrete
privacy-preserving exchange scheme for blockchain based
multi-asset schemes and demonstrate that it meets all the
requirements given in the formal framework; (iii) We discuss
implementation details of the designed scheme and conduct
experiments to show its practicability.

2 MODEL AND REQUIREMENTS

Let Alice and Bob be two blockchain users who own different
types of assets, and want to exchange the ownership of their
assets. We define the security model as follows: (i) The ex-
change participants do not trust each other. We assume that
each of them can attempt to take advantage of other or the
system, to maximize their benefit, e.g., receive the other’s as-
set without giving their own asset. (ii) The blockchain used for
exchange is trusted. We assume the underlying blockchain as
a whole is trusted, i.e., it will follow the predefined protocols
and guarantee the computation correctness of all accepted
transactions. Depending on the consensus protocol used by
the blockchain, this assumption has different requirements
on the blockchain maintainers. For example, when PoW and
longest chain principle is used to determine the legitimate
blockchain, we require more than half of the miners to be
honest. The blockchain can be either a dedicated system for
the exchange or an existing blockchain with multiple types
of assets and supports smart contract such as Ethereum.

Under the security model, an adversary can: (i) Observe
the blockchain. An adversary is able to access all transactions
stored on the blockchain to review and analyze the contents
of these transactions. (ii) Interact with the blockchain. An

original

asset 1
Alice

note of asset 1

for swapping

original

asset 2
note of asset 2Bob note of asset 1

note of asset 2

Bob claims Alice’s note Alice claims Bob’s note Note type transformation

Figure 1: Workflow of the privacy-preserving asset
exchange. Alice initiates the exchange. After Bob
claims Alice’s note, Alice can claim Bob’s note to
complete the exchange from her side. If Bob does not
respond, Alice can cancel the exchange and get her
note back. The exchanged notes can be converted to
other forms and the owners can use them for another
round of exchange with others.

adversary can actively interact with the blockchain by submit-
ting new transactions as long as the transactions themselves
are valid. This also includes cases where one party of an ex-
change operation tries to cheat, e.g., stopping in the middle
of an exchange process, submitting a transaction that does
not match with the initial exchange purpose, and conducting
exchange operations with multiple parties at the same time.
(iii) Control some blockchain maintainers. An adversary can
take over a certain percentage of blockchain maintainers and
control their behaviors in block construction, e.g., selecting
transactions that are included in a block and ignoring received
blocks. An adversary can also combine above activities. For
example, Alice as an adversary can also try to take advantage
of Bob by manipulating some blockchain maintainers, or try
to find out whether Bob is doing exchange with others.

We now define the objectives of the privacy-preserving
exchange on multi-asset blockchain under the given security
model: (i) Correctness. The exchange operation should only
allow participants to exchange their own existing assets, and
will not create new assets. It also requires that one cannot
cheat in an exchange using assets that are different from
promised. (ii) Fairness. The exchange operation can only have
one of two outcomes: either the exchange succeeds and both
participants receive the other’s asset, or the exchange fails
and both participants receive their asset back. (iii) Privacy.
One can only learn information of exchanges that he/she is
involved, but cannot cannot figure out who and what are
involved in other exchange operations.

When privacy is not a concern, one can easily implement
the exchange operation using a smart contract, where the
blockchain guarantees the fairness feature of the operation,
i.e., either the exchange succeeds that Alice and Bob get
each other’s asset, or the exchange fails that each one still
keeps his/her own assets. However, this approach does not
provide any privacy protection. Every node in the blockchain
network can see the exchange information including the owner
identities and the type and value of exchanged assets.

PrivateEx: Privacy Preserving Exchange of Crypto-assets on Blockchain SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

3 OVERVIEW OF PRIVATEEX

We now provide an overview of PrivateEx, the proposed
privacy-preserving exchange of crypto assets on the blockchain.
PrivateEx implements the following steps to preserve the
privacy of an exchange operation: (i) Alice and Bob commu-
nicate off-chain and agree to exchange their assets with each
other. Without loss of generality, we assume Alice initiates
the exchange operation. (ii) Alice first converts her asset
into a note. This note has two parts: one part stands for her
asset with a positive value, the other part stands for Bob’s
asset which she wants to receive. Alice also creates a secret
value that one can use to spend her newly created note. All
blockchain nodes verify the new note and store it on the
blockchain. (iii) Bob also converts his asset into a note, which
only includes the value and type information of his own asset.
(iv) Alice and Bob check that both notes are correctly created
and accepted by the blockchain. (v) Alice shares the claiming
secret of the note she created with Bob, so Bob can claim
the ownership of Alice’s asset. This operation also freezes his
own note, which is guaranteed by the blockchain. (vi) After
Bob claims Alice’s asset, Alice can claim the ownership of
Bob’s note.

For each of the above steps, Alice and Bob utilize publicly
verifiable zero-knowledge proofs to allow the public to verify
the validity of the corresponding transaction submitted to
the blockchain. Figure 1 demonstrates the sequence of steps
of exchange operation.

4 THE DETAILED DESIGN OF
PRIVATEEX

In this section, we provide the details of the construction
of PrivateEx. Without loss of generality, we assume that
each asset has a unique type identifier and a value, which
are positive integers. Therefore, an asset is represented as a
pair (𝑡, 𝑣), where 𝑡, 𝑣 ∈ Z+. In the following, we first consider
the case where both Alice and Bob cooperate to finish the
swap operation. We then separately consider other special
cases, e.g., where Alice and/or Bob may want to terminate
the operation.

4.1 System Setup

To setup PrivateEx, several algorithms and corresponding
parameters are determined: (i) Consensus protocol, such as
PoW and PoS. The consensus protocol does not affect the
design of PrivateEx. (ii) Original asset creation. The asset
can be created on the blockchain itself or ported from an
external blockchain. This does not affect the operation of
PrivateEx. (iii) Cryptography algorithms. PrivateEx utilizes
several cryptography primitives, including collision resistant
hash function CRH(), commitment scheme COMMIT(), a non-
interactive zero-knowledge proof system, and a one-time
signature scheme. Parameters of these primitives are also
initialized in this step.

This information is embedded into the genesis block so
every participant of the system uses the same algorithms and
parameters for operations. The setup process also initializes

two empty Merkle trees 𝑇1 and 𝑇2 with a fixed height, which
determines how many transactions PrivateEx can handle. To
prevent an adversary from tampering the two Merkle trees,
the roots of the trees are included in the blockchain when
there is an update of the tree.

PrivateEx can also be integrated with existing blockchain
based multi-asset system by creating a specific block that
includes all PrivateEx specific information.

4.2 Notes Initialization

Initialization actions of Alice. Before Alice can exchange
her asset (𝑡1, 𝑣1) with Bob for (𝑡2, 𝑣2) in a privacy-preserving
way, she needs to initialize the exchange by converting the
asset to a note, the structure of which is discussed below.
Alice does the following steps for the initial conversion:

(1) Serial numbers generation. Alice selects random num-
bers 𝑠𝑛1 and 𝑟0, and calculates 𝑠𝑛2 ← COMMIT(𝑠𝑛1, 𝑟0).
The constructed note has (𝑠𝑛1, 𝑠𝑛2) as its serial num-
bers. The serial numbers are used to prevent double
spending, and we explain in more details the use of
these two-serial-number structure later.

(2) Quid pro quo determination. Alice specifies the asset
she wants to get from Bob, which is also identified as a
pair (𝑡2, 𝑣2). Note that the pair just indicates the type
and value of the asset Alice is interested and does not
need to be bound with anything specific that Bob has.

(3) Note construction. Alice selects four random numbers
𝑟1, 𝑟2, 𝑟3, 𝑟4, and calculates a sequence of commit-
ments:

𝑐𝑡1 ← COMMIT(𝑠𝑛1, 𝑟1), 𝑐𝑡2 ← COMMIT(𝑠𝑛2||𝑐𝑡1, 𝑟2)
𝑐𝑡3 ← COMMIT(𝑡2||𝑣2||𝑐𝑡2, 𝑟3), 𝑐𝑡4 ← COMMIT(𝑡1||𝑣1||𝑐𝑡3, 𝑟4)

The final note created by Alice is in the form

𝑛𝑡01 ← (𝑡1, 𝑣1, 𝑡2, 𝑣2, 𝑠𝑛1, 𝑠𝑛2, 𝑟1, 𝑟2, 𝑟3, 𝑟4).

(4) Transaction construction. Alice submits the transaction

𝑡𝑥01 ← (𝑡1, 𝑣1, 𝑟4, 𝑐𝑡3, 𝑐𝑡4)

to the blockchain, which stands for the note 𝑛𝑡01.
The purpose of this transaction is to convert Alice’s asset

to a note, so the public only needs to verify whether Alice
owns the asset to create such a note, and do not need to
check what Alice asks for exchange. Specifically, each peer
of the blockchain processes the received transaction 𝑡𝑥01 as
follows:
(1) The peer checks whether the transaction is well formed

by checking

𝑐𝑡4
?
= COMMIT(𝑡1||𝑣1||𝑐𝑡3, 𝑟4).

(2) The peer checks whether Alice has enough balance in
her account and reduces the balance of type 𝑡1 asset
by 𝑣1.

(3) The peer then works with other blockchain peers to
include 𝑡𝑥01 in the blockchain using the consensus
protocol.

(4) The peer also adds 𝑐𝑡4 as a new leaf of the Merkle tree
𝑇1, and updates the value of the root 𝑟𝑡1.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic L. Xu et al.

Alice also shares the information of 𝑛𝑡01 with Bob except
the values 𝑠𝑛1 and 𝑟1 to allow Bob to claim the ownership
of note 𝑛𝑡01 for exchange.

Initialization actions of Bob. Bob also needs to convert
his asset to a note for the exchange operation. Bob constructs
a note for his asset (𝑡2, 𝑣2) as follows:
(1) Note construction. Bob selects a random serial num-

ber 𝑠𝑛3, random numbers 𝑟5, 𝑟6, and calculates two
commitments:

𝑐𝑡5 ← COMMIT(𝑠𝑛3, 𝑟5), 𝑐𝑡6 ← COMMIT(𝑡2||𝑣2||𝑐𝑡5, 𝑟6)

The final note is in the form

𝑛𝑡02 ← (𝑡2, 𝑣2, 𝑠𝑛3, 𝑟5, 𝑟6).

(2) Transaction construction. Bob submits the transaction

𝑡𝑥02 ← (𝑡2, 𝑣2, 𝑟6, 𝑐𝑡5, 𝑐𝑡6)

to the blockchain, which stands for the note 𝑛𝑡02.
Similar to the situation of initialization actions of Alice,

each peer of the blockchain processes the received transaction
𝑡𝑥02 as follows:
(1) The peer checks whether the transaction is well formed

by checking

𝑐𝑡6
?
= COMMIT(𝑡2||𝑣2||𝑐𝑡5, 𝑟6).

(2) The peer checks whether Bob has enough balance in
his account and reduces the balance of type 𝑡2 asset
by 𝑣2.

(3) The peer includes 𝑡𝑥02 in the blockchain.
(4) The peer also adds 𝑐𝑡6 as a new leaf of the Merkle tree

𝑇1, and updates the value of the root 𝑟𝑡1.
Bob does not need to share any information of this note with
Alice.

Information exchange between Alice and Bob. After
Alice finishes her initialization operation, she needs to send
part of information of 𝑛𝑡01 to Bob. The sent information
will allow bob to carry forward the exchange operation. This
activity cannot be disclosed to the public, otherwise they
will learn that Alice and Bob are trying to exchange their
assets. To protect this information, there are two ways for
Alice to send information to Bob and vice versa: (i) Using
off-chain channel. Alice can share information with Bob di-
rectly without using the blockchain. (ii) Using key privacy
encryption [2]. Alice can encrypt the message she wants to
share using key privacy encryption with Bob’s public key.
The key privacy feature guarantees that an adversary cannot
link the cipher-text to Bob.

4.3 First Claim Operation

After Alice initializes the exchange and Bob creates his own
note, Bob can carry forward the exchange by consuming
his own note (which allows Alice to claim the ownership
later) and transferring Alice’s note to his account in a single
transaction.

Recall that Bob has information of the note 𝑛𝑡01 that
Alice created except serial number 𝑠𝑛1 and corresponding

commitment random number 𝑟1, i.e., Bob knows

(𝑡1, 𝑣1, 𝑡2, 𝑣2, 𝑠𝑛2, 𝑟2, 𝑟3, 𝑟4, 𝑐𝑡1).

To transfer Alice’s asset to himself, Bob creates a new note
in the form of

𝑛𝑡1 ← (𝑠𝑛4, 𝑡1, 𝑣1),

where 𝑠𝑛4 is a newly selected random serial number. The
corresponding transaction is

𝑡𝑥1 ← (𝑠𝑛2, 𝑠𝑛3, 𝑐𝑡8),

where 𝑐𝑡8 is created through two steps:

𝑐𝑡7 ← COMMIT(𝑠𝑛4, 𝑟7), 𝑐𝑡8 ← COMMIT(𝑡1||𝑣1||𝑐𝑡7, 𝑟8).

Here 𝑟7, 𝑟8 are two random values selected by Bob. This
transaction means two old notes with serial numbers 𝑠𝑛2

and 𝑠𝑛3 are consumed, and a new commitment value 𝑐𝑡8 is
created, which represents the note 𝑛𝑡1.

To prove to the public that 𝑡𝑥1 is valid, Bob constructs a
zero-knowledge proof 𝜋1 on the following statement:

Given the Merkle tree 𝑇1’s root 𝑟𝑡1, serial number 𝑠𝑛2 (rep-
resenting Alice’s note for exchange) and serial number 𝑠𝑛3

(representing Bob’s note for exchange), and commitment 𝑐𝑡8
(representing the new note Bob wants to create), I know ex-
isting notes 𝑛𝑡01 and 𝑛𝑡02 in the system such that: (i) The
notes 𝑛𝑡01, 𝑛𝑡02, and 𝑛𝑡1 are well formed. (ii) The serial
numbers 𝑠𝑛2 and 𝑠𝑛3 are computed correctly. (iii) The note
commitments for 𝑛𝑡01 and 𝑛𝑡02 appear in the Merkel tree 𝑇1

with root 𝑟𝑡1. (iv) The value and type of these three notes
match.

For each peer of the blockchain receiving the transaction
𝑡𝑥1 and corresponding zero knowledge proof 𝜋1, he/she does
the following steps to process:
(1) The peer checks that the two serial numbers 𝑠𝑛2 and

𝑠𝑛3 have not been used in the system before so it is
not double spending.

(2) The peer verifies the zero-knowledge proof 𝜋1 to accept
the new transaction 𝑡𝑥1 to the blockchain.

(3) The peer adds commitment 𝑐𝑡8 as a new leaf to the
Merkle tree 𝑇1, and updates the root 𝑟𝑡1.

(4) The peer adds the two disclosed serial numbers 𝑠𝑛2, 𝑠𝑛3

as new leaves to the Merkle tree 𝑇2 and updates the
root 𝑟𝑡2.

4.4 Second Claim Operation

After Bob finishes the first claim operation, i.e., he has con-
sumed the notes that two parties generated in the initializa-
tion phase, Alice can start to claim the ownership of the note
Bob created in the initialization phase.

Alice creates a new note in the form of

𝑛𝑡2 ← (𝑠𝑛5, 𝑡2, 𝑣2),

where 𝑠𝑛5 is a new random serial number selected by Alice.
The corresponding transaction is

𝑡𝑥2 ← (𝑠𝑛1, 𝑐𝑡10),

PrivateEx: Privacy Preserving Exchange of Crypto-assets on Blockchain SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

where 𝑠𝑛1 is the other secret serial number Alice created for
note 𝑛𝑡01, and 𝑐𝑡10 is created through two steps:

𝑐𝑡9 ← COMMIT(𝑠𝑛5, 𝑟9), 𝑐𝑡10 ← COMMIT(𝑡2||𝑣2||𝑐𝑡9, 𝑟10).
Here 𝑟9, 𝑟10 are two random values selected by Alice.

To prove to the peers of the blockchain that 𝑡𝑥2 is valid,
Alice constructs a zero-knowledge proof 𝜋2 on the following
statement:

Given the Merkle tree 𝑇1’s root 𝑟𝑡1 and 𝑇2’s root 𝑟𝑡2, serial
number 𝑠𝑛1, and the commitment value 𝑐𝑡10, I know the
existing note 𝑛𝑡01 and random value 𝑟0 such that: (i) Note
𝑛𝑡01 is well formed. (ii) The serial number 𝑠𝑛1 is computed
correctly. (iii) The commitment for note 𝑛𝑡01 appears in the
Merkle tree 𝑇1 with root 𝑟𝑡1. (iv) The other serial number
of note 𝑛𝑡01, 𝑠𝑛2, appears in the Merkle tree 𝑇2 with root
𝑟𝑡2, and 𝑠𝑛2 is derived from 𝑠𝑛1 correctly with 𝑟0. (v) The
exchange target value and type of note 𝑛𝑡01 match the new
note 𝑛𝑡2 with commitment value 𝑐𝑡10.

For each peer of the blockchain receiving the transaction
𝑡𝑥2 and corresponding zero-knowledge proof 𝜋2, he/she does
the following steps to process:
(1) The peer checks that the serial number 𝑠𝑛1 has not

been used in the system before so it is not double
spending.

(2) The peer verifies the proof 𝜋2 to accept the new trans-
action 𝑡𝑥2 to the blockchain.

(3) The peer adds commitment 𝑐𝑡10 as a new leaf to the
Merkle tree 𝑇1, and updates the root 𝑟𝑡1.

After this step is finished, both serial numbers 𝑠𝑛1 and
𝑠𝑛2 of note 𝑛𝑡01 are disclosed to the public. But since a
random value 𝑟0 is involved to the derivation of 𝑠𝑛2 from
𝑠𝑛1, the public cannot link these two values as long as there
are multiple exchanges in the system.

4.5 Use of Notes

After Alice and Bob finish the exchange operation, they can
convert their new notes back to assets, or use them for another
round of exchange with others.

Converting notes back to assets. If Bob wants to convert
back the note 𝑛𝑡1 that he gets from the exchange with Alice
to a normal asset, he creates a transaction in the form of

𝑡𝑥4 ← (𝑠𝑛4, 𝑡1, 𝑣1,Bob),

and generates a zero-knowledge proof 𝜋3 on the following
statement:

Given the Merkle tree 𝑇1’s root 𝑟𝑡1, serial number 𝑠𝑛4, and
the type/value information (𝑡1, 𝑣1), I know the commitment
value 𝑐𝑡8 is a leaf of the tree 𝑇1 and two random values 𝑟7, 𝑟8
such that the following equations hold:

𝑐𝑡7 ← COMMIT(𝑠𝑛4, 𝑟7), 𝑐𝑡8 ← COMMIT(𝑡1||𝑣1||𝑐𝑡7, 𝑟8).

Here 𝑠𝑛4 is the serial number of note 𝑛𝑡1 is associated
with Bob in the system. Each peer of the blockchain checks
that 𝑠𝑛4 never appears in the system before and verifies the
proof 𝜋3. Then 𝑠𝑛4 is added to the blockchain, and (𝑡1, 𝑣1)
is deposited to Bob’s account.

The note 𝑛𝑡2 that Alice gets from the exchange operation
has the same structure as 𝑛𝑡1, and Alice can use the same
way to convert the note to an asset in plaintext that belongs
to her.

Converting notes for another exchange operation. Bob
can also start another exchange operation using the note 𝑛𝑡1
directly. This is further divided into two cases: (i) preparing
to spend first (Bob needs to specify what asset he wants to
exchange); and (ii) preparing to spend secondly (Bob does
not need to specify what assets he wants to exchange).

Converting 𝑛𝑡1 for spending first. Note that in the trans-
action 𝑡𝑥01, 𝑡1, 𝑣1 appear in plain text only because the system
needs to make sure the creator has enough balance in his/her
account. Once the balance verification is done and the note
is created the values are no longer in plain text. Therefore,
Bob can consume 𝑛𝑡1 and generates a transaction 𝑡𝑥′

01 for a
new note 𝑛𝑡′01 in the same way as described in Section 4.2
except that the newly created transaction 𝑡𝑥′

01 is in the form

𝑡𝑥′
01 ← (𝑠𝑛4, 𝑐𝑡

′
4).

To convince the peers of blockchain that 𝑐𝑡′4 is a valid note,
Bob discloses the serial number 𝑠𝑛4 of note 𝑛𝑡1 and builds a
zero-knowledge proof 𝜋4 on the following statement:

Given the Merkle tree 𝑇1’s root 𝑟𝑡1, the serial number 𝑠𝑛4,
and the commitment 𝑐𝑡′4, I know existing note 𝑛𝑡1 in the
system such that: (i) The note 𝑛𝑡1 and 𝑛𝑡′01 are well formed.
(ii) The serial number 𝑠𝑛4 is computed correctly. (iii) The
note commitment for 𝑛𝑡1 appears in the Merkle tree 𝑇1 with
root 𝑟𝑡1. (iv) The note commitment 𝑐𝑡′4 is computed correctly.
(v) Value and type information of 𝑛𝑡1 and 𝑛𝑡′01 match.

A blockchain peer who receives the transaction (𝑠𝑛4, 𝑐𝑡
′
4)

and corresponding zero-knowledge proof 𝜋4 do the following
steps to process:
(1) The peer checks whether the serial number 𝑠𝑛4 has

been disclosed in the system before to prevent double
spending.

(2) The peer verifies the proof 𝜋4 to accept the new trans-
action 𝑡𝑥′

01 to the blockchain.
(3) The peer adds the commitment 𝑐𝑡′4 as a new leaf of the

Merkle tree 𝑇1, and updates the root 𝑟𝑡1.

Converting 𝑛𝑡1 for spending second. Transaction 𝑡𝑥02

has the same structure of 𝑡𝑥01, and Bob can convert his
note 𝑛𝑡1 to 𝑡𝑥′

02 in the same way as 𝑡𝑥′
01, except that the

zero-knowledge proof proves that the commitment 𝑐𝑡′6 is
constructed in a different way. Alice can convert the note 𝑛𝑡2
that she owns for another exchange directly in a similar way.

4.6 Termination of Exchange Operation

It is possible that Alice and/or Bob want to stop at a certain
point before the exchange operation succeeds. There are two
possibilities that the exchange operation terminates in the
middle of the process:
∙ Case 1: Alice wants to terminate the process after
she initializes the exchange operation and before Bob
claims the ownership of her note; and

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic L. Xu et al.

∙ Case 2: Bob wants to terminate the process after he
finishes the preparation of his note for the exchange
operation and before he consumes it for Alice’s note.

Alice has multiple choices when she terminates the ex-
change: (i) Converting the note 𝑛𝑡01 back to the asset in her
account; (ii) Converting the note 𝑛𝑡01 for another note for
exchange operation with the specified target; and (iii) Con-
verting the note 𝑛𝑡01 for another note for exchange operation
without a specified target. Since Alice knows how the note
𝑛𝑡01 is constructed and the corresponding commitment 𝑐𝑡4
in Merkle tree 𝑇1, she can create a new note in the desired
format and a zero-knowledge proof of the ownership of the
old note and the correctness of the new note.

The situation for Bob is similar, and he can convert the
note 𝑛𝑡02 to a selected form (asset, note for exchange with
the specified target, or note for exchange without specified
target) using corresponding zero-knowledge proof.

4.7 One-way Transfer

PrivateEx can support one-way transfer using a special type
of exchange: Alice sets the target note she wants to receive
for exchange as 0, and Bob can create a null note to claim
Alice’s note without paying anything. Compared with existing
transfer-only privacy cryptocurrency systems like Zerocash,
the major disadvantage of transfer in PrivateEx is that the
sender knows when the receiver claims the note, and the
sender can cancel the transfer before the receiver claims the
new ownership. The benefit of this transfer method is that it is
consistent with exchange operation, and the adversary cannot
distinguish a one-way transfer and a two-way exchange.

4.8 Non-malleability

Different types of transactions described in this section have
multiple parts, and it is necessary to prevent an adversary
from taking parts from different transactions to build a new
one. PrivateEx utilizes one-time signature [10] to prevent
such attacks. Specifically, the creator of a transaction does
the following steps:
(1) The creator randomly selects a key pair (𝑝𝑘𝑠, 𝑠𝑘𝑠) for

the selected one-time signature scheme.
(2) The creator binds the public key 𝑝𝑘𝑠 with the transac-

tion.
∙ If the transaction creates a new note with one serial
number 𝑠𝑛(1), the creator uses this serial number
to generate a tag for the public key using a pseudo-
random function as 𝑡← PRF(𝑝𝑘𝑠, 𝑠𝑛

(1)), and modifies
corresponding zero-knowledge proof to demonstrate
𝑡 and 𝑝𝑘𝑠 are connected. Since the serial number
is selected by the creator him/herself, an adversary
cannot produce a valid proof.
∙ If the transaction creates a note with two serial num-
bers (e.g., note 𝑛𝑡01 created by Alice in initialization),
the creator uses the second serial number that is not
shared with the other party in the exchange to bind
the public key.

Type 1

Type 2

Type 3

Type 4

Asset

Asset

Figure 2: Conversions between different types of
notes. An asset is first converted to Type 1 or Type
2 note to enter PrivateEx, and then it can convert to
another type of note. A note of any type can also be
converted back to an asset. While transactions that
only involve notes do not leak type/value/ownership
information, converting to/from assets will disclose
certain information to the public.

The creator also adds a corresponding statement to the
zero-knowledge proof accompanied the transaction:

Given the tag 𝑡 and the public key 𝑝𝑘𝑠, I know a secret
value 𝑠𝑛(1) such that 𝑡 = PRF(𝑝𝑘𝑠, 𝑠𝑛

(1)).
(3) The creator generates a signature on the transaction

using 𝑠𝑘𝑠, and attaches the signature with the transac-
tion.

Correspondingly, a peer of the blockchain receiving a trans-
action uses the public key to verify the signature on the
received transaction besides all the verifications described
before, which guarantees non-malleability feature.

5 SECURITY ANALYSIS OF
PRIVATEEX

In this section, we analyze the key features of the proposed
PrivateEx scheme and demonstrate that it satisfies all the
objectives. For all the analysis, we assume the blockchain as
a whole is trusted.

Quick review of the design of PrivateEx. In PrivateEx,
all assets are created in plaintext and stored on the blockchain.
If the owner wants to protect his/her privacy, he/she needs
to convert the asset to a note. The PrivateEx scheme involves
four types of notes, which we summarize as follows: (i) Type 1.
This type of notes are generated for exchange operation and
includes type/value information of the target note. (ii) Type
2. This type of notes are generated for exchange operation
without information of the target note. (iii) Type 3. This
type of notes are generated by first spending operation in
exchange. (iv) Type 4. This type of notes are generated by
second spending operation in exchange.

Assets are first converted to Type 1 or Type 2 notes,
and further conversions between different types of notes are
summarized in Figure 2. Converting from one note to another
note is similar to a shield-to-shield transaction in Zcash that
does not disclose the owner’s information. However, if one
converts a note back to an asset, it is like a shield-to-non-
shield transaction, and the type, value, and owner information
is disclosed to the public.

PrivateEx: Privacy Preserving Exchange of Crypto-assets on Blockchain SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Correctness of PrivateEx. The correctness of PrivateEx
is further divided into three requirements and we demon-
strate that the proposed design meets all of them: (i) New
assets cannot be created through exchange operations. The
conversion from an asset to note is done without hiding any
information except the serial number, so the public can verify
that no new assets is created from scratch. For following steps
in the exchange, a zero knowledge proof is always required
for a transaction, which allows the public to verify the con-
sistency of the consumed note and the newly created note,
and new asset cannot be created either. (ii) Only matched
exchange requests can be accepted. The matching condition
is embedded in every Type 1 note. If one wants to spend
a Type 1 note, he/she must freeze his/her own note that
matches the condition, otherwise it is impossible to build a
corresponding zero-knowledge proof that can be verified by
the public. (iii) Double spending can be detected and pre-
vented. Double spending in conversion from an asset to note
is prevented by checking the balance information stored on
the blockchain. For most note types, each note has a unique
serial number and double spending is avoided by checking
whether a serial number has been disclosed in the past. For
a Type 1 note with two serial numbers, only one of them can
be used to create a new note and double spending does not
exist.

Fairness of PrivateEx. Intuitively, fairness means that a
participant of the exchange cannot take advantage of the
other one. This is equivalent to that the exchange ends up in
two and only two cases: (i) Case 1. The exchange succeeds
and both parties get the asset of the other party; or (ii) Case
2. The exchange terminates in the middle and each party
gets his/her asset back. Here we use the term asset but it
can be in the form a note in the system.

The system fails to meet this feature only if one party
can get the assets of both sides. If Alice achieves this goal,
she needs to produce a valid zero-knowledge proof shows
that she knows the corresponding serial number of the note
Bob created, which contradicts with the assumption that
Bob keeps this serial number secret until he spends his note
by himself. If Bob achieves this goal, he needs to produce a
valid zero-knowledge proof on the second serial number of the
note Alice created, which Alice keeps as a secret. Therefore,
PrivateEx guarantees the feature of fairness.

Privacy of PrivateEx Privacy is the core feature of Pri-
vateEx. In general, privacy means that by observing the
blockchain transactions and interacting with the blockchain,
an adversary cannot figure out who are involved in an ex-
change and the type/value information of the assets that
are exchanged. This feature is captured by blockchain in-
distinguishability, which was first proposed in Zerocash [16].
The idea of blockchain indistinguishability is that given two
blockchain based multi-assets system running PrivateEx 𝐵𝐶0

and 𝐵𝐶1, even if an adversary can control a pair of honest
users to submit transactions to these two blockchains (under
certain restrictions), he/she cannot distinguish 𝐵𝐶0 and 𝐵𝐶1.
Since the adversary cannot distinguish these two blockchains,

we can draw the conclusion that transactions stored on the
blockchain do not disclose any information. More concretely,
the blockchain indistinguishability is defined as a game in
the following way: (i) A challenger 𝒞 sets up two PrivateEx
instances 𝐵𝐶0 and 𝐵𝐶1, and randomly selects a bit 𝑏. (ii) 𝒞
also initializes two oracles 𝒪0 and 𝒪1, through which the
adversary 𝒜 can control the two blockchain instances. 𝒞
gives 𝒜 the view of 𝐵𝐶𝐿 and 𝐵𝐶𝑅, where 𝐵𝐶𝐿 = 𝐵𝐶𝑏 and
𝐵𝐶𝑅 = 𝐵𝐶1−𝑏. (iii) At each time, 𝒜 generates a pair of
instructions to generate transactions 𝑄 and 𝑄′, which are
forwarded to 𝐵𝐶0 and 𝐵𝐶1 respectively, and processed by
corresponding oracles. (iv) Besides submitting transactions
through oracles, 𝒜 is also allowed to set up his/her own
accounts and submit transactions. In this case, 𝑄 and 𝑄′

are submitted to 𝐵𝐶𝐿 and 𝐵𝐶𝑅 respectively. (v) At the end
of the game, 𝒜 outputs a guess 𝑏′ and wins if 𝑏 = 𝑏′. If the
probability that 𝒜 wins is at most negligible greater than 1/2.
To avoid the trivial cases, there are several restrictions on
the queries 𝑄 and 𝑄′: (i) 𝑄 and 𝑄′ must have the same type;
(ii) 𝑄 and 𝑄 must include the same public information. For
example, if they are converting a note back to plaintext assets,
these assets must have the same type and value; (iii) 𝑄 and
𝑄′ must be valid and consistent with existing transactions
on the blockchains.

The proof of blockchain indistinguishability feature for
PrivateEx follows the proof given in Appendix D of [16] and
is done through a sequence of simulation experiments.

6 IMPLEMENTATION AND
EVALUATION

In this section, we discuss the implementation of PrivateEx
and evaluate its performance and cost.

6.1 Circuit Design

We implement PrivateEx using the libsnark library [17], which
is a C++ based library for zk-SNARK proof system [3].

Protoboard. A zk-SNARK proof system requires a circuit
which takes both public and auxiliary inputs and produces an
output. The output is a boolean value and shows whether the
inputs satisfy the preset constraints (in the form of the circuit)
or not. A virtual protoboard is used to attach the circuit and
its necessary components. In the libsnark toolset, a Rank
One Constraint System (R1CS) is the basic component to
verify satisfactory [4].

Gadget. When we design a complex zk-SNARK proof sys-
tem, it is not efficient to build it from R1CSes directly. lib-
snark provides several common gadgets to build a customized
protoboard. In the PrivateEX proof system, two major gad-
gets are applied to the protoboard.

Figure 3 indicates that our proof system is verified if and
only if the input satisfies all gadgets on the protoboard.
PrivateEX uses SHA256 to compute note commitment. Thus,
the note commitment related verification should be performed
by the SHA256 gadget. A SHA256 gadget checks whether
the given input can reproduce a public known output hash.
For instance, in the case of “Initialization actions of Alice”,

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic L. Xu et al.

SHA256Merkle

Main
In

Out

Figure 3: SHA256 gadget is for cryptography-related
validation, e.g. commitment. Merkle tree gadget ver-
ifies whether the giving note is a leaf in a Merkle tree
with root rt.

the SHA256 gadget verifies whether input 𝑡1||𝑣1||𝑐𝑡3 and
𝑟4 can reproduce 𝑐𝑡4. The Merkle tree gadget checks the
commitment for a note appears in the Merkle tree with the
given root. We define both gadgets as follows.

sha256_two_to_one_hash_gadget <FieldT > f;

/*HashT is the C++ template of hash algorithm */

merkle_tree_check_read_gadget <FieldT , HashT > ml;

And, generate the constraints.

f->generate_r1cs_constraints ();

ml->generate_r1cs_constraints ();

Finally, the system takes inputs and produces a witness.

left ->generate_r1cs_witness(left_bv);

right ->generate_r1cs_witness(right_bv);

output ->generate_r1cs_witness(hash_bv);

f->generate_r1cs_witness ();

leaf_digest ->generate_r1cs_witness(leaf);

root_digest ->generate_r1cs_witness(root);

ml->generate_r1cs_witness ();

Variables like left, right and output are the inputs for
SHA256 gadget f. Typically, left is concatenation of several
parameters, e.g. 𝑡1, 𝑣1 and 𝑐𝑡3. Input right is a random
number. Variable 𝑜𝑢𝑡𝑝𝑢𝑡 is the given commitment value for
validator to check whether it matches the result from SHA256
gadget. On the other side, leaf and root are mandatory inputs
for the Merkle tree gadget ml.

Other constraints are checked by the main gadget. For
instance, to check whether input note and output note have
the same type of assets, we can add a basic R1CS constraint
to the main gadget as follow.

//t1 is the type of old note asset

//t2 is the type of new note asset

this ->pb.add_r1cs_constraint(

r1cs_constraint <FieldT >(

1, t1, t2

));

//R1CS : 1*t1=t2

Proof-key and Verification-key. Before generating proof,
zk-SNARK requires a security setup to produce a pair of

Table 1: Circuit Evaluation Results

Circuit Constraints PK VK Time

Commitment 27,280 6.14 MB 511.8 B 10 sec
Merkle tree* 448,774 99.2 MB 511.8 B 106 sec
First Claim* 476,571 103.66 MB 511.8 B 131 sec
Second Claim* 476,571 115.84 MB 511.8 B 130 sec
Merkle tree† 1,822,358 447.39 MB 511.8 B 464 sec
First Claim† 1,822,875 447.48 MB 511.8 B 466 sec
Second Claim† 1,822,875 447.48 MB 511.8 B 484 sec

* Merkle tree depth = 16. † Merkle tree depth = 64.

proof-key (𝑃𝐾) and verification-key (𝑉 𝐾). Users use 𝑃𝐾
and necessary transaction information to generate proofs,
and validators use 𝑉 𝐾 and auxiliary inputs/witness to verify
the transaction without knowing the details.

6.2 Circuit Evaluation

In this section, we evaluate our zk-SNARK circuit. We mea-
sure the number of R1CS constraints, size of PK and VK, and
the time consumption to generate a proof. The benchmark is
performed on an Amazon Web Service (AWS) Elastic Com-
puting Cloud (EC2) instance t2.large. This type of instance
involves 2 vCPUs and 8 GB memory.

Table 1 illustrates the comparison between different circuit
designs. Usually, a circuit with more R1CS constraints may
require more time to generate a proof. The verification time is
constant regardless of the number of constraints. We observe
that the Merkle tree gadget takes more time to execute. The
overall transaction time for a integrated circuit is 497 seconds
approximately, which include the time for proof-generation
and transaction verification (Merkle tree depth = 64). Note
that the integrated circuit is directly produced from libsnark.
This can be further optimized by improving the underlying
elliptic curve algorithms [1].

7 RELATED WORKS

In this section, we briefly review works related to the exchange
of cryptocurrencies/assets.

Privacy protection for one-way transfer. Several ap-
proaches have been developed to protect the privacy of one-
way transfer in a single-asset blockchain system, including
zero-knowledge [16], ring signature [12], and mixnet [7, 15].
Most of these techniques cannot be extended directly to
protect two-way exchange as they cannot guarantee the fair-
ness feature. While it is possible for one to build a mixnet
structure to achieve both fairness and privacy protection, the
effectiveness of this approach relies on the trustworthy of the
mixing nodes, which is not desirable.

Fair information exchange. Fair information exchange is
the process for two parties to exchange their own secrets. At
the end of the process, they either learn each other’s secret at
the same time, or nothing is leaked to the other party. It has
been proved that it is impossible to guarantee the fairness
without a trusted third party [13], but several approaches are

PrivateEx: Privacy Preserving Exchange of Crypto-assets on Blockchain SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

developed to achieve the goal with the help of a blockchain,
such as FairSwap [8]. Two-way asset exchange is more than
fair information exchange as exchanging the secrets does not
guarantee the change of ownership.

Multi-asset exchange. There are a large number of cen-
tralized exchange platforms for crypto asset exchange, e.g.,
Coinbase, Bitbuy, and Coinsquqre. These platforms require
participants’ fully trust and work as proxies for exchange
operations. From another point of view, these centralized
platforms can also be treated as a mixing service provider.
Multi-asset exchange on blockchain has also been studied.
Bentov et.al. proposed a real-time cryptocurrency exchange
protocol using trusted hardware [5]. 0x is built on top of
Ethereum and supports exchange of ERC2.0 tokens [18].
TEX is another decentralized exchange scheme that operates
in two layers [9]. However, these schemes only focus on the
exchange operation itself but do not provide any protection
on the privacy of exchange.

8 CONCLUSION

Exchange of different types of blockchain based crypto-assets
has become a significant business, and it is a natural exten-
sion of privacy-preserving cryptocurrency systems to build
a privacy-preserving, decentralized exchange system. In re-
sponse to this demand, we develop PrivateEx, a novel multi-
asset exchange platform on blockchain, and applies zero-
knowledge proof to protect the exchange information and
a two-serial-number structure to guarantee the fairness of
the exchange operation. Also, we discuss the implementation
of the zero-knowledge proof system used in PrivateEx and
formalize the security requirements. We implement the key
sub-circuits for different types of operations in PrivateEx.
Though the cost is not cheap, it is acceptable for modern
computers. The performance can be further improved using
other ZK-SNARK primitives such as Bulletproof [6].

ACKNOWLEDGMENTS

The research was supported in part by NSF 1756014.

REFERENCES
[1] Stephanie Bayer and Jens Groth. 2012. Efficient zero-knowledge

argument for correctness of a shuffle. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 263–280.

[2] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David
Pointcheval. 2001. Key-privacy in public-key encryption. In In-
ternational Conference on the Theory and Application of Cryp-
tology and Information Security. Springer, 566–582.

[3] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. 2013. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In Advances in
Cryptology–CRYPTO 2013. Springer, 90–108.

[4] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P Ward. 2019. Aurora:
Transparent succinct arguments for R1CS. In Annual Interna-
tional Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 103–128.

[5] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan Zhao, Lorenz
Breidenbach, Philip Daian, and Ari Juels. 2017. Tesseract: Real-
Time Cryptocurrency Exchange using Trusted Hardware. IACR
Cryptology ePrint Archive 2017 (2017), 1153.

[6] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. 2018. Bulletproofs: Short proofs
for confidential transactions and more. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 315–334.

[7] Evan Duffield and Daniel Diaz. 2015. Dash: A privacy centric
cryptocurrency. (2015). https://www.dash.org

[8] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018. Fair-
swap: How to fairly exchange digital goods. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 967–984.

[9] Rami Khalil, Arthur Gervais, and Guillaume Felley. 2019. TEX–A
Securely Scalable Trustless Exchange. IACR Cryptology ePrint
Archive (2019).

[10] Leslie Lamport. 1979. Constructing digital signatures from a
one-way function. Technical Report. Technical Report CSL-98,
SRI International Palo Alto.

[11] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash
system.

[12] Shen Noether. 2015. Ring Signature Confidential Transactions for
Monero. IACR Cryptology ePrint Archive 2015 (2015), 1098.

[13] Henning Pagnia and Felix C Gärtner. 1999. On the impossibility
of fair exchange without a trusted third party. Technical Re-
port. Technical Report TUD-BS-1999-02, Darmstadt University
of Technology .

[14] Dorit Ron and Adi Shamir. 2013. Quantitative analysis of the
full bitcoin transaction graph. In International Conference on
Financial Cryptography and Data Security. Springer, 6–24.

[15] Tim Ruffing and Pedro Moreno-Sanchez. 2017. ValueShuffle:
Mixing confidential transactions for comprehensive transaction
privacy in bitcoin. In International Conference on Financial
Cryptography and Data Security. Springer, 133–154.

[16] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. 2014. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy. IEEE, 459–474.

[17] SCIPR-Lab. 2017. libsnark: a C++ library for zkSNARK proofs.
https://github.com/scipr-lab/libsnark

[18] Will Warren and Amir Bandeali. 2017. 0x: An open protocol
for decentralized exchange on the Ethereum blockchain. URl:
https://github. com/0xProject/whitepaper (2017).

https://www.dash.org
https://github.com/scipr-lab/libsnark

	PrivateEx: Privacy Preserving Exchange of Crypto-assets on Blockchain
	Recommended Citation
	Authors

	Abstract
	1 Introduction
	2 Model and Requirements
	3 Overview of PrivateEx
	4 The Detailed Design of PrivateEx
	4.1 System Setup
	4.2 Notes Initialization
	4.3 First Claim Operation
	4.4 Second Claim Operation
	4.5 Use of Notes
	4.6 Termination of Exchange Operation
	4.7 One-way Transfer
	4.8 Non-malleability

	5 Security Analysis of PrivateEx
	6 Implementation and Evaluation
	6.1 Circuit Design
	6.2 Circuit Evaluation

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

