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Abstract

We address conjectures of P. Erdős and conjectures of Y.-G. Chen concerning the numbers in the title.
We obtain a variety of related results, including a new smallest positive integer that is simultaneously
a Sierpiński number and a Riesel number and a proof that for every positive integer r , there is an integer k

such that the numbers k, k2, k3, . . . , kr are simultaneously Sierpiński numbers.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A Sierpiński number is a positive odd integer k with the property that k ·2n+1 is composite for
all positive integers n. A Riesel number is a positive odd integer k with the property that k ·2n −1
is composite for all positive integers n. In 1849, A. de Polignac [6] conjectured that every positive
odd integer k can be written as a sum of a prime and a power of two. It is well known that
Polignac’s conjecture is not true. What has become of interest here are positive odd integers k
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for which |k − 2n| is composite for all positive integers n. In this section, we briefly discuss our
main results concerning these various numbers k, leaving motivational and background material
for the next section.

The existence of k as in each of the three concepts above has historically been associated with
covering systems. A covering system or covering, for short, is a finite system of congruences
x ≡ aj (mod mj), 1 � j � r , such that every integer satisfies at least one of the congruences.
P. Erdős [9, Section F13] apparently believed that Sierpiński numbers and covering systems are
so strongly connected that he conjectured that every Sierpiński number must be obtainable from
an argument involving a covering. This is formulated more precisely as Conjecture 1 in the next
section. The formulation of what is meant by being obtainable by a covering argument, though, is
not so much of interest to us here as an example of a Sierpiński number given by A. Izotov [10],
which suggests that this conjecture of Erdős is incorrect. One goal of this paper is to elaborate on
these ideas and to produce similar examples of Sierpiński numbers, Riesel numbers and positive
odd integers k for which |k −2n| is composite for all positive integers n. These examples fall into
infinite classes of k that are likely not obtainable by covering arguments. We make some attempt
to determine small examples of such k. However, we note that a “proof” that any of our examples
cannot arise from a covering argument seems out of reach. On the other hand, our explanations
for why they likely do not arise from a covering argument will hopefully be convincing.

The examples discussed above arise from considering k that are squares and fourth powers.
This naturally leads to recent investigations of Y.-G. Chen [3]. One of our main results in this
paper resolves a conjecture of Chen that for each positive integer r , there are infinitely many
Sierpiński numbers that are r th powers. His conjecture was actually the stronger assertion that
such r th powers k are not only such that k · 2n + 1 is composite for each positive integer n but
further such that k · 2n + 1 has at least two distinct prime divisors for each positive integer n. We
establish the following even stronger assertion.

Theorem 1. For every positive integer R, there exist infinitely many positive odd numbers k such
that each of the numbers

k2n + 1, k22n + 1, k32n + 1, . . . , kR2n + 1

has at least two distinct prime factors for each positive integer n.

The analogous conjectures with powers associated with Riesel numbers and Polignac’s con-
jecture remain open. We obtain some partial results in this direction, and in particular we resolve
these analogous conjectures for fourth powers and sixth powers, the two smallest powers that
were not resolved by the work of Chen.

We close this section with some open problems. We begin with one suggested by Theorem 1.
We do not know whether there is a k such that the infinite list k, k2, k3, . . . are all simultaneously
Sierpiński numbers. Note that this is the same as asking whether there is a positive odd inte-
ger k such that all of the numbers of the form 2ikj + 1, where i and j are positive integers, are
composite.

Let f (x) be an arbitrary nonconstant polynomial in Z[x]. Must there be infinitely many inte-
gers k such that f (k) · 2n + 1 is composite for all positive integers n? Suppose g(x) is another
nonconstant polynomial in Z[x]. Are there infinitely many integers k such that f (k) · 2n + 1 and
g(k) · 2n + 1 are both composite for all positive integers n?
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In connection to the conjecture of Erdős alluded to earlier, the following struck us as par-
ticularly interesting. Is it possible to find a method for determining whether a given k has the
property that the smallest prime divisor of k · 2n + 1 is bounded? Can one even prove that the
smallest prime divisor of 5 · 2n + 1 is not bounded as n tends to infinity? One can answer this
question affirmatively if 5 is replaced by a smaller positive integer. For example, given any x,
there is a positive integer n such that 2n − 1 is divisible by every odd prime � x. It follows that
for this n, the smallest prime factor of 3 · 2n + 1 is > x. Thus, the smallest prime divisor of
3 · 2n + 1 cannot be bounded as n tends to infinity. A similar question along these lines is the
following: can one prove that the smallest prime divisor of 11 · 2n − 1 is not bounded as n tends
to infinity?

2. Background

W. Sierpiński [12] observed the following implications:

n ≡ 1 (mod 2), k ≡ 1 (mod 3) �⇒ k · 2n + 1 ≡ 0 (mod 3),

n ≡ 2 (mod 4), k ≡ 1 (mod 5) �⇒ k · 2n + 1 ≡ 0 (mod 5),

n ≡ 4 (mod 8), k ≡ 1 (mod 17) �⇒ k · 2n + 1 ≡ 0 (mod 17),

n ≡ 8 (mod 16), k ≡ 1 (mod 257) �⇒ k · 2n + 1 ≡ 0 (mod 257),

n ≡ 16 (mod 32), k ≡ 1 (mod 65537) �⇒ k · 2n + 1 ≡ 0 (mod 65537),

n ≡ 32 (mod 64), k ≡ 1 (mod 641) �⇒ k · 2n + 1 ≡ 0 (mod 641),

n ≡ 0 (mod 64), k ≡ −1 (mod 6700417) �⇒ k · 2n + 1 ≡ 0 (mod 6700417).

The moduli appearing in the congruences involving k are 7 primes, the first (perhaps only) 5 Fer-
mat primes Fn = 22n + 1 for 0 � n � 4 and the two prime divisors of F5. The congruences for n

on the left form a covering of the integers, and hence it follows that any k satisfying the con-
gruences on k above has the property that, for any positive integer n, the number k · 2n + 1 is
divisible by one of these 7 primes. We add the condition k ≡ 1 (mod 2) to ensure that k is odd.
Then the Chinese Remainder Theorem implies that there are infinitely many Sierpiński numbers
given by

k ≡ 15511380746462593381 (mod 2 · 3 · 5 · 17 · 257 · 65537 · 641 · 6700417).

This congruence establishes that a positive proportion of the positive integers are in fact Sier-
piński numbers. For convenience in this paper, we will refer to the construction of Sierpiński
numbers as above as Sierpiński’s construction. We also note that this construction of Sierpiński
relies on the fact that F5 is composite.

In 1962, John Selfridge (unpublished) found what is believed to be the smallest Sierpiński
number, namely k = 78557. His argument is based on the following implications:

n ≡ 0 (mod 2), k ≡ 2 (mod 3) �⇒ k · 2n + 1 ≡ 0 (mod 3),

n ≡ 1 (mod 4), k ≡ 2 (mod 5) �⇒ k · 2n + 1 ≡ 0 (mod 5),

n ≡ 3 (mod 9), k ≡ 9 (mod 73) �⇒ k · 2n + 1 ≡ 0 (mod 73),
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n ≡ 15 (mod 18), k ≡ 11 (mod 19) �⇒ k · 2n + 1 ≡ 0 (mod 19),

n ≡ 27 (mod 36), k ≡ 6 (mod 37) �⇒ k · 2n + 1 ≡ 0 (mod 37),

n ≡ 1 (mod 3), k ≡ 3 (mod 7) �⇒ k · 2n + 1 ≡ 0 (mod 7),

n ≡ 11 (mod 12), k ≡ 11 (mod 13) �⇒ k · 2n + 1 ≡ 0 (mod 13).

There have been attempts to prove that 78557 is the smallest Sierpiński number. In this regards,
the web page http://www.seventeenorbust.com contains the current up-to-date information. The
research for this page, under the name of Seventeen or Bust, was started by L. Helm and D. Norris
in March of 2002 when there were 17 numbers < 78557 which were not yet eliminated from
being Sierpiński numbers. The idea is to establish that each k < 78557 is not a Sierpiński number
by finding a prime of the form k · 2n + 1. As of this writing, there remain 6 values of k < 78557
which are unresolved by the Seventeen or Bust project, namely

10223, 21181, 22699, 24737, 55459, 67607.

There are justifications for the belief that each of these 6 numbers is not a Sierpiński number.
Recall that the Sierpiński numbers k found by Sierpiński have the property that for each positive
integer n, the number k · 2n + 1 is divisible by one of 7 primes. Similarly, the Sierpiński num-
bers determined by the argument of Selfridge have this same property (though the primes are
different). If one believes that Sierpiński numbers are related to coverings as the above examples
suggest, then it would follow that the following conjecture of P. Erdős [9] (Section F13) holds.

Conjecture 2. If k is a Sierpiński number, then the smallest prime divisor of k ·2n +1 is bounded
as n tends to infinity.

We define

ordp(2) = m if m ∈ Z+ is minimal such that 2m ≡ 1 (mod p).

In other words, ordp(2) = m means that m is the order of 2 modulo p. It is of some interest
to note also that the congruences n ≡ a (mod m), k ≡ b (mod p) appearing to the left of each
implication above is such that ordp(2) = m. This further suggests that a Sierpiński number k

should have the property that for each positive integer n, the number k · 2n + 1 is divisible by
a prime p for which ordp(2) = m is not too large. What is more important here is that m is a
modulus of the related covering which in turn would suggest the prime divisors of m should not
be large. Computations can be used to show that the 6 numbers k listed above are likely not
Sierpiński numbers since each has the property that the prime divisors of k · 2n + 1 do not seem
to belong to a finite list and do not seem to have the property that 2 has a small order or an
order consisting of small prime divisors modulo these primes. For example, it is not difficult to
check that 10223 · 2n + 1 is divisible by one of the primes 3, 5, 7 and 13 unless n ≡ 5 (mod 12).
Although, one can (is bound) to find patterns among these n as well, like 11 divides every fifth
one, a quick look at the prime divisors for n ≡ 5 (mod 12) reveals little to suggest 10223 is the
result of a covering. For example, we find the following early examples of the smallest prime p

dividing 10223 · 2n + 1 and the orders of 2 modulo p among the n ≡ 5 (mod 12).
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Table 1

n Smallest prime Factorization of order of 2

77 619033 2 · 25793
101 45677096693 22 · 31 · 368363683
137 1904660910466121 22 · 5 · 1559 · 4733 · 6453199

We keep such tables in this paper short; they are intended to indicate some of the behavior
we observed for the k tested and, in general, a similar behavior was observed for many other
choices of n but with the smallest prime not quite as large as those listed. One could consider
other primes dividing 10223 · 2n + 1 besides the smallest prime with the hope that their orders
would be smaller or involve smaller primes, but this also does not seem to help.

This discussion has seemingly caused us to go off course of the focus of this paper which is
to consider Sierpiński and related numbers which are r th powers for some r > 1. But in fact, the
above leads exactly to this topic. A nice observation of A. Izotov [10] is that the given motivation
for 10223 not being a Sierpiński number, and similarly for the other numbers below 78557 which
have not yet been eliminated as Sierpiński numbers, is somewhat in error. More precisely, it is
highly likely that Erdős’s Conjecture 2 is wrong.

To understand Izotov’s idea, we return to Sierpiński’s construction and simply remove the
congruence n ≡ 2 (mod 4) and the corresponding condition k ≡ 1 (mod 5). So we have a simpli-
fied system of congruences on n which no longer covers the integers. Now, suppose we can find
an odd number k that satisfies only the remaining conditions on k in Sierpiński’s construction
and also that k = �4 for some integer � > 1. Observe that if n = 4u + 2 for some nonnegative
integer u, then

k · 2n + 1 = 4
(
� · 2u

)4 + 1 = (
�2 · 22u+1 + � · 2u+1 + 1

)(
�2 · 22u+1 − � · 2u+1 + 1

)
. (1)

Thus, whenever n ≡ 2 (mod 4), we obtain that k · 2n + 1 is composite and seemingly for reasons
not associated with a covering but rather due to the fact that 4x4 +1 has a nontrivial factorization
in Z[x]. This is the idea. Some modifications are needed for if � �≡ 0 (mod 5) in this construction,
then k = �4 ≡ 1 (mod 5) and k · 24u+2 + 1 will have 5 as a factor. In other words, we will
be in the situation of Sierpiński’s original construction. It should be noted here that each of
the congruences k ≡ b (mod p) in Sierpiński’s construction satisfies k ≡ �4 (mod p) for some
integer �. In the case that b = 1, one can take � = 1; in the last congruence where b = −1 and
p = 6700417, one can take � = 28 since 6700417 is a prime divisor of 232 + 1. We consider,
however,

� ≡ 1 (mod 2), � ≡ 2 (mod 3),

� ≡ 0 (mod 5), � ≡ 13 (mod 17),

� ≡ 256 (mod 257), � ≡ 1 (mod 65537),

� ≡ 640 (mod 641), � ≡ 3376382 (mod 6700417).

This particular choice of congruences gives the least � based on Izotov’s construction. The solu-
tion to these congruences is

� ≡ 734110615000775 (mod 2 · 3 · 5 · 17 · 257 · 65537 · 641 · 6700417).
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Thus, any � of this form has the property that k = �4 is a Sierpiński number, and it seems likely
that these give rise to counterexamples to Conjecture 2. We have already discussed how compu-
tations can suggest that a value of k is not a Sierpiński number based on a covering argument by
producing k · 2n + 1 which have large prime divisors p each with 2 having a large order mod-
ulo p. Table 2 below gives evidence then that k = �4 with � = 734110615000775 does not arise
from a covering argument, that is, that it is a true counterexample to Conjecture 2.

Table 2

n Smallest prime Factorization of order of 2

14 271933097 2593 · 13109
118 2476352353 22 · 3 · 3391 · 7607
334 376843822247957 22 · 7 · 79 · 733 · 1031 · 225431

Given that the k that was used to create Table 2 is considerably larger than the k used to
create Table 1, one might suspect that the primes appearing in Table 2 should be larger. We note,
however, that the k used in Table 2 only has a chance of producing a large smallest prime factor
when n ≡ 2 (mod 4) and in this case we know that k · 2n + 1 splits as a product of two numbers
of relatively equal size. There was not an analogous splitting situation for the k used to create
Table 1.

Before proceeding, we clarify that we are not suggesting that any of the remaining 6 values in
the Seventeen or Bust project are actually Sierpiński numbers. One can easily check that none of
these 6 values is of the form �r where r > 1, and it seems likely to us that the following revision
of Conjecture 2 holds.

Conjecture 3. If k is a Sierpiński number that is not of the form �r for some integers � � 1 and
r > 1, then the smallest prime divisor of k · 2n + 1 is bounded as n tends to infinity.

Motivated by the work of Izotov and in the spirit of Selfridge’s example of a Sierpiński num-
ber, in the next section we discuss small examples of Sierpiński and Riesel numbers and for
Polignac’s conjecture that do not appear to arise from coverings. The constructions of examples
for Riesel numbers and Polignac’s conjecture are new. In this regard, it is of some interest to
quote the first edition of [9] (Springer-Verlag, New York, 1981, Section F13) which mentions the
following:

Erdős also formulates the following conjecture. Consider all the arithmetic progressions of
odd numbers, no term of which is of the form 2k + p. Is it true that all these progressions can
be obtained from covering congruences? Are there infinitely many integers, not of the form
2k + p, which are not in such progressions?

Our work suggests strongly that the answer to the second question is, “Yes.”
We turn to background on Riesel numbers and Polignac’s problem. First we clarify that the

use of coverings for finding k such that k · 2n − 1 is composite for each positive integer n and
the use of coverings for finding k such that |k − 2n| is composite for each positive integer n are
essentially equivalent. More precisely, let k be an integer, and let P be a finite set of odd primes.
Then k ·2n −1 has a prime divisor from the set P for all positive integers n if and only if |k −2n|
has a prime divisor from the set P for all positive integers n. We state this as a lemma that allows
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us to move from one problem to the next. For later purposes in the paper, we state it with a little
more generality.

Lemma 4. Let S be the set of integers, the set of even integers or the set of odd integers, let P be
a finite set of odd primes, and let k be an integer. Suppose that for every sufficiently large n ∈ S
there is a p ∈P for which

k · 2n − 1 ≡ 0 (mod p). (2)

Then for each n ∈ S there is a p ∈P for which

k − 2n ≡ 0 (mod p). (3)

Similarly, if for every sufficiently large n ∈ S there is a p ∈P satisfying (3), then for every n ∈ S
there is a p ∈P satisfying (2).

Proof. We consider the first implication. Let n be an arbitrary element of S . Put

mp = ordp(2), for p ∈P .

Set

N = 2M ·
( ∏

p∈P
mp

)
− n,

where M is an arbitrary integer. Observe that n ∈ S implies that N ∈ S . We take M sufficiently
large so that N is large enough to guarantee that

k · 2N − 1 ≡ 0 (mod p)

for some p ∈ P . This congruence implies

k · 2−n − 1 ≡ 0 (mod p).

We multiply both sides of the congruence by 2n to obtain

k − 2n ≡ 0 (mod p).

This establishes the first part of the lemma. The second part follows along similar lines. �
We note that it is possible for k ·2n −1 or |k−2n| above to be an element of P . For that reason,

we are not claiming that k is a Riesel number if and only if k is an odd positive integer for which
|k − 2n| is composite for all positive integers n. We are not even claiming that this is true when
we restrict ourselves to such k that can be obtained from coverings. However, the above lemma
does allow us often to conclude that a k that has been shown to be a Riesel number is also an
odd positive integer k for which |k − 2n| is composite for all positive integers n and vice versa.
A. Schinzel has also obtained a connection between Sierpiński numbers and Riesel numbers. The
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connection is not as direct as above, and we do not give the details here. The interested reader
can see [8] or [13] for details.

H. Riesel [11] showed that if

k ≡ 509203 (mod 11184810),

then k is what has been defined as a Riesel number. It is believed that 509203 is in fact the small-
est Riesel number. As of this writing, there remain 70 odd positive integers k < 509203 which
have not been established as being or not being Riesel numbers. Of these k, the number 2293
is the smallest. The web page http://www.prothsearch.net/rieselprob.html maintains up-to-date
information.

Eric Brier (1998, unpublished) showed that there are infinitely many numbers which are si-
multaneously Sierpiński and Riesel numbers. His example had 41 digits, and Yves Gallot (2000,
unpublished) later found an example with 27 digits. We note that Y.-G. Chen [4] has recently
obtained some related results. We obtain here a smaller example with 24 digits.

Theorem 5. A positive proportion of the positive integers are simultaneously Sierpiński and
Riesel numbers. The number 143665583045350793098657 is one such number.

The first part of this result is not new and follows from Brier’s work. For a proof of Theorem 5,
we provide appropriate coverings. One covering will show that if k satisfies certain conditions,
then k is a Sierpiński number. The other will show that if certain other conditions are satisfied
by k, then k is a Riesel number. It will be an easy task to then justify that all the conditions
can simultaneously be satisfied by k. We give the details to help clarify the approach we use
throughout this paper.

Proof. Each row of Table 3 indicates a residue class a (mod m) for n and a corresponding residue
class b (mod p) for k such that, for every positive integer n ≡ a (mod m), the number k ·2n +1 is
divisible by p. Each row of Table 4 indicates a residue class a (mod m) for n and a corresponding
residue class b (mod p) for k such that, for every positive integer n ≡ a (mod m), the number
k · 2n − 1 is divisible by p. For each table, the congruences x ≡ a (mod m) given by the residue
classes a (mod m) for n form a covering. We justify these remarks.

Table 3

Classes for n Classes for k

1 (mod 2) 1 (mod 3)

0 (mod 3) 6 (mod 7)

4 (mod 9) 41 (mod 73)

10 (mod 18) 10 (mod 19)

16 (mod 36) 4 (mod 37)

34 (mod 36) 105 (mod 109)

Classes for n Classes for k

2 (mod 5) 23 (mod 31)

8 (mod 10) 7 (mod 11)

5 (mod 15) 33 (mod 151)

14 (mod 30) 2 (mod 331)

56 (mod 60) 45 (mod 61)

26 (mod 60) 16 (mod 1321)

Table 4

Classes for n Classes for k

0 (mod 2) 1 (mod 3)

3 (mod 4) 2 (mod 5)

5 (mod 8) 8 (mod 17)

1 (mod 16) 129 (mod 257)

Classes for n Classes for k

5 (mod 12) 11 (mod 13)

9 (mod 24) 233 (mod 241)

25 (mod 48) 48 (mod 97)
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Observe that the least common multiple of the moduli m for the residue classes a (mod m)

for n in Table 3 is 180. We can establish then that the 12 congruences x ≡ a (mod m) form a cov-
ering by simply checking if each element of {0,1, . . . ,179} satisfies one of the 12 congruences.
Indeed, if this is the case, then an arbitrary integer u can be written in the form u = 180q + r

where q ∈ Z and r ∈ {0,1, . . . ,179} so that u and r are congruent modulo any of the 12 mod-
uli m. It follows that u will satisfy whichever of these congruences that r satisfies. To justify the
entries a (mod m) and b (mod p) in a row of Table 3, one checks that ordp(2) = m and that
b2a + 1 ≡ 0 (mod p). For if this holds, then

n ≡ a (mod m), k ≡ b (mod p) �⇒ k2n + 1 ≡ b2a + 1 ≡ 0 (mod p).

In this manner, one can therefore justify that any k as in Table 3 is indeed a Sierpiński number.
An analogous argument works to justify that any k as in Table 4 is a Riesel number, though the
argument in this case is somewhat easier since the number of congruences to consider is smaller
and the least common multiple of the moduli for n in Table 4 is 48. Finally, observe that the
prime moduli p appearing for the residue classes for k in Tables 3 and 4 are distinct except
in the case that p = 3. In this case, both tables indicate that we want k ≡ 1 (mod 3). We add
the condition k ≡ 1 (mod 2). The Chinese Remainder Theorem and a calculation now establish
Theorem 5. �

Small positive odd integers which are not the sum of a power of 2 and a prime are easy to
come by. This list begins

127, 149, 251, 331, 337, 373, 509.

These numbers are all prime. The smallest composite odd number that is not a power of 2 plus
a prime is 905. As mentioned in the opening paragraph, the real interest here is in odd positive
integers k with the property that |k − 2n| is not prime for all positive integers n. As a conse-
quence of Lemma 4, the smallest known such k is 509203. In 1950, J.G. van der Corput [14] and
Erdős [7] independently showed that a positive proportion of the odd positive integers k have the
property that |k − 2n| is not prime for all positive integers n. Erdős’s argument was based on a
covering, and in fact his paper introduced the idea of applying covering systems to problems in
number theory.

In the final two sections of this paper, we address two recent conjectures of Y.-G. Chen [3]:

Conjecture 6. For any positive integer r , there exist infinitely many positive odd numbers k such
that kr2n + 1 has at least two distinct prime factors for all positive integers n.

Conjecture 7. For any positive integer r , there exist infinitely many positive odd numbers k such
that kr − 2n has at least two distinct prime factors for all positive integers n.

He resolves these conjectures in the case that r is odd and in the case that r is twice an odd
number and 3 � r . As he notes, the least r for which his arguments do not apply are r = 4 and
r = 6. We will show that Conjecture 6 is true in general and that Conjecture 7 holds in the special
cases r = 4 and r = 6. Our arguments will in fact resolve Conjecture 7 for a set of integers r with
positive density with each r divisible by 4 and another set r having positive density and each r

divisible by 6. The full strength of Conjecture 7 remains open.
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Next, we turn to a result associated with Conjecture 6. We include the proof here as it draws
from some of the discussion above and is fairly simple. The material in the third section can be
viewed as a strengthening of the result below and its corollary.

Theorem 8. Suppose there exist at least r composite Fermat numbers Fm = 22m + 1. Then there
are infinitely many positive odd integers k such that if t is a positive integer not divisible by 2r ,
then kt is a Sierpiński number.

Proof. We will use that Fm cannot be of the form us where u and s are positive integers and
s > 1. To see this, assume otherwise. Then 22m = us − 1 has u− 1 as a factor. Hence, u = 2v + 1
for some integer v � 1. This implies 22m + 1 = (2v + 1)s . The rest of the argument can be
completed in a few different ways. In particular, we obtain an immediate contradiction from
Bang’s theorem [1] that there is a primitive prime divisor of 2a + 1 for every integer a > 3.

Let m0 < m1 < · · · < mr−1 be positive integers for which Fmj
is composite for each j . Since

no Fmj
is of the form us with s > 1, we deduce that each Fmj

has at least two distinct prime
factors, say pj and qj . We use also that the Fermat numbers Fm, for m � 0, are odd and pairwise
coprime.

By the Chinese Remainder Theorem, there is an infinite arithmetic progression of positive
integers k satisfying the following congruences:

k ≡

⎧⎪⎪⎨
⎪⎪⎩

1 (mod 2),

1 (mod Fm) for 0 � m < mr−1 and m /∈ {m0, . . . ,mr−1},
1 (mod pj ) for 0 � j � r − 1,

22mj −j

(mod qj ) for 0 � j � r − 1.

We prove that any such k satisfying these congruences, other than possibly the least one, also
satisfies the condition in the theorem.

Let t be a positive integer not divisible by 2r . Then we can write t = 2wt ′ where w and t ′ are
integers with 0 � w � r − 1, t ′ > 0 and t ′ odd. We want kt · 2n + 1 to be composite for each
positive integer n. Fix a positive integer n. We complete the proof by showing that kt · 2n + 1 is
divisible by some number from the set

S = {
Fm: 0 � m < mw, m /∈ {m0, . . . ,mw}} ∪ {pj : 0 � j � w} ∪ {qw}.

Since each k satisfying the congruences above, other than the least one, is greater than the product
of the elements of S , we can deduce then that each such k satisfies that kt · 2n + 1 is composite
for all positive integers n.

Fix i to be the nonnegative integer such that n = 2in′ where n′ is an odd integer. Let

d =
{

Fi if i < mw and i /∈ {m0,m1, . . . ,mw},
pj if i = mj for some j ∈ {0,1, . . . ,w},
qw if i > mw.

Observe that if i � mw , then d divides 22i + 1 and, hence, 22in′ + 1. Therefore,

kt2n + 1 ≡ kt22in′ + 1 ≡ 22in′ + 1 ≡ 0 (mod d).
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Now, suppose i > mw . Then

kt ≡ 22mw−w2wt ′ ≡ (
22mw )t ′ ≡ (−1)t

′ ≡ −1 (mod d).

Note that in this case d divides 22mw + 1 and, hence, 22i − 1, since this latter number is the
product of Fm for 0 � m < i. Thus, d divides 22in′ − 1, which implies

kt2n + 1 ≡ −(
22in′ − 1

) ≡ 0 (mod d).

Hence, for each positive integer n, the number kt2n + 1 is divisible by an element of S . The
theorem follows. �

Given the current status of composite Fermat numbers at http://www.prothsearch.net/fermat.
html there are 231 known positive integers m for which Fm = 22m + 1 is composite. By Theo-
rem 8, there is a positive integer k such that kt is a Sierpiński number for every t < 2231. Hence,
we have

Corollary 9. There is a k such that all of the numbers k, k2, k3, . . . , k3.45·1069
are simultaneously

Sierpiński numbers.

3. Small examples associated with Conjecture 2

We begin with a variation on Izotov’s construction, described in the previous section, to ex-
hibit a relatively small odd positive integer � such that k = �4 is a Sierpiński number and with the
property that k seemingly does not arise from a covering system. Following the idea of Izotov, we
determine k such that whenever n �≡ 2 (mod 4), the value of k ·2n +1 is divisible by a prime from
a fixed finite set P of primes. For n ≡ 2 (mod 4), we rely on the fact that k = �4 to deduce that
k · 2n + 1 is composite based on (1). We obtain values of � by applying the Chinese Remainder
Theorem with congruences having moduli coming from the set P together with the congruences
� ≡ 1 (mod 2) and � ≡ 0 (mod 5). As before, the congruence � ≡ 1 (mod 2) insures that k is
odd, and the congruence � ≡ 0 (mod 5) insures that the smallest prime divisor of k · 2n + 1 as n

varies is not always from the set P ∪ {5}. To obtain a small value of �, we simply looked for an
appropriate set P which had the property that the product of the primes in P is as small as we
could find. As with other notable numbers mentioned in this paper, there is no guarantee that the
value of � we found in this way is minimal, but the approach is a reasonable one for minimizing
or at least reducing the size of �.

Our search led us to taking

P = {3,17,97,241,257,673}.
There are various congruences one can consider based on this choice of P . We searched through
these to minimize � and obtained the following:

n ≡ 1 (mod 2), � ≡ 2 (mod 3) �⇒ k · 2n + 1 ≡ 0 (mod 3),

n ≡ 4 (mod 8), � ≡ 4 (mod 17) �⇒ k · 2n + 1 ≡ 0 (mod 17),

n ≡ 32 (mod 48), � ≡ 43 (mod 97) �⇒ k · 2n + 1 ≡ 0 (mod 97),



M. Filaseta et al. / Journal of Number Theory 128 (2008) 1916–1940 1927

n ≡ 0 (mod 24), � ≡ 8 (mod 241) �⇒ k · 2n + 1 ≡ 0 (mod 241),

n ≡ 8 (mod 16), � ≡ 256 (mod 257) �⇒ k · 2n + 1 ≡ 0 (mod 257),

n ≡ 16 (mod 48), � ≡ 4 (mod 673) �⇒ k · 2n + 1 ≡ 0 (mod 637).

In the above, k = �4. As in the previous section, an implication with n ≡ a (mod m) and � ≡
b (mod p) is justified by checking that ordp(2) = m and b42a + 1 ≡ 0 (mod p). Observe that
the least common multiple of the moduli for the congruences involving n above is 48. Also,
4 divides 48. We can establish then that these 6 congruences, together with n ≡ 2 (mod 4), form
a covering by simply checking if each element of {0,1, . . . ,47} satisfies one of the 7 congruences.
Combining the congruences on � with � ≡ 1 (mod 2) and � ≡ 0 (mod 5), we obtain the following
result.

Theorem 10. If � is a positive integer satisfying

� ≡ 44745755 (mod 2 · 3 · 5 · 17 · 97 · 241 · 257 · 673),

then k = �4 is a Sierpiński number.

The number 44745755 should be compared to the 15 digit number arising from Izotov’s con-
struction. What we cannot conclude but would nevertheless like to give some justification for
is that k = 447457554, which was constructed by making use of the fact that 4x4 + 1 factors
in Z[x], cannot be obtained from a covering argument. As in the previous section, we give some
evidence of this in Table 5 by looking at the smallest prime factors of k · 2n + 1 for various n and
the order of 2 modulo these primes.

Table 5

n Smallest prime Factorization of order of 2

54 5719237 22 · 3 · 476603
90 64450569241 36 · 5 · 139 · 15901
214 338100368290543455397 22 · 28175030690878621283

We turn now to finding examples of Riesel numbers that do not appear to arise from coverings.
What we use here is simply that k · 2n − 1 is composite if n = 2u and k = �2 where u and � are
positive integers with � > 1 since

k · 2n − 1 = �2 · 22u − 1 = (
� · 2u + 1

)(
� · 2u − 1

)
.

The idea then is to find a collection of congruences for n such that whenever n is odd, then n

satisfies at least one of the congruences. In other words, the congruences when combined with
n ≡ 0 (mod 2) form a covering. This seemingly puts us in a better position than we were in with
the Sierpiński numbers where the factorization of 4x4 +1 left us with wanting to find a collection
of congruences such that every integer n �≡ 2 (mod 4) satisfies at least one of the congruences.
However, the situation with Riesel numbers is actually more complicated. For Sierpiński num-
bers, the congruences n ≡ 1 (mod 2) and � ≡ 2 (mod 3) immediately gave us that whenever
n ≡ 1 (mod 2), the number �42n + 1 is divisible by 3. Thus, we were only left with finding a
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Table 6

Classes for n Classes for �

2 (mod 3) 4 (mod 7)

5 (mod 8) 12 (mod 17)

0 (mod 5) 30 (mod 31)

11 (mod 20) 15 (mod 41)

14 (mod 35) 66 (mod 71)

7 (mod 48) 84 (mod 97)

15 (mod 28) 100 (mod 113)

2 (mod 7) 64 (mod 127)

12 (mod 15) 92 (mod 151)

19 (mod 24) 153 (mod 241)

9 (mod 16) 223 (mod 257)

59 (mod 70) 9 (mod 281)

18 (mod 21) 52 (mod 337)

33 (mod 64) 31 (mod 641)

31 (mod 48) 236 (mod 673)

3 (mod 60) 34 (mod 1321)

75 (mod 84) 11729 (mod 14449)

69 (mod 105) 575 (mod 29191)

17 (mod 32) 2056 (mod 65537)

1 (mod 64) 5012354 (mod 6700417)

collection of congruences such that every integer n ≡ 3 (mod 4) satisfies at least one of the con-
gruences. For Riesel numbers, such a simplification in the integers n that need to be considered
is not possible.

Our investigations led us to a set P of 20 primes for the Riesel numbers, namely

P = {7,17,31,41,71,97,113,127,151,241,257,281,

337,641,673,1321,14449,29191,65537,6700417}.
Rather than displaying a list of implications, we simplify our presentation with Table 6 which
consists of two columns, one column for the congruence involving n and the second column
for the corresponding congruence involving �. The least common multiple of the moduli for the
congruences involving n is 6720. Thus, one can confirm that the 20 congruences on n together
with n ≡ 0 (mod 2) form a covering of the integers simply by checking that each integer in the
set {0,1, . . . ,6719} satisfies at least one of the 21 congruences. Hence, if � satisfies each of the
congruences in the second column of Table 6 and the congruence � ≡ 1 (mod 2), then �2 is
a Riesel number. We deduce

Theorem 11. There are infinitely many squares that are Riesel numbers. One such Riesel number
is

38968453038738811751593146208088870460669724698092.

As noted earlier, the first sentence of this theorem is not new; it is a consequence of the work
of Y.-G. Chen [3]. The significance here is that the above square, say �2, appears not to arise
from a covering argument. The square is the least one that we found with our methods, though
given the complexity of the covering, it is certainly possible that smaller ones exist. Analogous
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to before, in Table 7 we give some information on the factorization of �2 · 2n − 1 to support our
belief that �2 cannot be obtained from a covering argument. The size of � is rather large here
and we quickly came to numbers that were hard to factor, so only two rows are indicated in the
table. The computations for other values of n also suggest that the number � does not arise from
coverings; for example, a quick sieve using the first 20000 primes indicated that for n � 25000,
there are at least 170 different values for the minimum prime factor of �22n −1 and 59 different n

for which �22n − 1 did not have a prime factor among the first 20000 primes.

Table 7

n Smallest prime Factorization of order of 2

118 22138187 2 · 7 · 1581299
166 666829 22 · 32 · 18523

Let k = �2 be the Riesel number in Theorem 11. Observe that �2 −22u = (�+2u)(�−2u). As
each of � + 1 and � − 1 is not a power of 2, we have that |� − 2u| > 1 for each positive integer u.
Take S to be the set of odd numbers in Lemma 4. One checks that k +p and k −p are not powers
of 2 for each p ∈ P . We deduce that k has the property that |k − 2n| is composite for all positive
integers n. Information on the factorization of |�2 − 2n| to support our belief that �2 cannot be
obtained from a covering argument for this problem is given in Table 8. (Note also that Lemma 4
with S = Z implies that if the least prime divisor of |�2 − 2n| is bounded a n tends to infinity,
then the least prime divisor of |�22n − 1| is bounded as n tends to infinity.)

Table 8

n Smallest prime Factorization of order of 2

7 13883 2 · 11 · 631
314 9344182730989 22 · 3 · 111240270607

4. The resolution of Conjecture 6

In this section, we establish Theorem 1. Recall that Sierpiński’s construction relied upon the
fact that F5 has two prime factors. Our proof of Theorem 8 showed how this idea could be
extended but still relied on the existence of composite Fermat numbers, requiring us then to only
obtain a result like Theorem 1 with R bounded. Thus, we will want to obtain a covering here by
another method. We will introduce new congruences making use of primitive prime divisors of
the Mersenne numbers Mn = 2n − 1. To clarify, a prime p is said to be a primitive prime divisor
of 2n − 1, independent of the expression that may be used for n in the exponent, if p divides
2n − 1 and p does not divide 2t − 1 for every positive integer t < n. An important result due to
Bang [1] is the following:

Lemma 12. For each positive integer n > 6, there exists a primitive prime divisor of 2n − 1.

Our next lemma clarifies the information about primitive prime divisors of 2n − 1 that we will
use.

Lemma 13. Let q be an odd prime and let s > 2 be an integer. Then there exists a primitive prime
divisor p of 2q2s − 1. Furthermore, any such p satisfies the following:
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(i) The order of 2 modulo p is q2s .
(ii) p � Fi for every i � 0.

(iii) There exists an integer e such that e2s ≡ −1 (mod p).

Proof. Lemma 12 implies the existence of a primitive prime divisor p of 2q2s − 1. To see (i),
note that since p is a primitive prime divisor of 2q2s − 1, p does not divide 2t − 1 for all t < q2s .
For (ii), combine (i) with the fact that 2 has order 2i+1 modulo prime divisors of Fi . To ob-
tain (iii), notice that since s > 2, we obtain from (i) that p ≡ 1 (mod 8). This implies 2 is a
square modulo p; that is, there is an integer a with a2 ≡ 2 (mod p). Let e = aq . One checks that
ordp(e) = 2s+1 from which (iii) follows. �

Once we have constructed our covering of the integers, our system of congruences that de-
scribe k, and our finite set of primes P , we will use the following lemma to guarantee the
existence of at least two distinct prime divisors of kr2n + 1 for each n.

Lemma 14. Given P > 0, an integer r � 3 and C and D nonzero integers, there is a positive
integer Y = Y(P, r,C,D) such that if k is an odd integer with |k| > Y and n is a positive integer,
then Ckr2n + D has a prime factor that is greater than P .

Proof. Fix P , r , C and D as in the lemma. It suffices to show that there are only finitely many
ordered pairs (k, n) such that

Ckr2n + D = p
f1
1 · · ·pft

t , (4)

where the pi are all the distinct primes less � P and the fi are nonnegative integers. We put
n = rn1 + n0 and fi = rui + vi for each i ∈ {1,2, . . . , t} where n1, u1, u2, . . . , ut ∈ Z and
n0, v1, v2, . . . , vt ∈ {0,1, . . . , r − 1}. Then

p
v1
1 · · ·pvt

t

(
p

u1
1 · · ·put

t

)r − 2n0C
(
2n1k

)r = D. (5)

Observe that Axr − Byr = D, where r � 3 and A, B and D are nonzero integers, is a Thue
equation which has finitely many solutions in integers x and y. We take A = p

v1
1 · · ·pvt

t and
B = 2n0C. There are rt possibilities for A depending on the vi and r possibilities for B depend-
ing on n0. We deduce that there are finitely many possibilities for p

u1
1 · · ·put

t and 2n1k in (5) and,
consequently, finitely many pairs (k, n) satisfying (4). �

To establish Theorem 1, we may suppose that k is an 8th power. In other words, it suffices to
show that there exist infinitely many positive odd numbers k such that each of the numbers

k82n + 1, k162n + 1, k242n + 1, . . . , k8R2n + 1

has at least two distinct prime factors for each positive integer n. We consider then the positive
integers r � 8R that are divisible by 8. Define integers s = s(r) and r ′ = r ′(r), with r ′ odd, by
the relation r = 2sr ′. Let q = q(r) be an odd prime with (r ′, q) = 1. We furthermore take the
various q(r) as r varies so that they are distinct. We start our covering of the integers with the
congruences

n ≡ 2i
(
mod 2i+1), for 0 � i � max

{
s(r) + q(r) − 2

}
, (6)
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where the maximum is over the positive integers r � 8R divisible by 8. For each i as above, fix
a prime divisor pi of Fi = 22i + 1. Observe that for each i, if

n ≡ 2i
(
mod 2i+1) and k ≡ 1 (mod pi),

then

kr2n + 1 ≡ 0 (mod pi).

The idea is to complete the covering system which began with the congruences in (6) by
making use of different congruences depending on the value of r . With r fixed as above, we note
that the congruences in (6) together with

n ≡ 0
(
mod 2s+q−1)

form a covering of the integers. Recall here that s and q depend on r . Note that this covering of
the integers only makes use of the congruences in (6) corresponding to 0 � i � s + q − 2. Also,
every integer n that satisfies n ≡ 0 (mod 2s+q−1) must satisfy one of the q congruences

n ≡ j2s+q−1 (
mod 2s+q−1q

)
, for 0 � j � q − 1.

Since q and r ′ are coprime odd numbers, the set of residues classes modulo 2s+q−1q represented
by

0, 2s+q−1, 2 · 2s+q−1, . . . , (q − 1)2s+q−1

is identical to the set of residue classes modulo 2s+q−1q represented by

0, r ′2s+q−1, r ′2 · 2s+q−1, . . . , r ′(q − 1)2s+q−1,

so it suffices to complete our covering with the q congruences

n ≡ jr ′2s+q−1 (
mod 2s+q−1q

)
, for 0 � j � q − 1.

From Lemma 13, for each j ∈ {0,1, . . . , q − 1}, there is a primitive prime divisor p̂j = p̂j (r)

of the Mersenne number M2s+j q and an integer ej = ej (r) such that e2s+j

j ≡ −1 (mod p̂j ). We
show that for each j ∈ {0,1, . . . , q − 1} if

n ≡ jr ′2s+q−1 (
mod 2s+q−1q

)
and k ≡ 2−j ·2q−1

e2j

j (mod p̂j ),

then

kr2n + 1 ≡ 0 (mod p̂j ).

Indeed, defining the integer N by n = 2s+q−1qN + jr ′2s+q−1, this follows from
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kr2n + 1 ≡ (
2−j ·2q−1

e2j

j

)2s r ′
22s+q−1qN+jr ′2s+q−1 + 1

≡ (
e2s+j

j

)r ′ · (22s+j q
)2q−1−j N + 1

≡ (−1)r
′ + 1 ≡ 0 (mod p̂j ).

We summarize the above. For each r � 8R that is a multiple of 8, the congruences

n ≡ 2i
(
mod 2i+1), for 0 � i � s + q − 2,

n ≡ jr ′2s+q−1 (
mod 2s+q−1q

)
, for 0 � j � q − 1

form a covering of the integers. If k satisfies the congruences

k ≡ 1 (mod pi), for 0 � i � s + q − 2,

k ≡ 2−j ·2q−1
e2j

j (mod p̂j ), for 0 � j � q − 1,

then for each positive integer n, the number kr2n + 1 is divisible by some prime in the set

Pr = {p0,p1, . . . , ps+q−2, p̂0, p̂1, . . . , p̂q−1}.

Furthermore, Lemma 13 guarantees that the primes in Pr are distinct.
Recall that p̂j (r) is a prime, necessarily odd, for which 2 has order 2s+j q(r). Since the q(r)

are distinct, we deduce that the values of p̂j (r) as j and r vary are all distinct. By the Chinese
Remainder Theorem, there are infinitely many positive integers k satisfying

k ≡ 1 (mod 2),

k ≡ 1 (mod pi), for 0 � i � max
{
s(r) + q(r) − 2

}
,

k ≡ 2−j ·2q(r)−1
ej (r)

2j (
mod p̂j (r)

)
for r ∈ {8,16,24, . . . ,8R} and 0 � j � q(r) − 1.

We deduce that any such k has the property that, for every positive integer n, the numbers

k82n + 1, k162n + 1, k242n + 1, . . . , k8R2n + 1

each have a prime divisor from the set

P =
⋃

Pr ,

where the union is over r ∈ {8,16,24, . . . ,8R}. We apply Lemma 14 for each r with P being the
maximum element of P , C = 1 and D = 1. Hence, we see that if k is sufficiently large satisfying
the congruences above, then for every positive integer n, the numbers

k82n + 1, k162n + 1, k242n + 1, . . . , k8R2n + 1

each have a prime divisor in P and a prime divisor not in P . This establishes Theorem 1.
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5. New cases of Conjecture 7

In this section, we address the two special cases of Conjecture 7 with r = 4 and r = 6. Corol-
laries of the arguments below will address some other new cases of this conjecture. We begin
with the case r = 4.

Theorem 15. There exist infinitely many positive odd numbers k such that

k4 − 2n

has at least two distinct prime factors for each positive integer n.

With the intent of applying Lemma 4, we work with k42n − 1. We make use of two simple
lemmas.

Lemma 16. Let r be a positive integer, let p be an odd prime, and let a be an arbitrary integer.
Suppose that 2 is an r th power modulo p and that the order of 2 modulo p is m. Then there exists
an integer b = b(p,a) such that if k ≡ b (mod p) and n ≡ a (mod m), then kr2n − 1 is divisible
by p.

Proof. Let c be such that cr ≡ 2 (mod p). Since p is odd, p does not divide c. If n ≡ a (mod m),
then

kr2n − 1 ≡ kr2a − 1 ≡ (
kca

)r − 1 (mod p).

The lemma follows by taking b ≡ c−a (mod p). �
Lemma 17. Let r be a positive integer, let p be an odd prime and let g = gcd(r,p − 1). Then 2
is an r th power modulo p if and only if 2(p−1)/g ≡ 1 (mod p).

Proof. The condition 2(p−1)/g ≡ 1 (mod p) is equivalent to 2 being a gth power modulo p.
There are integers x and y such that rx + (p − 1)y = g. If a is an integer for which 2 ≡
ag (mod p), then 2 ≡ arx+(p−1)y ≡ (ax)r (mod p), so 2 is an r th power modulo p. Since g | r ,
we also have that if 2 is an r th power modulo p, then 2 is a gth power modulo p. This completes
the proof. �

Lemma 16 motivates our approach. We take r = 4. If n ≡ 0 (mod 2) and k ≡ 1 (mod 3),
then kr2n − 1 is divisible by 3. We take a1 = 0, m1 = 2 and p1 = 3. For n ≡ 1 (mod 2), we
find distinct odd primes p2, . . . , pt , with 2 a fourth power modulo each pi , and build on the
congruence n ≡ a1 (mod m1) to form a covering of the integers

n ≡ ai (mod mi) for 1 � i � t,

such that mi = ordpi
(2) for each i. The tables in [2] provide an excellent source for finding the

primes p for which 2 has a prescribed order m modulo p. One simply looks up the primitive
prime factors of 2m − 1 appearing in these tables. Thus, [2] helped us determine the primes
to initially consider as well as the moduli, with their multiplicities, that we could use for the
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covering. Lemma 17, with r = 4, enabled us to quickly simplify these lists so that only primes p

for which 2 is a fourth power modulo p were considered. We tabulate the results of our work in
the 63 rows of Table 9. In the ith row, we list a congruence on n of the form n ≡ ai (mod mi),
a list [e1, e2, e3, e4, e5] of exponents to clarify the factorization

mi = 2e13e25e37e411e5,

and a prime pi . To conserve space in the tables, we note here that

p38 = 2048568835297380486760231,

p63 = 14768784307009061644318236958041601.

Lemma 18. The congruences n ≡ ai (mod mi) listed in Table 9 form a covering of the integers.
Also, the primes pi are distinct, ordpi

(2) = mi for each i, and 2 is a fourth power modulo pi for
each i � 2.

One can verify the second statement in Lemma 18 directly. In particular, to test whether 2 is
a fourth power modulo pi , observe that, in the notation of Lemma 17, we have

2(pi−1)/g ≡ 1 (mod pi) ⇐⇒ mi divides (pi − 1)/g. (7)

Thus, for r = 4, Lemma 17 implies that 2 is a fourth power modulo pi if and only if the largest
power of 2 dividing the product of gcd(4,pi − 1) and mi divides pi − 1.

We explain next a method for verifying the first part of Lemma 18.
The least common multiple of the moduli in Table 9 is 25 · 34 · 5 · 7 · 11 = 997920. To verify

that the congruences on n form a covering one can check that each of 0,1, . . . ,997919 satisfies
one of these congruences (computationally, this is not difficult). To reduce the amount of work
needed to verify Lemma 18, one can proceed as follows. The congruences in rows 28 to 45 of
Table 9 are the only congruences where the moduli have 11 as a prime factor. To reduce the least
common multiple of the moduli of the covering, one can first verify that these 18 congruences
together with the congruences in rows 23 and 24 cover 5 modulo 18, that is that every integer
which is 5 modulo 18 satisfies one of the congruences on n in rows 28 to 45 or in rows 23
and 24. The least common multiple of the moduli for these 20 congruences is 3960. One can
check directly that the 220 residues 18j + 5, for 0 � j � 219, modulo 3960 that correspond
to 5 modulo 18 are covered by these 20 congruences. Once this is confirmed, we can replace the
congruences in rows 28 to 45 with n ≡ 5 (mod 18), eliminating 11 from the prime factors of our
moduli and reducing the least common multiple of the moduli to 90720.

To further reduce the work needed to verify Lemma 18, we similarly observe that rows 10
through 23 of Table 9 cover the residue 7 modulo 18 and these include the only congruences
whose moduli have 7 as a prime factor. To verify that these 14 congruences cover 7 modulo 18,
one need only check the 35 residues modulo 630 that make up 7 modulo 18. Once this is estab-
lished, we can replace the congruences in rows 10 to 22 with n ≡ 7 (mod 18), eliminating 7 from
the prime factors of our moduli and reducing the least common multiple of the moduli to 12960.
From here, it is a simple computation to establish that these congruences do indeed cover the
integers.
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Table 9

Row Congruence Exponents of prime Prime pi

factors of mi

1 n ≡ 0 (mod 2) [1,0,0,0,0] 3
2 n ≡ 0 (mod 3) [0,1,0,0,0] 7
3 n ≡ 1 (mod 9) [0,2,0,0,0] 73
4 n ≡ 4 (mod 27) [0,3,0,0,0] 262657
5 n ≡ 49 (mod 108) [2,3,0,0,0] 246241
6 n ≡ 103 (mod 108) [2,3,0,0,0] 279073
7 n ≡ 13 (mod 81) [0,4,0,0,0] 2593
8 n ≡ 40 (mod 81) [0,4,0,0,0] 71119
9 n ≡ 67 (mod 81) [0,4,0,0,0] 97685839
10 n ≡ 0 (mod 7) [0,0,0,1,0] 127
11 n ≡ 1 (mod 21) [0,1,0,1,0] 337
12 n ≡ 16 (mod 63) [0,2,0,1,0] 92737
13 n ≡ 52 (mod 63) [0,2,0,1,0] 649657
14 n ≡ 25 (mod 126) [1,2,0,1,0] 77158673929
15 n ≡ 26 (mod 35) [0,0,1,1,0] 71
16 n ≡ 47 (mod 70) [1,0,1,1,0] 281
17 n ≡ 103 (mod 105) [0,1,1,1,0] 29191
18 n ≡ 19 (mod 105) [0,1,1,1,0] 106681
19 n ≡ 97 (mod 210) [1,1,1,1,0] 664441
20 n ≡ 181 (mod 210) [1,1,1,1,0] 1564921
21 n ≡ 223 (mod 315) [0,2,1,1,0] 870031
22 n ≡ 34 (mod 315) [0,2,1,1,0] 983431
23 n ≡ 0 (mod 5) [0,0,1,0,0] 31
24 n ≡ 11 (mod 15) [0,1,1,0,0] 151
25 n ≡ 2 (mod 45) [0,2,1,0,0] 631
26 n ≡ 38 (mod 45) [0,2,1,0,0] 23311
27 n ≡ 29 (mod 90) [1,2,1,0,0] 18837001
28 n ≡ 0 (mod 11) [0,0,0,0,1] 23
29 n ≡ 1 (mod 11) [0,0,0,0,1] 89
30 n ≡ 2 (mod 33) [0,1,0,0,1] 599479
31 n ≡ 47 (mod 66) [1,1,0,0,1] 20857
32 n ≡ 5 (mod 99) [0,2,0,0,1] 199
33 n ≡ 59 (mod 99) [0,2,0,0,1] 153649
34 n ≡ 50 (mod 99) [0,2,0,0,1] 33057806959
35 n ≡ 18 (mod 55) [0,0,1,0,1] 881
36 n ≡ 29 (mod 55) [0,0,1,0,1] 3191
37 n ≡ 7 (mod 55) [0,0,1,0,1] 201961
38 n ≡ 107 (mod 165) [0,1,1,0,1] p38
39 n ≡ 173 (mod 330) [1,1,1,0,1] 415365721
40 n ≡ 239 (mod 495) [0,2,1,0,1] 991
41 n ≡ 9 (mod 44) [2,0,0,0,1] 2113
42 n ≡ 383 (mod 396) [2,2,0,0,1] 15975607282273
43 n ≡ 65 (mod 132) [2,1,0,0,1] 4327489
44 n ≡ 43 (mod 88) [3,0,0,0,1] 353
45 n ≡ 263 (mod 264) [3,1,0,0,1] 7393
46 n ≡ 17 (mod 144) [4,2,0,0,0] 577
47 n ≡ 89 (mod 144) [4,2,0,0,0] 487824887233
48 n ≡ 3 (mod 16) [4,0,0,0,0] 257
49 n ≡ 107 (mod 288) [5,2,0,0,0] 1153
50 n ≡ 251 (mod 288) [5,2,0,0,0] 278452876033
51 n ≡ 35 (mod 162) [1,4,0,0,0] 135433

(continued on next page)
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Table 9 (continued)

Row Congruence Exponents of prime Prime pi

factors of mi

52 n ≡ 89 (mod 162) [1,4,0,0,0] 272010961
53 n ≡ 629 (mod 1296) [4,4,0,0,0] 10369
54 n ≡ 413 (mod 432) [4,3,0,0,0] 209924353
55 n ≡ 53 (mod 216) [3,3,0,0,0] 33975937
56 n ≡ 125 (mod 216) [3,3,0,0,0] 138991501037953
57 n ≡ 107 (mod 180) [2,2,1,0,0] 54001
58 n ≡ 23 (mod 240) [4,1,1,0,0] 394783681
59 n ≡ 143 (mod 240) [4,1,1,0,0] 46908728641
60 n ≡ 39 (mod 160) [5,0,1,0,0] 414721
61 n ≡ 79 (mod 160) [5,0,1,0,0] 44479210368001
62 n ≡ 119 (mod 480) [5,1,1,0,0] 23041
63 n ≡ 479 (mod 480) [5,1,1,0,0] p63

For each i � 2, we choose ci so that c4
i ≡ 2 (mod pi). Recall that ordpi

(2) = mi . One checks
that, for such i, if

n ≡ ai (mod mi) and k ≡ c
−ai

i (mod pi),

then k42n − 1 is divisible by pi . This was essentially our proof of Lemma 16.
Let k be an integer satisfying

k ≡ c
−ai

i (mod pi) for 2 � i � 63

and

k ≡ 1 (mod 6).

The Chinese Remainder Theorem guarantees the existence of infinitely many such integers k

corresponding to a congruence modulo M = 2p1 · · ·p63. We deduce that each such k has the
property that k42n + 1 has a prime factor in

P = {p1,p2, . . . , p63}

for each positive integer n.
To establish Theorem 15, we apply Lemma 4 with S = Z to deduce that there is an infinite

arithmetic progression of odd integers k such that k4 − 2n is divisible by at least one prime
from P for each positive integer n.

Next, we address finding a prime divisor of k4 − 2n that is not in P . We make use of the
following theorem of Darmon and Granville [5].

Theorem 19. Let A, B and C be nonzero integers. Let p, q and r be positive integers for which
1
p

+ 1
q

+ 1
r

< 1. Then the generalized Fermat equation Axp + Byq = Czr has only finitely many
solutions in integers x, y and z with gcd(x, y, z) = 1.
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Lemma 20. Given P > 0, an integer r � 2 and C and D nonzero integers, there is a positive
integer Y = Y(P, r,C,D) such that if k is an odd integer with |k| > Y and n is a positive integer,
then C2n + Dkr has a prime factor greater than P .

Proof. Fix P , r , C and D as in the lemma. It suffices to show that there are only finitely many
ordered pairs (k, n) with k odd such that

C2n + Dkr = p
f1
1 · · ·pft

t , (8)

where the pi are all the distinct primes less � P and the fi are nonnegative integers. Sup-
pose (8) holds with k odd. We put n = 5n1 + n0 and fi = 5ui + vi for each i ∈ {1,2, . . . , t}
where n1, u1, u2, . . . , ut ∈ Z and n0, v1, v2, . . . , vt ∈ {0,1, . . . ,4}. Then

2n0C
(
2n1

)5 + Dkr = p
v1
1 · · ·pvt

t

(
p

u1
1 · · ·put

t

)5
. (9)

Observe that Ax5 + Dyr = Bz5, where r � 2 and A, B and D are nonzero integers, is a gen-
eralized Fermat equation with the sum of the reciprocals of the exponents < 1 and, hence, has
finitely many solutions in integers x, y and z, with gcd(x, y, z) = 1, by Theorem 19. Since k

is odd, we have gcd(2n1 , k,p
u1
1 · · ·put

t ) = 1. We take A = 2n0C and B = p
v1
1 · · ·pvt

t . There are
5 possibilities for A depending on n0 and 5t possibilities for B depending on the vj . We deduce
that there are finitely many possibilities for 2n1 , k and p

u1
1 · · ·put

t as in (9) and, consequently,
finitely many pairs (k, n) satisfying (8). �

Using Lemma 20, with P = max{pi}, r = 4, C = −1 and D = 1, we see that if k is sufficiently
large, then for each positive integer n, we have that k4 − 2n has a prime divisor outside the set
P = {p1, . . . , p63}. Theorem 15 now follows.

We address some corollaries of the above. Rather than using Lemma 20, we could work with
k42n − 1 and appeal to Lemma 14. This would give the following.

Corollary 21. There exist infinitely many positive odd numbers k such that

k42n − 1

has at least two distinct prime factors for each positive integer n.

Using Lemma 4, one can take the k appearing in Corollary 21 to be the same as the k appearing
in Theorem 15. Suppose that m is a positive integer relatively prime to p−1 for all p ∈ P . Setting
r = 4m, we get gcd(r,p − 1) = gcd(4,p − 1) for each p ∈ P . Lemma 17 now implies that 2 is
an r th power for each p ∈ P with p > 3. Making use of the covering given in Lemma 18 and
applying Lemma 16 and Lemma 20 or Lemma 14 as above, we obtain the following.

Corollary 22. There is a set T of positive integers r having positive asymptotic density with the
following properties:
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(i) If r ∈ T , then 4 | r .
(ii) For each r ∈ T , there exist infinitely many positive odd numbers k such that each of the

numbers

kr − 2n, kr2n − 1

has at least two distinct prime factors for each positive integer n.

We now use the same idea to resolve the case r = 6.

Theorem 23. There exist infinitely many positive odd numbers k such that

k6 − 2n

has at least two distinct prime factors for each positive integer n.

The procedure is analogous to the procedure used to prove Theorem 15, with the exception
that we want r = 6 in Lemmas 16 and 17. If an integer n is divisible by 2 or 3, then it satisfies
one of the two congruences n ≡ 0 (mod 2) and n ≡ 0 (mod 3). We set k ≡ 1 (mod 3) and
k ≡ 1 (mod 7) so n satisfying these congruences also satisfy k62n − 1 is divisible by at least one
of 3 and 7. Next, we take 2 to be a sixth power modulo any of the remaining primes p3, . . . , pt .
We identify such primes using the tables in [2] and Lemma 17 with r = 6. We note that the use of
Lemma 17 to determine whether 2 is a sixth power modulo some prime pi with 2 of order mi can
be simplified by taking advantage of (7) with g = gcd(6,pi − 1). In particular, one only needs to
consider the largest powers of 2 and 3 dividing mi and pi − 1.

We make use of a table to display our covering as before. For this table, we set

p28 = 432363203127002885506543172618401,

p33 = 84179842077657862011867889681,

p41 = 3421249381705368039830334190046211225116161.

Lemma 24. The congruences n ≡ ai (mod mi) listed in Table 10 form a covering of the integers.
Also, the primes pi are distinct, ordpi

(2) = mi for each i, and 2 is a sixth power modulo pi for
each i � 3.

The least common multiple of the moduli in the tables is 25 · 3 · 52 · 7 = 16800; to verify that
the congruences form a covering one checks that each of the residues modulo 16800 satisfies at
least one of the congruences. Lemma 24 and Theorem 23 then follow.

Analogous to the case r = 4, we also obtain the following corollaries.

Corollary 25. There exist infinitely many positive odd numbers k such that

k62n − 1

has at least two distinct prime factors for each positive integer n.
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Table 10

Row Congruence Exponents of prime Prime pi

factors of mi

1 n ≡ 0 (mod 2) [1,0,0,0] 3
2 n ≡ 0 (mod 3) [0,1,0,0] 7
3 n ≡ 0 (mod 5) [0,0,1,0] 31
4 n ≡ 1 (mod 20) [2,0,1,0] 41
5 n ≡ 11 (mod 40) [3,0,1,0] 61681
6 n ≡ 7 (mod 8) [3,0,0,0] 17
7 n ≡ 27 (mod 80) [4,0,1,0] 4278255361
8 n ≡ 3 (mod 16) [4,0,0,0] 257
9 n ≡ 3 (mod 7) [0,0,0,1] 127
10 n ≡ 2 (mod 35) [0,0,1,1] 122921
11 n ≡ 57 (mod 70) [1,0,1,1] 281
12 n ≡ 21 (mod 28) [2,0,0,1] 113
13 n ≡ 27 (mod 35) [0,0,1,1] 71
14 n ≡ 117 (mod 140) [2,0,1,1] 7416361
15 n ≡ 25 (mod 56) [3,0,0,1] 15790321
16 n ≡ 53 (mod 112) [4,0,0,1] 5153
17 n ≡ 109 (mod 112) [4,0,0,1] 54410972897
18 n ≡ 11 (mod 32) [5,0,0,0] 65537
19 n ≡ 123 (mod 160) [5,0,1,0] 414721
20 n ≡ 13 (mod 25) [0,0,2,0] 601
21 n ≡ 8 (mod 25) [0,0,2,0] 1801
22 n ≡ 53 (mod 200) [3,0,2,0] 340801
23 n ≡ 73 (mod 200) [3,0,2,0] 401
24 n ≡ 93 (mod 400) [4,0,2,0] 1601
25 n ≡ 293 (mod 400) [4,0,2,0] 82471201
26 n ≡ 153 (mod 200) [3,0,2,0] 3173389601
27 n ≡ 173 (mod 400) [4,0,2,0] 25601
28 n ≡ 373 (mod 400) [4,0,2,0] p28
29 n ≡ 193 (mod 200) [3,0,2,0] 2787601
30 n ≡ 59 (mod 160) [5,0,1,0] 44479210368001
31 n ≡ 233 (mod 336) [4,1,0,1] 2017
32 n ≡ 169 (mod 240) [4,1,1,0] 46908728641
33 n ≡ 149 (mod 280) [3,0,1,1] p33
34 n ≡ 65 (mod 224) [5,0,0,1] 358429848460993
35 n ≡ 177 (mod 224) [5,0,0,1] 2689
36 n ≡ 29 (mod 210) [1,1,1,1] 1564921
37 n ≡ 253 (mod 336) [4,1,0,1] 25629623713
38 n ≡ 113 (mod 224) [5,0,0,1] 183076097
39 n ≡ 289 (mod 480) [5,1,1,0] 23041
40 n ≡ 1429 (mod 1680) [4,1,1,1] 4841172001
41 n ≡ 69 (mod 560) [4,0,1,1] p41
42 n ≡ 209 (mod 224) [5,0,0,1] 449
43 n ≡ 769 (mod 1120) [5,0,1,1] 86800001
44 n ≡ 349 (mod 560) [4,0,1,1] 557761
45 n ≡ 41 (mod 336) [4,1,0,1] 1538595959564161
46 n ≡ 89 (mod 840) [3,1,1,1] 755667361
47 n ≡ 229 (mod 560) [4,0,1,1] 4481
48 n ≡ 369 (mod 1120) [5,0,1,1] 16824641
49 n ≡ 509 (mod 560) [4,0,1,1] 736961
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Corollary 26. There is a set T ′ of positive integers r having positive asymptotic density with the
following properties:

(i) If r ∈ T ′, then 6 | r .
(ii) For each r ∈ T ′, there exist infinitely many positive odd numbers k such that each of the

numbers

kr − 2n, kr2n − 1

has at least two distinct prime factors for each positive integer n.

In conclusion, we note that the r that are in the sets T and T ′ of Corollaries 22 and 26 are not
covered by the work of Chen in [3].
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