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Abstract 

Our main result is that a 1971 conjecture due to Paul Kainen is false. Kainen's conjecture 
implies that the genus 2 crossing number of K 9 is 3. We disprove the conjecture by showing that 
the actual value is 4. The method used is a new one in the study of crossing numbers, involving 
proof of the impossibility of certain genus 2 embeddings of Ks. 

1. Introduction 

In [4], Kainen gives a lower bound for the crossing number of an arbitrary graph 
on an orientable surface of arbitrary genus. He notes that, in some cases, equality 

holds for the complete and complete bipartite graphs and conjectures conditions, 
described more fully below, about when equality holds for these graphs. His conjec- 

ture implies that the genus 2 crossing number o f K  9 is 3, and we falsify this by showing 
the actual value to be 4. Note that Guy [1] has studied the plane crossing numbers of 
the complete graphs, and Guy et al. [3] have studied the crossing numbers of these 

graphs on the torus. In no case has more than a small number of values been 
determined. 

2. Definitions and background 

We denote the orientable 2-manifold of genus n by S,. A 9ood drawing of a graph 
G is an immersion of G into a surface which avoids the trivialities of adjacent edges 
crossing, edges crossing themselves, and nonadjacent edges crossing each other more 

than once. We also abjure the pathology of edges crossing vertices or the immersion 
being more than 2 to 1. The 9enus n erossin9 number of a graph G, denoted by cr,(G), is 
the minimum number of crossings in a good drawing of G on S,. 

A face of a graph G embedded in a surface M is a connected component  
of M - G. We often intentionally confuse faces with their bounding circuits if no 
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misunderstanding is likely, as in the statement of Lemma 4. A cellular subcomplex of 
a graph embedded in a surface is a set of faces, the closure of whose union is a closed 
2-cell. A nonplanar subcomplex is a set of faces which is not a subset of any cellular 
subcomplex. The star complex of a face F is the closure of the union of all faces whose 
bounding circuits meet the bounding circuit of F. Two embeddings of a graph are 
congruent if the graph has an automorphism which preserves oriented face boundaries 
of the embeddings. We abbreviate the terms 'clockwise' and 'counterclockwise' by CW 
and CCW, respectively. Finally, we use the term fragment of a rotation to denote a list 
in the appropriate order of some vertices which are consecutive in the rotation around 
a vertex. 

Kainen [4] defines 

L 
6.(G) = q - Z-Z~_ 2(p - 2(1 - n t l ,  

where G has order p, size q, and girth L. Using Euler's theorem, he shows that 
cr,(G) >~ ~,(G). He then defines 9(G) to be the greatest integer t for which 6t(G) >~ 0 
and conjectures that if G is a complete or a complete bipartite graph, and n = g(G), 
then cr , (G)--3 , (G) .  A simple calculation shows that g ( g 9 ) =  2, and thus that 
Kainen's conjecture implies that cr2(K9) = t$2(K9) --- 3. We falsify this by showing 
that in actuality c r 2 ( K 9 )  = 4. The veracity of the conjecture remains unresolved for 
the complete bipartite graphs, although we strongly suspect it to be false for all but 
finitely many cases. 

3. The genus 2 crossing number of K9 

In the first place, we note that the drawing of K 9 o n  S 2 with 4 crossings given in 
Fig. 1 proves that cr2(K9) ~ 4. Thus in order to prove the following theorem we need 

only show that c r 2 ( K 9 )  :~ 3. 

Theorem 1. cr2(K9) = 4. 

Lemma 1. I f  there is a three-crossing drawing of K9 o n  S 2 then it does not contain 

a twice-crossed edge. 

Proof. Let D be a 3-crossing drawing of g 9 o n  S 2. By way of contradiction, assume 
there is an edge e of K 9 which is crossed twice in D. Removing edge e yields 
a 1-crossing drawing of K 9 --  e. This contradicts the consequence of Kainen's above- 
mentioned lower bound that cr2(K 9 -- e) ~ 2. [] 

Following Guy and Hill [2], we define the responsibility of a vertex to be the total 
number of crossings on all the edges incident with it. 
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Lemma 2. An embedding of Ks on Sz has either one pentagonal face or two quadri- 

lateral faces and the rest triangles. 
prooL Let M be a~ embedding oi Ks or~ Sz, and let ri be the number of/-sided faces, 

i >/3. Then since Ks has 28 edges, 

~ irl = 56. 
i = 3  

By Euler's theorem, M has 18 faces, so that 

~ rl =- 18. 
i = 3  

5 
1 d • 
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f • ..¢._ 
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a I ~ 
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7 

1 drawing o~ K~ o~ Sz- 
Fig. 1. A 4.crossing 
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Fig. 1. Continued. 

The only two possibilities consistent with these two equations are r3 = 16, r4 = 2, 

rl = 0 for i >~ 5 or  r 3 = 17, r4 = 0, r5 = 1,ri = 0 for i ~> 6. [] 

Lemma 3. I f  there is a drawing of K 9 on  S 2 with 3 crossings, then either there is an 

embedding of Ks on $2 with a pentagonal face or else there is an embedding of Ks - e on 

$2 with a hexagonal face containing 6 distinct vertices. 

Proof. Let D be a 3-crossing drawing of K 9 o n  $2. Since each crossing is in the 

responsibility of  4 vertices, the total responsibility of  D is 12 (this argument  follows 

Guy  and Hill [2]). Thus some vertex v has responsibility either 2 or  3. 

If  v has responsibility 3, then removing it deletes all 3 crossings in D, and thus yields 

an $2 embedding M of K8 with a face F containing at least 5 distinct vertices (the ones 

to which the noncrossed edges incident to v were joined). By Lemma 2, F contains no 

more  than 5 distinct vertices, and so is pentagonal.  
On  the other hand, if v has responsibility 2, then there is a crossing c that is not  on 

any edge incident with v. By Lemma l, none of  the edges of D are crossed more than 

once, and so the two edges e and e' involved in c do not  cross edges incident with v. 

Thus removing edge e leaves a 2-crossing drawing of K 9 - -  e with v still having 
responsibility 2. Again by Lemma l, no edge incident with v is crossed twice, and so 

removing v yields an $2 embedding of  Ks - e with a face F containing at least 
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6 distinct vertices. By arguments similar to those used in the proof of Lemma 2, it can 
easily be shown that no $2 embedding of Ks - e can have a face with more than 
6 sides. Thus F is the requisite hexagonal face with 6 distinct vertices. [] 

Lemma 3 implies that we can prove Theorem 1 by showing the nonexistence of an 

Sz embedding of K8 with a pentagonal face and the nonexistence of an $2 embedding 
of K8 - e with a hexagonal face containing 6 distinct vertices. It is interesting to note 
that the existence of embeddings of Kn, n = 4, 5, 6, with given face size distributions 
has been studied for its own sake by Lee and White [5]. 

Note that arguments like those in the proof of Lemma 2 can be used to show that 

an embedding of K7 - e in $1 has one quadrilateral face and the rest triangles. Given 
this, we have the following lemma. 

Lemma 4. There is no embedding of K 7 - -  e in S1 in which the quadrilateral face is 
disjoint .from any one of the triangular faces. 

Proof. If the missing edge can be added across the quadrilateral face, then the 
theorem can be quickly proved by using the well-known fact that there is only one 
congruence class of $1 embeddings of KT. On the other hand, if the missing edge 
cannot be added across the quadrilateral face, then we proceed by contradiction. 

To that end, assume there is an $1 embedding M of Kv - e with a quadrilateral face 
Q containing vertices 1, 2, 3, and 4 in cycle order, and a triangular face T containing 
vertices 5,6, and 7 which has the property that the missing edge cannot be added 
across Q, that is, that neither edge 13 nor edge 24 is missing. Clearly then we may 
assume that the missing edge is 15. Q w { 13} cannot lie in a cellular subcomplex of the 
map, or removing vertices 1 and 3 will disconnect the graph. Thus removing vertices 
1 and 3 produces a noncellular embedding of K5 in the torus, a contradiction. [Z 

Theorem 2. No embedding of Ks o n  S 2 has a pentagonal face. 

Proof. By way of contradiction, assume M is an embedding of Ks o n  S 2 with 
pentagonal face P. The boundary of P must contain 5 distinct vertices, which we will 
label 1, 2, 3, 4, and 5. By Lemma 2, all faces of M other than P are triangular. We 
consider two cases. 

Case 1: None of the 5 triangles intersecting P in an edge has all three of its vertices 
in common with P. 

Case 2: At least one of the 5 triangles intersecting P in an edge has all three of its 
vertices in common with P. 

Case 1: Suppose the vertices of P are sequentially labelled in CW order. Let the 
triangle intersecting P in the edge which joins vertex i to vertex i + 1 be denoted by T~ 
for 1 ~< i ~< 5, where the values of i + 1 should be reduced mod 5 when necessary (as 
they should throughout this proof). Clearly (Ti c~ T i+ l ) c  {1,2,3,4,5}. Each Ti has 
exactly one vertex vi ~ {1, 2, 3,4, 5}. 
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rl / 2". % 

T 5 

1 3 

5 4 

Fig. 2. Case 1 of Theorem 2. 

We claim that vi # vi+ 1. If this were not the case, then Ti n T~+ 1 would contain the 
edge joining vertex i + 1 to vertex v~, which would force the star complex of vertex 

i +  1 to consist only of the three faces, P, T~, and T~+I. This is impossible, so 
consequently vl 4: vi+l, and we may assume without loss of generality that 

(D1, /)2, 1)3,/)4, D5) = (6,7,6,7,8) (see Fig. 2). 
It follows from the foregoing that 7316 is a CW rotation fragment of 2, so we may 

write that rotation as 7316xyz, where {x, y, z} = {4, 5, 8}. If x = 8 or z = 8 then edges 

24 and 25 can be replaced across P to yield an embedding of K8 which falls under 
case 2. Thus in this case we may assume that y = 8. Likewise we may assume that 

8 lies between 1 and 5 in the CW rotation around 3. this implies that edge 85 lies in 
at least three distinct faces, a contradiction. 

Case 2: We assume without loss of generality that TI is one of the triangles sharing 
an edge with P which also has its third vertex in common with P. By reasoning similar 

to that employed in case 1, the third vertex of T1 must be 4. Note that a figure similar 
to Fig. 2 may be helpful in following the subsequent arguments. 

Two of the possibilities for the CW rotation around 4 are (2153xyz) and 
(21x53yz), where {x, y,z} = {6, 7, 8}. In the first alternative, removing vertex 4 and 
edge 12 produces a noncellular embedding of K7 - - e  in $2. Cutting $2 along a 
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non-contractible loop in the noncellular region and capping off produces a pentagonal 
face 23xyz, in contradiction to Euler's theorem for K7 - e on the torus. 

In the second alternative, removing vertex 4 and edge 12 by the same argument 
mutatis mutandis yields an embedding of K7 - e in the torus with triangular face 15x 
and quadrilateral face 23yz, in contradiction to Lemma 4. The other possibilities for 
the CW rotation around 4 are essentially the same as those covered, so the case is 
eliminated and the theorem proved. [] 

Lemma 5. I f  Ks is embedded o n  S 2 with two quadrilateral faces which share an edge, 

then those two faces meet only on that edge. 

Proof. By way of contradiction, assume there is an embedding of Ka o n  S 2 in which 
two quadrilateral faces Q and R meet on an edge, and also meet in a vertex not on that 
edge. By arguments similar to those used above, it is not possible that Q c~ R contain 
more than an edge and a vertex not on an edge. Thus we may assume without loss of 
generality that the hexagonal boundary of Q w R contains in CW cyclic order vertices 
1, 2, 3, 1, 5, 6 where Q c~ R = {36, 1}. Then the CW rotation around 1 must have the 
form (53x26yz) or (53xy26z), where {x, y,z} = {4, 7, 8}. As in the proof of Theorem 2, 
removing vertex 1 and edge 36 yields a toroidal embedding of K 7 -  e which 
contradicts Lemma 4. [] 

Theorem 3. No embedding of K8 in $2 has two quadrilateral faces which share an edge. 

Proof. By way of contradiction, assume there is an $2 embedding M of Ks in which 
two quadrilateral regions Q and R share an edge e. By Lemma 5, Q n R = {e}, so we 

may assume that the hexagonal boundary of Q • R contains the vertices 1-6 in cyclic 
CW order and that vertices 3 and 6 are the endpoints of e. By Lemma 2, all faces other 
than Q and R are triangular. Let Ti, i = 1 . . . . .  6, be defined analogously to the Ti in the 
proof of Theorem 2. The proof consists in the elimination of 10 cases, which are listed 
below. It may be helpful to refer to Fig. 3 while reading the discussion of the 
generation of the cases. Note that we number the cases in the order in which we treat 
them as opposed to the order in which they are generated. 

We refer to the vertex of Ti which is not required to be in it by dint of its definition as 
the third vertex of T i. Let x, y, and z be the third vertices of T1, 7"3, and T~, 
respectively. Firstly it is possible that {x, y, z} ~ {7, 8}. Since 7 and 8 are indistinguish- 
able for our purposes, this possibility yields 

Case 1: 8 e T 1 , 8 e T 3 , 8 e T  5. 
Case 9: 8 e T 1 , 7 e T 3 , 8 e T  5. 
Case 10:7  e T1, 8 e T3, 8 s 7"5. 
Secondly, it is possible that only two of x, y, z are in {7, 8}. If it is x ¢ {7, 8}, then 

x e {4, 5}. These two possibilities for x are indistinguishable for our purposes, so we 
assume x = 5. Then either y = z or y ~ z, yielding 
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x 

T 5 

T 1 

5 4 

'I? 4 

a' 2 

Fig. 3. 

Case 2: 5 ~ T 1 , 8 ~ T 3 , 8 ~ T s .  

Case7: 5 E T1, 7 ~ T3, 8 ~ Ts. 
On the other  hand,  the two possibilities y ¢ {7, 8} or z ¢ {7, 8} are indistinguishable, 

so we assume z ¢ {7, 8}. The only possibility is that  z = 2, and, again, either x = y or  

x # y, yielding 

Case 3 : 8  ~ T1, 8 ~ T3, 2 ~ 7"5. 
CaseS: 8 ~ T~, 7 e T3, 2 e Ts. 

Thirdly,  if only one of x, y, z is in {7, 8}, then by symmet ry  we may  assume either 
x = 8 or  y = 8, and that  decision constrains the other  values, yielding 

Case4: 8 e Tl,  l e T3, 2 ~ Ts. 

Case5: 4 ~ T~, 8 e T3, 2 ~ Ts. 
Note  that  5 ~ T~ is not possible in case 5 because (5, 2, 6) and (5, 2, 1) cannot  both  

bound  C W  triangles in an orientable surface. Hencefor th  this type of occurrence will 
be referred to as the nonorientable reason, abbrevia ted  N O R .  Finally, if 

{x ,y ,z}  c~ {7,8} = 0 we have 
Case 6: 4 e T 1 ,  l e T 3 , 2 e T 5 .  
Case 1: Note  that  th roughout  the considerat ion of this case we refer to Fig. 4, 

which represents the star complex of Q u R. 
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\ I T3 
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8 ~ / / I X  / 1 \ ~  /- 8 
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7 

Fig. 4. Case 1 of Theorem 3. 

In the CCW rotation around 3, vertices 1, 5, and 7 remain to be added. Neither 
1 nor 5 can follow 8 by the NOR; see CCW triangles (8,1,3),(8,1,2) and 
(8,5,3),(8,5,6). Thus 7 must follow 8. Vertex 1 ¢ ?'2, so 5 e T2. Thus 132 is a CW 
rotation fragment of 5. Note that 864 is also a CW rotation fragment of 5. Thus the 
only possibilities for the CW rotation at 5 are (8641327) and (8647132). The first is 
impossible by the NOR; see CW triangles (7, 8, 5), (7, 8, 3). The second is impossible 
because it contradicts the already established rotation at 2. 

Case 2: Throughout  the consideration of this case, we refer to Fig. 5. Similar figures 
are helpful in the consideration of the other cases, and to encourage the reader to 
construct them, we provide Fig. 6 as a blank. In the CW rotation around 3, vertices 1, 
5, and 7 remain to be added. Neither 1 nor 5 can follow 2 since they are already placed 
elsewhere in its rotation (henceforth this type of occurrence will be referred to as the 
adjacency reason, abbreviated AR). Thus 7 must follow 2 CW. Vertex 5 cannot precede 
8 for the NOR; see CW triangles (1, 5, 3) and (1, 5, 2). Thus 5 must follow 7, and 1 must 
follow 5. Now, in the CW rotation around 5, vertices 1, 2, 3, and 7 remain to be added. 
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T6 / ~ T2 

8 5 4 

3 

2 
Fig. 5. Case 2 of Theorem 3. 

The rotation at 3 implies 137 is a CW rotation fragment at 5, and the rotations at 
1 and 2 imply that 21 is also. Thus the CW rotation at 5 is constrained to be (8642137). 
Now the rotation at 3 constrains the position of 3 and 8 in the rotation at 1, and 
consequently forces 4 e T6 and constrains 7. This yields CW triangles (7, 8, 1) and 
(7, 8, 5), so the case is eliminated by the NOR. 

Case 3: Now, CW around 3 there are three possible locations for vertex 1. By the 
AR, 1 cannot follow 2, and by the NOR, see CW triangles (1, 8, 3) and (1, 8, 2), vertex 1 
cannot precede 8. Thus its position is constrained. In the rotation around 2, vertices 4, 
5, 6, and 7 remain to be placed. Neither 4 nor 5 can follow 8 by the NOR; see CW 
triangles (8, 4, 2), (8, 4, 3) and (5, 2, 6), (5, 2, 8). Thus either 6 follows 8 or 7 follows 8. We 
treat these as subcases (i) and (ii). 

Subcase (i): CW around 6, 8 follows 2 and 5 precedes it. Vertices 4 and 7 remain to 
be placed in the rotation at 2. Vertex 4 cannot precede 3 CW by the AR, so it must 
follow vertex 5. This implies 2 e 7"4, which is impossible by the AR. 

Subcase (ii): CW around 2, vertices 4, 5, and 6 remain to be filled in. Vertex 5 cannot 
follow 7 for the NOR; see CW triangles (5, 2, 7) and (5, 2, 6). If vertex 6 were to follow 



A. Riskin / Discrete Mathematics 145 (1995) 211-227 221 

T 1 

T 6 

1 2 

r5 \ / r3 
5 4 

Fig. 6. Generic pattern for cases of Theorem 3. 

vertex 7 CW in the rotation at vertex 2, then the rotation at 6 would imply that 

5 followed 6 at 2, forcing 4 to come last. This is not possible by the AR. Thus 4 must 
follow 7. Now, the rotation around 6 implies that around vertex 2, vertices 6 and 

5 follow 4 in that order CW. Around 5 the locations of 3 and 1 are constrained, and 
the location of 7 is constrained around 3. There are two consecutive blank spots in the 

rotation around 5, which must contain vertices 7 and 8. However, edge 78 is already in 

two faces, neither of which contains 5, so this subcase too is ruled out. 

Case 4: There are three subcases, depending on whether the CW rotation at 1 is 
(826x43y), (826xy43), or (82643xy) where {x, y} = {5, 7}. We treat only the first two, 
which are representative. 

Subcase (i): Here x = 7 since x = 5 contradicts the rotation at 4. Note that the 
CW rotation at 5 must be (2648137) since the other possibility contradicts the rotation 

at 3. This implies that the CW rotation at 3 is (1462875), which contradicts the 
rotation at 2. 

Subcase (ii): Here x --- 5 contradicts the rotation at 6, whereas x = 7 forces 1 e 7"4, 
which is impossible by the AR. 
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Case 5: In the CW rotation around 3 we need to add vertices 1, 5, and 7. Vertex 1 
cannot follow 2 for the AR, and so either 5 or 7 does. We treat these possibilities as 
subcases (i) and (ii). 

Subcase (i): If 5 follows 2 then the position of 3 around 5 is constrained, which in 
turn constrains the position of 6 around 2. In the CW rotation around 3, either 1 or 
7 follows 5. We treat these two possibilities as subsubcases (a) and (b). 

Subsubcase (a): The position of 1 around 5 is constrained, and we need to add 
vertices 7 and 8. The AR implies that CCW we must have 87. This, however, is ruled 
out by the NOR; see CW triangles (7, 8, 5) and (7, 8, 3). 

Subsubcase (b): Here the position of 7 around 5 is constrained. We still need to add 
8 and 1 to the rotation at 5. CCW 8 must precede 1 by the AR. However, this is not 
possible by the NOR; see CW triangles (1, 8, 5) and (1, 8, 3). 

Subcase (ii): As above, either 1 or 5 can follow 7 CW around 3, yielding subsubcases 
(a) and (b). 

Subsubcase (a): The rotations already filled in imply that 138 is a CCW rotation 
fragment at 5. Vertex 1 must follow vertex 2 by the AR. However, that puts edge 12 in 
three faces, which is not possible. 

Subsubcase (b): Here 731 must be a CCW rotation fragment around 5. Vertex 
8 cannot precede 4 CCW by the AR, so the complete CCW rotation at 5 must be 
(8731462). From the rotations already filled in we can deduce that CCW around 4, 
2 must follow 1. Vertices 6 and 7 still need to be filled in around 4. Vertex 7 cannot 
follow vertex 2 CCW since that would contradict the rotation at 2. Thus the CCW 
rotation at 4 is (1267835). This fact constrains the position of 4 and 7 around 6, which 
constrains the position of 8 there as well. This yields a contradiction by putting edge 
78 in three faces. 

Case 6: This case is immediately ruled out by the NOR; see CW triangles (1,4, 2) 
and (1,4, 3). 

Case 7: Since reflection about a horizontal axis is a symmetry of Fig. 6, triangles 
7"2, 7"4, and T6 must fall into one of the four cases not yet ruled out. All three of cases 
8, 9, and 10 can immediately be seen to be impossible by the AR, so triangles T2, T4, 
and T6 must fall into case 7 as well as triangles 7"1, T3, and Ts. This fact implies that 
8 ~ T2, 7 ~ T6, and either 1 e 7"4 or 2 e T 4. The NOR implies that 1 ¢ 7"4; see CW 
triangles (1,5, 2) and (1, 5, 4). Thus 2 e 7"4. The existing rotations constrain the posi- 
tions of 4 around 2 and ! around 5. Vertices 3 and 7 remain to be filled in around 5. If 
3 follows 8 CCW, then CW around 3 we would have 857, which contradicts the 
already established rotation at 3. On the other hand, the NOR implies it is not 
possible to have 73 as a CCW rotation fragment at 5; see CW triangles (3, 7, 5) and 
(3, 7, 4). Hence this case is eliminated. 

Case 8: As before, triangles T2, 7"4, and T6 must fall into one of cases 8, 9, or 10. 
Also as before, the AR immediately rules out cases 9 and 10. By the AR, 8 e 7"4 and 
7 e 7"6. In 7"2 we can have either 5 or 6. We will only treat the case where 5 e T2 since 
the other is practically identical. The existing rotations constrain the position of 
6 around 2 and of 3 around 5. Around 3 vertices 1 and 8 remain to be added. The 
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NOR rules out 18 as a CW rotation fragment at 3; see CW triangles (1,8, 3) and 
(1,8, 2). However, 81 as a CW rotation fragment at 3 contradicts the existing rotation 
at 5, so this case is eliminated. 

Cases 9 and 10: As above, triangles 7"2, 7"4, and T6 must fall into one of cases 9 or 
10. As above, both options are immediately ruled out by the AR. [] 

Theorem 4. There is no embedding of K8 - e in $2 containing a hexagonal Jdce with 

6 distinct vertices. 

Proof. By way of contradiction, assume M is an $2 embedding of Ks - e which has 
a hexagonal face H containing 6 distinct vertices. Theorems 2 and 3 imply that not 
both ends of the missing edge lie on H. Thus we distinguish two cases: (1) the missing 
edge has neither end on H, and (2) the missing edge has one end on H. 

Case 1: Let the vertices in the hexagon be cyclically labelled 1 through 6 CW. Thus 
the missing edge is 78. We use the notation Ti for the six triangular faces which 
intersect the hexagon in an edge as before. It is clearly true that in the rotations of the 
vertices on the hexagon, 7 must not be consecutive with 8. Furthermore, in these 
rotations, 7 must be separated from 8 by exactly two vertices. For otherwise, let x be 
the vertex on the hexagon whose rotation violates this condition. Then one possibility 
is that vertex 7 is separated from 8 by exactly one vertex, in which case let y be such 
that 7y8 is a rotation fragment of x. Then xy can be deleted and added across the 
hexagon, and then 78 can be added to produce one of the two types of embeddings of 
K8 in $2 forbidden by Theorems 2 and 3. The other possibility is that 7 is separated 
from 8 by three vertices, say y, z, and w. Then {y, z, w} _~ ({ 1,2, 3, 4, 5, 6} - {x} ), so the 
three edges xy, xz, and xw can be deleted and added across the hexagon. Sub- 
sequently, as above, 78 can be added to produce an embedding of K8 in $2 of the type 
forbidden by Theorem 2. 

Now consider the star complex of the hexagonal face. By the above considerations 
in reference to the rotation at l, either 7 e 7"6, 8 e T6, 7 e T1, or 8 ~ T1. These are 
indistinguishable for our purpose, so without loss of generality we may therefore 
assume that 7 e T1 (see Fig. 7). This constrains the position of 8 around 1 and around 
2, which constrains the position of 7 around 6. This constrains the position of 
8 around 6 and 5, which constrains the position of 7 around 5. This constrains the 
position of 8, and thus 7, around 4. Clearly there is now no way to add 8 to the 
rotation around 2, which is a contradiction. Thus this case is ruled out. 

Case 2: We assume without loss of generality that the missing edge is 17. We have 
subcases A and B depending on whether 1 E T 3 o r  T 4 or else not. 

Subcase A: Without loss of generality, we assume 1 E 7",. Then CW around 1 we 
must have 54 as a rotation fragment, and 5 ¢ 7"6 by AR. Thus there are two 
possibilities for the position of 54, yielding subcases (i) and (ii). 

Subcase (i) (see Fig. 8(a)): Clearly 3 ¢ T1 by AR, so the positions of 3 and 8 in the 
rotation around 1 are constrained. Since 17 is the missing edge, removing vertex 1 and 
edge 54, and then cutting and capping the noncellular region thus produced yields an 
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Fig. 7. Case 1 of Theorem 4. 

embedding of K7 - e in the torus with triangular face 5635 and quadrilateral face 
48234 (Fig. 8(b)). Since edge 42 is not missing, and cannot lie in a cellular subcomplex 
with face 48234, removing vertices 2 and 4 yields a noncellular embeddings of Ks in 
$1, which is a contradiction. 

Subcase (ii): Around vertex 1 we can have either 83 or 38 as a CW rotation 
fragment. If we have 83, then the same type of argument used above will yield an 
embedding of K 7  - -  e in $1 with triangular face 4234 and quadrilateral face 53865. As 
above, but removing vertices 5 and 8 instead of 4 and 2, we obtain an impossible 
noncellular embedding of Ks in Sx. Likewise, if the CW rotation fragment at 1 is 38 we 
obtain a toroidal embedding of K7 - e with triangular face 4234 and quadrilateral 
face 58365. From this situation, we can obtain the usual sort of contradiction. 

Subcase B: Here 1 ¢ 7"3 and 1 ¢ T4. Thus in the rotation around 1, 3 and 4 are not 
consecutive, and, likewise, neither are 4 and 5. Note that in the CW rotation around 1, 
3 either follows 6, or is three places after 6; for if this is not the case, then either one of 
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Fig. 8. Subcase 2A of Theorem 4. 

the disallowed consecutivities will occur, or else 3 will have to be in two different 
positions in the rotation around 2. Those two possibilities yield subcases (i) and (ii). 

Subcase (i) (see Fig. 9): Now, CW around 1, 5 must follow 3, or else one of the 
forbidden consecutivities will occur; thus the positions of 8 and 4 around 1 are 
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Fig. 9. Subcase 2B of Theorem 4. 

constrained as well. Now, 218 must be a CW rotation fragment around 4. Clearly 
2 ~ T3, and thus either 8 e T4 or else 8 immediately precedes the third vertex of T4 
CW. The second possibility cannot actually occur, for if it did, 7 would be separated 
from 1 by only one vertex in the rotation at 4, yielding as above (in case 1) one of the 
forbidden $2 embeddings of K8. Thus the position of the CW fragment 218 in the CW 
rotation at 4 is constrained. Then the position of 8 in the rotation around 1 requires 
1 to follow 8 in the CW rotation around 5, which is not possible by the AR. 

Subcase (ii): In this case, the positions of 4, 5, and 8 in the rotation around 1 are 
constrained by the forbidden adjacencies. The sequence 518 must be a CW rotation 
fragment around 3. The AR implies that 5 ¢ T2, so either there is one vertex between 
2 and 5 CW or else there are two. If there is one then the rotation around 4, which 
must have 618 as a CCW fragment, would require 8 to be adjacent to the third vertex 
of 7"3 twice, which is not possible. If, on the other hand, there are two vertices CW 
between 2 and 5 then the same CCW rotation fragment around 4 would require 1 to 
appear in two different places in the rotation around 8. [] 
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As noted above (in Lemma 3), the combined force of  Theorems 2 and 4 proves 

Theorem 1. 

4. Conclusions 

Given the fact that  Kainen's  lower bound is already too small for K 9 and Sz  it seems 

unlikely that, at least for complete graphs, equality holds for other than the small 

number  of cases which Kainen lists in [4]. The nature of the results in our  Section 3, 

which establish the nonexistence of certain embeddings which are consistent with 

Euler's formula, seem to hint that  the inestimable theorem will be inadequate to the 

task of calculating the crossing numbers  of complete graphs. Finally, the study of 

face-size distributions of  graph embeddings (which seems to be almost completely 

unexplored except for the aforementioned [5]) promises to be an attractive if difficult 

field of  research. 
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