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Abstract

Currently, a growing gap is observed between the enormous amount of genomic1

information generated from genotyping and sequencing and the scale and qual-2

ity of phenotypes in animal breeding. In order to fill this gap, new technologies3

and automated large-scale measurements are needed. Body composition is an4

important trait in animal breeding related to growth, feed efficiency, health,5

meat quality and market value of farmed animals. In vivo anatomical atlases6

from CT will aid large-scale and high-throughput phenotyping in order to re-7

duce some of the gap between genotyping and phenotyping in animal breeding.8

We demonstrated that atlas segmentation was able to predict major parts and9

organs of the pig with a numerical test applied to the primal commercial cuts.10
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1. Introduction11

Recent advances in genome sequencing technology has led to high-throughput12

and high–density information in humans, animals and plants (Houle et al., 2010).13

Variation in phenotypes is produced through a web of interactions between14

genotype and environment, and there is a need for detailed phenotypic data15

to characterize the phenomes. Measuring body composition in farmed animal16

breeding is important in order to improve growth and feed efficiency, health,17
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meat quality and market value of carcasses (Nissen et al., 2006; Roche et al.,18

2009). Body composition has traditionally been assessed by a number of dif-19

ferent means, ranging from subjective scoring (Fox & Black, 1984) or simple20

point measurements of subcutaneous fat (Silva et al., 2005) to physical dissec-21

tion (Nissen et al., 2006) or chemical analysis (Shields et al., 1983) of carcasses22

or in vivo volume scans using Computed Tomography (CT) or Magnetic Res-23

onance Imaging (MRI) (Szabo et al., 1999; Mitchell et al., 2001; Scholz et al.,24

2015).25

For pigs, the use of CT makes it possible to obtain accurate in vivo mea-26

surements of body composition (Gjerlaug-Enger et al., 2012). Genetic selection27

on body composition traits in pigs was previously done by physical dissection28

of full-sibs and half-sibs of the selection candidates, which give much less accu-29

rate breeding value estimations compared with measuring body composition on30

the selection candidates themselves in vivo. Today, the pig breeding company31

Topigs Norsvin uses CT to measure body composition and monitor orthopedic32

disorders on 3.500 nucleus boars annually as an integrated part of their testing33

system. In this paper, we present an anatomical atlas from CT, which will help34

to close the phenomic gap in pig anatomy by giving access to high-throughput35

and high-dimensional anatomical phenotypes.36

Obtaining in vivo body composition data from CT relies on segmentation37

of cross sectional slices. The segmentation strategies can be based on (1) in-38

tensities, applying adaptive thresholding of different tissues like adipose (fat),39

muscle and bone tissue (Skjervold et al., 1981), (2) shape or position using de-40

formable models or active contours (McInerney & Terzopoulos, 1996), and (3)41

labelled atlas (Commowick, 2007). Methods are here ranked by complexity and42

demands of prior knowledge either from own data or literature. Automation of43

the segmentation methods would allow for detailed population studies of body44

composition. For atlas based segmentation, this paper shows how an atlas can45

be constructed using a subset of animals from the population of pigs.46

The atlas can serve as a framework for building large data sets of anatomical47

phenotypes, paving the way to detailed and high–density phenotypic informa-48
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tion on pig anatomical traits. The number of additional variables in the breeding49

value estimation may be a limitation in terms of speed and complexity. The50

atlas phenotypes will be highly beneficial in terms of selection for animals with51

competitive advantages on muscle types, compared with the current selection52

in most breeding programs today, where results from CT are applied to muscle-53

and fat depth only (Gjerlaug-Enger et al., 2012). Creating atlases for primal54

cuts; ”shoulder”, ”belly”, ”loin” and ”ham”, representing the market needs55

around the world would also make us able to sort our genetic material of pigs56

more efficiently in terms of different markets. Furthermore, by enhancing the57

anatomical traits by automatic segmentation, the accuracy of genetic selection58

for carcass traits will increase even further. The indirect effect of this is that59

more weight can be put in the breeding goal for hard-to-measure, low–heritable60

traits like maternal and disease-related traits, and in the end the whole breed-61

ing goal and genetic engine towards developing a more sustainable and accurate62

breeding program for farmed animals.63

2. Methods64

2.1. Approvement of the experiments65

All animals were cared for according to laws, internationally recognized66

guidelines and regulations controlling experiments with live animals in Norway67

(Regulation for the keeping of pigs in Norway 2003-02-18-175 (in Norwegian), 2003;68

Animal welfare Act 2009-06-19-97 (in Norwegian), 2009); according to the rules69

given by Norwegian Animal Research Authority. The CT scans were also used70

in Gangsei & Kongsro (2016), which provides some more practical information71

about the scanning.72

2.2. Data73

The intensity atlas is in principle is the average of 386 nucleus boars, in-74

volving a total of approximately 3.4× 1010 voxels (the 3D basic unit of the CT75

scans). The method was motivated by methods applied to micro CT scans of76
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mice (Baiker et al., 2010; Li et al., 2008), where the skeletons were utilized as a77

framework for conducting the transformations.78

The raw CT scans were volume representations of the individual pigs. The79

size of 3D data arrays (volumes) were approximately 512 × 512 × 1200, where80

the third dimension, size, varied slightly with pig length. Each data point81

represented a voxel with size 0.9355 mm×0.9355 mm×1.25 mm. A CT intensity82

according to the Hounsfield (HU) scale was associated with each voxel.83

2.3. Atlas84

The atlas represents the average pig. The atlas volume size was 500× 500×85

1600, where each voxel represents a cube with a side length of 1 mm. We use the86

expressions ”intensity atlas” and ”labelled atlas”, where the intensities aligned87

to each voxel might be interpreted as HU–units. In the labelled version, every88

voxel is aligned to a specific label, i.e. organ, cut part etc.89

Labelled and intensity volumes (3D) might be defined by a matrix repre-90

sentation, where the Ny × 3 matrix Y and Nx × 3 matrix X, represent the91

atlas, and a random individual pig, respectively. Ny and Nx are the number of92

voxels in the respective images. Each row in Y and X defines the (Cartesian)93

coordinates for one voxel. The atlas was constructed through successive oper-94

ations described in the next sections. Figures are used extensively to highlight95

important principles.96

2.4. Skeleton atlas – image moments invariants97

The first step was to identify the major bones in all pigs (Gangsei & Kongsro,104

2016) (Fig. 1a). We calculated basic features for each bone, often referred to105

as image moments invariants (Hu, 1962): Center of mass (COM or x̄), the106

orthonormal basis of the bone (R), volume (v = nδ × 0.93552 × 1.25, where nδ107

is number of voxels) and length (l), that is, the Euclidian distance spanned by108

the bone along the first orthogonal basis vector. Left side bones were treated109

as right side bones by mirroring them over the sagittal plane before calculating110

the image moments invariants. The coordinates of each bone were represented111
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98

Figure 1: Construction of average bone by image moment invariants. (a) Segmented skeleton

in a random pig; the vertebra illustrated in panels b–d is highlighted in red. (b) A vertebra with

its orthonormal basis (arrows), landmarks, and the area where extra weight for orientation is

added (red at top). (c) Construction of the average shape by rotating and scaling bones from

all pigs to a common formwork. (d) Landmarks (blue) on the average vertebrae.
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100
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103

by the nδ × 3 matrix Xδ. Furthermore, the diagonal weight matrix W assigned112

a specific weight to each voxel for the purpose of controlling the main directions113

of the orthonormal basis. The mathematical expressions for the COM and114

orthonormal basis were:115

x̄ = (1/nδ) Xt
δ1nδ

, R = Eig
{(

Xδ − 1nδ
x̄t
)t
W2

(
Xδ − 1nδ

x̄t
)}

, (1)

where the notation Eig {A} denotes the eigenvectors of the matrix A scaled to116

unit length.117

The concept of the weighting of voxels is shown in Fig. 1b, where the voxels118

in the red area, i.e. the voxels within a distance less than 1/10 of the total length119

(l) from the top, were given heavy weights (100). Thus, the first column in R,120
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i.e. the eigenvector having the largest corresponding eigenvalue, points approx-121

imately perpendicular to the coronal plane (upwards), the second eigenvector122

points approximately perpendicular to the transverse plane (forwards) and the123

third eigenvector points approximately perpendicular to the sagittal plane (to124

the left). For other bones, different parts were assigned additional weights, but125

the basic principle remains unchanged.126

Based on the features of the individual bones we constructed atlas bones,127

i.e. templates for every bone in a pig (Fig. 1d). To every atlas bone, COM,128

volume, length, a common orthonormal basis and a shape, was applied. The129

COM (x̄T ), volume (vT ) and length (lT ) was just the average for all bones. For130

all bones in the spine and sternum, the COM value for the direction perpendic-131

ular to the sagittal plane (i.e. sideways), was set to 250 (mm). The common132

orthonormal basis, RT , was set to the individual orthonormal basis closest to133

the geometrically average ortonormal basis. Hence, by letting rij denote the134

element of the ith row and jth column of R, and letting r̄ij denote the average135

of the same element in all pigs, the R for which
∑3

i=1

∑3
j=1 (rij − r̄ij)

2
had the136

minimum value was chosen as the common orthonormal basis for the bone in137

question.138

In order to construct the average shape, all bones were transformed to a 3D139

image, B, of predefined size, m1 ×m2 ×m3, (Fig. 1c). The coordinates for the140

individual bones in these 3D images, denoted Zδ, were given by rounded and141

scaled values of (m1/l) XδR. The scaling of Zδ was done by subtracting column142

means and adding column minimum values. Thus, every bone spanned the first143

dimension of B completely and was centred according to the two remaining144

dimensions. The final intensities of B equalled the sum of all bones transformed145

into it. The average shape was constructed by setting a threshold making sure146

that the volume of voxels in B having higher intensity than this threshold, was147

equal to the average volume of the bone (vT ).148
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2.5. Corresponding landmarks149

The crucial steps of the method involved constructing corresponding land-150

marks between the volumes of the individual pigs (Fig. 2a–c). The initial step151

(Fig. 1d), was to set landmarks at approximately every 20mm along the main152

direction of the orthonormal basis of the average shaped bone. The landmarks153

were set either at the top, bottom, right and left side of the surface or in the cen-154

tre of the bone (typically for ribs, hand and foot). In total approximately 1200155

landmarks on the skeleton were identified (Fig.2a), varying with the number of156

vertebras and ribs in the individual pigs. The coordinates of the landmarks in157

the common orthogonal basis, RT , are denoted Zl, and the corresponding COM158

is denoted z̄.159

These landmarks were transformed back to the basis of the individual pigs160

and the atlas by reversing the transformations based on image moments invari-161

ants. The common averages were used for the transformation to the atlas space162

resulting in a pattern symmetric over the sagittal plane (Fig. 2b). Individ-163

ual image moments invariants were used for the individual pigs; consequently164

there was no symmetric pattern for these points (Fig. 2a). The mathematical165

expressions for the reverse transformations are given by:166

Yl = (lT /m1) (Zl − 1nl
z̄)R−1

T + 1nl
x̄T

Xl = (lT /m1) (v/vT )
1/3

(Zl − 1nl
z̄)R−1 + 1nl

x̄
(2)

, where the landmarks in the atlas and individual pigs are denoted Yl and Xl,167

respectively.168

2.6. Non–rigid transformation169

The stacked matrices of Yl–s and Xl–s (all bones), are denoted Y1 and X1.177

These matrices were used to construct a cubic B-spline based transformation of178

X1 to Y1. The underlying model for the transformation is:179

Y1 = Q1Xβ1 +E1, (3)
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170

Figure 2: Construction of corresponding landmarks and the intensity atlas. (a) Landmarks for

all bones transformed back to the original space of the pig. (b) Landmarks of all average bones

transformed to the atlas space. (c) Non–rigid transformation based on the skeleton landmarks

applied to the skeleton (blue/ red) and surface (skin). A secondary set of landmarks on the

pig surfaces (green). (d) The intensity atlas. I.e. average HU–units after all voxels of all pigs

are transformed to the atlas space.
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, where Q1X denotes a matrix of size n1 × pL the elements of which were calcu-180

lated by tensor (cubic) B-spline functions using X1 as input. The parameter β1181

denotes the regression parameters and E1 random noise. We utilized existing182

software (Kroon, 2011a,b) for the implementation of all B-spline based transfor-183

mations. The software automatically calculated Q1X including optimizing the184

knot grid used in the cubic B-spline functions, and provided estimates, β̂1, of185

β1 for all pigs based on the input X1 and Y1.186

For all pigs the surface voxels (skin) were identified, with coordinates denoted187

XS . The surface points from all 386 pigs were transformed to a common 3D188

image, S, with the same dimensions as the atlas, by applying the transformation189

based on skeleton landmarks. The mathematical formula for this transformation190

is written as ŶS = QSX β̂1 where the rounded values of ŶS gave the coordinates191

of the surface voxels XS transformed to S. In order to get a symmetric surface,192

S was mirrored over the sagittal plane. The final atlas surface was defined as the193

voxels in S having maximum intensity and composing a continuous, connected194

surface.195
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For every 20 mm, on the interval from 200mm to 1400mm, along the lon-196

gitudinal axis of the atlas surface, 34 new landmarks were set on the average197

surface (Fig. 2c). These points were set at a fixed set of angles around the cen-198

tre of the slice in question. The coordinates of these landmarks are denoted Y2.199

Corresponding points for individual pigs, X2, were set as the surface points in200

XS of which the corresponding transformed points, i.e. ŶS , had the minimum201

Euclidian distance to the points in Y2.202

The motivation for constructing the corresponding points on the surface, i.e.203

Y2 and X2, was to increase the precision of the final B-spline transformations204

that were applied to the full volumes of the original pigs. Hence, the coordinates205

of the full volumes were the rounded values of Ŷ = Q12X β̂12, where the basic206

functions of Q12X and β̂12 were calculated using the stacked matrices of Y1207

and Y2, and X1 and X2. The final intensity–based result is illustrated in Fig.208

2d. The intensities of the voxels in the intensity atlas are simply the average209

HU-unit after the final transformation of all voxels in all pigs.210

2.7. Labelled atlas – atlas segmentation211

A labelled version of the atlas (Fig. 3a–b), was constructed by manual seg-217

mentation of the intensity atlas. The final step was to transform the labels onto218

the individual pigs, or eventually, onto new pigs registered to the atlas. Since219

every voxel in the individuals transformed to the (labelled) atlas corresponds to220

exactly one voxel in the atlas, the label of all voxels in individual pigs are easily221

defined (Fig. 4a–d).222

The inner organs were segmented out by methods combining thresholds (HU-223

units) in the intensity atlas, and manual segmentation. The commercial cuts224

were set by segmenting the shoulder, which also includes the head, from loin225

and belly by a cut exactly in the transverse plane of the atlas. The ham and226

loin were also segmented by a cut in the transverse plane. Belly was segmented227

from ham and loin by manual segmentation based on the intensity atlas.228
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212

Figure 3: The labelled atlas. (a) View perpendicular to the sagittal plane. (b) View perpen-

dicular to the coronal plane. In both panels ham is shown with orange color, belly with violet

color, loin with clear red color and shoulder with red/ brown color. The major bones in the

skeleton are shown withe different shades in gray/ yellow/ pink colors.
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2.8. Validation229

First and foremost the method was validated by visual inspection of the230

segmentation applied to the individual pigs.231

In order to conduct a numerical test of the method, we applied atlas seg-232

mentation to the primal cuts of 52 headless carcasses (left half) (Fig. 4). We233

predicted the weights of all voxels by applying a simple regression equation234

for voxel density (kg/m3) using the intensities, measured as Hounsfield units235

(HU), as predictor variable. The regression parameters were calculated by or-236

dinary least squares regression using the registered weights of all 52 carcasses237

as response.238

The corresponding cut weights (kg) and their proportions (% of carcass239

weight) (carcass right half) were registered by butchers at the Norwegian Meat240

and Poultry Research Center (Animalia) pilot plant. Thus we were able to cal-241
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culate the correlations between cut weights and cut proportions based on two242

independent methods, i.e. atlas segmentation and manual butchering. Vari-243

ances in cut proportions are, unlike variances in the cut weights, independent244

of total carcass weight. Thus, an eventual significant positive correlation for245

cut proportions, as opposed to the correlation between cut weights, might be246

viewed as a strong indication of the validity of the atlas segmentation method.247

2.9. Code availability248

All computations were conducted using the software MATLAB (MATLAB,249

2015). A demonstration of the central parts of the computer code applied to250

data from parts of a random pig is included as supplementary material in the251

zipped folder ”Code and Data.zip”.252

3. Results253

254

Figure 4: Atlas segmentation applied to a carcass (left half). (a) An untransformed carcass.

(b–c) The carcass (left hand side) registered (transformed) to the atlas (right hand side). The

loin cut is removed to increase visibility. The other cuts are illustrated as black surfaces. (d)

The final segmentation for the carcass in its four major cuts.

255

256

257

258

Visual inspection of the individual carcasses after transformation show that259

the method has an acceptable accuracy for atlas segmentation of the major260

parts, for an example see supplementary Video 1. The accuracy is best close261
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to the skeleton structure, where the density of landmark is huge, whereas the262

accuracy declines in areas where landmarks are scarce, typically in the back263

part of the belly.264

The correlations between cut weight measured by atlas segmentation and265

manual butchering were 0.95, 0.91, 0.87 and 0.95 for shoulder-, belly-, loin- and266

ham weights, respectively. For the cut proportions the corresponding correla-267

tions were 0.60, 0.38, 0.36 and 0.47, all significantly different from 0 (p < 0.01).268

The variation in cut proportions between individuals were small, i.e. standard269

deviation at approximately 1 % unit.270

4. Discussion271

Differences in predicted cut weights between left and right sides might be272

substantial due to morphological differences, butcher effects and inaccurate273

splitting of carcasses. For shoulder and belly weights, differences between butch-274

ers are reported as high as 6–10% (Nissen et al., 2006). Thus, the correlation275

between the cut weights registered by butchers and by atlas segmentation was276

not expected to be extremely high even with a perfect atlas segmentation. For277

the cut proportions the a priori expected correlation between the two methods278

were substantially lower, due to the small variation in cut proportions between279

individuals. Thus, the highly significant positive correlations is a strong support280

for the usefulness of atlas segmentation.281

The transformations were solely based on corresponding landmarks. The282

state–of–the–art methods in medical image analysis, see Sotiras et al. (2013)283

for an overview, would generally include an extra step involving fine tuning of284

the transformation based on image intensities, typically based on the Gauss–285

Newton algorithm (Gill & Murray, 1978). This step aims at minimizing the286

cost based on a similarity measure between individual pigs and the intensity287

atlas (reference and template), utilizing the intensities of all data points. The288

transformations and intensity atlas described in this paper would constitute a289

natural starting point for such an algorithm. If successful, the result would be290
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an even finer tuned intensity atlas, which in turn enables construction of a more291

detailed labelled atlas. However, there is a substantial risk associated with such292

methods as they may result in convergence to local optima, or yield over–fitted293

solutions, i.e. applying too much non-rigid deformation.294

The full set of landmarks is the joint set of the original skeleton–landmarks295

and the surface–landmarks. The surface–landmarks are set based on a provi-296

sional transformation of the full surface, based on the skeleton–landmarks. We297

applied a simple method based on euclidian distances to define the surface land-298

marks. As part of our further work we would like to evaluate 3D point matching299

algorithms (Tam et al., 2013) as an alternative for defining these landmarks. We300

would also like to evaluate the possibility for identifying more landmarks prior301

to the final transformation. In particular landmarks defining the surface sepa-302

rating the internal organs from the commercial cuts would have been valuable.303

For a whole-body analysis, the corresponding landmarks are sufficient to304

obtain a satisfactory level of accuracy. As the method is automatic and robust,305

it offers a potential of multiplying the level of registered phenotypic variation for306

the full parental lines of breeding pigs. Thus it might constitute the foundation307

for the next generation of high-throughput and high-density phenotyping in308

animal breeding.309

5. Acknowledgements310

Lars Erik Gangsei was supported by the Research Council of Norway, grant311

225294 (PigComp).312

6. References313

Animal welfare Act 2009-06-19-97 (in Norwegian) (2009). Lov om dyrevelferd.314

Lovdata. URL: https://lovdata.no/dokument/NL/lov/2009-06-19-97315

(Accessed: 19th February 2016).316

Baiker, M., Milles, J., Dijkstra, J., Henning, T. D., Weber, A. W., Que, I.,317
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Scholz, A., Bünger, L., Kongsro, J., Baulain, U., & Mitchell, A. (2015). Non–369

invasive methods for the determination of body and carcass composition in370

livestock: dual-energy X–ray absorptiometry, computed tomography, mag-371

netic resonance imaging and ultrasound: invited review. Animal , (pp. 1–15).372

doi:10.1017/S1751731115000336.373

15



Shields, R., Mahan, D., & Graham, P. (1983). Changes in Swine Body Com-374

position from Birth to 145 Kg. Journal of Animal Science, 57 , 43–54.375

doi:10.2134/jas1983.57143x.376

Silva, S., Gomes, M., Dias-da Silva, A., Gil, L., & Azevedo, J. M. T. d. (2005).377

Estimation in vivo of the body and carcass chemical composition of growing378

lambs by real–time ultrasonography. Journal of Animal Science, 83 , 350–357.379

doi:doi:/2005.832350x.380

Skjervold, H., Grønseth, K., Vangen, O., & Evensen, A. (1981).381

In vivo estimation of body composition by computerized tomogra-382
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