
 

 

A Spatial Coupling Model to Study Dynamic Performance of 

Pantograph-catenary with Vehicle-track Excitation 

In the high-speed railway industry, the pantograph-catenary system is responsible 

to provide continuous electric energy for the high-speed train. The pantograph-

catenary system suffers multiple impacts from the complex work environment. The 

vehicle-track excitation is one of the normal disturbances to the pantograph-

catenary interaction. Previous studies only consider the vertical effect of the 

vehicle-track vibration on the pantograph-catenary interaction. To address this 

deficiency, both of the pantograph-catenary and vehicle-track models are 

constructed in this paper. The validations of both models are verified by the 

experimental test and the world benchmark, respectively. The pantograph base 

follows the translations and rotations of the car-body caused by random rail 

irregularities. In combination with a spatial contact model between the contact wire 

and the pantograph strip, the spatial vibration of the carbody can be fully 

considered in the pantograph-catenary interaction. The statistical analysis, 

stochastic analysis and frequency analysis are performed to make sense of the 

effect of the random track irregularities on the pantograph-catenary interaction. 

The deviation of the contact point away from the strip centre caused by the carbody 

vibration is also analysed. The results show that the reliability of the pantograph-

catenary system shows a continuous decrease in the degradation of rail quality. The 

carbody vibration may cause the de-wirement of the pantograph in extreme 

conditions. Finally, an application example is given to evaluate the dynamic 

performance of the pantograph-catenary system running on the China high-speed 

network with realistic rail irregularities. 

Keywords: High-Speed Railway; Vehicle-track interaction; Pantograph-Catenary 

Interaction; Contact force; Dynamic performance; Rail irregularities 

Nomenclature 

Attribute Description 

el  Element length of the rail 

rm , rA  Linear mass and cross-section area of the rail 

sh , sb , sl  Height, width and length of the slab in one track element 



 

 

rW  Polar moment of inertial of the rail cross-section 

sm  Mass of the slab per unit volume 

rE  Young’s Modulus of the rail 

ryI , 
rzI  Moment of inertia around Y- and Z- axis 

rtG  Rigidity modulus of the rail 

rtI  Torsion constant for the rail section 

sE  Young’s Modulus of the slab 

s  Poisson rate of the slab 

rs

yk , rs

zk  The lateral and vertical stiffness of the rail pad 

sd

yk , sd

zk  The lateral and vertical stiffness of the CA Mortar 

rs

yc , rs

zc  The lateral and vertical damping of the rail pad 

sd

zc , sd

yc  The lateral and vertical damping of the CA Mortar 

G Hertzian wheel-rail constant coefficient 

 VTZ t  The penetration of contact surface between wheels and rail 

xl , yl , zl  Relative distances between two nodes of cable element in x-, y- and z- axis 

0l  Unstrained length of cable element 

1f , 
2f , 3f  Nodal force on the node I of cable element in x-, y- and z- axis 

4f , 
5f , 

6f  Nodal force on the node J of cable element in x-, y- and z- axis 

cE  Young’s Modulus of the cable element 

cA  Cross-section area of the cable element 

cw  Self-weight of the cable element 

gxl , gyl , gzl  Relative distances between two nodes of truss element in xg-, yg- and zg- 

axis 

g0l  Unstrained length of truss element 

g1f , g2f , g3f  Nodal force on the node I of truss element in x-, y- and z- axis 

g4f , g5f , g6f  Nodal force on the node J of truss element in x-, y- and z- axis 

gE  Young’s Modulus of the dropper 

gA  Cross-section area of the dropper 



 

 

p1m , p2m , p3m  Mass of pantograph head, upper framework and lower framework 

p1k , p2k , p3k  Stiffness of pantograph head, upper framework and lower framework 

p1c , p2c , p3c  Damping of pantograph head, upper framework and lower framework 

cK  Pantograph-catenary contact stiffness 

 PCZ t  The penetration of contact surface between pantograph and catenary 

cb , cb , 
cb  The roll, yaw and pitch of carbody 

cbY , 
cbZ  The traverse motion and bounce of carbody 

irrw  Track irregularity 

irra , irrl  Track irregularity amplitude and wavelength 

vA , aA , cA , gA  Roughness coefficients for profile, alignment, crosslevel and gage rail 

irregularities 

v , a , c , g  Cut-off frequencies for profile, alignment, crosslevel and gage rail 

irregularities 

vS , aS , cS , gS  PSDs for profile, alignment, crosslevel and gage rail irregularities 

RP  Reliability degree of pantograph-catenary system 

1. Introduction 

In recent years, the impressive expansion of the high-speed network mileage around the 

world is the significant reflection of the global tendency towards the incremental demand 

of high-speed railway from all the aspects of economy and society [1]. The fundamental 

research on the dynamics of coupled systems in high-speed railway attracts ever-

increasing attention from the industrial and the academic communities, as they are main 

factors to keep the safe and reliable operation of high-speed railway, as well as determine 

the maximum speed of high-speed train [2]. Due to the complexity of the high-speed 

railway system, many independent relationships exist among the train [3], the electrical 

equipment [4], the infrastructure [5] and the environment [6], which interact, depend upon 

and restrict each other. The most significant examples are the vehicle-track interaction 

[7], the pantograph-catenary interaction [8], the fluid-solid interaction [9] and the 



 

 

electromechanical coupling [10]. Among them, the pantograph-catenary system is the 

only source of power for electric trains. As shown in Figure 1, the catenary constructed 

along the railroad is responsible for transmitting the electric energy to the locomotive 

through the sliding contact with the pantograph installed on the locomotive. Due to its 

complex work environment [11], the pantograph-catenary system suffers multiple 

excitations from the vehicle-track vibration [12], the component defects [13,14], the 

contact wire irregularities [15] and the wind load [16], which make the pantograph-

catenary to be the most venerable part in the traction power system. According to the 

previous studies, the wind load primarily affects the pantograph-catenary interaction only 

in extreme conditions [17]. The component defect of the catenary occurs intermittently 

[18]. Only the vehicle-track vibration has a continuous effect on the pantograph-catenary 

interaction. 

Train

Catenary

Pantograph

Track

Electric current

 

Figure 1. Pantograph-catenary-vehicle-track system 

 

Generally, the quality of current collection for a high-speed train is directly 

represented by the contact force between the strip of the pantograph and the contact wire 

of the catenary [19]. An excessive contact force is able to aggravate the wear and fatigue 

of the contact wire and the strip [20], while an inadequate contact force may increase the 

possibility of the contact loss between the pantograph and the catenary. Once the contact 

loss occurs, the arcing and sparking between the contact wire and the strip cause the 

sudden increase of the temperature, which may result in the erosion and liquation of the 



 

 

contact surface [21]. Sometimes, the contact loss may even cause the interruption of the 

electrical transmission to the train. In order to ensure stable contact between the 

pantograph and the catenary, various pantograph-catenary models are proposed to make 

sense of the complex coupling dynamics of the pantograph-catenary system [22]. The 

catenary modelling methodology has experienced a long-term evolvement from the 

simple lumped-parameter model [23] to the increasingly complicated distributed-

parameter model [24]. The pantograph is normally modelled by three or two masses 

connected by equivalent springs and dampers, as it is an efficient representation for the 

physical characteristics. Some researchers attempt to develop advanced multi-body 

models for pantographs [25–27], which have better capabilities to describe the realistic 

behaviours. Employing advanced numerical methods, the efficiencies of simulation 

models are considerably improved [28–30]. The accuracies of the proposed models are 

verified by comparisons with experimental data from laboratory [31–33] and field tests 

[34–36]. Based on the simulation results, some effective strategies are proposed to 

improve the quality of current collection, such as tuning the contact wire tension [37], 

optimising pantograph interval [38], adjusting the suspension parameters of pantograph 

[39] and employing an active pantograph with dampers [40] or controllers [41–44] etc. 

As the ever-increasing understanding of the pantograph-catenary dynamics, more 

attentions are paid to optimise the wave propagation behaviour [45] and the elasticity 

distribution [46] along the contact wire. Considering the realistic work condition, the 

dynamic interaction between the pantograph and the catenary is always affected by 

complex external perturbations. In [47,48], the wind field along the catenary is 

established to analyse its effect on the contact force. The aerodynamics on the pantograph 

is quantified through the computational fluid dynamics [49], the wind tunnel experiment 

[50] and the field test [51]. As for the effect of vehicle-track excitation, it is worthwhile 



 

 

to mention the works of Zhai et al [52] and Carnicero et al [53]. In Zhai’s work, a 

multibody pantograph model is established. The carbody acceleration is exerted on the 

bottom of the pantograph to simulate the vertical effect of the vehicle-track vibration on 

the pantograph-catenary interaction. The results show that the large-amplitude rail 

irregularities have a non-negligible effect on the contact force of pantograph-catenary. 

Carnicero et al employ the Lagrange multiplier method to couple the vehicle-track and 

the pantograph-catenary. The contact force of the pantograph-catenary is analysed with 

different levels of random rail irregularities. The results show that the quality of current 

collection deteriorates significantly with the degradation of the track quality. 

However, in these two works, only the vertical effect of the vehicle-track 

excitation on the pantograph-catenary interaction is considered. In reality, the rail 

irregularities, cross-wind [54] and flexibility [55] cause the motion of the car-body with 

six degrees of freedom (DOFs). Except for the vertical translation, the pitch and roll of 

the car-body definitely cause the vertical movement of the pantograph bottom [56], which 

thus brings more disturbance to the contact force of the pantograph-catenary. 

Furthermore, the lateral translation, yaw and roll of the car-body may cause the variance 

of the contact point position on the pantograph strip, which deserves further analysis to 

avoid the pantograph de-wiring from the contact wire. In this paper, the shortfalls in 

previous studies are addressed. A spatial model to couple the pantograph-catenary and 

the vehicle-track is proposed. As the mass and stiffness of the pantograph are some orders 

of magnitude smaller than the car-body and the suspensions in the vehicle, the effect of 

the pantograph-catenary on the vehicle dynamics is totally negligible. Based on this 

assumption, a methodology is proposed to make the pantograph base follow the 

movement of the carbody. In combination with a spatial contact model between the 

contact wire and the pantograph strip, the spatial vibration of the vehicle can be fully 



 

 

considered in the pantograph-catenary interaction. The statistical analysis, stochastic 

analysis, and frequency analysis are performed to make sense of the effect of the random 

track irregularities on the pantograph-catenary interaction. The deviation of the contact 

point away from the strip centre caused by the carbody vibration is also analysed. The 

full paper is organized by seven sections. The introduction of the background and the 

literature review are in Section I. The spatial vehicle-track model is described in Section 

II. The pantograph-catenary model is described in Section III. The coupling method of 

two models is present in Section IV. The stochastic analysis with random track 

irregularities is performed in Section V. Section VI reports an application example using 

realistic parameters from the China high-speed network. The conclusions and future 

works are drawn in Section VII. 

2. Vehicle-track formulations 
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Figure 2. Vehicle-track coupled dynamics model (elevation view) 

 



 

 

In this paper, a classic three-dimensional vehicle-track model is established to simulate 

the spatial motion of the car-body. Figure 2 and Figure 3 show the schematics of the 

vehicle-track model from the elevation and end views, respectively. The lumped 

parameters in Figures 2-3 are adopted from [57], which presents a widely used reference 

model for the academic community. 
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Figure 3. Vehicle-track coupled dynamics model (end view) 

2.1. Vehicle model 

The vehicle model is comprised of a carbody, two bogies, four traction transmission 

systems (traction motor and gear box), four wheelsets and two stage suspensions. All 

these components are modelled by multi rigid-bodies connected by springs and dampers. 

Besides, the nonlinear elements, such as the lateral damper, lateral stopper and yaw 

dampers, are also considered. Apart from the traction transmission systems, each of them 

has 5 DOFs, including traverse motion Y, bounce Z, roll  , yaw   and pitch  , with 



 

 

respect to its mass centroid. Thus, the vehicle has totally 19 rigid bodies with 53 DOFs, 

as shown in Figure 3. Based on the multibody dynamics, the equation of motion for the 

vehicle can be written by 

 V V V V V V VM U + C U + K U = F  (1) 

where, VM , VC  and VK  are the mass, damping and stiffness matrices of the vehicle 

respectively. VU , VU  and 
VU  are the acceleration, velocity and displacement vectors of 

the vehicle respectively. VF  is the external force vector. 

2.2. Track model 

The track model consists of rails and slabs. The two rails are modelled by Euler-Bernoulli 

beams supported by slabs. The three-dimensional slabs are described as thin plate 

elements on viscoelastic foundations. According to the finite element method, the 

equation of motion for the track can be written by 

 T T T T T T TM U + C U + K U = F   (2) 

in which, TU , TU  and 
TU  are the global acceleration, velocity and displacement vectors 

of the track respectively. TF  is the external force vector applied on the track. The mass 

matrix TM , the damping matrix TC  and the stiffness matrix TK  can be assembled by 

the element matrix 
e

t ,nM , 
e

t ,nC  and 
e

t ,nK  of the nth  track segment as follows: 

 
e

T t,n

n

M M , 
e

T t,n

n

C C , 
e

T t,n

n

K K  (3) 

Considering a consistent mass matrix, 
e

t,nM  can be calculated by 

 
e e e

t, r, s,n n n M M M  (4) 

in which, 
e

r,nM  and 
e

s,nM  denote the mass matrices of the rail and the slab, respectively, 

which are expressed by [54] 



 

 

 

e e e

e
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r
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/2 0 0
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

  



 

   



  

M N N N N N N

N N

M N N N N

 (5) 

in which, 
r

xN , 
r

yN , 
r

zN  and 
r

xN  are the shape functions of the Bernoulli beam along the 

X-, Y- and Z- axis and around the X- axis, respectively. 
s

zN  and 
s

yN  are the shape 

functions of the thin plate element along the Z- and Y- axis. 

Similarly, the element stiffness matrix 
e

t,nK  can be written by 

 
e e e e e

t, r, s, r-s, s-d,+ +n n n n n K K K K K   (6) 

in which, 
e

r,nK  and 
e

s,nK  are the stiffness matrices of the rail and the slab, respectively. 

e

r-s,nK  describes the interactions between the rail and the track slab through the rail pads. 

e

s-d,nK  describes the interactions between the slab and the subgrade. These stiffness 

matrices can be expressed by 
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in which, rs,

y

n  and rs,

z

n  are the transform vectors depicting the relative lateral and 

vertical motions between the rail and the slab, respectively. 



 

 

The damping elemental matrix 
e

t ,nC  can be written by 

 
e e e

t , r-s, s-d,n n n C C C   (8) 

in which, 
e

r-s,nC  and 
e

s-d,nC  are expressed by 

 

 

 s s s

s s

e T T

r-s, rs rs, rs, rs rs, rs,

/2 /2
e r T r s T s

s-d, sd sd
/2 /2 0

d d d

y y y z z z

n n n n n

b l l
z y

n z z y y
b l

C c c

C c x y c x
 

     

 



   N N N N
 (9) 

2.3. Wheel-rail interaction 

The wheel-rail interaction is realised by the nonlinear Hertzian elastic contact theory. The 

contact force  VTF t  is calculated by [58] 

  
   

 

3/2

VT VT

VT

VT

1
0

0 0

Z t if Z t
F t G

if Z t

 



 
   

 

 (10) 

The Shen-Hedrick-Elkins model is used to calculate the tangential wheel-rail contact 

forces, which is an expansion of the Kalker’s linear creep theory [59]. 

2.4. Verification of Vehicle-track model 

In order to verify the validation of the present vehicle-track model, the field experimental 

tests are carried out in the China high-speed network [60]. The configurations of the 

accelerometers on the carbody are shown in Figure 4. The same work conditions are set 

in the numerical simulation. Figure 5 presents the lateral and vertical accelerations of the 

carbody in time and frequency domains. It can be seen that the amplitude and the 

dominant frequency of the simulations show good consistency with the experimental 

tests. The peaks appearing at 0.9 Hz and 2.8 Hz are close to the natural frequencies of the 

carbody pitch and roll, respectively. Hence, it indicates that the present vehicle-track 

coupled dynamics model can adequately describe the physical characteristics of the 

vehicle-track system. 



 

 

 

Figure 4. Configurations of sensors on carbody: the high-speed train (a), the motor 

bogie (b) and the monitoring point (c). 
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Figure 5. Validation of vehicle-track model by comparison with experimental test: lateral 

acceleration of carbody in time domain (a) and frequency domain (b); vertical 

acceleration of carbody in the time domain (a) and frequency domain (b). 
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3. Pantograph-catenary formulations 

3.1. Catenary model 

As shown in Figure 6, the contact wire is responsible for providing electrical energy 

through a pantograph to the high-speed train. The messenger wire and droppers support 

the contact wire to keep its level or having a certain amount of pre-sag. In order to 

properly describe the nonlinearities of the catenary (including the unsmooth nonlinearity 

of droppers, and the geometrical nonlinearity of the contact/messenger wire), the flexible 

cable element is adopted to model the contact and messenger wires, and the truss element 

is used to model the dropper and steady arm. The claws on droppers and steady arms are 

considered as lumped masses. Following describes the cable and truss elements used in 

the catenary model. 
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Figure 6. Finite element model of catenary with a lumped mass model of pantograph 



 

 

3.1.1. Nonlinear cable element 

Considering a cable element with two nodes as shown in Figure 6, the relative distances 

between the two nodes can be expressed by the nodal forces as [61] 

 

 
 


  

2 2 2

x 1 0 c c 1 4 5 6 6

2 2 2

1 2 3 3 c

2 2 2

y 2 0 c c 2 1 2 c 0 3

2 2 2

c 0 3 1 2 3 3 c

2

z 3 0 c c c 0 c c

2 2 2 2 2 2

4 5 6 1 2 3 c

( ) / ( ) ln

ln /

/ ( ) ln ( )

ln /

( ) / ( ) ( ) / (2 )

/

l f l E A f f f f f

f f f f w

l f l E A f f f w l f

w l f f f f f w

l f l E A w l E A

f f f f f f w

      

  

     


     

   

     
 

 (11) 

The force equilibrium of the cable element can be expressed by 

 
1 4 5 2 6 3 00 0f f f f f f wl       (12) 

If 
xl , yl , and 

zl  are given, 
1 6~f f  can be solved by the Newton-Raphson method 

according to Eq. (11). Substituting Eq. (12) into Eq. (11), partial differentiation of both 

sides of Eq. (11) yields the following incremental relationships between the relative nodal 

distances and nodal forces. 

 

xx x x

g01 2 3

x 1

y y y y

y 2 g0

1 2 3 g0

z 3

z z z z

1 2 3 g0

ll l l

lf f f
l f

l l l l
l f l

f f f l
l f

l l l l

f f f l

    
                     
         

                    
       

 (13) 

Taking the inverse of the flexibility matrix in Eq. (13) yields the incremental equation of 

the cable element.  

 
C C C CL 0Δ Δ lF = K U + K   (14) 

in which, CΔF  is the incremental nodal force vector. 
CK  is the stiffness matrix related to 

the nodal displacements. 
CΔU  is the incremental displacement vector. 

CLK  is the 

stiffness matrix related to the unstrained length of the cable. 



 

 

The tension is applied on the endpoint of the messenger/contact wire. Considering 

a cable element with constant tension 
0T , an additional constraint condition is given as 

follows. 

 
2 2 2

0 1 2 3T f f f     (15) 

3.1.2. Truss element 

The equilibrium equation of truss element in Figure 6 is written as follows. 
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  (16) 

Considering a nonlinear dropper, g gE A  equals to zero when the dropper works in 

compression. Similarly, the stiffness matrix of the truss element can be obtained through 

differentiating both sides of Eq. (16) as follows. 

 G G G GL g0Δ Δ ΔlF = K U + K  (17) 

in which, 
GΔF  is the incremental nodal force vector. 

GK  is the stiffness matrix related to 

the nodal displacements. 
GΔU  is the incremental displacement vector. 

GLK  is the 

stiffness matrix related to the unstrained length of the truss. 

It should be noted that the terms related to 0l  and g0l  in Eqs. (11) and (16) are 

used to calculate the initial shape of the catenary. They vanish in the consequent dynamic 

calculation. 

3.1.3. Shape-finding of catenary 

The shape-finding of the catenary is performed by TCUD method proposed by Kim and 



 

 

Le [62], which takes the unstrained lengths 0l  and g0l  as unknown parameters, and 

formulates the stiffness matrix with nodal forces and unstrained length for each element. 

In this way, more constraint conditions should be provided to eliminate the undesirable 

deformations of the catenary. Assembling Eqs. (11) and (16) by FEM, the global 

incremental equilibrium equation for the whole catenary can be obtained as follows. 

 
cL L

c c c c c c c

c

Δ Δ Δ
 

    
 

ΔU
F = K U + K L K K

ΔL
 (18) 

where cΔF  is the unbalanced force vector. cK  and 
L

cK  are the global stiffness matrices 

related to the incremental nodal displacement vector cΔU  and the incremental unstrained 

length vector cΔL , respectively. Assume that the total number of degrees of freedom is 

n, and the number of elements is m. So, L

c c
  K K  is a  n m n   matrix. Since the 

total number of unknowns  m n  in Eq. (18) exceeds the total number of equations n , 

Eq. (18) has infinite solutions. Hence, additional constraint conditions are provided to 

control the solution of Eq. (18), according to the design specification, which has been 

given in [61] with details. 

3.1.4. Equation of motion for catenary 

In combination with a consistent mass matrix 
cM  and a Rayleigh damping matrix 

cC , 

the equation of motion for the catenary can be written by 

      c c c c c c cΔ ( ) Δ ( ) Δ ( ) ,t t t t t x tM U + C U + K U = F  (19) 

in which, the  c ,x tF  on the right side is the incremental external force vector. At each 

time instant, the stiffness matrix  c tK  is updated by the response obtained in a previous 

time step. By this way, the geometrical nonlinearity of the messenger/contact wire and 

the non-smooth nonlinearity of each dropper are properly considered. 



 

 

3.2. Pantograph model 

In this paper, the pantograph is modelled by a lumped mass representation as illustrated 

in Figure 6. The mass. stiffness and damping are identified through experimental tests 

[19] to ensure that the model has the same frequency response to a real pantograph. The 

equation of motion for the pantograph can be expressed by 

  p p p p p p p( ) ( ) ( )t t t tM U + C U + K U = F  (20) 

in which, pM , pC  and pK  are the matrices of the mass, damping and stiffness of the 

pantograph. p ( )tU , p ( )tU  and p ( )tU  are the vectors of acceleration, velocity and 

displacement, respectively. The contact force and uplift force are contained in the external 

force vector  p tF .  

3.3. Pantograph-catenary interaction 

In this paper, a three-dimensional contact geometry between the pantograph strip and the 

contact wire is proposed, which considers the variation of the contact position along the 

registration strip due to the vehicle-track excitation and the stagger value. The details of 

this methodology are given in Section 4. The contact force  pcF t  used to couple the 

pantograph and the catenary is evaluated as follows. 

  
   

 

c PC PC

pc

PC

0

0 0

K Z t if Z t
F t

if Z t

 




 



  (21) 

It should be noted that the friction at the interface of pantograph-catenary, which may 

aggravate the wear of the contact surface [20,63] is not involved. 

3.4. Verification of pantograph-catenary model 

Using the Newmark integration method, Eqs. (19-21) can be solved to obtain the response 

of pantograph-catenary interaction. In each time step, the Newton-Raphson method is 

used to calculate the nodal force and stiffness matrix of cable element. In this way, the 



 

 

geometrical nonlinearity is fully addressed. The details of the numerical procedure can 

be found in [30,61]. The world benchmark of pantograph-catenary models describes the 

results of 10 professional simulation tools around the world and provides an authoritative 

verification standard for other software. In order to gain the confidence of the present 

model, the comparisons of the contact force and the pantograph head uplift against other 

10 professional tools are performed. The resulting contact force and pantograph head 

uplift evaluated by a 3D catenary operating at 320 km/h are shown in Figure 7 (a-b). It is 

seen that the present model has the same level of accuracy as the participators of the 

benchmark. 
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Figure 7. Verification of present model against Benchmark: Contact force (a); 

Pantograph head uplift (b) 



 

 

4. Spatial coupling of two models 
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Figure 8. Representation of carbody coordinate and pantograph coordinate 

 

In this section, the coupling method between the pantograph-catenary and the vehicle-

track models is illustrated. As shown in Figure 8, a local reference frame of the 

pantograph ( p , p , p ) is defined to facilitate the illustration. If the carbody stays static, 

the local reference frame ( p , p , p ) is parallel to the global reference frame (
GX , 

GY , 

GZ ). As the pantograph sits on the carbody roof, the movement of the carbody results in 

the rotation and offset of the local reference frame ( p , p , p ). As shown in Figure 9, 

the reference frame (
κ

p , 
κ

p , 
κ

p ) is caused by the traverse motion 
cbY  and bounce 

cbZ  of 

the carbody. Due to the roll 
cb , yaw 

cb  and pitch 
cb  of the carbody, the reference 

frame (
κ

p , 
κ

p , 
κ

p ) is rotated to (
λ

p , 
λ

p , 
λ

p ). For the contact model described in Eq. 

(21), the contact force calculation is dependent on the contact geometry of the pantograph 

strip and the contact wire. Points pA  and pB  represent the endpoints on the strip. The 

point positions 
G

Ar  and 
G

Br  in the global reference frame (
GX , 

GY , 
GZ ) can be calculated 

by 
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Figure 9. Rotation and offset of local reference frame due to the movement of carbody 
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  (22) 

in which, 
p

G

Or  is the position of point 
PO  in the global reference frame ( GX , GY , GZ ). 

The 
G κ

cb


u  is the displacement vector of the carbody causing the offset of the local 

reference frame from ( p , p , p ) to (
κ

p , 
κ

p , 
κ

p ). 
λ

Ar  and 
λ

Br  are the point positions 

in the reference frame (
λ

p , 
λ

p , 
λ

p ). 
λ κ

T  is the rotation matrix from (
λ

p , 
λ

p , 
λ

p ) to (

κ

p , 
κ

p , 
κ

p ), which is determined by 
cb , cb  and 

cb . 
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Figure 10. Representation of contact geometry between pantograph and catenary 

 

Figure 10 shows the representation of the contact geometry between the 

pantograph and the contact wire. iD  ( 1,2i n  ) are the finite element nodes on the 

contact wire. The potential contact point on the contact wire is contained in the segment 

from 1D  to nD . pC  is the contact point on the pantograph strip, while cwC  is the contact 

point on the contact wire. The following mathematical procedure finds the exact positions 

of the two contact points. 

If the contact occurs on the segment 1i iD D  , the position of the contact point 
cw

G

Cr  

can be expressed by the positions of two nodes 
G

iDr  and 
1

G

iD 
r  as follows, according to the 

shape function of the cable element. 

  
cw 1

G G G G

i i iC D D D


  r r r r   (23) 

in which,   is the parametric length coordinate of the finite element, which can be 

obtained by finding the point of intersection between the lines 1i iD D   and AB, when 

projected to the same plane. According to [64], both lines are projected to the XY plane 



 

 

for convenience. The following equation can be obtained by the interception between the 

two lines projected to the XY plane. 

 
1 cw pi i i i

xy xy xy xy xy xy

D D D D C A A B ACd d
   r u r u   (24) 

in which, 
i

xy

Dr  and 
xy

Ar  are the positons of 
iD  and A in the XY plane. 

1i i

xy

D D u  and 
xy

A Bu  are 

the versors of generic vectors from 
iD  to 

1iD 
, and from A to B, respectively in the XY 

plane. 
cwi

xy

D Cd  and 
p

xy

ACd  are the distances between points iD  and cwC , and points A and 

pC , respectively, which can be obtained by solving Eq. (24). The parametric length 

coordinate   is calculated by 

 cw

1

i

i i

xy

D C

xy xy

D D

d





r r

  (25) 

If  0,1  , the contact takes place in the contact wire segment 1i iD D  . Otherwise, the 

next element should be checked. 

As for the pantograph strip, the distance 
p

G

ACd  between the points A and pC  in the 

global reference frame can be calculated by 

  
p cw

G G G G

AC A B C Ad  u r r  (26) 

in which, 
G

A Bu  is the versor of a generic vector from A to B. So the position of the point 

pC  can be obtained by 

 
p p

G G G G

C A AC A Bd  r r u   (27) 

Following the above procedure, the positions of the two contact points cwC  and pC  on 

the contact wire and the strip can be obtained. Then the penetration  PCZ t  of the contact 

surface between the pantograph and the catenary is evaluated, from which the contact 

force of pantograph-catenary is calculated by Eq. (21). In this way, the vehicle vibration 

is properly accounted for in the interaction of pantograph-catenary. The whole procedure 

is illustrated in Figure 11. It is seen that the simulation is a one-way procedure. The 



 

 

vehicle-track model is run firstly to obtain the carbody motions in each time step. In the 

pantograph-catenary simulation, the pantograph height and 6 DOF carbody motion are 

used to formulate the translation vector and rotation matrix. Then the endpoint positions 

of pantograph strip are determined by a spatial coordinate transformation. Thus, the 

contact point can be identified according to the spatial positions of the pantograph strip 

and contact wire. Finally, the contact force is calculated and exerted on the pantograph-

catenary system to calculate the response in this time step. 

Formulate random time-history of track 

irregularities 

Establish vehicle-track coupling model using 

Eqs. (1-10)

Extract 6-DOF carbody motion Xcb, Ycb, Zcb, φcb,ψcb and βcb

Formulate the translation vector         and rotation matrix

Calculate the endpoint position of pantograph strip using Eq. (22)

Enter time step t

G κ

cb


u λ κ

T

Identify the contact point of position by solving Eqs. (23-27)

Calculate the contact force using Eq. (21)

Solve Eqs. (19-20) to obtain incremental displacement

t = t +Δt

Check convergency

Through Newmark integration to obtain 6-

DOF carbody motion 

Vehicle-track model Pantograph-catenary model

Y

N

 

Figure 11. Simulation procedure for vehicle-track and pantograph-catenary interaction 

5. Analysis with random track irregularities 

As is well known, the track irregularity is the main source of vehicle vibration. In this 

section, the dynamic performance of pantograph-catenary is evaluated with different 



 

 

levels of rail qualities. Without loss of generality, the reference model of pantograph-

catenary in the benchmark is adopted in the following analyses. A 20-span of catenary is 

established, and the central 10 spans are selected as an analysis object. The train speed is 

defined as 320 km/h according to the benchmark [22]. As for the vehicle-track, a typical 

EMU model present in [65] is adopted. It should be noted that normally the high-speed 

train is not allowed to operate with awful track condition to ensure the comfort, stability 

and safety of the operation. However, the purpose of this section is not to reproduce the 

realistic phenomenon, but to make sense of the interaction performance of pantograph-

catenary with different levels of track quality. 

The geometry of rail is affected by many realistic factors, which exhibit 

significant stochastics and represent the irregularities of the rail surface. In this paper, the 

effect of the vehicle-track excitation on the pantograph-catenary interaction is studied 

with different levels of rail irregularities. The PSD function is a normal representative of 

the random rail irregularities. As shown in Table 1, the coefficients of the PSD functions 

of rail irregularities are given with different levels of rail health conditions, which are 

summarised from the realistic measured data [66]. The rail quality improves with the 

increase of the level from 1 to 6. The time-history of track irregularities is generated by 

the inverse Fourier transformation [57]. The frequency spectrum X(k) is obtained by 

discrete sampling from the standard spectral density function. The real and imaginary 

parts of X(k) have even and odd symmetries with respect to Nr /2. Hence, the frequency 

spectrum X(k) ( =0,1 rk N，. . . ,  / 2) is determined as follows: 

        cos sin =0,1k k rX k X k i k N   ，. . . ,  / 2  (28) 

where k  is the phase angle and obeys the uniform distribution of 0-2 , and Nr denotes 

the sampling points. Then, the track irregularities are calculated using inverse Fourier 

Transform as  
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 
  (29) 

The time histories of track irregularity for each level are presented in Figure 12. Taking 

level 6 as an example, Figure 13 shows the comparison of the spectrum between the 

generated signal and the original signal. The validation of the present method can be 

verified by the high consistency of the two spectrums. 

(a)

(b)

(c)

(d)

 

Figure 12. Time histories of track irregularities: Profile (a); Alignment (b); Crosslevel 

(c); Gage (d) 
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Figure 13. Comparison of the spectrum between the generated signal and the original 

signal: Profile (a); Alignment (b); Crosslevel (c); Gage (d) 

 

Table 1. Coefficients of rail irregularities with different rail levels 

Type Coefficient 

Rail quality level 

1 2 3 4 5 6 

Profile 

 
 

 

2 2 2

v v2 v1

v 4 2 2

v2

A
S

  


  





 

vA /(10-7 m) 16.72 9.53 5.29 2.96 1.67 0.95 

v1 /(10-2 m) 2.33 2.33 2.33 2.33 2.33 2.33 

v2 /(10-1 m) 1.31 1.31 1.31 1.31 1.31 1.31 

Alignment aA /(10-7 m) 10.58 10.58 10.58 10.58 10.58 10.58 



 

 

 
 

 

2 2 2

a a2 a1

a 4 2 2

a2

A
S

  


  





 

a1 /(10-2 m) 3.28 3.28 3.28 3.28 3.28 3.28 

a2 /(10-1 m) 1.84 1.84 1.84 1.84 1.84 1.84 

Crosslevel 

 
  

2

c c2
c 2 2 2 2

c1 c2

A
S




   


 
 

cA /(10-7 m) 4.87 3.39 2.33 1.57 1.06 0.72 

c1 /(10-2 m) 2.33 2.33 2.33 2.33 2.33 2.33 

c2 /(10-1 m) 1.31 1.31 1.31 1.31 1.31 1.31 

Gage 

 
  

2

g g2

g 2 2 2 2

g1 g2

A
S




   


 
 

gA /(10-7 m) 10.58 5.93 3.39 1.88 1.06 0.59 

g1 /(10-2 m) 2.92 2.92 2.92 2.92 2.92 2.92 

g2 /(10-1 m) 2.33 2.33 2.33 2.33 2.33 2.33 

5.1. Statistical analysis 

In order to describe the stochastic characteristics of the rail irregularities, 500 different 

simulations of each level of irregularities are carried out based on the idea of Monte Carlo. 

These 500 simulations provide a wide range of variability in the track profile, assuming 

the normal distribution according to the limit central theorem. 

The contact force of pantograph-catenary is the direct reflection of the current 

collection quality. In this section, the statistical values of the contact force are analysed 

to make sense of the effect of rail irregularities on the quality of current collection. To 

facilitate the analysis, the boxplots of all indices are adopted here. The boxplot is a 

standardized way to display the distribution of data based on a summary of five numbers, 

which are the minimal value minQ , the first quartile 1Q , the median 2Q , the third quartile 

3Q , and the maximal value maxQ . Usually the maximal and minimal can be calculated by 

the following two equations respectively. 

 max 3 1.5Q Q IQR    (30) 

 min 1 1.5Q Q IQR    (31) 



 

 

in which, IQR  is the range from the 25th to 75th percentile. The outlier data which are out 

of the range min max~Q Q  are denoted by red ‘plus’. Figure 14 shows the boxplots of 

statistical values of the contact force with different levels of rail irregularities, including 

the standard deviation, the mean value, the maximum value, the actual minimal value, the 

statistical maximum value and the statistical minimal value. Figure 15 shows an example 

of the contact force with each level of track quality. The effect of the rail irregularities on 

the contact fore of pantograph-catenary is quite complicated. The fluctuation range of the 

standard deviation becomes larger with the degradation of the rail quality. In the case of 

the worst rail quality, the maximum standard deviation reaches 60.77N, which represents 

a large fluctuation of the contact force. However, the minimal standard deviation is only 

50.66N, which is even better than the case without rail irregularities. The rail irregularity 

also brings a slight variance to the mean contact force. However, when looking at the 

maximum and minimal values, the negative effect of rail irregularity can be significantly 

observed. The actual maximum value undergoes a significant increase with the 

degradation of rail irregularities, while the minimal value experiences a continuous 

decrease. 

According to the standard [67], the statistical maximum and minimal values of 

the contact force are the important indices to evaluate the dynamic performance of the 

pantograph-catenary system. As shown in Figure 14(e), some statistical maximum values 

exceed the safety threshold (350N) in the cases of bad rail quality. Similarly, some 

statistical minimal values are lower than the safety threshold (0N) except the case of the 

best rail quality (level 6). Therefore, the vehicle vibration significantly aggravates the 

safe operation of the pantograph-catenary operation. 



 

 

 

 

Figure 14. Boxplots of statistical values of contact force: standard deviation (a); mean 

value (b); maximum value (c); minimal value (d); statistical minimal value (e); statistical 

maximum value (f) 

(a) (b) 

(c) (d) 

(e) (f) 



 

 

 
Figure 15. Examples of contact force with different levels of track quality 

5.2. Probabilistic analysis 

The probability density function can be used to specify the probability of the random 

variable falling within a specified range of values. As the random vibration response of 

the locomotive exhibits strong normality with the excitation of track irregularities [68], 

the statistical values of pantograph-catenary interaction are assumed to obey the normal 

distribution. The PDFs of the statistical maximum and minimal values are present in 

Figure 16. For the statistical maximum value, the probability of exceeding the safety 

threshold increases up to 2.75% with the worst rail quality (level 1). When the rail quality 

is above level 3, all the statistical maximum values fall in the safety region. For the 

statistical minimal value, the probability of exceeding the safety threshold decreases from 

44% to 0, with the improvement of the rail quality from level 1 to 6. Figure 17 (a-f) show 

the joint PDFs associated with the joint information of statistical maximum and minimal 

values, with six levels of rail qualities, respectively. It can be seen that the risk region 

highlighted in red bars significantly increases with the degradation of rail quality. Both 

of the statistical minimal and maximum values fall in the safety region only in the case 

of the best rail quality (level 6).  



 

 

Furthermore, the reliability is a quantitative index to describe the capability of the 

pantograph-catenary system to complete its required function, which can be calculated 

by 

    
m

m
R m m, , d dP p




       




       (32) 

In which,   and   represent the statistical maximum and minimal values of the contact 

force.  ,p    is the joint probability distribution associated with   and  . 
m  and 

m  are the corresponding safety thresholds, which are defined as 350N and 0N according 

to the standard. Based on the calculation results presented in Figure 17, the reliability 

degrees with six levels of rail qualities are collected in Table 2. The statistical maximum 

value falls in the safe region when the rail quality upgrades to level 3. The joint reliability 

of pantograph-catenary can be significantly reduced by the degradation of rail quality. If 

the minimal reliability is required to be 0.98, the rail quality should be maintained at level 

5 or above. 

 

Figure 16. PDFs of statistical maximum value (a) and statistical minimal value (b) 
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Figure 17. Joint PDFs of statistical maximum and minimal values with levels 1-6 (a-f) of 

rail irregularities 

Table 2. Reliability of pantograph-catenary with different levels of rail quality 

 
Level of rail irregularities 

1 2 3 4 5 6 

S. Max 0.973 0.995 1 1 1 1 

S. Min 0.56 0.71 0.82 0.92 0.98 1 

Joint 0.56 0.71 0.82 0.92 0.98 1 

 

(a) (b) 

(c) (d) 

(e) (f) 



 

 

5.3. PSD analysis 

The Yule-Walker method is employed to estimate the spectral density of the contact force 

calculated by a total of 500 simulations. Figure 18 shows the PSDs of contact force with 

six levels of rail irregularities. In order to evaluate the contribution of the vehicle vibration 

to the variance of the contact force, the mean values are subtracted from the results before 

the PSD estimation. It is seen that the PSD peaks appear at several spatial frequencies 

relevant to the span length, the half-span length, and the intervals between droppers and 

steady arms. The degradation of the rail quality results in a general increase of the energy 

over the entire frequency range of interest, which can be clearly demonstrated by the 

enlarged region. The random rail irregularity can be seen as a broadband excitation to the 

pantograph-catenary system, whose contribution is in the whole frequency range, but not 

at specific frequencies. 

Span length

Half span

Double dropper 

interval

Dropper interval

Dropper-steady 

arm interval

 

Figure 18. PSDs of contact force with six levels of rail irregularities 

5.4. Contact point 

Apart from the above analyses relevant to contact force, this section analyses the 

variances of the contact point position on the pantograph strip, which may be affected by 

the movement of the carbody. As illustrated in Figure 19, the distance 
pd  between the 



 

 

contact point 
pC  and the centre of the strip 

pG  is calculated to assess the risk of de-

wirement. Figure 20 presents the boxplot of 
pd  with six levels of rail quality. It should be 

noted that the stagger value of the present catenary is 0.2m. The motion of carbody brings 

more lateral variations to the pantograph base. The deviation of the contact point away 

from the strip centre undergoes a significant increase with the degradation of rail quality. 

The maximum deviation reaches 0.26m with the worse rail quality, which still falls in the 

working range of this type of pantograph. However, the maximum deviation of the 

contact wire caused by the wind load should not exceed 0.4m [67]. If the extreme 

condition is considered, the contact point may be outside the safety range. Thus, de-

wirement assessment is necessary to be performed with extreme conditions (strong wind 

and poor rail quality) in the future. 

Pd

Strip length 800 mm

Span head length 1600 mm

Working range 1200 mm

pC pBpA pG

 

Figure 19. Schematic of pantograph strip 

 

 



 

 

Figure 20. Boxplot of deviation of contact point away from strip centre 

5.5. Decoupling vertical and lateral vibration 

In this example, only the vertical and lateral vibrations of carbody are included in the 

pantograph-catenary interaction separately to investigate the potential decoupling of the 

spatial vibration. Figure 21 shows the time histories of carbody motion with level 6 of 

track quality, including the lateral displacement, vertical displacement, roll, pitch and yaw 

of the carbody. In this numerical example, three scenarios of the simulation are 

performed. In the first one, all the carbody motions are included in the pantograph-

catenary interaction. The second and third ones only consider the lateral and vertical 

vibrations of the carbody, respectively. Figure 22 shows the comparison of the contact 

force between the vertical excitation and 6-DOF excitation. A slight difference can be 

observed between the two scenarios. The difference of contact force peak reaches 2.5 N. 

Figure 23 shows the comparison of absolute contact point deviation between the lateral 

excitation and 6-DOF excitation. To facilitate the comparison of the maximum deviation 

of the contact point away from the strip centre, the absolute value of the lateral contact 

position is presented. It is seen that 6-DOF excitation causes a bigger deviation of the 

contact point compared with the result with only lateral excitation. 
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Figure 21. Time histories of carbody motion with level 6 of track quality 

2.5 N
2 N

 
Figure 22. Comparison of contact force between vertical excitation and 6-DOF excitation 



 

 

 
Figure 23. Comparison of absolute lateral contact position between lateral excitation and 

6-DOF excitation 

 

Through the above analysis, it is demonstrated that due to the rotation of the 

carbody, the lateral and vertical vibrations of the pantograph are coupled. A slight error 

can be generated if the lateral and vertical vibrations are calculated separately. 

6. Application example with realistic case 

In this section, the proposed model is used to evaluate the dynamic performance of a 

realistic pantograph-catenary system from China high-speed network, with measured rail 

irregularities. The catenary parameters from Beijing-Tianjin passenger special railway 

are adopted to construct the catenary model as shown in Figure 24, in which, the overlaps, 

variances of span length and dropper intervals, in reality, are fully considered. The 

pantograph model is built using the parameters of DSA 380 pantograph. The vehicle-

track system is constructed using the realistic parameters from the specific high-speed 

network. The measured rail irregularities shown in Figure 25 are adopted to simulate the 

excitation of the vehicle-track.  

In the numerical simulations, the train speeds are defined as the operation speed 

300km/h, the maximum design speed 350km/h and the potential upgrade speed 380km/h. 

The resulting contact forces evaluated with and without vehicle vibrations are compared. 



 

 

The contact force time histories are shown in Figure 26, and the corresponding statistics 

are shown in Figure 27. As the train is running on a high-quality high-speed track, the 

effect of the vehicle-track vibration on the pantograph-catenary interaction is very small. 

The vehicle-track only contribute a bit variance to the contact force. The pantograph-

catenary system shows a very good performance with the operation speed 300km/h and 

the design speed 350km/h. The statistical minimal contact force is lower than the 

specified safety threshold with the potential upgrade speed 380km/h. The further 

optimisation strategy is necessary for the speed upgrade.  

 
Figure 24. Geometry of realistic catenary 

 

 
                                   (a)                                                                (b) 

Figure 25. Realistic measurement data of vertical rail irregularities (a) and lateral rail 

irregularities (b) 
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(c) 

Figure 26. Results of contact force with 300km/h (a), 350km/h (b) and 380km/h (c) 

 

(a) (b) (c) 



 

 

 

Figure 27. Statistics of contact force: standard deviation (a); maximum value (b); minimal 

value (c); mean value (d); statistical maximum value (e); statistical minimal value (f) 

7. Conclusions and future works 

This paper attempts to realise the spatial coupling between the pantograph-catenary 

system and the vehicle-track system. The carbody vibration is properly added to the base 

motion of the pantograph. Through the statistical analysis, stochastic analysis and PSD 

analysis, the dynamic performance of the pantograph-catenary is evaluated with six levels 

of rail irregularities. The results show that the effect of the rail irregularity on the 

pantograph-catenary interaction is very complicated, due to its significantly random 

characteristics. The rail irregularity increases the fluctuation range of the contact force 

variance, causing the increase of the statistical maximum values, and the decrease of the 

statistical minimal values. The reliability of the pantograph-catenary system shows a 

continuous decline with the degradation of the rail quality. The carbody vibration also 

increases the deviation of the contact point away from the strip centre, which may 

increase the risk of de-wirement. Furthermore, an application example is present to 

evaluate the dynamic performance of the pantograph-catenary system running on the 

China high-speed network with realistic rail irregularities. 

However, apart from the rail irregularities, the wind load is another normal source 

to the carbody vibration. Due to the long-span structure and high flexibility, the catenary 

is also very sensitive to the wind load. So the effect of wind load on both of the 

(d) (e) (f) 



 

 

pantograph-catenary and the vehicle-track will be considered in the future, to evaluate the 

dynamic performance of pantograph-catenary in extreme work conditions. 
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