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Abstract. Sustainable management of wildlife populations can be aided by building mod-
els that both identify current drivers of natural dynamics and provide near-term predictions of
future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to
decide the purpose and structure of a dynamic state-space model for the population dynamics
of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of
stakeholders, it was decided that the model should include food web interactions and climatic
drivers to provide explanatory predictions. Modeling confirmed observations from stakehold-
ers that climate change impacts Ptarmigan populations negatively through intensified out-
breaks of insect defoliators and later onset of winter. Stakeholders also decided that the model
should provide anticipatory predictions. The ability to forecast population density ahead of
the harvest season was valued by the stakeholders as it provides the management extra time to
consider appropriate harvest regulations and communicate with hunters prior to the hunting
season. Overall, exploring potential drivers and predicting short-term future states, facilitate
collaborative learning and refined data collection, monitoring designs, and management priori-
ties. Our experience from adapting a SFP to a management target with inherently complex
dynamics and drivers of environmental change, is that an open, flexible, and iterative process,
rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.

Key words: climate change; decision-making; food web; harvesting; near-term forecasting; population
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INTRODUCTION

Sustainable management of wildlife populations can
be facilitated by building models that both identify cur-
rent drivers of natural dynamics and anthropogenic-in-
duced change (Caughley 1994), and provide near-term
predictions of future states (Mouquet et al. 2015, Urban
et al. 2016, Bradford et al. 2018, Dietze et al. 2018). This
is especially relevant in light of the pace of current and
future climate change (Mouquet et al. 2015, Urban et al.
2016, Dietze et al. 2018). While ecologists often aim to
devise models that can aid environmental decision-mak-
ing and lead to changes in policy, they often fail to
achieve this goal (Dietze et al. 2018). If ecology aims to
contribute to policy and management, there is a need to
build models and make ecological predictions directly
relevant and at a time horizon corresponding to environ-
mental decision-making (Nichols et al. 2007, Pouyat

et al. 2010, Hobbs et al. 2015, Hobday et al. 2016, Dietze
et al. 2018). This can be achieved through an integrated
approach in which scientists and stakeholders collabo-
rate in the process of deciding on objectives, data, mod-
els, and analyses (Nichols et al. 2007, Cook et al. 2014a,
Parrott 2017) as well as identifying forthcoming prob-
lems, opportunities, and surprises (Sutherland et al.
2014). Such participatory or collaborative modeling
approaches that involve stakeholders have been for-
warded as a way of ensuring direct relevance and uptake
of modeling outcomes by end users (Parrott 2017, Reiter
et al. 2018, Reiter et al. 2019). This involves all aspects
of the research process from simple information and
data sharing to development of model structure or inter-
pretation of its output (Parrott 2017, Reiter et al. 2018,
Reiter et al. 2019).
A food web consists of directly and indirectly con-

nected species (Wootton 1994). Environmental impact
on one species has the potential to propagate through
the food web, affecting other species indirectly through
multiple pathways (Barton and Ives 2014). Hence,
understanding the consequences of environmental
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change and harvesting in complex, natural systems war-
rants the inclusion of biotic interactions and processes
across several trophic levels (O’Connor et al. 2013, Bar-
ton and Ives 2014, Urban et al. 2016, Kadin et al. 2019).
This is particularly important for harvested species,
which are often situated at intermediate trophic levels in
food webs, and therefore affected by both lower and
higher trophic levels. Harvested species are increasingly
recognized to exhibit complex population dynamics
(Krebs et al. 2001, Moss and Watson 2001, Glaser et al.
2014), including population cycles, synchrony/travelling
waves (Krebs et al. 2018), and transient dynamics (Hast-
ings et al. 2018), expressed as shifts between alternative
stable states. Such complex population dynamics may
result from high dimensionality in the underlying eco-
logical interactions in combination with strong exoge-
nous environmental drivers (Hastings et al. 2018).
Further complications are expected as ecosystems are
increasingly subjected to novel climates and food web
interactions (Ims et al. 2008). Many harvested popula-
tions have been declining in recent decades (Free et al.
2019, Fuglei et al. 2019) and developing predictive mod-
els is therefore a more challenging and pressing task
than ever.

Case study

The Willow Ptarmigan (Lagopus lagopus) is a spe-
cies known to have complex dynamics. The Willow
Ptarmigan has sparked fascination and debate among
hunters, managers, and scientists for more than a cen-
tury (Nansen 1915, Elton 1924, Elton and Nicholson
1942, Moss and Watson 2001), likely due in part to
their high-amplitude population cycles (Krebs et al.
2001, Moss and Watson 2001). However, transient
dynamics (Hastings et al. 2018), expressed as shifts in
cycle period and amplitude, alternation between cyclic
and non-cyclic dynamics, or changes in average popu-
lation density, is also pervasive in most Ptarmigan
populations (Moss and Watson 2001). With its cir-
cumpolar distribution in mainly sub-Arctic and low-
Arctic biomes, the Willow Ptarmigan is also one of
the world’s most abundant and popular small game
species (Potapov and Sale 2013).
Like many other Alpine and Arctic bird species in

Europe (Lehikoinen et al. 2014, Lehikoinen et al.
2019), Ptarmigan populations have recently been
declining (Fuglei et al. 2019). In Norway, both Rock
(Lagopus muta) and Willow Ptarmigan were placed
on the Norwegian Red List in 2015 as “near threat-
ened” (Henriksen and Hilmo 2015). While climate
change has been proposed as the ultimate cause of
this decline (Kausrud et al. 2008), the ecological
mechanisms involved and consequently how manage-
ment should respond, remain unresolved both for
Ptarmigan and most other Arctic-Alpine bird species
that currently are declining (Lehikoinen et al. 2019).
The Willow Ptarmigan is preyed upon by different

predator guilds and is affected by other herbivores in
the ecosystem, some that have recently experienced
changed dynamics (see Henden et al. 2017 for an
overview). Moreover, several Ptarmigan life cycle
stages are thought to be sensitive to climate (Erikstad
and Spidsø 1982, Erikstad and Andersen 1983, Wil-
son and Martin 2012, Henden et al. 2017). Because
of the potential multitude of climatic drivers and bio-
tic mechanisms that may be involved, an ecosystem-
based approach to data capture, modeling, and fore-
casting is warranted (Ims and Yoccoz 2017).
We develop a dynamic state-space model of Willow

Ptarmigan population dynamics tailored to a spatially
extensive population monitoring data set, spanning
17 yr and covering the largest management area for
Ptarmigan in Norway. Different tools and approaches
exist to facilitate model use by management (Gregory
et al. 2012, Scheele et al. 2018, Schwartz et al. 2018).
However, involvement of end users at the development
and research stage, as well as in ongoing engagement
and communication, are considered important (Reiter
et al. 2018, Reiter et al. 2019). We used a Strategic Fore-
sight Protocol (Cook et al. 2014a, Ims and Yoccoz 2017)
to incorporate the knowledge, views and needs of major
stakeholders in joint decisions on what should be the
structure and purpose of the model.

MATERIAL AND METHODS

Target system

The Finnmark Estate (~45,000 km2) is the largest
game management unit for Willow Ptarmigan in Nor-
way. The estate spans sub- and low-Arctic bioclimatic
zones (Walker et al. 2005), with steep gradients from the
western part, which is relatively mild and wet, to the
eastern costal and southern inland parts, which are rela-
tively colder and drier (Hanssen-Bauer 1999). Western
Finnmark is topographically most diverse with large
islands, steep mountain ranges, deep valleys and fjords
(Appendix S1: Fig. S2). The eastern part also contains
fjords and large peninsulas, but the relief is gentler. The
south-central inland part is topographically the most
homogenous with moderately sloped hills and plateaus.
Good Willow Ptarmigan habitats. i.e., open sub-alpine/
sub-Arctic birch forest and low sub-Arctic/low-Arctic
shrub tundra, are well represented across Finnmark
(Pedersen et al. 2012), although they are most frag-
mented in the western part and more continuous in the
south-central part.
One major landowner (The Finnmark Estate; FeFo) is

responsible for both the management (i.e., hunting regu-
lations) and monitoring (line-transect surveys) of the
Willow Ptarmigan in Finnmark. The most extensive
land-use in Finnmark is, however, reindeer husbandry,
which has profound effects on structure and dynamics of
the food web (Ims et al. 2007, Ims and Henden 2012,
Henden et al. 2014).
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Strategic foresight protocol (SFP)

Stakeholders included in the SFP were the major land-
owner (FeFo), representatives from the hunters associa-
tion, governmental management authorities, and
conservation bodies (Appendix S1: Section S1). A first
heuristic step in the process was to decide on the pur-
pose. The purpose was primarily to develop a data-dri-
ven model that could explain past dynamics (i.e.,
provide explanatory predictions). Later in the process,
the stakeholders also expressed a need for using the
model for providing near-term forecasts (anticipatory
predictions). The key data source stemmed from FeFo’s
spatially extensive line-transect survey of Willow Ptarmi-
gan across Finnmark.
The opinions of the stakeholder group constituted an

integral part of the iterative process of model develop-
ment (Appendix S1: Section S1: Fig. S1). In this process,
the model was updated with predictors to potentially
explain both short-term dynamics and more long-term
negative trends, as well as pose future threats to Ptarmi-
gan populations (Fig. 2a). Many stakeholders are well
acquainted with previous research on Willow Ptarmigan
from Scandinavia. Hence, several of the proposed pre-
dictors could also have been included on a purely scien-
tific basis. Stakeholders decided that the modeling
should be based on a food web approach because of the
complexity of the suggested impacts of different drivers
on Willow Ptarmigan (Henden et al. 2017, Ims and Yoc-
coz 2017). A conceptual food web model was built to
highlight biotic interactions suspected to affect both
short-term population dynamics and long-term trends.
Predation on Ptarmigan was considered potentially very
important and thought to be driven indirectly by two
links involving other herbivores in the food web. One
link is due to the cyclic population dynamics of small
rodents driving a synchronized alternative prey mecha-
nism (Steen et al. 1988, Ims et al. 2013b). The second
link is due to increasing amount of reindeer carcasses
subsidizing a guild of generalist predators (Henden et al.
2014). Impact of a recent large-scale geometrid moth
outbreak, thought to negatively affect all browsing her-
bivores (Vindstad et al. 2019) was also included among
the biotic predictors. Among abiotic factors, we included
the potential effect of severe weather conditions (temper-
ature and precipitation) around hatching, previously
shown to be important for Ptarmigan chick survival
(Erikstad and Spidsø 1982, Erikstad and Andersen
1983). Moreover, we included the potential negative
effect of late onset of winter, due to the camouflage-mis-
match effect found for other species that shift to a white
plumage in the autumn (Zimova et al. 2016). Finally, we
included terms for density dependence and effect of har-
vest on Ptarmigan population growth (Pedersen et al.
2004). Fig. 1 provides an overview of the annual life
cycle of Willow Ptarmigan together with information on
when the different drivers have been recorded. Because
of a lack of data on some intermediate components of

indirect links in the conceptual model (Fig. 2a, e.g., gen-
eralist predators in the reindeer carcass–predators–
Ptarmigan path), some of the indirect effects are mod-
eled as direct effects in the statistical model (Fig. 2b).
However, these effects (e.g., carcass abundance) are
interpreted and referred to according to the expectation
from the conceptual indirect effect in the conceptual
model (Fig. 2a).
The spatial scale of the model was also discussed in

the SFP process. FeFo operates with an eastern, western,
and interior Ptarmigan management area (Appendix S1:
Fig. S2) based on the contrasts in climate and topogra-
phy described above (Target system), and their knowl-
edge about gross spatial differences in Willow Ptarmigan
dynamics across Finnmark. Hence, it was decided to
derive model predictions at this scale, but also to con-
sider higher spatial resolution to the extent that data
sources, model specifications, and technical aspects of
analyses allowed.

Data sources and variables

Ptarmigan data for modeling population growth
rates (response variable) were obtained from transect
lines surveyed yearly between 5 and 20 August by
trained personnel with pointing dogs according to a
distance sampling protocol (Buckland et al. 2001).
From 2000 to 2016, a total of 315 lines were surveyed
(Appendix S1: Fig. S2). However, the number sur-
veyed ranged from 67 to 229 lines (122 � 54, mean
� SD) between years. A large part of this variation is
due to an intensive study on the effect of hunting
conducted in 2008–2010, when extra lines where
included in the interior and western part of Finnmark
(E. J. Asbjørnsen, personal communication). As vegeta-
tion structure is likely to influence detection probabil-
ity, we extracted vegetation data by using a vegetation
map for Norway based on Landsat TM/ETM + data
(Johansen 2009). From this digital map, we estimated
the proportion of vegetation classes reflecting forest
and erect woody vegetation within the sampled area
(sampled area [km2] = length [km] 9 2width [km]) of
each line transect. This proportion entered the model-
ing of the detection probability.
We now provide a brief overview of the different pre-

dictor variables. Detailed descriptions of the different
predictor variables can be found in the Appendix S1
(Section S2). Generally, we strove to obtain as high a
spatial resolution of the predictor variables as the under-
lying data allowed.
Harvest statistics for the entire period were available

for each municipality that contained transect lines. For
the harvest predictor we used the number of shot
Ptarmigan per municipality divided by the areas of the
municipality since the different municipalities vary
greatly in size. Hence, transect lines within the same
municipality were given the same value of the predictor.
Note that the scale of the harvest predictor (number of
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Ptarmigan harvested/km2) corresponds to the scale of
the response variable (change in the Ptarmigan density/
km2).
The two predictors linking Ptarmigans indirectly to

predators (Fig. 2a) have different spatial scales. The spa-
tial resolution of the rodent data is at the scale of the
three main regions of Finnmark (western, interior, and
eastern), while for reindeer carrion the scale is the entire
county of Finnmark. Annual rodent density indices from
each of the three regions were obtained from two ongo-
ing monitoring programs (Yoccoz and Ims 2004, Ims
et al. 2011), with constant effort across years and areas.

We used the number of small rodents trapped in stan-
dardized programs conducted in each of the three
regions as the predictor. Annual counts of reindeer car-
casses were retrieved from a national database at the
scale of Finnmark (database available online).5 We used
the sum of the number of reindeer found dead across
municipalities in Finnmark during winter (January–
June) every year as an index of the carcass abundance.
Moth outbreak intensity was estimated using a cumu-

lative defoliation score based on NDVI data from

FIG. 1. (a) Annual life cycle of Willow Ptarmigan in Finnmark, denoting the breeding/nesting, egg, chick, and fledgling and dis-
persal phases. (b) Annual life cycle of data collection for the different drivers included in the model. Note that, while hunting may
proceed well into late winter, the majority of hunting is performed in the autumn.

5www.rovbase.no
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MODIS v6 (Jepsen et al. 2009). The cumulative defolia-
tion score estimates the degree to which the annual peak
plant productivity in an area is lower than the maximum
across the time period 2000–2017. We used the mean
cumulative defoliation score for each line-transect survey
area, including a 6-km buffer zone, as a measure of local
outbreak intensity. Larger negative values of the cumula-
tive defoliation score denote more intense moth out-
breaks and hence increased negative impacts on Willow
Ptarmigan habitats.
Climate-related predictors were all quantified as the

mean at the scale of the line-transect survey area using
interpolated gridded data (1-km2 pixel size) from the
Norwegian meteorological institute (MET Norway; see
Lussana et al. 2016). Mean temperature and max precip-
itation during the first week of July were used as predic-
tors for the conditions affecting chick survival. The

seasonality predictor (onset of winter), related to the
camouflage-mismatch hypothesis, was obtained from
remote sensing data (Appendix S1: Section S2.3).

Statistical model

To assess the effect of different predictors of Willow
Ptarmigan growth rate, we used a modified version of
the Hierarchical Distance Sampling (HDS) model from
K�ery and Royle (2016). This model consists of a detec-
tion model, which estimates an average detection proba-
bility based on the observed distances from each
transect line, and a process model, which models the
spatial-temporal variation in population density as a
function of a set of predictors. The process model con-
sists of a sub-model for the first year (i.e., initial density)
and a Gompertz population dynamics model for the

FIG. 2. (a) Conceptual model denoting the main mechanism and drivers of Willow Ptarmigan dynamics coming out from the
Foresight process. Solid lines denote direct effects, while stippled lines denote indirect effects of different drivers on Ptarmigan pop-
ulation growth and density. Boxes with gray perimeter lines denote predictor and response data included in the model. (b) Concep-
tual model denoting the main mechanism and drivers modeled in the state-space model. Values with red perimeter lines denote
estimated coefficients with 95% credible intervals of specific paths of the conceptual model. Note that as we used an inverse measure
of moth outbreak intensity, the model estimate represents a negative effect. Note also that the moth effect shown is the residual
effect, which mostly represents a temporal effect.
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consecutive years. All covariates (except year) were
scaled (over all locations and time points) to mean = 0
and SD = 1 to ease convergence and interpretation of
effect sizes. Note that since small rodent data where
acquired using different sampling methods, the data
from different regions were scaled separately. The tem-
perature, precipitation, start of winter, and moth out-
break intensity data were all split into three components
in the analyses: a temporal component that captured the
overall average between-year variation, a spatial compo-
nent that captured the overall average between-sites vari-
ation, and a residual component that represented the
interaction between the temporal and spatial compo-
nents (Oedekoven et al. 2017). Consequently, the three
management-area-specific intercepts denote the growth
rate at average values of the covariates. Our models were
fitted using Markov Chain Monte Carlo (MCMC)
methods as implemented in JAGS (Plummer 2003). A
detailed description of the state-space model as well as
the JAGS code is given in Appendix S1 (Section S2.5)
and Data S1.

Near-term forecasting

According to the stakeholders’ desire to obtain antici-
patory predictions (i.e., forecasts), we used the full food
web model to forecast a given year’s survey counts (Ps)
by using the estimated model coefficients based on data
sources from previous years and predictors available in
early summer the same year. In order to see to what
extent the forecasts improved with more years of data,
we ran the model with t = 10 to t = 16 yr of prior data.
We then compared the predicted (Ps) and observed (Os)
survey counts by calculating the symmetric mean abso-
lute percentage error (sMAPE; Makridakis 1993, Makri-
dakis et al. 2018).
In order to assess the contribution of measurement

error to our models’ predictive ability, we calculated the
potential “theoretical” minimum prediction error based
on a “perfect” Poisson process model (see Appendix S1:
Section S2.6, for details and Data S1 for the R code).
We assessed the contribution of a potential hunting ban
as a management action, by comparing predictions of
observed counts of the full model (hereafter FoodWeb
model) with and without harvest for 2016.
Finally, we assessed the importance of the food web

approach by comparing predictive ability of the Food-
Web model with a model containing only Ptarmigan
data (including direct density dependence [DD] and
harvest, hereafter called PtarmiganOnly) and a model
containing Ptarmigan and local climate data (DD,
harvest, temperature, precipitation and time of winter,
hereafter called PtarmiganClimate). We did this to
assess the value of collecting additional extensive and
potentially costly food web and local climate data for
the management of Ptarmigan. To assess whether pre-
dictive ability was different between management
regions, we also decomposed predictive ability of the

three alternative models into management-area-specific
predictive ability.

RESULTS

The SFP process produced two major purposes (i.e.,
deliveries) of the modeling: (1) explanatory predictions
to yield a more comprehensive (i.e., ecosystem-based)
understanding of the main mechanisms and drivers of
Willow Ptarmigan dynamics as a basis for devising effi-
cient monitoring and management strategies and (2)
anticipatory predictions to inform stakeholders about
the near future state of the population as a basis for
adaptive annual management decisions with respect to
the Ptarmigan hunt.

Explanatory predictions: Drivers of Ptarmigan population
dynamics

The coefficients of the temporal predictors of the full
FoodWeb model are given in Fig. 2b (see Appendix S1:
Section S3, for more details about less central covariates
and parameters).
Most of the temporal climatic predictors significantly

influenced Ptarmigan population growth. Increased pre-
cipitation around the time of hatching (i.e., first week of
July) had a negative effect, while the effect of tempera-
ture at the same time had a positive, but non-significant
effect. Consistent with the expectation from the camou-
flage-mismatch hypothesis, there was reduced popula-
tion growth associated with a later start of winter.
All the predictors reflecting food web interactions

were significant. Both a high reindeer carcass abundance
and a high rodent abundance the same year had a posi-
tive effect on Ptarmigan population growth, while high
rodent abundance the previous year had a negative
effect. Intensive moth outbreak had a strong negative
effect on Ptarmigan population growth.
As expected, harvest had a negative effect on popula-

tion growth, albeit with a small estimated coefficient rel-
ative to the coefficients of the food web predictors and
the negative density dependence in Ptarmigan popula-
tion growth. There was a small negative temporal trend
in population growth not accounted for by the covari-
ates in the model.
Annual density estimates were highest in the western

part of Finnmark (except for initial density), while the
density estimates for inner and eastern part were lower
(Fig. 3). There was large variation among transects
within each region (Appendix S1: Section S3), and sev-
eral of the spatial predictors contributed significantly to
this variation (see Appendix S1: Section S3, for estimates
of the spatial predictors). Despite the significant spatial
and residual effects (interaction between spatial and
temporal predictors), there was a high degree of syn-
chrony in Willow Ptarmigan population dynamics
between the three parts of Finnmark (Fig. 3). As indi-
cated by the coefficients of the direct and delayed rodent
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predictors (Fig. 2b), there was also some synchrony
between Ptarmigan and rodents (Appendix S1: Fig. S5),
in particular during the peaks and crashes in 2011–2012
and 2015–2016. The link between Ptarmigan and
rodents was not at all clear during 2002–2008, when
there was a strong and steady decline in the Ptarmigan
populations across Finnmark. This period coincided
with an extensive moth outbreak in Finnmark (Jepsen
et al. 2013).
Regarding the detection part of the state-space model,

average transect level detection probability varied little
between transect lines and was generally low
(mean = 0.171, SD = 0.019, range = [0.134, 0.195]). As
expected, there was a negative relationship between
detection probability and the proportion of erect woody
vegetation in the surveyed area of the transect lines.

Anticipatory predictions: Near-term forecasting

Short-term predictive performance of the FoodWeb
model generally increased (i.e., improved iterative short-
term predictive performance) with increasing length of
the time series used to parameterize the model (Fig. 4a).
This trend was also apparent for the two alternative
models. Moreover, predictive performance was on aver-
age higher (i.e., lower prediction error) for the FoodWeb
model compared to both the PtarmiganOnly and
PtarmiganClimate models, even though there were some
exceptions in single years (Fig. 4a). After 2014, the pre-
diction error of most candidate models was only 10–
25% greater than the theoretical minimum prediction
error. While all candidate models predicted next years
observed density fairly well (Fig. 4b), the predictions
from the FoodWeb model were on average as close or
closer to the observed (compared to the two other mod-
els). There was, however, one big exception (year 2014),
in which both the FoodWeb and PtarmiganClimate
models performed poorly. This poor performance is
most likely due to extreme values of three predictors

(Start of winter 2013, Carcass 2014, and Rodents 2013
and 2014) leading to greatly overestimated predicted
densities in 2014, compared to the observed data.
The contribution of harvest to predictive performance

of the FoodWeb model was marginal, accounting for
only a 5% (~1.2 individuals/km2) difference in observed
density in 2016 (with harvest 22.56, without harvest
23.77).

DISCUSSION

In an era of rapid and extensive changes in ecosystems
worldwide, ecology is increasingly challenged by policy-
makers, managers, and everyday citizens with questions
about the future state of species and ecosystems. We can-
not rely on our understanding of dynamics based on his-
toric variability alone for forecasting future ecosystem
change (Groffman et al. 2006, Jackson and Hobbs
2009), as the current pace of environmental change
results in increasing novelty of ecological drivers. Hence,
decision-makers will need data and predictions, at a time
horizon relevant for environmental decision-making, to
support and adapt effective mitigating management
decisions for the benefit of both wildlife and users. With-
out adequate models to foresee future impacts of envi-
ronmental change and guide decisions, we may risk that
changes accumulate without a proper understanding of
their effects (Halpern and Fujita 2013). Exploring poten-
tial impacts and predicting short-term future states, such
as in our case study of game populations in a rapidly
changing Arctic, provides the basis for collaborative
learning, refined data collection, monitoring designs,
and management priorities. Coupled with a quantitative
objective function, this approach is a required step for
building adaptive management programs in a time of
rapid and uncertain change (Nichols et al. 2011, Wil-
liams and Brown 2016).

Strategic foresight protocol (SFP)

Although it has for decades been advocated for the
great value of involving stakeholders in the ecological
research process has been advocated for decades, a core
ingredient in adaptive management (Walters and Holling
1990) and monitoring (Lindenmayer and Likens 2010),
there are not many examples of applying structured pro-
tocols for doing so. Here we adopted the Strategic Fore-
sight Protocol (SFP) that has been proposed for tackling
rapidly emerging problems in applied ecology (Cook
et al. 2014a). The SFP is very similar to other stake-
holder-oriented processes, such as group model building
(Otto and Struben 2004), collaborative modeling for
decision support (Langsdale et al. 2013), participatory
modeling (Beall and Zeoli 2008), and mediated modeling
(Van den Belt 2004), although they use slightly different
methods for structured involvement of stakeholders. In
the case of the recently red-listed, but still harvested,
population of Willow Ptarmigan in Northern Norway,

FIG. 3. Willow Ptarmigan population dynamics given as the
average model-based density estimates from the FoodWeb
model for each of the three parts of Finnmark (east, west, and
the interior part).
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FIG. 4. Prediction error and near-term prediction of line-transect survey counts at the scale of Finnmark. (a) Show iterative per-
cent (percent/100) prediction error (sMAPE) for the three candidate models. (b) Show the three candidate models’ ability to predict
next year’s mean observed density (counts/sampling area). Note (inset) the poor ability of the FoodWeb and the PtarmiganClimate
model to predict observed density in 2014. Arrows point to the model that each year predicts next years observed density best.
Equivalent graphs for each of the three parts of Finnmark separately (west, interior, and east) is provided in Appendix S1: Fig. S4.1
and S4.2.
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we experienced that the SFP constituted a highly func-
tioning framework for involving stakeholders in model-
ing efforts for the purpose of identifying drivers of past
and current dynamics as well as for deriving prediction
of the near future state of the population. Our positive
experience may have been aided by the traditionally high
interest in Ptarmigan as a game species in Norway and
the enhanced attention created by the recent red-listing.
The SFP also likely benefitted from stakeholders that
were well acquainted with previous research on Willow
Ptarmigan from Scandinavia.
Implementing the SFP was more time intensive

(>3.5 yr) than we expected, even for the first four of six
stages of the SFP (Appendix S1: Fig. S1), as they
required the commitment of much time from both man-
agers, stakeholders, and researchers. The SFP can
appear as a rigid linear stage-by-stage process (Cook
et al. 2014a), where each stage is completed before mov-
ing to the next. However, we decided to adopt a more
dynamic approach whereby new views and hypotheses
could be implemented in the modeling at every meeting
in the stakeholder group. While the process has not yet
reached the stage of decision-making on management
actions, consensus has been reached about what the
likely drivers of Ptarmigan dynamics are, which data sets
are to be used, and how models should be used to
explore the near future. Several positive and useful expe-
riences have come from the collaborative process. Early
involvement of all major stakeholders was decisive in
providing legitimacy and trust in the objectives of the
process and thereby for the focus and progress of the
work. An informal kick-off meeting, governed by an
external moderator, enabled stakeholders the opportu-
nity to voice their needs, views, and opinions, as well as
take active part in setting the scope of the work, dis-
cussing lack of data, data needs, and suitability of avail-
able data sources. This increased the understanding of
the basis for different stakeholders’ viewpoints and
counteracted potential conflicts (Redpath et al. 2015).
The adopted flexibility in the process, i.e., flexible in the
sense that we moved back and forth between stages 2, 3,
and 4 of the SFP (see Appendix S1: Section S1), reduced
the potential for missed opportunities, and increased the
likelihood that stakeholders’ views were incorporated as
collaborative learning evolved. In summary, the SFP has
increased the trust and understanding of different view-
points among stakeholders as well as between stakehold-
ers and scientists, and thereby increased the likelihood
for a positive future outcome with regard to manage-
ment decisions and actions.

Explanatory predictions: Drivers of Ptarmigan population
dynamics

Our model highlights several environmental drivers,
acting directly and indirectly, that are important in
explaining Ptarmigan population growth and thereby
the recent decline of Norwegian Ptarmigan populations

(i.e., later winter start, increased precipitation around
hatching, intensified moth outbreaks, and potentially a
weaker link to small rodent peak years). Some of the
effects have been documented in previous studies based
on other data sources and time periods. Those include
the classic link between Ptarmigan dynamics and the
population cycles of sympatric rodents (Myrberget 1984,
Steen et al. 1988), the negative impact of severe weather
conditions for early chick survival (Erikstad and Spidsø
1982, Erikstad and Andersen 1983) and the weak com-
pensation of harvest despite strong density-dependent
growth (Pedersen et al. 2004, Sandercock et al. 2011).
However, several of the food web effects documented
here have not been previously documented for Ptarmi-
gan, such as the indirect effects of carrion abundance,
moth outbreak intensity, and the potential effect of
increased camouflage-mismatch on Ptarmigan popula-
tion growth.
It has been argued that increased abundance of car-

rion could lead to a resource-driven mesopredator
release (Killengreen et al. 2011), negatively impacting
tundra-breeding birds (Henden et al. 2014, Henden et al.
2017). A recent study on Lesser White-fronted Goose in
Finnmark (Marolla et al. 2019) found a negative impact
of carrion abundance on Goose reproductive perfor-
mance. Hence, the positive effect of carrion abundance
on Willow Ptarmigan growth found in this study was
unexpected. Future studies should aim to uncover
whether and how an increase in carrion abundance may
affect Willow Ptarmigan growth rate positively. The tim-
ing of a resource pulse relative to the timing of preda-
tion-sensitive life-stages of alternative prey might tip
such relationships from apparent competition to appar-
ent mutualism (Abrams and Matsuda 1996, 2004).
The duration and severity of outbreaks by geometrid

moths in northern Fennoscandian mountain birch for-
ests have intensified due to climate warming (Jepsen
et al. 2013). The most recent moth outbreak in Finn-
mark (2002–2008) resulted in large-scale defoliation of
birch trees and shrubs as well as a region-wide state shift
of the understory vegetation from shrubs to grass (Jep-
sen et al. 2013). Interestingly, Jepsen et al. (2013) showed
that these effects cascaded to affect the abundance of
both rodents and ungulates. Since Willow Ptarmigan
diet consists mainly of shrubs (Salix and Vaccinium spp.)
(Weeden 1969, Williams et al. 1980), the large-scale defo-
liation of these preferred forage plants has likely resulted
in less forage for Ptarmigan in areas of intense out-
breaks. Insect outbreaks in northern-boreal forests are
expected to intensify due to climate warming (Jepsen
et al. 2013) and may even extend into the shrub tundra
(Karlsen et al. 2013). Therefore, this may constitute a
future threat to low- and sub-Arctic Ptarmigan popula-
tions.
One of the key manifestations of climate change in

Arctic and alpine regions is the increasingly later onset
of snow cover in autumn and an advanced spring with
earlier snowmelt (Ims et al. 2013a, Derksen et al. 2017).
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For Ptarmigan, this implies longer periods with white
plumage against dark bare ground, and thereby likely
increased predation risk as has been documented for
boreal hares (Zimova et al. 2016). Considering that pre-
dation constitutes the main form of juvenile and adult
mortality in most Ptarmigan populations (Smith and
Willebrand 1999, Martin 2001, Munkebye et al. 2003)
and the autumn season is when Ptarmigan mortality is
the highest (Smith and Willebrand 1999), the impact of
a mismatch between molt and onset of winter snow
cover can be high. The strong negative effect of late
onset of winter on population growth is in accordance
with the proposed mechanism of increased predation in
years of larger mismatch between plumage color and
snow cover in autumn (Henden et al. 2017). Hence, in
the absence of an adaptive response, such mortality costs
could result in strong population-level declines of
Ptarmigan populations as snow cover in autumn is pre-
dicted to be further delayed due to climate change
(Derksen et al. 2017).
Finally, it should be noted that Ptarmigan (both Rock

Ptarmigan and Willow Ptarmigan) are presently declin-
ing together with a host of other ground-nesting bird
species in alpine and Arctic ecosystems (Lehikoinen
et al. 2014, Lehikoinen et al. 2019). This trend points
toward drivers of change that are not exclusively linked
to species-specific traits or management, but rather to
general changes in the ecosystem such a climate-warm-
ing-induced increased primary productivity (greening)
and increased nest predation rates (Kubelka et al. 2018,
Ims et al. 2019). This may also explain the declining
trend in the Willow Ptarmigan population that was not
accounted for by any of the predictors included in our
model.

Anticipatory predictions: Near-term forecasting

One of the main needs arising from the foresight pro-
cess was to assess the performance of models in making
anticipatory predictions (Bradford et al. 2018, White
et al. 2019); i.e., based on the desire of managers and
hunters to have near-term forecast of Ptarmigan dynam-
ics prior to the line transect census in late summer. Pre-
dictive performance was fairly good compared to what
can be theoretically expected given a “perfect” Poisson
model, even though predictions in some years were not
as good as might be desired (cf. Nichols et al. 2015).
There was no clear difference among the different candi-
date models with regard to predicting next year’s survey
counts or improving iterative predictive performance,
although the FoodWeb model performed better in most
years. Hence, there is currently no strong support for
including biotic interactions and thereby embarking on
large-scale sampling of food web interactions to aid pre-
diction and management decisions. However, this is not
unexpected, given the relatively short time series and low
quality and/or resolution of those variables that repre-
sented some of the indirect food web interactions such

as carcass dynamics, moth outbreak intensity, and small
rodent dynamics. However, it may also reflect that sim-
pler models might be preferred to complex models for
making decisions (Gerber and Kendall 2018). With more
and better data from coming years, our expectation is
that confidence will rise in models that perform well and
decrease in those that perform poorly. This process will
allow us to attain more precise and useful predictions
with respect to which drivers of population dynamics are
most important (Nichols et al. 2015).
If ecology is to become more relevant for society, we

need to be willing to contribute to anticipating and miti-
gating expected environmental changes, i.e., ecology
needs to be more predictive (Evans et al. 2012, Mouquet
et al. 2015). Hence, there has recently been an increasing
focus on conducting near-term ecological forecasts that
operate on timescales relevant to decision-makers (cf.
Dietze et al. 2018; Ecological Forecasting Initiative
[EFI], available online).6 To our knowledge, we are
among the first (M€antyniemi et al. 2013) to adopt this
approach to harvested species while simultaneously
addressing the effect of alternative model complexity on
short-term forecast ability. In the long run, we think a
food web approach to modeling will be most suited for
species with complex population dynamics such as many
small game populations. This is because more mechanis-
tic models will better accommodate shifting dynamical
regimes due to ecological interactions that change over
time than simpler phenomenological models (Urban
et al. 2016).

Scopes for improved predictions

Although the overall outcome of the SFP has been
satisfactory with respect to its purpose, there remains
scope for improving on predictive ability. For example,
there are limitations regarding what time series of annual
population density estimates can explain in terms of
mechanisms affecting population growth rates. Demo-
graphic data can provide better insights about such
mechanisms.
While few studies on harvested species have been able

to assess the effect of environmental change by means of
demographic models, such approaches will likely provide
a richer understanding of the complex effects of climate
change (Jenouvrier 2013). Indeed, it has been argued
that such understanding is key for the development of
more mechanistic models to promote robust predictions
(Evans et al. 2012, Urban et al. 2016). However, acquir-
ing individual-based demographic data from Arctic-
alpine Ptarmigan populations are logistically and
methodologically challenging, and hardly achievable on
the temporal and spatial scales relevant for manage-
ment. However, there is scope for future studies that are
able to combine intensive demographic studies

6 http://ecoforecast.org/
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conducted on a relatively small scale with survey-type
population monitoring data acquired on a large scale.
Another scope for improving predictions is in data

quality. More transect lines and a spatially extended
effort to survey Ptarmigan populations could yield more
spatially resolved predictions, for instance, at the scale of
local municipalities in a management region. Also,
higher precision could be gained by better spatial match-
ing of response and predictor variables. In particular,
some of the predictor variables that entered our state-
space model were spatially interpolated proxies with
unknown measurement errors. Increasing sampling
efforts to reduce the extent of interpolation and conduct-
ing trials to assess measurement errors would likely con-
tribute improved predictive ability.

CONCLUSION

We used a Strategic Foresight Protocol (Cook et al.
2014a, Schwartz et al. 2018), that included several inter-
est groups, to integrate the views and needs of stakehold-
ers. Importantly, drivers that proved to be influential in
the modeling were taken into account because of stake-
holder involvement, drivers that would not have been
included in a purely researcher-driven process. Interest-
ingly, some of these drivers were related to outcomes of
recent climate change (e.g., novel pest insect outbreaks
and Ptarmigan plumage color mismatch) observed by
local stakeholders. Hence, the SFP facilitated the inclu-
sion of recently acquired local knowledge about rapid
environmental change. The incentive for conducting
near-term forecasting was due to the management’s need
to have time to prepare, organize, and inform about
upcoming harvest regulations. Thus, the ability of the
dynamical state-space model to predict population
increases and decreases will provide the landowner extra
time to consider appropriate harvest regulations as well
as early communication of hunting expectations for both
local and visiting hunters. The feedback from the land-
owner indicated that such predictions would be desired
and valuable. In general, the modeling approach and
access to extensive population and ecosystem data, offer
a suitable framework for implementing the views of
stakeholders as alternative hypotheses that can be con-
fronted with data. Moreover, the approach forms a
structured basis for making short-term predictions that
can be iteratively updated and improved as more and
new data become available.
Our collaborative modeling approach widens the

scope for potential mitigating actions, by highlighting
several novel and manageable drivers of Ptarmigan pop-
ulation dynamics and changes. While our results indicate
that protection against hunting or reduced hunting quo-
tas would have a positive effect, it appears that the cur-
rent harvest quotas are not among the key drivers of
Ptarmigan population dynamics in the management
region and time period considered in the present study.
One should be aware that the effect of harvest could to

some extent be confounded with the strong negative
effect of winter onset, as late snowfall may lead to a
longer hunting season compared with years of early
snowfall. However, our results suggest that other man-
agement actions could be more effective, such as forest
management after moth outbreaks. Given that multiple
drivers impact the population dynamics, potential man-
agement actions are diverse and complicated by the
uncertainty in how the drivers act in concert, especially
if acted upon by management. Considerations are fur-
ther complicated by uncertainty about whether the pop-
ulation is in a transient state or at its natural attractor
(Hastings et al. 2018), that itself may be moving due to
climate change. Furthermore, the community and conti-
nent-wide decline in ground-nesting birds (Lehikoinen
et al. 2014, Lehikoinen et al. 2019) also urge for consid-
eration of general drivers of change in alpine-Arctic
ecosystems (Ims et al. 2019).
Our experience supports the growing evidence of the

potential for SFP to aid ecological decision-making
(Cook et al. 2014a, b, Schwartz et al. 2018). However,
our experience also emphasizes the need for appropriate
time and funding in order to be successful, as well as
long-term ongoing involvement from all involved (Reiter
et al. 2018). It is difficult to assess the potential benefit
of SFP in leading to positive biodiversity change in the
long term (Young et al. 2013). Our experience is that an
open and flexible process, where all stakeholders’ views
and opinions are included and treated as “alternative”
hypotheses confronted with data, will promote social
learning, trust and legitimacy of conservation programs
(Young et al. 2013, Sterling et al. 2017). This will
increase the likelihood of positive future biodiversity
outcomes, which is especially important in light of the
current and rapid changes to the natural world (Young
et al. 2013, Sterling et al. 2017).
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