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ARTICLE INFO ABSTRACT

Keywords: An interlaboratory comparison exercise was conducted to assess the consistency of microplastic quantification
Microplastics across several laboratories. The test samples were prepared by mixing one liter seawater free of plastics, mi-
Quantification croplastics made from polypropylene, high- and low-density polyethylene, and artificial particles in two plastic

Standardized protocol

bottles, and analyzed concurrently in 12 experienced laboratories around the world. The minimum requirements

to quantify microplastics were examined by comparing actual numbers of microplastics in these sample bottles
with numbers measured in each laboratory. The uncertainty was due to pervasive errors derived from in-
accuracies in measuring sizes and/or misidentification of microplastics, including both false recognition and
overlooking. The size distribution of microplastics should be smoothed using a running mean with a length
of > 0.5mm to reduce uncertainty to less than = 20%. The number of microplastics < 1 mm was under-
estimated by 20% even when using the best practice for measuring microplastics in laboratories.

1. Introduction Masura et al., 2015; Michida et al., 2019). However, these procedures
have not yet been optimized and harmonized sufficiently because mi-

Recently, protocols for field surveys and subsequent analyses of croplastics are a novel terrestrial and aquatic properties that we have to
microplastic abundance have been developed by several organizations monitor. A critical step in the processing of microplastic samples is the

(e.g., Desforges et al., 2014; Galgani et al., 2013; Cézar et al., 2014; identification of plastic debris from plankton and other organic/

* Corresponding author.
E-mail address: aisobe@riam.kyushu-u.ac.jp (A. Isobe).

https://doi.org/10.1016/j.marpolbul.2019.07.033

Received 19 March 2019; Received in revised form 13 July 2019; Accepted 13 July 2019

Available online 24 July 2019

0025-326X/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).



https://core.ac.uk/display/337282641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/0025326X
https://www.elsevier.com/locate/marpolbul
https://doi.org/10.1016/j.marpolbul.2019.07.033
https://doi.org/10.1016/j.marpolbul.2019.07.033
mailto:aisobe@riam.kyushu-u.ac.jp
https://doi.org/10.1016/j.marpolbul.2019.07.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.marpolbul.2019.07.033&domain=pdf

A. Isobe, et al.

inorganic debris. The picking of microplastics from the seawater sam-
ples may include the digestion of organic matter, density separation or
be just based on the expertise of the observer (Hidalgo-Ruz et al., 2012).
On the other hand, the verification of the plastic nature of the selected
particles is based on their surface properties (i.e. hardness, color, shape,
and hydrophobicity; Hidalgo-Ruz et al., 2012; Masura et al., 2015;
Crichton et al., 2017) or, at best, on spectrometric analyses (e.g. Fourier
transform infrared spectrometer [FTIR], Raman method, and pyrolysis)
of a sample subset especially for tiny fragments (< 100 um; Galgani
et al., 2013 or < 1 mm; Hidalgo-Ruz et al., 2012: the methods in these
early papers have not been extensively tested), due to the long time still
consuming these kind of analyses (Shim et al., 2017; Serranti et al.,
2018). Variation in sample processing prevents researchers from re-
liably comparing and synthesizing microplastic abundances. Simulta-
neously, protocols should meet the minimum requirements for reliable
microplastic analysis and should be tested and optimized between a
number of different researchers.

A research project was initiated to compare protocols for surveying
pelagic microplastics in 2017. As part of this project, the present study
involved an interlaboratory comparison (ILC) exercise to provide error
estimates for measuring microplastic abundances in the laboratory. The
present study investigated both human errors and errors that might be
caused by inappropriate choices in the procedures. Two “standard
sample bottles”, in which man-made microplastics along with natural
particles were combined to mimic field samples, were sent to each of 12
laboratories around the world. Particle counts in each 0.1-mm size class
were reported by these laboratories for comparison with the actual
numbers of man-made microplastics. The objectives of this exercise
were to provide an error estimate for the procedures adopted in each
laboratory and to find the most appropriate method for measuring
microplastic abundance in seawater samples.

2. Material and method
2.1. Preparation of standard sample bottles

Three types of man-made microplastics with maximal Feret dia-
meters (hereinafter referred to as “sizes”) ranging from 0.4mm to
5.7 mm were manufactured for this ILC exercise. First, irregularly
shaped plastic fragments with sizes longer than 1.0 mm were created
from plastic sheets (Table S1). These irregularly shaped microplastics
were created using two metallic molds in which microplastics re-
presenting those collected from offshore waters around Japan (stations
in Isobe et al., 2015) were reproduced (Fig. S1). Secondly, micro-
plastics < 1 mm were reproduced as rhombic fragments (Fig. S2) by
cutting plastic sheets (Table S1) due to the technical difficulty of
making such small pieces in a metallic mold like that used for irregu-
larly shaped fragments. Thirdly, fibrous microplastics of various lengths
(Fig. S3) were produced from plastic fibers with four different dia-
meters (Table S1). All three types of man-made microplastics measured
and number of particles for each 0.1-mm size interval were recorded. In
order to represent pelagic microplastics in the ocean, the polymer types
of man-made microplastics were polypropylene, low-density poly-
ethylene, and high-density polyethylene. They are commonly found in
pelagic studies due to their density being lower than that of seawater
(e.g., Hidalgo-Ruz et al., 2012; Cozar et al., 2014; Isobe et al., 2014;
Enders et al., 2015; Zhang et al., 2017; Shim et al., 2018; Song et al.,
2018). Furthermore, the colors of the man-made microplastics were
chosen to represent those observed in field surveys (e.g., Eriksen et al.,
2013; Lusher et al., 2014; Lusher et al., 2015; Table S1).

Two standard sample bottles were prepared for each laboratory
participating in the ILC exercise (Fig. 1). The man-made microplastics
described above were divided into two treatments with relatively small
(257 pieces) and large numbers (397 pieces) (Table S2), and were
mixed into 1-L polyethylene bottles containing seawater free of mi-
croplastics. Filtered seawater was prepared first using sands, followed
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Fig. 1. Photographs of standard seawater samples. Man-made microplastics and
natural particles (upper panel, shown in a Petri dish) were mixed into two 1-L
bottles with seawater (lower panel).

by a 10-um filter twice, and finally a 1-uym filter before filling the
sample bottles, and thereafter the absence of plastic fragments was
confirmed by both naked eyes and a stereoscope. In addition to the
man-made microplastics, artificial suspended sediments were also
added to the sample bottles. To produce the natural particles, we me-
chanically fragmented wood chips, bivalve shells, crab shells, eggshells,
and cultured zooplankton (Artemia) free of plastic fragments into si-
milar sizes as the microplastics (Fig. S4). The sizes of these natural
particles were measured using sieves with 0.5-, 1-, 2-, and 4-mm mesh
sizes. The natural particles were thereafter divided into two treatments
with relatively small (1000 pieces) and large numbers (3000 pieces) for
the two bottles (Table S3). The standard sample bottle containing small
numbers of both man-made microplastics and suspended sediments was
referred to as Sample 1, whereas the standard sample bottle containing
large numbers of man-made microplastics and suspended sediments
was referred to as Sample 2. These samples therefore represented sea-
water samples collected in sediment-poor and sediment-rich waters
respectively. The number ratios between the man-made microplastics
and suspended sediments in the Samples 1 and 2 were 30% and 13%,
respectively, which were commonly observed in the actual oceans;
Table S4 provides the weight ratios between microplastics and sus-
pended sediments collected concurrently around Japan using a neuston
net. As in the field surveys, 5% formalin was injected into 1L of sea-
water in each bottle.

2.2. Measurement of microplastic abundance in 12 laboratories

The standard sample bottles were sent to 12 laboratories, which
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Table 1
Procedures for extracting microplastics in each laboratory.
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Lab. Filtration® Chemical treatment to remove organic matter” Density separation Fractionation from seawater samples ~ Size measurement Plastic identification
A Sieving & suction —d - NE? & S" I FTIR®
B Sieving Fe(Il) & H>0, NacCl NE & S I FTIR
C Sieving - NacCl S I FTIR
D Sieving Fe(ll) & H,0, NaCl NE & S I R
E Sieving & suction - - S I FTIR
F Suction - - NE & S I -

G Sieving KOH Gravity Separation NE & S I FTIR

H  Sieving & suction C® & KOH - NE & S I -

I Sieving Fe(Il) & H,0, LM’ NE &S Micro-scope UFTIR
J Sieving - - NE & S Vv - &R
K Sieving - - S Sieving -

L Sieving H,0, NacCl NE &S Sieving -

@ See Table S5 for the detailed description.

b See Table S6 for the detailed description.

See Table S7 for the detailed description.

Not used

Corolase enzyme

Lithium metatungstate solution

& Extraction with the naked eye using tweezers
b Extraction under a stereomicroscope

! Stereomicroscope and image processing software
J Vernier caliper

¥ Fourier transform infrared spectrometer

! Raman spectrometer

c
d
e

f

adopted different procedures to analyse the samples (Table 1). The
specific names and affiliations of the researchers are not of particular
relevance and, therefore, are hereafter referred to as laboratories A-L.

First, to extract particulate matter from the seawater samples,
sieving and/or suction (vacuum filtration) were conducted following
protocols used in each laboratory (Table S5).

Second, the extracted particulate matter was treated with chemical
reagents such as hydrogen peroxide to remove organic matter, fol-
lowing the protocols outlined in Table S6. This chemical treatment was
not conducted by some laboratories (A, C, E, F, J, and K in Table 1) in
order to simplify the extraction procedure. Some laboratories that focus
on transport of pelagic microplastics in the environment may avoid
removing organic matter from seawater samples, which would exclude
microplastics inside marine organisms in seawater samples.

Third, to efficiently extract microplastics density separation was
used. Here, lightweight particles were separated from particulate
matter by floating them in relatively dense solvents (B-D, I, and L in
Table S7). In laboratory G, lightweight particles were separated using
gravity by leaving the sample in a cylinder to stand over 24 h (Table
S7).

Fourth, suspected microplastics were extracted using tweezers from
particulate matter with the naked eye or under a stereomicroscope.

Fifth, sizes (8) of microplastics were measured and sorted into
classes of 0.1 mm. Laboratories A-J met this requirement using a ste-
reomicroscope in conjunction with image processing software, such as
ImagelJ; a stereomicroscope installed on the UFTIR; and a Vernier ca-
liper. Laboratory K (L) extracted microplastics in specific size ranges by
sieving and recorded the numbers of fragments with § < 1 mm and
1 <8 <5mm( < 5mm).

Sixth, plastic materials (or polymer types) were distinguished from
non-plastic materials through spectroscopy, using FTIR, pFTIR, or
Raman method (Table 1). Some laboratories distinguished plastic ma-
terials visually based on properties such as color, luster, shape (regular
and/or straight edges), and a lack of cellular or organic structures (e.g.,
Hidalgo-Ruz et al., 2012). Laboratory J received four bottles and ex-
amined suspected microplastics with and without spectrometry for
comparison.
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3. Results

The size distribution was approximately, but not exactly, re-
produced in the 10 laboratories (A-J) where the man-made micro-
plastics were counted in 0.1-mm classes, although the numbers counted
by different laboratories were highly scattered (Fig. S5; Table S8).
Furthermore, microplastics were counted in size classes for which man-
made microplastics were absent (e.g., < 0.4 mm), probably due to
fragmentation during sample processing and inaccurate measurement
of sizes. To the best of our knowledge, it was difficult to observe any
effects of hydrogen peroxide on the generated plastic fragments, be-
cause it would react only with biological matters on the plastic surface.
In fact, the relative uncertainty evaluated as (N — Ng)/Np X 100%,
where N is a number of microplastics counted in each laboratory, and
Ny is the actual number of microplastics, varied among size classes with
a standard deviation of around + 50%, although relative uncertainty
averaged over all sizes was nearly null (Fig. 2a): note that Fig. 2a was
created using the means and actual numbers shown in the lower panels
in Fig. S5. The standard deviation was reduced to 10-20% when the
size distribution was smoothed using a running mean with a length of
0.5 (1.0) mm, as shown in Fig. 2b (c). The relative uncertainty averaged
over the entire size spectrum was underestimated by < 10% in the
smoothed size distributions.

The relative uncertainty averaged over each 1-mm interval, which
was computed to reduce fluctuations in the size distribution, clearly
shows that the number of microplastics was underestimated by > 20%,
especially for sizes smaller than 1 mm (Fig. 3a). The differences in
uncertainty between particles < 1 mm and larger sizes were statisti-
cally significant, as supported by a t-test with 99% confidence limit
(95% between 2 and 3 mm). The standard deviation for plastics < 1
mm was much larger than those for larger particle sizes. The difference
in standard deviation between particles < 1 mm and larger sizes was
statistically significant, as indicated by an F-test with 99% confidence
limit.

We next examined the relative importance of each procedure in
Table 1 for accurately measuring microplastic abundance. The identi-
fication and confirmation of plastic materials (i.e., polymer types) using
vibrational spectroscopy is especially critical for microplastics smaller
than 2 mm (Fig. 4a). The relative uncertainty averaged over each 1-mm
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Fig. 2. Size distribution of relative uncertainty (percentages of the difference of actual and measured numbers of microplastics to the actual numbers) of microplastic
numbers averaged over all laboratories. The relative uncertainties in each size range, those smoothed with a 0.5-mm running mean, and those smoothed with a 1-mm
running mean are shown in panels a, b, and c, respectively. The red solid and broken lines indicate uncertainties averaged over the entire size range and their
standard deviations, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

interval and standard deviations in this size range both differed sig-
nificantly between laboratories with (A-E, G, I, J) and without (F, H, J)
FTIRs. The numbers of microplastics smaller than 2mm were over-
estimated in the absence of FTIR analysis, probably due to false re-
cognition of tiny fragments as plastics. The standard deviation was re-
duced significantly when using FTIR (Fig. 4a and b), suggesting that
plastic materials were accurately identified by these laboratories, even
for microplastics smaller than 2 mm. In other words, plastic materials
could be identified for microplastics with sizes larger than 2 mm irre-
spective of the usage of spectrometry. A comparison only among those
laboratories using FTIR showed a statistically significant difference in
relative uncertainty between laboratories with (B, D, G, I) and without
(A, C, E, J) chemical treatment (Fig. 4c), as well as between laboratories
with (B, C, D, G, I) and without (A, E, J) density separation (Fig. 4d), for
microplastics smaller than 1 mm. The relative uncertainty was reduced
from 40% to 20% with chemical treatment and/or density separation.
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However, the present ILC exercise was not able to determine the re-
lative importance of chemical treatment and density separation, as the
laboratories conducting chemical treatment generally overlapped those
that used density separation. A comparison only among laboratories
using both FTIR and density separation suggested an insignificant dif-
ference in relative uncertainty between laboratories with (B, D, G, I)
and without (C) chemical treatment over the entire size range (Fig. 4e).
However, the number of laboratories without chemical treatment (but
with both FTIR and density separation) was only one (two standard
sample bottles), and therefore it was impossible to conclude whether
chemical treatment or density separation is more important to measure
microplastics accurately.

4. Discussion and conclusions

The size interval required for measuring microplastics in this ILC



A. Isobe, et al.

%
20 1

-
o
1
—
—

-

|

—_

o o
1 Il

s

N
o
1

relative uncertainity

(a) All laboratories

| | |
6} B w
o o o

| L 1

2 3
microplastic size

%
20 1

10 4 |
T

(b) Laboratories followiing best practice

|
-
o

|
N
o

relative uncertainity

|
w
o

|
N
o

T T T 1
2 3 4 5

microplastic size mm

o
-
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averaged only over the laboratories following the best practice (see the text) are
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exercise was 0.1 mm. At this accuracy level, the fluctuations in relative
uncertainty reached to = 50%, irrespective of size, as shown in Fig. 2a.
These erroneous measurements were unlikely to be caused by the ab-
sence of FTIR, chemical treatment, or density separation, as the un-
certainty was generally independent of these procedures for micro-
plastics larger than 1-2mm (Fig. 4). Therefore, it is reasonable to
consider that these fluctuations were partly caused by human error in
measuring the sizes of microplastics. For instance, observers using Im-
ageJ determined the maximum length of a plastic fragment visually on
a monitor display through trial and error. When the magnifying power
was 40-50 on the monitor display to use ImageJ, a length of 0.1 mm
corresponded to only around 20 pixels (or a few mm on the display),
which could be observed differently by different observers. Magnifying
power to measure particles should be 100 or higher to measurements
accuracy < 0.1 mm. To obtain a size distribution of microplastics col-
lected in the ocean, the size distribution should be smoothed using a
running mean with a length of > 0.5 mm to reduce uncertainty to less
than + 20% (Fig. 2b and c).

Accurate measurement without spectrometry is possible for micro-
plastics > 2mm. In the absence of spectroscopy, the particle count is
overestimated for microplastics < 2mm, because false recognition of
non-plastic materials as plastics is likely to occur. The large standard
deviation obtained without spectroscopy suggested that false recogni-
tion might be reduced by developing skills for observers to distinguish
tiny plastic fragments from natural materials based on their surface
properties. Nonetheless, spectroscopy apparently allowed accurate

Marine Pollution Bulletin 146 (2019) 831-837

identification of microplastics at sizes < 2 mm, regardless of the skills
of the observer. Thus, we recommend that identification of micro-
plastics in fragment < 2mm requires spectroscopy. Meanwhile, our
data suggest that microplastics > 2mm can be identified through
public participation in scientific research and educational programs
without expensive FTIR or Raman analysis if the properties of the
plastics are described well in protocols (i.e., hardness, color, shape, and
hydrophobicity; Hidalgo-Ruz et al., 2012; Masura et al., 2015; Crichton
et al., 2017).

Chemical treatment and density separation are used to avoid un-
derestimating the particle count for microplastics < 1 mm. In general,
these procedures are employed to shorten the time needed to extract
microplastic fragments from seawater samples. Observers become more
likely to miss tiny plastic fragments < 1 mm as the operation time is
lengthened. Microplastics collected in the actual ocean are usually
covered with biofilms, and therefore the chemical treatment to remove
organic matter would be more useful than in this ILC exercise. Our
recommendation is that chemical treatment and/or density separation
should be included in protocols for measuring microplastics, especially
for sizes < 1 mm. However, some laboratories that focus on transport of
pelagic microplastics in the environment may avoid removing organic
matter from seawater samples, which would exclude microplastics in-
side marine organisms in seawater samples.

In general, increases of handling and treatment in analysing mi-
croplastics might result in a risk of sample loss such as particle sticking
to labware, spills, and so forth. Nevertheless, the best practice identified
in the present ILC exercise was a combination of spectrometry and short
operating time to avoid human error (e.g., chemical treatment and/or
density separation), especially for microplastics < 1-2mm. Four la-
boratories met the criteria of this ILC exercise and provided relative
uncertainty values (Fig. 3b), which were compared with the total un-
certainty derived from all laboratories (Fig. 3a). The differences in the
relative uncertainty between Fig. 3a and b were insignificant (sup-
ported by t-test) even for microplastics < 1 mm, probably because an
erroneous estimate of the size of smaller microplastics occurred, either
through overestimation or underestimation (Fig. 4). Nonetheless, a
significant difference in the standard deviation for the size range < 1
mm demonstrates that the best practice leads to stable measurement
irrespective of the skill level of the observer. Notably, the number of
microplastics < 1 mm was underestimated by 20% even when using the
best practice for measuring microplastics in laboratories.

The recommendations and notes for counting microplastics in the
laboratory are summarized in Table 2, where the filtration, chemical
treatment, density separation, fractionation from seawater samples, size
measurement, and plastic identification of microplastics are itemized.
Hopefully, our exercise is followed by exercises by other experts to
improve these recommendations and notes. In a first step, the present
exercise compared the microplastic measurements including both
human errors and errors generated by methods. However, different
methods conducted in one laboratory will provide error estimates and
their propagation in a method, while an exercise with a single method
in different laboratories will provide human errors.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.marpolbul.2019.07.033.
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Fig. 4. Difference in relative uncertainties between la-
boratories with and without the specific procedures listed
in Table 1. The relative uncertainties and standard devia-
tions in each size rage with and without spectrometry (a),
those averaged over all laboratories including K and L with
and without spectrometry (b), those with and without
chemical treatment (c), those with and without density
separation (d), and those with and without chemical
treatment among laboratories with both spectrometry and
density separation (e) are indicated by bars and solid lines,
respectively. Bars with lines on the left-hand (right-hand)
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side of each size interval are those with (without) the spe-
cific procedures. The bars shown in black indicate a sta-
tistically significant difference between laboratories with
and without the procedure, as supported by t-test with the
rejection rate indicated around the bars. Red solid lines
indicate a significant difference in the standard deviation,
supported by an F-test with 99% confidence limit. (For in-
terpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

(b)

Summary of the present ILC exercise to measure microplastic abundances in laboratories.

Procedures

Remarks/recommendations

Filtration

Short operation time with chemical treatment and/or
density separation

Fractionation from seawater samples

sizes < 1mm.

Size measurement

« Sieving and/or suction were conducted in all laboratories.
« Procedures to shorten operation time are recommended to accurately measure the abundance of microplastics with

» Microplastics were extracted from seawater samples using naked eye or under a stereoscope in all laboratories.
- Image processing software was used by almost all laboratories.

« Size intervals smaller than 0.1 mm were too narrow to obtain a size distribution.
« Intervals > 0.5mm are recommended.

Plastic identification

« Spectrometry methods such as FTIR are recommended for plastic identification of particles < 2mm.

« Microplastics can be identified through public participation in scientific research and educational programs based on
visual identification, unless fragments with sizes < 2mm are counted.
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