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ABSTRACT

Large-scale molecular perturbational data provide signatures that represent changes
on a cellular state from a systematic exposition to drugs or other forms of pertur-
bations. Resources like the Library of Integrative Network-Based Cellular Signatures
(LINCS) enable the identification of signature profiles important, e.g., for drug repo-
sitioning or target discovery based on automatic similarity searches across a vast ref-
erence profile space. In this thesis, we investigated the LINCS L1000 data repository
consisting of nearly 2 million gene expression profiles and additional meta-data. As
main results, we obtained: (I) an overview of the characteristics of all available data
sets, their interrelations and experimental conditions including specific drugs, cell
lines, time points and dosages. (II) a web interface called L1000 Viewer for accessing
selected subsets of data from LINCS needed for the experimental design of studies
addressing particular questions. (III) drug association networks (DANs) represent-
ing relationships for all drugs and small molecules in LINCS. The DANs are very
informative in gaining a genomic-scale overview of the relationships among all drugs
(including FDA approved drugs) and small molecules and, hence, provide a systems
pharmacogenomic drug landscape. Importantly, we assessed the structural connec-
tivity of the DANs by using information from the Anatomical Therapeutic Chem-
ical (ATC) classification of drugs. This allowed us to identify the DAN modules’ as
therapeutic attractors of ATC drug classes, extending the classic idea of cancer at-
tractors in gene regulatory networks introduced by S. Kauffman to the compound
space. In order to utilize our results, all DANs are available via an interactive web
site allowing also the exploration of their structural complexity.
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1 INTRODUCTION

1.1 Overview

The accessibility of large-scale perturbation datasets has opened up new possibilities
for pharmacogenomics research. However, these datasets are not without their chal-
lenges, such as a lack of annotation, storage, access and analysis standards. Unifying
platforms are therefore necessary to integrate such datasets with relevant data analy-
sis tools. For data integration purposes, such platforms should eliminate biases from
various sources, such as batch effects, profiling platform differences, and cell-specific
differences that characterize drug-induced effects. In addition, the platforms should
be simple-to-use, which means that users should be able to create new methods for
data mining and data manipulation. Despite the continuous generation of large-
scale pharmacogenomics datasets, such as LINCS [1], they remain largely underused
with respect to their analysis potential. Recently, many computational approaches
have motivated researchers to develop network-based models and systems-biology
approaches to obtain an in-depth understanding of the basic biological relationships
between drugs and diseases [2]. Specifically, various methods have been developed
with respect to identifying both druggable targets and drug compounds based on a
basic understanding of biological processes at the pathway level. These include the
following methods: (i) integrating functional protein-association networks to form a
new model, (ii) finding information on a known target and enriched pathways with
small molecules with high connectivity scores, (iii) investigating side-effect scores
based on ranked gene signatures, and (iv) the use of novel methods from network-
based studies to evaluate perturbation datasets [3, 4, 5, 6].

Indeed, a systematic and unbiased approach towards drug prediction is imperative
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with respect to efficiently classifying new compounds and inferring their potential
reuse. The rapid accumulation of data in genomics prompts us to utilize the gene
expression data available from public databases with respect to predicting and repur-
posing drugs. Indeed, integrative computational methods that mine said data sets
are relatively fast and cheap; moreover, they can complement traditional methods
of drug discovery by using the complementary information available in distinct re-
sources to develop novel therapies. Several promising attempts have been made with
respect to drug predictions on different cancer types; these studies use a large sample
of gene expression data generated by the connectivity map (CMap) [7, 8]. Transcrip-
tional profiles induced by drugs can be used to characterize biological effects, thus of-
fering fresh techniques for detecting annotations of compounds as well as drug-drug
similarities based exclusively on gene expression profiles [9]. Since drug-induced
transcriptional profiles can be presented as gene signatures (a set of differentially ex-
pressed genes can be obtained by comparing gene expression levels in samples from
two distinct disease states or at two distinct times or conditions), they can be used
to discover novel drug associations, disease therapies and pathways [7, 10]. While
these efforts have certainly enabled researchers to make great strides in characteriz-
ing drug categories, yet, determining the consistency of such efforts in predicting
new/uncharacterized small molecules still remains a persistent challenge.

Resources such as the CMap and the LINCS catalogue the transcriptional responses
to drug treatments in human cell lines for thousands of small molecules that can act
as rational drugs. For instance, the CMap introduced in 2006 by the Broad Institute
was adapted by several research groups for the purposes of analyses and for devel-
oping novel applications with respect to drug discovery and understanding disease
[11]. The success of the CMap has motivated its use in identifying new therapeu-
tics by finding drug targets, as well as in identifying possible connections between
diseases, genes and drugs [12]. Indeed, the CMap aids researchers in finding new
chemical forms of drugs, as well as in predicting possible drug candidates and the
pharmacological and toxicological properties of chemicals. The CMap approach has
been effectively used to define novel therapeutics for a variety of factors, including
multiple cancers and, most recently, inflammatory bowel disease [13] and muscle at-
rophy [14]. Moreover, new data has been made available in the LINCS according to
the same underlying concept as the CMap; however, the size of this data base is much
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larger than that of the CMap. Using these novel databases, researchers can develop
and apply high-dimensional machine learning and statistical methods that can be
used to investigate the high-throughput genomics of said datasets (that is, “big data”)
with respect to studying drug-related problems for personalized medicine [15].

Over the previous 20 years, technological advancement in high-performance mea-
surement assays, for instance, next-generation sequencing, has led in an enormous
increase in genomics data generation capacities. As a result, there are many databases
available that provide millions of RNA sequencing datasets, metabolic data, gene
expression, protein interaction, and protein structure [16, 17]. These datasets, how-
ever, require extensive analysis to find the relevant information, which is problematic
since accessing selected subsets is not easy due to the sheer vloume and complexity
of connections between different data sets. Unfortunately, most current databases
do not provide efficient organizational structures nor interfaces that enable direct
access and/or provide relevant summaries. This problem is discussed by focusing on
the LINCS, a pharmacogenomic database [7, 18, 19, 20, 21].

In order to rectify this problem, large-scale databases require smart interfaces. By
“database”, we mean both the data set together with the database management sys-
tem; by “smart interface”, we mean that, in addition to a graphical-user interface
(GUI), an analytics component is required to analyze the data. In our case, these
smart interfaces exploit the connectivity structure between individual data files (see
Fig. 1.1 A) by generating a representative network between them (see Fig. 1.1 B).
In the instance of LINCS, the connections are established by combining cell lines,
drugs and dosages (among others) using gene-expression profile. These connections
generally correspond to the various attributes of the information files (metadata in-
formation). Once such a network is created, one can rapidly extract selected files
using a query function. For example, the drugs D1 and D3 and the dosage Do3 cor-
respond to the cell line C2 (see Fig. 1.1 B and its link back to the yellow data files),
because each search combination is a hash with a list of data files connected with it.
In this way, a smart interface forms a connection between data and data analysis (see
Fig. 1.1 C); it also provides a GUI and data structure function that can efficiently
access selected data files.

Indeed, new technology can be used to generate high-throughput genomics in large-
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Figure 1.1 (A) A collection of available individual (raw) data files and metadata information from the
original LINC data repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE92742). Yellow indicated the selected files; (B) Network representation of
connections between the raw data files (metadata information for either cell line, drug, dosage
or time point can be selected). A user query (in red) corresponds to one particular combina-
tion of attributes of the data files, which leads to an efficient selection of files of interest from
user quary (in yellow); (C) Conceptual integration of the smart interface, with an application
programming interface (API), into a conventional data analysis pipeline.

scale databases; however, it is essential to develop methods that can be used for the
curation setup by using computational approaches to implement a web interface for
data visualization. Considering the problem of high dimensionality and data com-
plexity, it is also necessary to build a statistical procedure to transform the set of
large features of possibly correlated variables in the data into a set of values that can
be used for network visualization. Obviously, developing a new technique for defin-
ing and categorizing drug classes is essential considering the current availability of
relevant data; this can be accomplished through computational analysis and biolog-
ical hypothesis. Therefore, we think a network-based systems representation is the
way to go.
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1.2 Objectives of the thesis

In recent decades, the ability to process large data sets has increased dramatically
due to the development of both publicly available databases and “big data” analysis
technologies. For example, the CMap and the LINCs were designed to characterize
the mechanism of action (MoA) behind various drugs. However, these databases
are severely underutilized due to the complexity of the provided data structures and
the gene-disease relations. This is especially true when using perturbational data for
different drug applications

In order to address this problem and to enhance the usability of LINCS we devel-
oped various methods. First, we obtained a general overview of LINCS by analyz-
ing the general characteristics of the contained information, including different cell
lines, dosages and perturbations (see Publication VI). Then we developed a web ap-
plication, called L1000 viewer, for selectively accessing LINCS data (see Publication
II and III). This was necessary because LINCS does not provide a selective access to
raw data files. Finally, we developed a network-based method to summarize all infor-
mation contained in LINCS. This leads to a representation of the pharacogenomic
landscape in the compount space in the form of a drug-association network (DAN)
(see Publication V).

The objective of this thesis is to harness the biological complexity of “big data”
to potentially connect disease-therapeutic drugs by making use of the large high-
throughput expression datasets provided by the newly created LINCS L1000 project
[15]. The main result is a drug association network (DAN) that summarizes the
entire information contained in LINCS whereas structural models of the network
consist in enriched ATC classes. We also develop a web-application tool for visual-
izing the results; it can be used to interactively explore the interactions of different
drugs and obtain pharmacological information from the linked data resources.

1.3 Thesis outline

The thesis is outlined as follows; Chapter 1 introduces the wider research area and
provides a general overview. Chapter 2 discusses the details of the used datasets and
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explains external data resources. Chapter 3 presents a general review of the CMap
methodology and applications. This chapter summarizes also recent developments
of the CMap that have been used to identify drug-target interactions and disease
states. Chapter 4 discusses the main results obtained in the thesis, specifically the
DAN network, the meta-analysis and the development of new web-based applica-
tions. Finally, Chapter 5 presents conclusions.
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2 DATA

The L1000 transcriptomics assay developed by the LINCS Center for Transcrip-
tomics explicitly measures 978 landmark transcripts from pure cell lysates using a
ligation-mediated amplification technique combined with Luminex detection tech-
nology on numerous well plates [15]. Because of the extremely correlated gene ex-
pression composition, the unmeasured transcriptome is computationally inferred
from the chosen landmark genes to produce a robust reconstruction using an algo-
rithm created in accordance with a big collection of full transcriptomes. In addition,
for scaling and normalization, 80 invariant genes are evaluated. This technique is
demonstrably similar to RNA sequencing (although much cheaper) and has gener-
ated more than one million cellular perturbation profiles that are accessible to the
public via https://clue.io. Please refer to Publication III–V for in-depth details
about the variables and the subsets used in the analysis.

2.1 Metadata information

The LINCS L1000 provides extended metadata specifications that describe reagents,
assays and experiments. These includes annotations for the perturbagens (small
molecules, siRNA, growth factors and other ligands) and cells, as well as for some
of the elements of the experimental metadata. The LINCS data API provides a pro-
grammatic pipeline for the annotations and perturbational signatures in the L1000
dataset via a collection of HTTP-based RESTful web services; for example, “cell ser-
vice” describes the cell line meta-information.
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2.2 Gene expression data: Intensity values

The LINCS data is generated by using the LINCS Data Signature Generation Cen-
ters (DSGC) and is made accessible for download by the LINCS Data Coordination
and Integration Center (DCIC) via the data portal [22]. Using R packages, we cre-
ated a data pre-processing pipeline composed of functional scripts for analyzing rele-
vant data and directly accessing files on Secure File Transfer Protocol (SFTP) servers.
For all "gct" and "gctx" files (provided by the LINCS), an additional pre-processing
step was performed using the "parse.gctx" function in the "cmapR" package [23] in
order to extract the metadata and the intensity values.

Level-four plate-normalized data (for the L1000 datasets) was downloaded from the
LINCS data portal [15]. The processed dataset packages are accessible through the
LINCS data portal, including both original expression data and metadata [22].

2.3 Transcriptional signature profiles of perturbation

The LINCS L1000 profiled small-molecule and genetic-interference perturbation
from transcription response. Gene expression was assessed only for the landmark
genes to increase throughput, all of which were chosen for their ability to impute
the expression of the remaining genes. Under a variety of conditions, a single distur-
bance was often tested, including cell types, dosages, time and concentrations [24].
Each condition produces a single up- or down-regulated z-scores signature. These
signatures have been further processed to fit our approach.

Aggregation was performed by counting the amount of samples with z-scores greater
than 1 for a specific gene. For samples using the same small molecule and the same
cell line, gene expression profiles were aggregated (technical / biological replicates
and/or distinct times of the small molecule). LINCS L1000 experiments are typi-
cally conducted with three or more biological replicates. A consensus of the repli-
cated signature is derived by applying the moderated z-score (MODZ) procedure as
follows [25]: First, a pairwise Spearman correlation matrix is computed between
replicate signatures in the using 978 genes (landmark), not taking into account the
trivial self-correlations (set to zero); The weights for each replicate are then calcu-
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lated as the sum of the correlations between the replicated signature profiles, which
are then normalized so that all the weights are equal to 1. Lastly, the consensus sig-
nature profile is indicated by the linear combination of the replicate signatures with
the coefficients set to the weight values. If this count was more than 20% of the
total number of samples for a particular gene, then said gene was included in the
aggregated-expression profile.

Next, the above-aggregated gene-expression profiles are collapsed at the small molecule
level: gene-expression profiles that correspond to the same small molecule across all
cell lines are aggregated to produce the transcriptional signature profiles. Here, a
gene is included in the final profile if it is up- or down-regulated by a z − s co r e
larger than 1 in more than 30% of the cell lines treated by the same small molecule.

This procedure serves to mitigate the effects of uncorrelated or outlier replicates; it
can be thought of as a “de-noised” representation of the given experiment’s transcrip-
tional consequences.

2.4 External data sources

The L1000 small molecules were tested in several cell lines, experimental replicates,
doses and time points. For this reason, we mapped DrugBank compounds and
direct-measured genes to calculate a single transcriptional profile for each L1000
small molecule (concensus signature), across multiple signatures. We have also linked
L1000 small molecules to various database sources in the UniChem database. This
was achieved by querying UniChem with each L1000 small molecules’s InChIKey
via UniChem API. It enabled us not only to map the small L1000 molecules to Drug-
Bank, but also to PubChem, ChEMBL and KEGG Ligand databases (see Table 2.1).
The pipeline also allows us to identify and map FDA-approved drugs to the small
molecule identifiers of L1000 data.
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Table 2.1 List of five small molecule/compound databases available in UniChem data source.

Source name Description % of drugs mapped

PubChem [26] A database of normalized PubChem
compounds (CIDs) from the Pub-
Chem Database.

89.34

ChEMBL [27] A database of bioactive drug-like small
molecules and bioactivities abstracted
from the scientific literature.

87.47

KEGG Ligand
[28]

KEGG LIGAND is a composite
database consisting of COMPOUND,
GLYCAN, REACTION, RPAIR,
RCLASS, and ENZYME databases,
whose entries are identified by C,
G, R, RP, RC, and EC numbers,
respectively.

61.21

LINCS [15] The LINCS DCIC facilitates and
standardized the information relevant
to LINCS assays as described in
http://lincsportal.ccs.miami.
edu/SmallMolecules/

93.45

DrugBank [29] A database that combines drug (i.e.
chemical, pharmacological and phar-
maceutical) data with drug target (i.e.
sequence, structure, and pathway) in-
formation.

99.62
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3 REVIEW OF METHODS

In this chapter, a review of methods and applications that use the LINCS L1000
datasets are introduced and described. Furthermore, the CMap and alternative method-
ologies are also described. A detailed review of the overall computational approache
and the design of the CMap is presented in Publication I [20].

Gene-expression profiling offers insight into the overall measured transcript levels
of any particular cell, tissue or organism at a specific point of time under the ex-
perimental conditions [30, 31]. Typically, these kinds of research strive to create
an understanding of the regulatory networks of differentially expressed genes that
may involve mediating biological mechanisms or pathogenesis of diseases. They also
strive to define genes that show patterns of expression that correlate with a specific
phenotypic trait or reaction to a specific disturbance, identifying molecular markers
in the process [31]. These studies are indeed essential because they can be used to
diagnose disease and predict clinical outcomes, as well as to identify new potential
targets for therapeutic treatment and drug discovery [32]. While genome-wide gene
expression studies are influenced by different biological complexities, experimental
designs, technological and analytical difficulties, these methods are extremely com-
mon with respect to examining the biological processes [33]. In this chapter, we
will provide example of methods and applications used to influenced the biological
perturbations datasets at a transcript level to find similarities in drugs for further
validation.
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3.1 Methods and applications

Currently, chemotherapy is the standard treatment for the majority of disseminated
malignancies. Recently, however, academics are becoming more and more interested
in the prospect of molecular interventions in identifying drug targets for disease
treatment [34, 35]. Indeed, applying computational modeling based on biological
information is useful, since it can extend our knowledge of the connection between
genes, drugs and diseases to improve the precision of our predictions [36, 37, 38].
Models used to simulate cellular or biological processes can provide accurate data and
novel hypotheses; moreover, they can translate information between in vitro screen-
ing, cell-based assays and, eventually to patients. The introduction of the CMap in
2006 by the Broad Institute made this type of modelling popular among researchers
with respect to drug discovery and understanding disease, as well as with respect to
developing new therapeutics by identifying drug targets and the possible connections
between diseases, genes and drugs.

Recently, the computational screening of drugs has been facilitated by the advent
of the CMap [7]. The CMap is a comprehensive (and regularly updated) database
containing the transcriptomics profiles of many existing small-molecule compounds.
The CMap provides a simple (yet important) platform by employing a pattern-matching
strategy to determine similarities between the connections of gene signatures among
diseases, drugs and groups of genes. It has been used in many studies with respect to
discovering treatments for common diseases, such as treating solid tumors, includ-
ing those associated with various types of cancer; e.g., colon cancer [39, 40], breast
cancer [41], and lung adenocarcinoma [42].

The concept of the CMap in drug-discovery studies is based on the identification
of disease-associated gene signatures that indirectly correlate with perturbations in
transcriptomic signatures associated with the administrated molecules or drugs [43].
In several studies, the procedure of using the CMap approach to identify drugs for
treating disease is relatively straightforward [2]. Firstly, find a set of differentially ex-
pressed genes obtained by comparing the expression levels of genes in samples drawn
from two different tissues, or at two different time points or under two different con-
ditions. Secondly, score the match between the DEG set and the genomic profiles
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Figure 3.1 Mechanistic overview of the working principle of the CMap method and the CMap database
for drug discovery. (A) Gene-expression profiles derived from the treatment of cultured hu-
man cells with a large number of perturbagens populate a reference database or any given
biological state of interest to obtain a query signature. Gene-expression signatures represent
any induced or organic cell state of interest. (B) Shows Kolmogorov-Smirnov test algorithms
for connectivity score of each reference profile for the direction and strength of enrichment
with the query signature. (C) Perturbagens are ranked by this “connectivity score”; those at
the top (“positive”) and bottom (“negative”) are functionally connected with the query state
through the transitory feature of common gene-expression changes.
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of the drugs calculated by the CMap, ranking the drugs according to their scores.
Finally, choose the candidate drugs by selecting those with the highest scores. The
CMap is beneficial since it exploits the entire genomic information of the biological
state as well as that of the drug in question. However, it also has many drawbacks, as
mentioned in the existing literature [44]. Specifically, it ignores the modified states
of biological functions that share links with the disease being studied. Moreover, it
ignores individual biological functions; for instance, it would ignore a high scoring
drug that has beneficial effects on a subset of functions at the expense of harming
other functions [45].

3.2 The connectivity mapping

3.2.1 CMap: The connectivity map

The original connectivity map was introduced by Lamb et al. [7] in 2006. The
basic concept of CMap is to utilize a reference database containing drug-specific gene
expression profiles and compare it to a disease-specific gene signature. This allows
identifying connections between drugs, genes and diseases. The overall goal of CMap
is to predict potentially therapeutic drug candidates.

The principal workflow of CMap is shown in Fig. 3.1. A phenotype of interest
such as a disease or biological condition in a form of gene expression signature is
generated, normally a set of genes that are representative and unique with the un-
derlying phenotype. In [7] the gene signature corresponds to a list of differentially
expressed genes, named h, that contain up- and down-regulated genes; see Fig. 3.1
A. The gene signature, h, is compared to the ranked probe sets of the treatment vs.
control gene expression profiles that are ranked in descending order according to
the fold changes of the probe sets. By splitting the gene signature, h, into two lists
containing only up-regulated genes, h ↑, and down-regulated genes, h ↓, a so-called
connectivity score is estimated via several auxiliary variables using a non-parametric
rank-ordered Kolmogorov-Smirnov (KS) test; see Fig. 3.1 B, similar to the method
introduced in [46]. The connectivity score is represented in Equation 3.1 - 3.5.

For each instance i , calculate KS statistics:
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k s i
u p up signature enriched

a = t
max
j=1

h

j
t −

V ( j )
n

i

(3.1)

k s i
d own down signature enriched

b = t
max
j=1

h

V ( j )
n −

( j−1)
t

i

(3.2)

Here t = size of the up or down gene signature; n = number of genes, V ( j ) = the
position of probe j , where j = 1, 2, ..., t

k s i
u p =

⎧

⎨

⎩

a if a > b

−b if b > a
(3.3)

k s i
d own =

⎧

⎨

⎩

a if a > b

−b if b > a
(3.4)

C onnec t i vi t ySco r e(S) =

⎧

⎨

⎩

0 if s i g n(k s i
u p ) ̸= s i g n(k s i

d own)

k s i
u p − k s i

d own otherwise
(3.5)

Since the first introduction of the CMap principle and methodology, there have been
numerous applications of this approach by many research groups with a particular
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focus in drug discovery and development. Therefore, CMap approach can be used
as a method of screening chemicals by matching the gene signature of a novel per-
tubagen against the reference profile [47, 48]. The chemicals sharing similar gene
expression pattern, same activities or mechanisms can be easily seen. Conceivably, a
highly representative phenotype-specific gene signature set, of pathological, genomic
perturbations or induced with chemical is define as the key component of imple-
menting CMap methods. These can be generated through computational analysis
using the genome-wide gene expression profiles. Although there is no precise way
of creating optimal gene signatures, the conventional approach is to identify and use
the differentially expressed genes that are statistically significant and display an asso-
ciation with a given phenotype.

3.2.2 CMapBatch: A meta-analysis of drug response

Fortney et al. have recently adapted a parallel CMap approach across multiple gene
signatures of a disease, called CMapBatch [49]. Specifically, instead of applying
CMap to one individual gene signature, they apply it to multiple gene signatures
for the same disease and then combine the resulting outcomes. For this reason their
approach is similar to a meta-analysis. It is common for a complex disease to have
more than one signature available, and this justifies the application of CMap to multi-
ple gene signatures of a disease. Previously, other groups[50, 51] addressed this issue
by combining those different gene signatures before applying CMap [52]. However,
Fortney et al. emphasize that combining gene signatures is problematic for strongly
non-overlapping gene sets. This problem is avoided by CMapBatch.

Formally, for each gene signature, CMapBatch obtains a list of connectivity scores
corresponding to all the small molecules (1309 in CMap Build 2) and combines them
by using the Rank Product method [53] assigning a consensus ranking of drugs for
all the tested gene signatures. The Rank Product method was originally developed to
identify differentially expressed genes for replicated experiments based on the rank-
ing of the individual experiments. Basically, for each drug d in gene signature i
for a total of s gene signatures, a rank product values of RPd = Π

s
i=1

�

rank(di )
�s is

estimated. Here ’rank’ gives the ranking (in increasing order) of drug d in gene sig-
nature i . This allows to obtain a ranking of all drugs based on their corresponding
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RPd values. By randomizing the ranks of the drugs in the individual gene signatures,
p-values are obtained.

In [49], 21 signatures (s = 21) for lung cancer obtained from Oncomine have been
studied. The results reveal that CMapBatch produces indeed a more stable list of
drugs when compared with the individual gene signatures. Specifically, the median
overlap of the top 50 drug for 21 individual gene signatures was 22, but for CMap-
Batch the overlap was 39 drugs. Furthermore, for FDR threshold value of 0.01, 247
small-molecules have been identified that significantly reverse the gene expression
changes of the tested signatures.

The method was used to further highlight more effective drug candidates in inhibit-
ing cancer growth better than the results of the original CMap. It shows promising
results in scaling up transcriptional knowledge and significantly increases the hit per-
centage from 44% to 78% of the top ranked drugs. Moreover, the resulting drug hits
were characterised in silico and showed slow growth significance in 9 lung cancer cell
lines from the NCI-60 collection. In total, 247 candidate therapeutics were identi-
fied for which two genes, CALM1 and PLA2G4A are found to be markers for drug
targets in lung cancer [54].

Despite the fact that CMapBatch was only tested for lung cancer, principally, the pro-
posed meta-analysis can be generically used for any disease phenotype to prioritize
therapeutics.

3.2.3 Connectivity score based on partial-rank metrics

The CMap accomplished a decent level of success in its applications but has a few
set-backs. One of these is the failure to apply a comprehensive measure to validate
the significance of a gene signature when queried against reference profiles [55]. To
address this issue, an extension of the connectivity score was introduced by Segal
et al. [56], where they employ partial-rank metrics for scoring CMap queries by ac-
commodating a query order, in contrast to the Kolmogorov-Smirnov scoring, which
uses a rank ordering of gene expression profiles in the target instance to induce an
ordering of the query. The paper also provides an alternative inferential approach
based on generating empirical null distributions that exploit the scope, and capture
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dependencies, embodied by the database for refinements of the scoring measure that
proved to be more efficient [56].

Shigemizu et al. introduced a novel methodology similar to partial-rank metric, by
using gene expression profile from applying CMap concept to identify candidate
therepeutics for MoA, targeting possible functions that are beyond drug reposition-
ing [57, 58]. The method uses drug candidates in a pool of compounds that down-
regulate the over expressed genes, or up-regulates the under-expressed genes, for a
given abnormal phenotypic condition and demonstrate the utility of their approach
for drug repositioning. The authors also stressed that the improved functionality
of their method will help in identifying a drug or a group of drugs with potential
heterogeneous properties. On the other hand, the method can be used to find genes
that can be targeted by a set of identified compounds. For instance, the genes RPL35,
LAMB1 and CAV1 have been found to be breast cancer targets [57, 59]. Finally, the
result of their functional analysis indicated the MoA of tamoxifen is given by down-
regulating TGF-β signaling [57].

3.2.4 ProbCMap: Probabilistic drug connectivity mapping

A probabilistic connectivity mapping by [60]was introduced as a model-based alter-
native to the original CMap. The method uses a probabilistic model that focuses on
the relevant gene expression effects of the drug as a probabilistic latent factor derived
from the data on cell lines. The benefits of the method compared to other approaches
are demonstrated for finding functional and chemical similarities of drugs based on
transcriptional response profiles. It has also been showed how gene expression re-
sponse factors between cell lines are the promising when a multi-source probabilistic
model is used.

Furthermore, the method outline how probabilistic model-base approach can be
extended to allow retrieval of combination of drugs. It showed how set of drugs
retrieval provides complementary information when compered with single-drug,
which is important in pharmacology and drug discovery, since the drugs have mul-
tiple mechanisms of action [61]. Considering the drug similarity validation with
the CMap data, the probabilistic connectivity mapping provides a promising alter-
native. Moreover, the method could be applied to matching known drugs and drug
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combinations to disease samples, providing in this way novel hypotheses about ther-
apies.

The LINCS dataset [12] comprises of generated data over tens of cell lines, the au-
thors expect other benefits of the Group Factor Analysis-based probabilistic con-
nectivity mapping used to become even more valueble. Being able to identify both
shared responses across a large number of cell types, and on the other hand responses
specific only to few cell lines, will be highly useful in drug development and dis-
covery. It would be even possible to impose more structure on the Group Factor
Analysis model, inferring which cell lines response similarly to the drugs, providing
potentially highly relevant information for personalized medicine approaches.

3.2.5 New cosine-based similarity method compared with

Kolmogorov-Smirnov statistic used in CMap

In this novel CMap approach, Cheng et. al. uses the Anatomical Therapeutic Chem-
ical (ATC) classification as the benchmark to measure the differences and similarities
of eXtreme cosine method (XCos) to other CMap scoring methods, data processing
methods, and signature sizes [62]. They used the comparisons to clarify parameter
choices, that can be used as new methods for drug repositioning where the gold stan-
dard benchmarking datasets are more complicated. The performance score for each
method was measured using the AUC (FPR=0.1 and FPR=0.01) in the early dis-
covery phase. The AUC score was used to determine the compound classes which
have robust expression profiles in CMap data, and also help to find the analytical
approaches that are more accurate in evaluating the data.

Overall, the XCos similarity score, which simply measures the cosine similarity be-
tween two signatures, yielded better results when compared with the Kolmogorov-
Smirnov (KS)-based CMap method. Moreover, the similarity measure of closely re-
lated signatures tends to rely on the genes that changes between the treatment and
control samples. Cheng and his group also notice both XCos and KS predicted the
same ATC codes when used with a low number of features, for instance, the top 100,
however, XCos outperformes when used with a larger number of features (top 500).
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3.3 Connectivity Mapping Transcriptomics Datasets

There are a number of valuable data sets and databases containing gene expression
response profiles effected by chemical compounds that are publicly available. Hence,
these provide information about the perturbation effects that drugs have on the tran-
scriptomics level of a cell. In Table 3.1 we provide an overview of the most important
generic resources. However, we would like to note that there are additional disease-
specific resources available, e.g., for cancer [63], that provide also disease-relevant
relationships with drug compounds and targets. In the following, we discuss the
two largest general purpose drug perturbation databases CMap and LINCS L1000
in more detail.

3.3.1 CMap dataset

The CMap database consists of genome-wide transcriptional expression profiles of
bioactive compounds from cultured cell lines. In the original CMap study [7], the
reference database consisted of 564 gene expression profiles generated from exposing
five different human cell lines (MCF7, PC3, SKMEL5, HL60, and ssMCF7) with
164 small molecules [7] (Build 1). In Build 2 this has been significantly extended to
1,309 approved small-molecules applied to the same five human cell lines leading to
over 7,000 gene expression profiles. Build 1 and 2 use an Affymetrix platform for
generating the gene expression data. So far, several methods have been developed uti-
lizing the CMap database (either Build 1 or Build 2), either for new drug reposition-
ing/repurposing approaches or for improving the performance of the original CMap
method, also in comparison with the other datasets [49, 56, 64, 65]. Notably, Cheng
et al. presented a systematic approach to quantitatively assess the performance of
such methods [66]. Hence, this study can be seen as a benchmark approach to assess
any new methodology in the future.

3.3.2 LINCS L1000 dataset

The Library of Integrated Network-based Cellular Signatures (LINCS) supported
by the NIH, comprises 5806 genetic perturbations (e.g. single gene knockdowns
or over-expressions) and 16,425 perturbations induced by chemical compounds (e.g.
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drugs) [67]. To date, over one million gene expressions have been profiled and col-
lected for this project using the L1000 technology [67]. The L1000 platform has been
developed at the Broad Institute by the CMap team in order to facilitate rapid, flex-
ible and high-throughput gene expression profiling at lower costs. Specifically, the
L1000 technology measures the expression of only 1000 so called landmark genes,
and the expression values for the remaining transcriptome is estimated by a compu-
tational model utilizing additional data from the Gene Expression Omnibus (GEO)
[16]. A user-friendly access to the database is provided by the LINCS project web-
page (http://www.clue.io/), which is a web-based application allowing users to
browse and query the LINCS database.

In a very simplified view, the L1000 data can be considered as a ’big matrix’ where the
rows correspond to 22,268 genes and the columns are the millions of perturbations
induced by the small molecules. It is clear that such a large dataset presents new
challenges to computational systems biologists who aim to analyze and visualize Big
Data.
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4 RESULTS SUMMARY

In this chapter, the findings of Publication III–V are summarized. First, we de-
scribe the web application developed in this study (L1000 Viewer) [21], including the
database, and the back-end and front-end implementations. Secondly, we present the
results of a collection of gene-expression profiles and metadata, which includes many
experimental samples covering more than 70 human cell lines [77], all of which were
derived from the signature profiles. Lastly, we show the results for the systematic or-
ganization of the drugs and small compounds available from the LINCS repository
by constructing the DAN [78].

4.1 L1000 Viewer: A Web Interface for the LINCS Data

metadata information

To facilitate access to raw data subsets from the LINCS data repository, the L1000
Viewer was developed, an interactive web application that does not require the instal-
lation of dedicated software, but can be used with any web browser on any operating
system. Furthermore, for each LINCS repository data file, our web application pro-
vides a web interface with access to a dedicated database that we created using the
graph dependency framework. The dependency structure is specifically organized
according to the experimental conditions of the expression profile; it can be depicted
as a graph or network [79]. In the network, nodes represent information files; two
data files are connected if they share experimental conditions. In order to query the
data, the application provides a user-friendly and easy-to-use platform for choosing
subsets of raw data files from specific types of perturbation profiles; e.g., for specific
cell lines, drugs, dosages and time points. This technique of profile retrieval is effi-
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cient and fast because pre-computed graph structures (in data records) already exist.
This provides valuable information for the user regarding the experimental design
[80] of follow-up computational pharmacogenomics studies based on these data.

4.1.1 Development of the web application

L1000 Viewer, the web application we have developed, consists of three main parts
namely; the database, back-end, and front-end implementations. First, in order to
store the data in the back-end, we use a MongoDB database [81, 82]. We convert
and store all the raw data into a json object structure to enable identifier reference to
each profile sample in the database. This enables the data to be stored as a document-
oriented structure that allows fast user queries. The document-oriented model maps
to the data objects in the application code in the back-end, making the data easy to
work with. The MongoDB is a distributed database at its core, therefore, it enables a
horizontal scaling, high availability and faster access. Second, for the back-end com-
ponent, we decided to use Node.js [83] for the server side architecture. A Node.js
server environment was utilized to interact with the database through custom object-
data modeling (ODM) calls adopted from pseudo relational database representation
in Mongoose API [82]. Third, for the work-flow designer on the front-end we used
javascript. Specifically, we use Vue.js [84] to created the front-end representation.
Vue.js is a widely used javascript framework and the L1000 Viewer uses it for han-
dling all client side user interactions. The connections between the components of
the interface are implemented using Vue.js plugins. It provides a mechanism to dis-
play and render the structural components from HTML tags. To interactively dis-
play the large collection of drug-induced profiles, the HTML5 elements were used
to layout the profiles systematically.

4.1.2 Graphical summary and visualization

In addition, we provide a functionality for an interactive visualization for viewing
the selected profiles on the web. A user can click on the visualization button from
the search results to visualize the selected profiles in different plots (e.g., boxplot
representation of the profiles etc.). The metadata information of the selected pro-
files are also displayed. We provide R scripts for further metadata visualizations.
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Specifically, we provide scripts that allow the user to generate graphical summary
statistics of their metadata query results. From the download function, the user can
immediately download the profiles and use the R scripts on the subset of the data
that was retrieved.

4.1.3 L1000 Viewer accessibility

Access to the data indexed by the L1000 Viewer is provided through our web inter-
face via http://L1000viewer.bio-complexity.com/. It enhances the biomedical
data repository by providing a simple and fast access to LINCS raw data and allows
to easily generate subsets of data. In this way, users of the web interface can extract
knowledge more efficiently when interfacing with LINCS data.

4.2 Characterization of biological complexity from LINCS

gene expression signatures

The LINCS L1000 data is a vast collection of gene expression profiles and meta in-
formation that includes many experimental samples covering more than seventy hu-
man cell lines. These cell lines are populations of cells descended from an original
source cell and having the same genetic make-up, kept alive by growing them in a
culture separate from their original source [85, 86]. In the following, we analyze the
LINCS L1000 data for two different steps. The first step focuses on the signature pro-
files themselves and the second step on the differentially expression of genes derived
from the signature profiles. This means we are moving from overview distributions
on a basic level to characterizations of the biological activity of the cell lines in de-
pendence on multivariate conditions, as given by, e.g., the number of replicates or
the duration of applied drug perturbations. Hence, this provides an understanding
of the biological functions effected by the perturbations.
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Figure 4.1 Cell line signature profile counts. The drug signature profile count distribution is shown for all
71 cell lines across all experiments in the LINCS L1000 dataset. Each bar gives the number
of available signature profiles per cell line.

4.2.1 Transcriptional signature profiles

4.2.1.1 Cell line annotations

Various cancer cell lines and non-transformed primary cultures were used to rep-
resent disease models in the LINCS L1000 data [87, 88]. To enable an integration
and analysis of large cell-based screening profiles, the cell lines were annotated with
labeled terms to identify the associated organs and diseases. In Fig. 4.1 we show
the overall distribution of profiled samples for 71 cell lines across all experiments.
These counts include all the corresponding cell line profiles. Table 4.1 shows pro-
file count and tissue origin for top 9 cell lines. For obtaining this information, we
used the metadata annotations that are available via the Cell Service API [15, 23].
By summation over all cell lines in Fig 4.1 we find that, currently, the total number
of signature profiles (excluding the profiles treated with knockdown and overexpres-
sion genes) is 215,224. This number is much smaller than the 1.3 million raw gene
expression samples because the replicated raw sample have been summarized for ob-
taining the signature profiles resulting from a comparison of treatment with control
conditions.
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Small Mole cule s: 14 339

Bioactive  Compounds: 4 285

FDA-Approve d Drugs: 1183

Othe rs: 4 89

Small Molecules Bioactive Compounds FDA-Approved Drugs Others

Figure 4.2 Distribution different small molecule used for all the signature profiles.

4.2.1.2 Small molecule annotations

The LINCS L1000 data include experiments for more than 20,000 small molecule
perturbations. The perturbations are applied to the cell culture to induce changes
in the gene expression profiles. Furthermore, there are genetic perturbation experi-
ments targeting single genes to control their expression levels, by either suppressing
or enhancing them [89]. Detailed information for small molecule perturbations can
be retrieved using the Pert Service API that identifies unique and common drugs used
in the L1000 dataset. In Fig. 4.2 we show the distribution different small molecule
used for all the signature profiles. The 6 experimental conditions considered are:
controls, ligands, poscons, compounds, overexpression and shRNAs. The number
of controls and compounds is always highest for all cell lines followed by the number
of overexpressed profiles.

4.2.1.3 Experimental replicates

Experimental replicates have been investigated and found to be useful in simulation
and in boosting analysis [90, 91] and decreasing the number of replicates will ad-
versely affect the power of experiments [92, 93]. For this reason we studied the
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Figure 4.3 Distributions of experimental replicates for the signature profiles. The number of available
replicates is shown for small molecule treatments in the LINCS L1000 data for 9 highly profiled
cell lines.

distribution of replicate experiments of the LINCS L1000 data. From this we find
that the plate variation is ranging mostly between 1 to 8 replicates with the major-
ity of samples having 3 replicates. There are also conditions for which more than 9
replicates have been generated, however, these are rare covering only 1% of all pro-
files, whereas 1 to 8 replicates cover 99%. The largest number of replicates observed
is 27, e.g., found for cell line VCAP, drug Vorinostat, a dosage of 10um and a time
duration of 24h. In Fig. 4.3 we show the number of replicated experiments cross the
9 selected cell lines. The figure includes also information about 9 or more replicates
and shows that the availability various greatly between the cell lines.
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Table 4.1 List of 9 selected cell lines with the highest number of profiles

Cell line Profile count Tissue

A375 33,656 Skin
A549 37,577 Lung
HCC515 23,714 Lung
HA1E 26,164 Kidney
HEPG2 21,032 Liver
HT29 30,449 Colon
MCF7 52,373 Breast
PC3 21,032 Prostate
VCAP 21,032 Prostate

4.2.1.4 Dosage and time point annotations

Next, we show in Fig. A.2 results for the number of different dosages (concentra-
tions) applied to the 9 highly profiled cell lines. The figure shows distributions for
8 different concentrations and 9 or more concentrations. However, almost 99% of
the treated samples are measured for 1 to 8 different concentrations. From the avail-
able 49,400 perturbations, most of them were tested for a duration of 6, 24, 48, 96
and 120 hours. Overall, the number of cell lines per compound represented in the
treatments ranged from 1 to 8 different time duration points (see Fig. A.3). Around
99% of the perturbations affected at least one gene significantly in a single cell line
after treatment with the varying number of time points.

4.2.2 Differentially expression of genes

4.2.2.1 Differentially expression of genes and small molecule diversity

Our next analysis focuses on the activity level of the gene expression data as quan-
tified by differentially expressed genes. For this analysis we utilized the L1000 raw
z-scores from the GEO repository and pre-processed these by using the R L1000
tools [23]. We utilized the signature meta-information in Signature Service API for
selecting the same subset of 9 cell lines as in Table 4.1 (with highest signature counts
across all cell lines). Here a signature for a small molecule is defined as a vector of z-
score values, each representing differential expression of genes profile between small
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Table 4.2 Summary of z-score signature profiles for DEGS between treatments and controls on the cell
line subset

Signature profile Small molecules

No significant gene 24 19

At least 1 significant gene 158,030 19,957

At least 50 significant genes 58,739 15,714

At least 100 significant genes 23,867 8,211

Total 158,054 20,009

molecule treated samples and control samples. In total there are 169,239 z-score sig-
nature profiles for the 9 cell lines that satisfied the well- and plate-based quality con-
trol. This signature profile subset comprises 20,009 small molecules (out of 49,400
perturbations) that were repeatedly measured between 1 to 8 times. To further sim-
plify the data and the quality of the analysis, we selected 6, 24 and 48h time points.
In total this leaves us 158,054 signature profiles (i.e., any combination of the small
molecule, time, and cell line) for our analysis. These signature profiles come from
experiments that were carried out on 391 multi-wells, where 362 wells were used for
treatment and 29 DSMO wells were for control vehicles.

In order to obtain the number of differentially expressed genes between treatment
and control samples for each of the 384 plates we used the z-score signature vec-
tors obtained from the Signature Service setting the z-score threshold to > 2.0 and
< −2.0 for up- and down-regulated genes respectively. For measuring the signature
type effects that have been shown to be robust in biological interpretations, we use
the assigned z-score thresholds to measure the biological effects encoded in the gene
expression data. We found that 19,957 small molecules from 20,009 that are used
in 158,054 signature profiles yielded at least one gene that is significantly differen-
tially expressed when compared with the corresponding control samples. We further
found that 15,714 small molecules reveal significant differences for at least 50 genes,
and 8,211 small molecules are differentially expressed for at least 100 or more genes.
Table 4.2 summarizes these results.
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Figure 4.4 Number of significant profiles found when comparing signature profiles of treatment and con-
trol samples. The cell lines are categorized according to the number of DEGs and the DEG
have been estimated based on the z-score signatures profiles.

4.2.2.2 Cell type specific differentially gene expression

Since not all cell lines measure the transcription effects of small molecules for the
same time points, we subset the treatments according to cell lines and evaluate the
number of significant genes for the 9 cell lines separately. In Fig. 4.4 we show our
results giving the number of signature profiles for each cell line for three categories.
The three categories correspond to (I) at least one significant gene, (II) at least 50
significant genes, and (III) at least 100 significant genes when compared with vehicle
controls. Since there were only 24 profiles with no significant genes in total, this
category is not shown in the figure.

4.2.2.3 Dosage specific differentially gene expression

For studying the effect of drug dosages we repeated a similar analysis as above. Specif-
ically, we systematically classified the small molecule dosages into two categories for
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‘low’ and ‘high’ concentrations. The ‘low’ concentration group contains all mea-
surements in nanomolar (nM) and doses less than or equal to 5 micromolar (µ M)
while the ‘high’ concentration group includes all measurements greater than 5 µM.
In total, we find 63,113 and 94,941 signature profiles for low and high dosages re-
spectively. In Fig. A.4, the number of differentially expressed genes is shown for
the 9 cell lines and the two dosage categories. From this we observe two different
behaviors. First, the number of differentially expressed genes increases with time,
e.g., cell line A375 or A549. Second, the number of differentially expressed genes de-
creases with time. This behavior is only observed for cell line VCAP. The first type
of behavior is expected because higher dosages of drugs should result in more severe
changes in the expression of genes. The reverse of this effect for cell line VCAP, a
prostate cancer cell line, averaged over all drugs is counter intuitive and points to
follow-up investigations.

4.2.2.4 Drug Perturbation Specific differentially gene expression

Next, we analyze the number of differentially expressed genes according to the time
duration of the treatment with small molecules. In Fig. A.3 we show results for 6
and 24 hours. From this we again observe two different behaviors. First, the number
of differentially expressed genes increases with time, e.g., cell line A375 or A549.
Second, the number of differentially expressed genes decreases with time, e.g., cell
line HA1E or HCC515.

4.3 Drug similarities, prediction and network associations

Traditionally, pharmacology approaches focus on single drugs at a time to study
their action, effects or safety [94]. This is similar to traditional molecular biology
approaches that focused on single genes or proteins [95]. However, due to mod-
ern genomic high-throuhgput technologies, nowadays, it is possible to study many
genes or proteins simultenously [96]. Pharmacogenomics and Systems Pharmacoge-
nomics aim to utilize such genomic profiles to expand beyond single drugs [97]. For
instance, in [98] drug-target and drug-drug networks have been constructed based
on the DrugBank database utilizing information about FDA approved and non-
approved drugs and their corresponding targets. However, their analysis focused
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exclusively on drugs and compounds with known targets and did not take into con-
sideration dynamic activity profiles as represented, e.g., by transcriptomics data. In
[99] some disadvantages were avoided by using gene expression profiles for which
Pearson correlation-based networks were constructed. A problem is that the used
data were generated from many independent, uncoordinated laboratories using vary-
ing platforms and samle preprations. Another drawback of this study is the small
number of used profiles (< 7,000) and the very limited number of studied drugs
( 200). Similar data were used in [9, 100] but the construction of the drug network
differed. Also, their analysis focused on drugs with known MoA. A different ap-
proach has been taken in [101] where a drug-drug network has been constructed
only based on known side effects of FDA approved drugs. A drawback is the sole
focus on negative clinical parameters, limitation to FDA approved drugs and the ne-
glection of dynamical aspects of drug effects. In [102] in addition to gene expressin
data also information about chemical structures and drug responses have been used.
Unfortuantely, the number of drugs for which all three sources of data are available
is very limited. A common shortcoming of all these studies is a lack of conceptual
explanations of the drug networks.

The ultimate goal in pharmacology is to understand all properties, effects and actions
of all drugs and componds [103]. Hypothetically, this information could be obtained
from clinical trials testing each compound for every existing disease including sub-
types and stages. From this information one could measure the similarity between
different compounds, e.g., based on clinically relevant parameters. This would give
the network structure of an ideal compound-space giving all relationships among all
compounds corresponding to an ideal drug association network. Due to the practi-
cal impossibility of such an approach the question is, is it possible by using genomics
data to approximate such an ideal drug association network (DAN)?

The goal of this thesis is to introduce a computational method that provides such
an approximation leading to a systematic organization for the thousands of drugs
and small compounds that are available from the LINCS repository. Specifically, we
introduce a method for constructing DANs based on almost two million gene ex-
pression profiles for over 20,000 chemical perturbagens and seventy-two human cell
lines; see Fig. 4.6A. In these networks, nodes correspond to drugs and two drugs
are connected if their profile responses are similar, as measured by the statistical sig-
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signature gene changes (center). DAN grouping of similar compounds that share similarities
i.e. module representation (right).

nificance of the Jaccard Index (JI); see Fig. 4.7. The profile responses for each drug
correspond to estimates of “consensus” signature profiles summarizing the transcrip-
tional effect of drugs across multiple treatments on different cell lines and/or differ-
ent dosages and time points. Overall, the DANs provide a systematic summary of
the entire LINCS data repository and the complex pharmacogenomic landscape of
drug similarities. For a conceptual overview see Fig. 4.5.

For obtaining pharmacogenomically meaningful networks, we construct different
DANs based on data from different conditions. Specifically, we construct for each
cell line a DAN using only the corresponding drug signature profiles. Furthermore,
we construct one DAN limited to FDA approved drugs and one DAN for all drugs
and small compounds (comprising FDA approved and non-approved drugs). This
leads to condition-specific DANs (see Fig. 4.6B for their dependencies). In total, we
are inferring 74 different DANs.

In order to analyze and interpret the DANs, we investigate the DANs on three dif-
ferent levels. First, we study the structure of the DANs by identifying network
modules, also called communities [104, 105, 106]. This will allow us to gain insights
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Figure 4.6 (A) Multifacturial experimental space of the LINCS data, In total, nearly 2 million L1000 pro-
files from 42,080 perturbagens are generated, corresponding to 25,200 biological entities
(19,811 compounds, shRNA and/orcDNA against 5,075 genes, and 314 biologics) for a to-
tal of 473,647 signatures (consolidating replicates) taking at different doses and time points.
(B) For our analysis we study 7 different DANs, the upper 2 networks are drug based networks
and 5 networks are cell line based.

into the structural properties of the networks. Second, we study drugs pairwise
by identifying the presence of significant ATC classes in the entire network. This
analysis step will show that drugs with similar ATC classes are actually identified in
compound space. Third, we study the enrichment of the network modules with re-
spect to ATC classes. By using the ATC classification of drugs, we will demonstrate
that the DANs represent a pharmacogenomic landscape of drugs summarizing the
entire LINCS repository on a genomic scale.

As a general results, we will show that the ATC code enriched modules in the DANs
can be seen as therapeutic attractors of drug classes. We will argue that this allows
a conceptual extension of the idea of cancer attractors [107] introduced for gene
regulatory networks to represent cell states [108, 109] to DANs representing phar-
macological states.

4.3.1 Jaccard Index

Let Dk and Dl be two drugs with regulation profiles Ri and R j . Ri and R j are two
vectors of length n, whereas n is the number of genes. Their components correspond
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Figure 4.7 Overview of the connstruction of a DAN. The figure shows the gene expression profile sig-
nature of drugs and small molecule compounds from LINCS L1000 subset. Representation
of the use of drug-feature matrices of different types to calculate drug connections using
Jaccard Index (JI).

to (I) down-regulation (-1), (II) no-change (0) or (III) up-reguation (1). The JI can be
estimated from the contingency table (see Table 4.3 and Fig. 4.7) giving the overlap
between the two regulation profiles representing the effect of the drugs Dk and Dl :

Ji j = J (Ri , R j ) =

∥︁

∥︁

∥︁Gi ∩G j

∥︁

∥︁

∥︁

/∥0,0∥
∥︁

∥︁

∥︁Gi ∪G j

∥︁

∥︁

∥︁

/∥0,0∥

=
n11+ n33

nt
(4.1)

Here nt = n11+n12+n13+n21+n23+n31+n32+n33 is the number of genes showing
differential expression.
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Table 4.3 Contingency table summarizing the gene regulation profiles Ri and R j treated by drug Dk
and Dl . Here nk l are integer numbers giving the common genes in the categories k , l ∈
{up, no change, down}.

Di ↓ / D j → -1 (down) 0 (no change) 1 (up)

-1 (down) n11 n12 n13

0 (no change) n21 n22 n23

1 (up) n31 n32 n33

4.3.2 Construction of drug association networks

The first network, we construct for FDA-approved drugs with assigned annotations
in DrugBank [110, 111]. For this reason we call this network Napproved. In total,
there are 1139 approved drugs in LINCS, however, only 381 have an ATC annota-
tion. The drugs with DrugBank IDs are repeated in multiple experiments; therefore,
the landmark genes have multiple z-scores from different experiments. We first av-
erage the z-scores for each drug from different experiments and use the consensus
of the z-scores to construct the DAN, as described in the method section. From
this analysis, we obtain a network with 381 nodes and 4251 significant interactions.
From this network, we extract the giant connected component (GCC) having 367
drugs (nodes) and 4244 interactions (edges). In Fig. 4.8A, we show the distribution
of JI of all significant interactions for this network from profiles having between 100
to 150 DEGs.

The second network we construct, we call Nall, is for all available drugs. In LINCS
data there are in total 2505 different drugs applied in the different experiments (cell
line, dosage and time point). For these, we construct a network with 2505 drugs
and 86,585 significant interactions. From this network, we extract the GCC having
2451 nodes and 22636 interactions. In Fig. 4.8B, we show the distribution of JI of
all significant interactions for this network from profiles having between 700 to 800
DEGs. The higher the value of the JI the more genes are commonly up- or down-
regulated between two drugs.

Next, we construct 72 networks that are specific for the 72 cell lines. For our further
analysis, we select from these 72 networks the five networks having the highest num-
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Figure 4.8 (A) Distribution of JI of all significant interactions for Napproved from profiles having between
100–150 DEGs. (B) Distribution of JI of all significant interactions for Nall from signature
profiles having DEGs between 700–800. (C) Number of significant interactions between
drugs for different cell lines.

ber of interactions between the drugs; see Fig. 4.8C for the frequency distribution of
interactions for all cell lines. These cell lines are MCF7, VCAP, PC3, A549, A375.
These 5 networks contain the most information, assuming interactions provide in-
formative knowledge. The high number of interactions in each of these networks
(more than 10,000) ensures also that a sensible identification of modules is feasible.

In Table 4.4, we show a summary of these seven networks and their number of nodes
and edges. All of these networks correspond to the GCC of the corresponding net-
work. In the following, we will limit our analysis to these seven networks.

DAN Used information Drugs Edges Modularity No. of Modules

Napproved Approved drugs 367 4244 0.318 13

Nall All drugs 2451 22636 0.554 20

NMCF7 MCF7 cell line 750 7144 0.623 11

NVCAP VCAP cell line 520 2727 0.749 25

NPC3 PC3 cell line 612 4314 0.644 17

NA549 A549 cell line 380 2122 0.561 22

NA375 A375 cell line 635 4286 0.636 14

Table 4.4 Summary of seven DANs constructed from different information. Shown is the information of
the giant connected component. Column two describes the used information that characterizes
the underlying data for each network.
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4.3.3 Network modules in DANs

Our first analysis consists in the identification of the modules in the seven different
DAN networks; see Fig. 4.6B. For this, we are using a multilevel community module
detection algorithm [112] to find the modules in the networks. The modularity and
the number of modules for each network are summarized in Table 4.4. We would
like to remark that the number of the modules correspond to labels, i.e., the same
label for different networks does not mean it should contain the same drugs. In
general, we find the modularity to be similar among the different networks except
for Napproved and Nall which is smaller. This is understandable considering the used
data for these networks is different to the others. For the number of modules we
observe similar values ranging from 11 to 25 modules. In Fig. 4.9, we show the
networks for Napproved and Nall and the distribution of the number of drugs in the
modules.

From the barcharts of boths networks one can see that there are a few modules con-
taining a large number of drugs and the remaining modules contain only a few drugs.
These large modules are also clearly visible in the network representation of the
DANs on the left-hand-side in Fig. 4.9. In general, the modules in Nall are larger
than in Napproved which is understandable because the former DAN contains 2451
nodes whereas the latter has only 367 (see Table 4.4).

4.3.4 Enrichment analysis of network modules

We performed an enrichment analysis of drugs with ATC codes for the modules
detected in each network [113]. In order to test the statistical significance of ATC
classes, we use Fisher’s Exact Test [114, 115, 116]. Since we are testing multiple hy-
pothesis tests for each module, we apply a Benjamini Hochberg correction to control
the FDR. In the enrichment analysis we first find the total number of drugs in a mod-
ule which are labelled with ATC codes and then we performed Fisher’s Exact test to
determine which ATC labels are overrepresented in a particular module. The results
of this enrichment analysis are shown in Fig. A.1.

The summary of the enrichment analysis of the ATC groups for the modules of
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Figure 4.9 (A) Shows the network of FDA-Approved drugs with their corresponding module annotations
(Left), and the number of nodes in each module of Napproved (Right) (B) The network show
All Drugs including approved and non-approved drugs colored based on grouped module
(Left), and the number of drugs in each cluster for Nall (Right).

the different networks is shown in Table 4.5. In this table, we highlighted the ATC
groups which are enriched in at least one module in different networks. We also
include those ATC groups which are not significant but holds low q-values between
0.05<α < 0.15.
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DAN / ATC code C D G H J L M N P R S SC SM

Approved drugs 1 1 1 1 1 1 1 7 5

All drugs 1 1 1 3 2

MCF7 cell line 1 1 2 2

VCAP cell line 0 0

PC3 cell line 1 1 2 1 1 1 6 5

A549 cell line 1 1 1 1 4 4

A375 cell line 1 3 2 4

SM (all networks) 3 4 3 1 1 7 1 1 2 2 2

Table 4.5 Summary of module enrichments shown in Fig. A.1 for all DANs. The columns show ATC
classes highlighting if ATC codes are enriched in at least one module in the entire network
(see Fig. A.1). SC gives the number of significant ATC classes and SM gives the number of
significant modules per network. SM (all networks) gives the number of significant modules in
all DANs.

4.3.5 Web interface for DAN of drugs

Furthermore, in order to communicate the wealth of our obtained results efficiently,
we developed a web interface accessible at (http://dan.bio-complexity.com). Our
web application allows to access the drug-drug interactions inferred by our method,
and connecting to external links. The features of our DAN user interface enable
searching, browsing, exploration and downloading of the network visualizations.
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5 CONCLUSION

In this chapter, the contributions of the thesis to the existing literature are discussed,
as presented in the Publications I–V.

The LINCS data repository [15], including the L1000 dataset, has been introduced to
extend CMap [7] and improve its limitations. However, LINCs has a very intrictate
structure of dependencies and is not straight forward to exploit. The general goal of
this thesis was not only to show the utiliy of LINCS but to develop resources (meth-
ods and web applications) that can be further used by the community. This should al-
low to overcome at least some of the obstacles to enhance systems pharacogenomics
resarch.

In Publication I [20], we reviewed and studied the CMap methodology and its appli-
cations. This showed that the CMap methodology provides an interesting view on
how to predict disease-effects of a compound based on data from representative in
vitro models. Hence, such techniques could be used for the computational analysis
of new compounds. In general, the identification of drug targets plays an essential
role in understanding the MoAs of various drugs and in designing new drugs.

In Publication II [79], we discussed the general problem of accessing/querying se-
lected subsets of pharmacogenomic-data from repositories, such as LINCS, and de-
scribed how the lack of querying capabilities in current realizations could be com-
pensated. Furthermore, we discussed smart interfaces utilizing a graph-based file
organization of the underlying data. Here it is a key insight that LINCS is not hier-
archically flat but can be represented as a graph.

In Publication III [21], We introduced the L1000 Viewer - a search engine and graph-
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ical web interface for the LINCS data repository. At the core of our L1000 Viewer
is a database that utilizes the intricate dependency structure among the files in the
LINCS dataset, allowing these files to be reorganized as a graph and ensuring ef-
ficient search capabilities based on graph-oriented operations. Overall, the L1000
Viewer is a useful tool with respect to efficiently accessing selective information from
the LINCS data repository for computational-pharmacogenomics studies [117, 118,
119], e.g., for drug repurposing and cancer therapeutics, as well as for understanding
the composition and relationships between genes, drugs and diseases. Conceptually,
the L1000 Viewer implements our ideas introduced in Publication II.

This thesis also demonstrated how “big data” from the LINCS project can be used
to explore different experimental settings, such as cell-line coverage, time points and
dosages, using a data pipeline to assess the compound-induced transcriptional effects.
This is the content of Publication IV [77]. As a result, we provided summary statis-
tics for the distributional characteristics of gene-expression signature profiles for all
cell lines and their perturbagens. In doing so, we identified changes in the differ-
ential expression of genes, thereby demonstrating the biological complexity of the
perturbagens. In this way, our analysis could help future studies for guiding their ex-
perimental design and for harnessing the overwhelming complexity of the LINCS
data.

Finally, in Publication V [78], we developed a systems-pharmacogenomics approach
and applied it to data from the LINCS repository. As a result, we constructed DANs
that summarize hundreds of drugs and thousands of compounds with respect to their
therapeutic effects. We demonstrated that the modular structure of the DANs repre-
sent enriched ATC classes, thus integrate the drug-induced changes on the genotype
states of the cells. Interestingly, our results extend conceptual work conducted by S.
Kauffman about cancer attractors in the epigenetic landscape of cell states to the com-
pound space representing therapeutic interventions of which a DAN is a particular
representative.
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Figure A.1 Enrichment of individual modules in the DANs. Shown are the BH corrected q-values of
Fisher’s exact tests for the enrichment of ATC codes in each of the modules of the DANs.
Modules not shown, do not contain any enriched ATC code. The highlighted cells are statis-
tically significant. The horizontal and vertical boxes highlight the multiple occurance of ATC
classes in modules and multiple enriched modules for an ATC class respectively.
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Figure A.2 Distributions of unique dosages for the signature profiles. The number of available profiles
is shown for different dosages (concentrations) of small molecules for 9 highly profiled cell
lines.
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Figure A.3 Number of different time points measured on the 9 cell line subset.The number of cell lines
per compound represented in the treatments ranged from 1 to 8 different time points count
out of 14. Around 99% of the perturbagens affected at least one gene significantly in a single
cell line after treatment with the different number of time points.
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Abstract

Large-scale perturbation databases, such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular
Signatures (LINCS), provide enormous opportunities for computational pharmacogenomics and drug design. A reason for this
is that in contrast to classical pharmacology focusing at one target at a time, the transcriptomics profiles provided by CMap
and LINCS open the door for systems biology approaches on the pathway and network level. In this article, we provide a re-
view of recent developments in computational pharmacogenomics with respect to CMap and LINCS and related applications.

Key words: pharmacogenomics; drug discovery; bioinformatics; drug repurposing; drug repositioning; big data

Introduction

Recently, there is an increasing interest in the computational
analysis of drug perturbation data sets. Such data types are now
routinely used to aid our understanding in drug discovery and
disease therapeutics [1, 2]. With the rapid accumulation of gen-
omics and chemical informatics data in the past decade, several
new systematic approaches to drug discovery have been pro-
posed. For example, some study the drug–target structural

relationships for specific drugs to discover new targets impli-
cated in diseases, whereas others predict biochemical inter-
actions of small molecules with their respective targets using,
e.g. the Connectivity Map (CMap) approach [3–5]. However, for
either type of investigations, machine learning [6] and biomed-
ical text mining [7] approaches have been vital to uncover hid-
den relationships between drugs and potential new indications.
Overall, applying these methods on drug perturbation data sets
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has proven to be beneficial in enhancing the understanding of
the connection between genes, drugs and diseases [8–10] be-
cause such methodologies can lead to generation of novel
hypotheses beyond classical pharmacology by translating new
knowledge from genomic in vitro screens and cell-based assays
to the patients.

Computational screening of drugs has been greatly facili-
tated by the advent of connectivity mapping methods, specific-
ally CMap and the Library of Integrated Network-based Cellular
Signatures (LINCS) [3, 11]. CMap and LINCS are comprehensive,
large-scale drug perturbation databases containing transcrip-
tomic profiles of dozens of cultivated cell lines treated with
thousands of chemical compounds serving as reference data-
bases. That means, these ‘big data’ resources provide simple yet
important platforms to characterize ‘signatures’ of gene expres-
sion changes induced by small molecules. Such drug perturb-
ation signatures have been used to determine connections,
similarities or dissimilarities among diseases, drugs, genes and
pathways, but we are far from fully understanding their
capabilities.

The purpose of this article is to provide a state-of-the art sur-
vey of recent advances in CMap studies and related methods
used in drug discovery, as well as reviewing computational
tools that have been applied in the field. Furthermore, we dis-
cuss examples of applications of these methodologies being
currently used both in drug repurposing/repositioning and in
drug discovery process. An earlier review of connectivity map-
ping has been provided by Qu et al. [12], neglecting, however,
methodological developments. A complementary presentation
has been given in [13] focusing on publicly available resources
and databases that can be used for generic genomic investiga-
tions of disorders.

Put simply, the goal of the CMap in genomic drug discovery
studies is to identify disease or drug-associated gene signatures
that correlate with perturbations on the transcriptomics level as
a response to administrated small molecules or drugs [14]. It is a
common approach used to identify inverse drug–disease rela-
tionships by comparing disease molecular features and drug
molecular features, such as gene expression. This approach
starts by generating a disease gene expression signature by
comparing disease samples and normal tissue samples, fol-
lowed by querying drug–gene expression reference databases.
This makes the CMap technique effective and widely popular in
drug discovery, posing a primary advantage, as it does not re-
quire a detailed mechanism of action (MoA) or prior knowledge
of drug targets to work [15]. However, CMap comes with some
limitations, such as limited drug perturbation data, a limited
drug coverage, dosage-dependent conditions and the uncer-
tainty of applying cell lines or animal model expression pat-
terns to human systems. Also, the methodology can be
expensive and time-consuming before it can generate a signifi-
cant portion of all safe dosage conditions for a limited number
of cell lines for CMap [12].

The connectivity mapping methods
CMap: the connectivity map

The connectivity map was introduced by Lamb et al. [3] in 2006.
The basic concept of CMap is to use a reference database con-
taining drug-specific gene expression profiles and compare it
with a disease-specific gene signature. The CMap method is
performed by simply submitting a list of genes thought to be
relevant to a particular disease. A researcher is returned a list of

drugs having either presumptive efficacy for the disease or,
more realistically, whole mechanisms of action that are well
known, thereby enhancing biological understanding of the dis-
ease. This allows identifying connections between drugs, genes
and diseases. The overall goal of CMap is to predict potentially
therapeutic drug candidates.

The principal workflow of CMap is shown in Figure 1. A
phenotype of interest such as a disease or biological condition
is described by a gene expression signature, i.e. a set of genes
that uniquely represents the underlying phenotype. In [3], the
gene signature corresponds to a list of differentially expressed
genes (DEG), named h, that contains up- and downregulated
genes as shown Figure 1A.

The gene signature set is then used to query the CMap cata-
log of gene expression profiles. The CMap database is a collec-
tion of paired gene expression profiles representing a series of
structured microarray experiments. All experiments were con-
ducted using a microarray platform (Affymatrix HT_HG_U133A
array with 22 283 probesets in addition to HG_U133A with
22 277 probesets) and standardized preprocessing (MAS 5.0).
The experiments were carried out in various cell lines to pertur-
bagens (drugs and bioactive small molecules) at varying con-
centrations and time points against vehicle controls. The initial
database (Build 1) contained 455 instances, i.e. treatment-
control pairs, where treatment constitutes a selection of 165
drugs, 42 different concentrations, 2 time points and 5 cell lines.
The updated version (Build 2) contains 6100 instances with
more drugs (1309) and concentration (156) but the same cell
lines, for a parallel series of analysis. The instance is the basic
unit of data and metadata in CMap. Each instance is uniquely
identified by an instance identifier. After preprocessing, the re-
sulting probe-level summaries are subject to further analysis
(scaling treatment values to corresponding vehicle controls,
thresholding, etc.). The fold change of treatment to control val-
ues was calculated for each probeset, sorted into decreasing
order and converted to a rank vector, separately for each in-
stance. Thus, the probeset that is most upregulated will receive
Rank 1 and the most downregulated will receive 22 283. So, for
Build 2, the CMap database is n ¼ 22; 283� p ¼ 6100 matrix. The
instance rankings are used to compare query lists. It is import-
ant to note that while these rankings may be perceived as a
crude form of summarization, the absence or sparsity of treat-
ment replication precludes usage of summaries incorporating
variation. Hence, for every drug, there is an instance representa-
tion in the reference database, corresponding to the treatment
and the control condition.

The gene signature, h, is compared with the ranked probesets
of the treatment versus control gene expression profiles that are
ranked in descending order according to the fold changes of the
probesets. By splitting the gene signature, h, into two lists con-
taining only upregulated genes, h ", and downregulated genes,
h #, a so-called connectivity score is estimated via several auxil-
iary variables using a nonparametric rank-ordered Kolmogorov–
Smirnov (KS) test, similar to the method introduced in [16].

The resultant ‘connectivity score’ is normalized using ran-
dom permutation described in [3] by Lamb et. al., assuming val-
ues from �1 to þ1 to reflect the closeness or connection
between the expression profiles. A positive connectivity score is
obtained for having most of the downregulated genes at the top
of the reference profile and most of the upregulated genes at
the bottom (Figure 1B). In contrast, a negative connectivity score
is obtained for a reversed mapping, meaning that most of the
upregulated genes are at the bottom of the reference profile and
most of the downregulated genes are at the top [17]. A positive
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correlation denotes the degree of similarity and a negative cor-
relation emphasizes an inverse similarity between a query sig-
nature and a reference profile derived from an individual
chemical perturbation; thus, implicating the exposure to a par-
ticular chemical can mimic or reverse the expression pattern of
the biological state of interest. A null connectivity score occurs
when the up- and downregulated genes are randomly distrib-
uted over the reference profile. See Figure 1B for a visualization
of the different cases. Overall, the results are obtained as a list
of connectivity scores for all small molecules in the reference
database, one connectivity score for each small molecule.
Finally, the top-scoring drugs are selected by sorting all con-
nectivity scores in descending order and identifying a relevance
threshold (Figure 1C). Unfortunately, in [3], no measure of statis-
tical significance, via a statistical hypothesis test, has been used
formally. In contrast, only a basic approach has been suggested
involving a resampling procedure.

Since the first introduction of the CMap principle and meth-
odology, there have been numerous applications of this ap-
proach by many research groups with a particular focus in drug
discovery and development. Therefore, the CMap approach can
be used as a method of screening chemicals by matching the
gene signature of a novel pertubagen against the reference pro-
file [18, 19]. The chemicals sharing similar gene expression pat-
tern, similar activities or mechanisms can be retrieved. A highly
representative phenotype-specific gene signature set of a given
biological state; pathological, genomic perturbations or induced
by chemicals is seen as the first step of implementing CMap
technique. The signature can be generated through a computa-
tional analysis using the genome-wide gene expression profiles.
Although there is no precise way of creating optimal gene signa-
tures, the conventional approach is to identify and use the DEG
that are statistically significant displaying an association with a
given phenotype.

Figure 1. Mechanistic overview of the working principle of the CMap method and the CMap database for drug discovery.
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Reference drug perturbation databases and data sets

There are a few valuable databases and data sets containing
gene expression response profiles effected by chemical com-
pounds that are publicly available. Hence, these data provide in-
formation about the perturbation effects that drugs have on the
transcriptomics level of a cell. In Table 1, we provide an

overview of the most important generic resources. However, we
would like to note that there are additional disease-specific re-
sources available, e.g. for cancer [20], that provide also disease-
relevant relationships with drug compounds and targets.
Henceforth, we focus on the two largest general purpose drug
perturbation data sets CMap and LINCS L1000.

Table 1. An overview of generic drug perturbation databases and data sets

Database/
data set

Description URL link

CMap [3] A database of genome-wide gene expression profiles produced on treatment
of 564 gene expression profiles generated for five cancer cell lines (Build 1).
The current version consists of 1309 compounds and �7; 000 gene expres-
sion profiles (Build 2).

https://www.broadinstitute.org/CMap/

LINCS L1000
[11]

The Library of Integrated Cellular Signatures (LINCS) is an NIH program,
which funds the generation of perturbation profiles across multiple cell
and perturbation types, as well as readouts, at a massive scale. The data
consist of �20000 perturbagens, �15 cell lines, �1; 400; 000 gene expression
profiles and 25 assays.

http://www.lincsproject.org/

DP14 and
DP92 [21]

The DP14 data set contains GEPs of OCI-LY3 cell line (a human diffuse large
B-cell lymphoma cell line) treated with 14 distinct individual compounds
and profiled at 6, 12 and 24h following compound treatment, all in tripli-
cate. For treatment, two different concentrations of the compounds corres-
ponding to IC20 at 24h and IC20 at 48h were used. GEP of DMSO-treated
samples and profiled at the three different time points, all in octuplicate
were used as control, resulting in 276 GEPs from this data set. DP92 data set
contains GEPs of 92 distinct FDA-approved, late-stage experimental and
tool compounds in three different B-cell lymphoma cell lines (OCI-LY3,
OCI-LY7 and U-2932), profiled at 6, 12 and 24h following compound treat-
ment. All compounds were treated using IC20 at 24h concentration. DMSO
was used as control media at each of the three time points, resulting in 857
GEPs.

http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc¼GSE60408

GEODB [21] This data set contains GEP of 13 different compounds, obtained from nine in-
dependent expression sets obtained from the Gene Expression Omnibus
(GEO). Each expression set had at least six DMSO controls and six samples
for compound treatment. Three of the expression sets were profiled on
MCF7 breast cancer cell lines (GSE9936—three compounds, GSE5149 and
GSE28662—two compounds), and two on MDA-MB-231 metastatic breast
cancer lines (GSE33552—two compounds). The rest of the expression sets
were profiled in a B-cell lymphoma cell lines, which are chronic lympho-
cytic leukemia patient-derived cell lines(GSE14973), K422 non-Hodgkin’s
lymphoma cell lines (GSE7292), lytic-permissive lymphoblastoid cell lines
(GSE31447), diffuse large B-cell lymphoma patient-derived cell lines
(GSE40003) and mantle cell lymphoma cell lines (GSE34602).

http://www.ncbi.nlm.nih.gov/geo/

Follicular
lymphoma
[22]

CB33, SUDHL4 and SUDHL6 cells provided by R. Dalla-Favera (Columbia
University, NY) were maintained in IMDM (Life Technology), supplemented
with 10% FBS (Gemini) and antibiotics. The HF1 follicular cell line provided
by R. Levy (Stanford University, CA) was maintained in DMEM (Life
Technology), supplemented with 10% FBS and antibiotics. Cells were tested
negative for mycoplasma. Cells were not further authenticated.
Antibodies: rabbit anti-MYC (XP) (Cell Signaling Technology); rabbit anti-
FOXM1 and mouse anti-GAPDH (SantaCruz); rabbit anti-HMGA1, anti-ATF5,
anti-NFYB, mouse anti-TFDP1 (Abcam), Alprostadil, Clemastine,
Cytarabine and Troglitazone (Tocris), Econazole nitrate and Promazine
hydrochloride (Sigma) were reconstituted in DMSO (Sigma).

http://cancerres.aacrjournals.org/
content/early/2015/11/20/0008-5472.
CAN-15-0828.abstract

RAF-inhibitor
resistant
[23]

The data set consists of 143 proteomic/phenotypic entities under 89 perturb-
ation conditions. In perturbation experiments, the drugs are applied to cell
cultures after SkMel-133 cells are grown to about 40% confluence in com-
plete RPMI-1640 medium (10% heat-inactivated fetal bovine serum, 100
units/ml each of penicillin and streptomycin and incubated at 37

�
C in 5%

CO2) in six-well plates. After 24h drug administration, the perturbed cells
are harvested. In control experiments (i.e. no drug condition), cells are
treated with the DMSO drug vehicle for 24h.

http://elifesciences.org/content/4/e04640v1
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CMap
The CMap database consists of genome-wide transcriptional ex-
pression profiles of bioactive compounds from cultured cell
lines. In the original CMap study [3], the reference database con-
sisted of 564 gene expression profiles generated from exposing
five different human cell lines (MCF7, PC3, SKMEL5, HL60 and
ssMCF7) with 164 small molecules [3] (Build 1). In Build 2, this
has been significantly extended to 1309 approved small mol-
ecules applied to the same five human cell lines leading to over
7000 gene expression profiles. Build 1 and Build 2 use an
Affymetrix platform for generating the gene expression data. So
far, several methods have been developed using the CMap data-
base (either Build 1 or Build 2), either for new drug reposition-
ing/repurposing approaches or for improving the performance
of the original CMap method, also in comparison with other
data sets [24–27]. Notably, Cheng et al. [28] presented a system-
atic approach to quantitatively assess the performance of such
methods. Hence, this study can be seen as a benchmark ap-
proach to assess any new methodology in the future.

LINCS L1000
The LINCS supported by the NIH, comprises �5000 genetic per-
turbagens (e.g. single-gene knockdowns or overexpressions)
and �15000 perturbagens induced by chemical compounds (e.g.
drugs) [29]. To date, over one million gene expressions have
been profiled and collected for this project using the L1000 tech-
nology [29]. The L1000 platform has been developed at the

Broad Institute by the CMap team to facilitate rapid, flexible and
high-throughput gene expression profiling at lower costs.
Specifically, the L1000 technology measures the expression of
only 978 so-called landmark genes, and the expression values
for the remaining genes are estimated by a computational
model using additional data from the Gene Expression Omnibus
(GEO) [30]. A user-friendly access to the database is provided by
the LINCS cloud Web page (http://www.lincscloud.org/l1000/),
which is a Web-based application allowing users to browse and
query the LINCS database.

In a simplified view, the L1000 data can be considered as a
‘big matrix’ where the rows correspond to 22 268 genes and the
columns are the millions of perturbations induced by the small
molecules. It is clear that such a large data set presents new
challenges to computational systems biologists who aim to ana-
lyze and visualize Big Data. In Table 2, we provide a brief over-
view of tools and software developed so far to explore and
understand the L1000 database.

CMap variations and extensions

ssCMap: statistically significant connectivity map
New methods of pattern matching algorithm and data normal-
ization were applied using CMap approach to help reduce noise
effects, results interpretation and strengthen the methods reli-
ability in generating unproven hypotheses [26]. For example, an
important method has been introduced by Zhang et al. [33],

Table 2. Tools and softwares developed for browsing, visualizing and querying the LINCS database

Name Description Features URL link

Enrichr [31] Enrichr is an easy-to-use intuitive enrichment analysis
Web-based tool providing various types of visualization
summaries of collective functions of gene lists.

Access, Search, Navigation,
Integration, Visualization
and Signature Enrichment

http://amp.
pharm.mssm.
edu/Enrichr

LINCS Data Portal The current version of the portal has features for searching
and exploring LINCS database.

Access, Search, Browse and
Navigation

http://lincsportal.
ccs.miami.
edu/dcic-
portal

Slicr Slicr (LINCS L1000 Slicer GSE70138 data only) is a metadata
search engine that searches for LINCS L1000 gene expres-
sion profiles and signatures matching users input
parameters.

Access, Search, Navigation,
Integration, Visualization
and Signature Enrichment

http://amp.
pharm.mssm.
edu/Slicr

L1000CDS2 [32] L1000CDS2 queries gene expression signatures against the
LINCS L1000 to identify and prioritize small molecules
that can reverse or mimic the observed input expression
pattern.

Access, Search, Navigation,
Integration, Visualization
and Signature Enrichment

http://amp.
pharm.mssm.
edu/
L1000CDS2

LIFE A semantically enhanced Web-based application that en-
ables access, navigation and exploration of a knowledge
base built by integrating and indexing all the LINCS data
types. LIFE allows access, navigation and exploration of
LINCS assays, biomolecules, related concepts and LINCS
screening results via a variety of views such as proteins,
genes, cell lines, small molecules. LIFE provides flexible
navigation of the LINCS assay and data landscape via list
functionality covering important assay biomolecules and
concepts; this enables a variety of use cases.

Access, Query, Search, Browse,
Navigation and Download

http://life.ccs.
miami.edu/life

iLINCS iLINCS is a portal that handles LINCS L1000 and
KinomeScan data. It facilitates integration of LINCS data-
derived signatures with other genome-scale signatures.

Access, Search, Navigation,
Leverage Ontology,
Visualization and Download

http://life.ccs.
miami.edu/life

LINCS Canvas
Browser [29]

Compact visualization of thousands of L1000 experiments;
clustering of perturbations based on signature similarity;
interactive gene list enrichment analysis using 32 gene
set libraries; query up- and downregulated gene lists
against over 140 000 L1000 conditions.

Access, Search, Navigation,
Integration, Visualization
and Signature Enrichment

http://www.
maayanlab.
net/LINCS/LCB

510 | Musa et al.



called statistically significant connectivity map (ssCMap). The
approach uses connectivity score computation with permuta-
tion tests at both treatment instance level and treatment set
level that offers a statistical means to control over the possible
false connections between the gene signature and the reference
profiles. Because the CMap concept uses the entire genomic in-
formation of the patients and of the drug, one may view this ap-
proach as an attempt at systems treatment. However, it suffers
from having many draw backs as mentioned in [33]. In particu-
lar, it has no specific reference to the biological functions
altered by the disease in question. A top-ranked drug could be
misleading for having strong effects on a subset of functions at
the expense of altering other functions that are not associated
with the disease [34].

The ssCMap method introduces a new ranking score using
the following steps. First, treatment and control instances are
treated similarly, making the effect of the treatment instances to
be determined by DEG. Second, the genes that are affected by the
treatment instance, that is, genes that are highly differentially
expressed, are givenmore weight. Finally, the up- and downregu-
lated genes are handled equally, in such a way that 2-fold of the
up- or downregulation of a gene has the same relevance in con-
structing the reference profile. The genes are ordered using the
absolute value of their log expression ratios (fold change), as the
up- and downregulated genes are considered the same.
Moreover, the most significant gene will be at the top of the list,
while most of the insignificant gene will be at the bottom. This
ensures that the genes are ranked by their importance in the ref-
erence profile [33]. Assuming there are in total N genes, the first
gene in the list will be assigned a rank N if it is upregulated, or a
rank �N if it is downregulated. In general, the ith gene in the list
will be ranked with ðN� iþ 1Þ for upregulation or �ðN� iþ 1Þ for
downregulation. The ssCMap uses new scoring scheme for repre-
senting a query gene signature either with ordered or unordered
gene list. The important gene expressed will be assigned a rank
m or�m depending on whether it is up- or downregulated, where
m is the number of genes in the gene signature. The connection
strength [33] is calculated between reference profile R and gene
signature s to measure a connection between reference profile
and gene signature.

CðR; sÞ ¼
Xm

i¼1

RðgiÞsðgiÞ: (1)

Where gi represents the ith gene in the signature, sðgiÞ is its
signed rank in the signature and RðgiÞ is this gene’s signed rank
in the reference profile (Equation 1). To have maximum connec-
tion between reference profile and gene signature, Zhang et al.
achieved it by matching m genes and their regulation status in
the reference profile and the gene signature in the correct order
(for ordered gene signature) as shown in Equation 2. For an un-
ordered gene signature, all the genes in the list have equal weight
because there is no particular ordering; therefore, maximum con-
nection strength for unordered is calculated using Equation 3.

C0
maxðN;mÞ ¼

Xm

i¼1

ðN� iþ 1Þðm� iþ 1Þ: (2)

Cu
maxðN;mÞ ¼

Xm

i¼1

ðN� iþ 1Þ: (3)

The overall connectivity score (c) is calculated by dividing
the connection strength with the maximum connection
strength of a given gene signature and reference profile

Equation 4. The connectivity score ranges from �1 to 1, where 1
indicates a maximum positive connection of gene signature
with the reference profile, while �1 indicates a negative connec-
tion. To test the connection score, ssCMap uses a simple pro-
cedure to test the null hypothesis between the gene signature
and the reference profile that is achieved by generating a ran-
dom gene signature of ordered/unordered list using random se-
lection without replacement with equal probability of either up-
or downregulation. After generating the signature, ssCMap cal-
culates the connectivity score (c) of each signature as well as the
P-value associated with the connectivity score denoted by P.
Here, ~c is the connectivity score between a random gene signa-
ture and a reference profile. The same procedure is repeated to
estimate the sampling distribution of the random signatures.
Zhang et al. provide a user-friendly software application for the
ssCMap algorithm [35].

ConnectivityScoreðcÞ ¼ CðR; sÞ=CmaxðN;mÞ: (4)

CMapBatch: a meta-analysis of drug response
Fortney et al. [27] have recently adapted a parallel CMap ap-
proach across multiple gene signatures of a disease, and named
the method ‘CMapBatch’. Specifically, instead of applying CMap
to one individual gene signature, the authors apply it to mul-
tiple gene signatures for the same disease and then combine
the resulting outcomes. Therefore, their approach is similar to a
meta-analysis. It is common for a complex disease to have
more than one signature available, and this justifies the appli-
cation of CMap to multiple gene signatures of a disease.
Previously, other groups [36, 37] addressed this issue by combin-
ing those different gene signatures before applying CMap [35].
However, Fortney et al. emphasize that combining gene signa-
tures is problematic for strongly nonoverlapping gene sets. This
problem has been addressed by CMapBatch.

Formally, for each disease signature, CMapBatch obtains a
list of connectivity scores corresponding to all the small mol-
ecules (1309 in CMap Build 2) and combines them by using the
Rank Product method [38] to assign a consensus ranking on
each drug for all the tested gene signatures. The Rank Product
method was originally developed to identify DEG for replicated
experiments based on the ranking of the individual experi-
ments. Fortney et al. analyzed 21 signatures (s ¼ 21) for lung can-
cer obtained from Oncomine [27, 39]. The results reveal that
CMapBatch produces indeed a more stable list of drugs when
compared with the individual gene signatures. Specifically, the
median overlap of the top 50 drugs for 21 individual gene signa-
tures was 22, but for CMapBatch, the overlap was 39 drugs.
Furthermore, for a FDR threshold value of 0.01, 247 small mol-
ecules have been identified that significantly reverse the gene
expression changes of the tested signatures.

The method was used to further highlight more effective
drug candidates inhibiting cancer growth and the results com-
pare favorably with the results of the original CMap. Thus, scal-
ing up transcriptional knowledge increases the hit percentage
significantly from 44 to 78% of the top-ranked drugs. Moreover,
the resultant drug hits were characterized in silico and showed
slow growth significantly in nine lung cancer cell lines from the
NCI-60 collection [27]. In total, 247 candidate therapeutics were
identified for which two genes, CALM1 and PLA2G4A, are found
to be markers for drug targets in lung cancer [40].

Despite the fact that CMapBatch was only tested for lung
cancer, the proposed meta-analysis can be used for any disease
phenotype to prioritize therapeutics.
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Extensions of the CMap similarity metric

The CMap ability of finding connections and similarities be-
tween genes, diseases and drugs makes it useful in many appli-
cations but has a few draw backs. One of these is failure to
apply a comprehensive measure to validate the significance of a
gene signature when queried against reference profiles [33].
Several studies have focused on improving the original KS stat-
istics used as the ‘similarity metric’ by CMap. We highlight
some of these methodologies in Table 3.

High-performance computing platforms in CMap

As a computational and bioinformatics framework, connectivity
mapping has been underpinned by the powers of modern com-
puters. Throughout the development of connectivity mapping,
particularly CMap and its extensions, intensive permutation
tests are required to provide statistical rigor, and the ever-
growing expansion of the reference database has required faster
processing and/or better software architectures to fulfill such
requirements.

To address these issues related to the computational de-
mands, Zhang and his group developed high-performance com-
puting (HPC) models of connectivity mapping, called cudaMap
[45], which uses the computing power offered by the graphics
processing units (GPUs) of modern computers; a recent exten-
sion is QUADrATiC [46], which is a scalable gene expression
connectivity mapping framework for repurposing Food and
Drug Administration (FDA)-approved drugs. The framework
uses multiple processor cores to achieve high-speed connectiv-
ity mapping. Furthermore, concerted efforts have also been
made to formulate and standardize the procedures for creating
quality gene signatures across multiple data sets [47] and deter-
mining the optimal lengths of query gene signatures [48].

Computational evaluation of CMapmethods

Transcriptional expression profiles are widely used to find
drug–disease or drug–drug relationships that could lead to new
methods in drug discovery [28]. However, a remaining challenge
is to evaluate methods based on such data sets. Despite the suc-
cess of various CMap approaches, there are few ways to quanti-
tatively evaluate the performance of the connectivity score for
the association between drugs and diseases by computational
means. There are two ways to computationally evaluate CMap:
first, evaluate drug–drug relations [18, 42] and second, evaluate
disease–drug relations [28].

In evaluating drug–drug relationship, a drug signature is
used to query CMap to retrieve related drugs that have the same
ATC codes or chemical structures that are similar as studied in
[18, 42]. However, in evaluating disease–drug relations, a disease
signature is used to query CMap to retrieve known drugs not-
ably in [28].

Iskar et al. [18] were among the first to study a quantitative
evaluation of CMap methods to identify similar compounds
using an ATC classification. They created labeled benchmark
sets using compound chemical similarities and ATC codes.
They focused on early retrieval performance where the false-
positive rate (FPR) is <0.1. At these FPRs, their calculated AUCs
were significantly different from random.

Cheng et al. [42] also used the ATC codes to benchmark the
similarity metrics using two different methods: the batch DMSO
control and mean-centering normalization. Focusing on early
retrieval performance (FPR ¼ 0.1), eXtreme cosine (XCos)
method outperforms the original CMap similarity metric based

on KS test. It is also robust in terms of drug–drug relationship
prediction with compounds that have higher treatment effect
on treated cell lines. Therefore, the authors further extended
the method for evaluating various CMap similarity metrics with
compound profiles that have higher treatment effect.

However, not all performance evaluations tend to work as
pointed out by [49] because of the following reasons: First, a lack
of high-quality disease signatures, as many diseases may not be
represented accurately by the reference profiles in the gene sig-
nature. Second, the benchmark sets used to represent the drug–
disease association might not be comprehensive enough to cap-
ture all drug–disease linkages. Finally, the drug cellular profiles
are limited to only treating fewer cell lines, which explains why
some of the neoplastic disease signatures perform better than
nonneoplastic disease signatures [28].

Applications of CMap in pharmacogenomics

Since the introduction of Build 1 in 2006, the CMap database
and the CMap method have been applied in a large number of
pharmacogenomics studies. These studies can be categorized
with respect to their application purpose. Specifically, CMap has
been used to identify novel phenotypic relations for disease
treatment, for drug repurposing/repositioning and for studying
drug combinations [50].

Discovering novel phenotypic relations

The most fundamental but also the most difficult task for which
the CMap database can be used is to identify a novel therapeutic
treatment for a disease [5]. This is also called a lead discovery. It
aims at establishing an advantageous connection between the
administration of a drug and a phenotypic response of the pa-
tient. Several studies used a CMap analysis to improve the
understanding of disease/phenotype associations by combining
some of the therapeutic agents identified in cancer [51–53].
These studies have shown the full potential of the application
of CMap in drug discovery and in identifying cancer disease
therapeutic targets. Table 4 provides a list of applications in
finding drug targets or pathways and their associations with a
disease.

As an example, McArt et al. [60] used the ssCMap to find con-
nections for small molecule candidates that can be used for a
phenotypic analysis in the laboratory [35]. Specifically, their
study used a DNA microarray and RNA sequencing platform,
and they identified the same gene signature for which the re-
sulting drug (cotinine) suppressed androgen-driven cell prolifer-
ation [61]. Furthermore, they experimentally validated cotinine,
which inhibits proliferation in LNCaP cells [60].

Recently, a study conducted by Lim et al. [53] used a gastric
cancer gene signature to query CMap. The results of their ana-
lysis showed that histone deacetylase inhibitors (HDAC), which
include vorinostat and trichostatin A, were potential drug can-
didates for treating gastric cancer [53]. These findings were ex-
perimentally validated in vitro using gastric cancer cell lines,
where vorinostat significantly inhibited cell viability in a dose-
dependent manner [53].

Spijkers-Hagelstein et al. used CMap to demonstrate a reverse
effect of PI3K inhibitors in infants with MLL-rearranged acute
lymphoblastic leukemia (ALL). The study found the PI3K inhibitor
LY294002 to be significantly effective in reversing prednisolone-
resistance profile and induce sensitivity [51, 62]. Moreover, the
prednisolone-sensitizing effects of LY294002 on two cell lines
studied consist of five downregulated genes, namely PARVB,
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Table 3. List of methodologies that extend the CMap similarity metric

Method name Description Advantage Disadvantage

ProbCMap: Probabilistic
drug connectivity
mapping [41]

A probabilistic connectivity mapping
by [41] was introduced as a model-
based alternative to the original
CMap. The method uses a probabil-
istic model that focuses on the rele-
vant gene expression effects of a
drug as a probabilistic latent factor
derived from the data on cell lines.

• Finding functionally and chemically
similar drugs based on transcrip-
tional response profiles.

• It has been shown that gene expres-
sion response factors between cell
lines can be promising when a mul-
tisource probabilistic model is used.

• The method allows retrieval of a
combination of drugs.

• It also shows how drug combination
retrieval provides complementary
information when compared with a
single-drug retrieval.

• It is more sensitive to plat-
form differences.

• The method intentionally ig-
nores possible cell line-spe-
cific effects of the drugs.

• The approach relies on the
assumption that it is suitably
chosen based on the prob-
abilistic model.

Connectivity score
based on partial-rank
metrics [26]

This extension of the connectivity
score was introduced by Segal et al.
[26]. They apply partial-rank metrics
and empirical null distributions for
scoring CMap queries by accommo-
dating a query order, in contrast to
the KS scoring, which uses a rank
ordering of gene expression profiles
in the target instance to generate an
ordering of the query.

• More effective methods than KS by
computing a per experiment score
that measures ‘closeness’ between
the signature and the reference
profiles.

• New approaches measuring close-
ness for the common scenario
wherein the query constitutes an
ordered list.

• Advance an alternate inferential ap-
proach based on generating empir-
ical null distributions that
characterize the scope, and capture
dependencies, embodied by the
database.

• Hard to develop effective fit-
ting algorithms for large
instances.

• Number of inferential prob-
lems surrounding use of met-
rics extended to partial
rankings, such as reconciling
asymptotic distributions.

XCos: Cosine-based
similarity [42]

The xCosine is introduced as alterna-
tive method used to computation-
ally evaluate the similarity between
reference profile and gene signa-
ture. In this novel CMap approach,
Cheng et al. used the Anatomical
Therapeutic Chemical (ATC) classifi-
cation as the benchmark to meas-
ure differences and similarities of
XCos method to other CMap scoring
methods, data processing methods
and signature sizes [42].

• XCos outperforms CMap when used
with a larger number of features
(top 500).

• Help find the analytical approaches
that are more accurate in evaluating
the CMap data.

• Finds good transcriptional response
to drug treatment that appears to
have sufficient consistency in MoA.

• The method is used to determine
the compound classes, which have
robust expression profiles in the
CMap data.

• It emphasizes early retrieval, which
is important because in reposition-
ing the aim is to sacrifice some true
positives to keep false positives low.

• Multiple ATC codes per com-
pound can lead to errors, and
redundant ATC codes may
inflate results.

• Many ATC codes do not prop-
erly characterize MoAs.

• Averaging over multiple cell
lines averages biological vari-
ation for compounds that
may have differential re-
sponses in the multiple cell
lines.

XSum: Systematic
evaluation of con-
nectivity map [28]

This method uses a similarity metric
that systematically evaluates mul-
tiple CMap methodologies by as-
sessing their performance on many
drug profiles across a curated data
set consisting of multiple disease
gene signatures [28].

• Using XSum, CMap can significantly
enrich true positive drug-indication
pairs by a novel matching
algorithm.

• It can be used as an effective simi-
larity measure to enhance the KS
statistics as well as filtering drug-
induced data.

• The algorithm has a relative early
retrieval performance.

• It can help tremendously in experi-
mental validation using small num-
ber of hypotheses.

• The overall retrieval performance is
weak.

• The drug–disease benchmark stand-
ard was not able to capture all
known drug–disease association.

(continued)
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D123, FCGR1B, PSTPIP2 and S100A2. Interestingly, the mentioned
genes appear to be expressed in children with ALL samples with
prednisolone-resistant, but not in ALL samples with
prednisolone-sensitive samples.

Another interesting study from Engerud et al. [25] found by
applying CMap that HSF1 and HSF1-related gene signatures are
correlated with a high-risk disease state in endometrial cancer,
and they also shed light on the underlying biological mechan-
isms. The results showed how HSF1 levels can predict a re-
sponse to drugs targeting HSP90 or any possible protein
synthesis. Furthermore, their results also justified that the HSF1
level and HSF1-related signatures impact on carcinogenesis
during disease progression and found that HSF1 can be used for
developing new therapeutic targets [17]. Therefore, HSP90 in-
hibitors are seen as novel targeted therapeutics for patients
with high HSF1 levels in tumors [25, 63].

In addition, a similar approach of CMap application has been
used to investigate relationships between drugs and microRNAs
(miRNAs) [64]. Jiang et al. proposed a novel high-throughput ap-
proach to identify the biological links between drugs and
miRNAs in 23 different cancers and constructed the Small
Molecule-MiRNA Network for each cancer to systematically
analyze the properties of their associations. They concluded
that most of the miRNA modules comprised miRNAs that had
similar target genes and functions or were members of the
same miRNA family. The majority of the drug modules involved
compounds with similar chemical structures, modes of action
or drug interactions. Another common approach is to identify
drug–miRNA relationships by comparing disease molecular fea-
tures and drug molecular features, such as gene expression.
Wang et al. [65] proposed a novel computational approach to
identify associations between small molecules and miRNAs
based on functional similarity of DEG. The results show 2265 as-
sociations between FDA-approved drugs and diseases, where
35% of the associations have been reported in the literature.
Also, 19 potential drugs were identified for breast cancer, in
which 12 drugs were reported by previous studies. Their studies
provide a valuable perspective for repurposing drugs and pre-
dicting novel drug targets, which may provide new way for
miRNA-targeted therapy [65].

Duan et al. introduced an improved computational method
that potentially shows the importance of using the newly gen-
erated publicly available LINCS L1000 data set to rapidly priori-
tize small molecules that could reverse or mimic expression in
disease and other biological states. The DEG of these profiles
were calculated using the characteristic direction method [66].

The L1000CDS2 uses the users’ input of either a gene-set
method or cosine distance method to compare the input signa-
tures with the L1000 signatures to perform the search via a
state-of-the-art Web interface. The L1000CDS2 method provides
prioritization of thousands of small-molecule signatures, and
their pairwise combinations, predicted to either mimic or re-
verse an input signature. It also predicts drug targets for all the
small molecules profiled using L1000 assay. To further show-
case the usefulness of the approach, they collected expression
signatures from human cells infected with Ebola virus at 30, 60
and 120 time points. Querying these signatures against
L1000CDS2, kenpaullone compound was identified. A GSK3B/
CDK2 inhibitor has shown a dose-dependent efficacy in inhibit-
ing Ebola infection in vitro without causing cellular toxicity in
human cell lines [67].

Using the CMap approach, Zhu et al. found vorinostat as a
possible candidate therapeutic drug in gastric cancer. The
HDAC inhibitor (e.g. vorinostat and trichostatin A) has an in-
verse correlation with a gastric gene signature, which shows an
interesting therapeutic target. Studies have already revealed the
efficacy of vorinostat as therapeutic drug that suppresses
growth of various cancer cell lines [68]. Moreover, many ana-
lysis of cancer-related cell lines and gastric cancer patients
showed vorinostat to be effective in altering expression levels,
hence making it effective for the upregulation of autophagy-
specific genes [69, 70].

Siu et al. [71] highlighted the potential benefits of polyphyllin
D as a therapeutic drug for non-small cell lung cancer (NSCLC).
Interestingly, the extracts of the Paris polyphylla plant, contain-
ing polyphyllin D, have been long used in traditional Chinese
medicine for cancer treatment [72]. Their CMap analysis indi-
cated that polyphyllin D is a trigger for estrogen receptor-
induced apoptosis and mitochondria-mediated apoptotic path-
ways [73].

CMap-based elucidation of drug MoA

In pharmacology, understanding the exact effect of an active
compound on a system represented, e.g. by a gene signature, is
the central focus. Specifically, it is important to identify possible
new compounds that are performing activities based on par-
ticular targets [12]. Given a compound phenotypic gene signa-
ture, the CMap method [3] can be applied to identify such novel
active compounds. Thus, it provides a new hypothesis-
generating tool to identify signaling pathways affected by a
compound, connecting a biological state to the discovery of

Table 3. Continued

Method name Description Advantage Disadvantage

• As the CMap performance is not
optimized, that process is prone to
be overfitting and bias.

Module-based chemical
function similarity
search [43]

This approach evaluates CMap (Build
1) data set using expression pattern
comparison-based chemical func-
tion similarity search, seen as an
improvement of CMap that can pro-
vide more biological information of
the chemicals.

• Module-based expression pattern
comparison provides a possibility to
identify functional modules or path-
ways with two similar profiles.

• It can help in finding chemicals that
are functionally alike because they
affect similar pathways or biological
processes.

• Uses GO [44] modules to reduce fea-
ture selection.

• It is limited to GO system to
define gene set.

• When searching for related
profiles for a given chemical,
both module based and
CMap give similar rankings,
especially when two target
chemicals have close ranks.
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disease–gene–drug connections, depending on the level of
observed changes, i.e. the molecular or functional (anatomical)
level.

Availability of computational approaches has sparked usabil-
ity of network models and system biology approaches to obtain a
deeper understanding of the basic biological drug–disease rela-
tions [57]. Specifically, methods have been developed to aid in
finding drugable targets and drug compounds based on a basic
understanding of biological processes in the pathway level.
These include methods such as integrating a functional protein
association network to form a new model, finding information
on a known target and enriched pathways, small molecules with
high connectivity score, investigating side-effect scores based on
ranked gene signatures and the use of novel methods from ma-
chine learning to evaluate CMap data set [74–77].

There are also many other functional phenotype-based
approaches that use the CMap resource to understand MoA [7,
78–80]. It is widely known that many drugs with therapeutic tar-
gets in cancer prognosis and diagnosis have been identified
using CMap. For example, CMap designated the mTOR inhibitor
rapamycin as a potential therapy for dexamethasone-resistant
ALL in children. A clinical trial is currently underway for assess-
ing this possible new indication [81]. A similar approach by Li
et al. has shown its power in discovering chemicals sharing
similar biological mechanisms and chemicals reversing disease
states. They used CMap and gene ontology (GO) [44] modules to
partition genes into small biological categories and performed
expression pattern comparison within each category [43]. The
method shows robustness in finding chemicals sharing similar
biological effects by using a reduced similarity matrix to meas-
ure the biological distances between query and reference pro-
files. This will pave in reducing experimental noises and
marginal effects and directly correlates chemical molecules
with gene functions.

Iorio et al. [4] generated a drug network (DN) from the CMap
database using a novel distance metric that is able to score the
similarity between gene expression profiles and drug treatment.
The authors partitioned the DN using graph theory tools to
identify groups of drugs (communities) that are densely inter-
connected [63]; the same method was also applied by [82, 83].
Their results revealed that these groups were significantly en-
riched with drugs of a similar MoA and therapeutic purpose
and, hence, can be used for such predictive purposes. Their ana-
lysis exemplified their method studying HSP90 and CDK2 inhibi-
tors and showed that the predicted MoAs correspond to results
known in the literature [25, 63, 84]. Interestingly, their method
revealed a previously unknown MoA link between fasudil, a
Rho-kinase inhibitor, and autophagy. An experimental valid-
ation indeed confirmed this connection suggesting a reposition-
ing of this drug because so far fasudil is approved in Japan for
the treatment of cerebral vasospasm characterized by blood
vessel obstruction.

Kibble et al. uses CMap approach to show, via the case study
of the natural product pinosylvin, how the combination of two
complementary network-based methods can provide novel
mechanistic insights. They illustrate that elucidating the MoA
of multi-targeted natural products through transcriptional
response-based approaches can lead to unbiased hypotheses
that might not have been otherwise conceived and, hence, to
truly novel and even surprising findings [85].

Dudley et al. have shown that CMap data contain sufficient
information about the dynamic activities of human genes for
reconstructing gene–gene interactions in drug-perturbed cancer
cells. They successfully applied a Gaussian Bayesian network

framework [86] to reconstruct a subnetwork containing vali-
dated interactions between genes with known roles in the apop-
tosis pathway. In addition, their network successfully predicted
key players and interactions in drug-induced apoptosis, includ-
ing both intrinsic and extrinsic apoptosis pathways [87].

Choi et al. [5] proposed another computational optimization
method using CMap to find drug MoA. Their study used gene ex-
pression signatures of disease states or physiological processes
with gene expression signatures of small-molecule drugs to pre-
dict novel functional associations between small molecules
sharing the same MoA. The heat-shock protein 90 inhibitors
(HSP90i) were identified in the study as a candidate that sup-
presses homologous recombination (HR) in epithelial ovarian
cancer (EOC) patients [5]. They further showed that sublethal
concentrations of HSP90i 17-AAG suppresses HR sensitivity
observed in ovarian cancer cells [5, 88]. Hence, the authors con-
cluded that the combination of 17-AAG and PARP inhibitors
(PARPis) olaparib or carboplatin in EOCs that inhibit HR will be
effective when developing PARPi resistance [5].

Shigemizu et al. [15] introduced a novel methodology similar
to the partial-rank metric, by using gene expression profile to
apply the CMap concept to identify candidate therapeutics for
MoA, targeting possible functions that are beyond drug repos-
itioning [89]. The method uses drug candidates in a pool of com-
pounds that downregulate the overexpressed genes, or
upregulate the underexpressed genes, for a given abnormal
phenotypic condition and demonstrate the utility of their ap-
proach for drug repositioning. The authors pointed out that the
improved functionality of their method will help in identifying
a drug or a group of drugs with potential heterogeneous proper-
ties. On the other hand, the method can be used to find genes
that can be targeted by a set of identified compounds. For in-
stance, the genes RPL35, LAMB1 and CAV1 have been found to
be breast cancer targets [15, 90]. Finally, the result of their func-
tional analysis indicated that the MoA of tamoxifen is given by
downregulating TGF-b signaling [15].

Drug repurposing

Generally, drug repurposing refers to investigating drugs that
are already used for treating a particular disease to see if they
can be safely and effectively used for treating other diseases.
The terms repurposing and repositioning are used interchange-
ably. Owing to the fact that the repurposing of a drug builds on
previous research and development efforts, new candidate
therapies could be ready for clinical usage more quickly and at
reduced costs. Over the past years, many approaches have been
developed for the generic drug repurposing; however, in the fol-
lowing, we will focus on investigations that have been using
CMap to repurpose drugs and to identify novel targets.

For instance, Kunkel and his group [37] used CMap to deter-
mine ursolic acid, a natural compound that is e.g. present in
apples, as a lead compound for reducing fasting-induced
muscle atrophy. They used rodents for an in vivo validation of
the therapeutic concept, demonstrating that ursolic acid is a po-
tentially interesting therapy candidate for muscle atrophy and
perhaps other metabolic diseases.

Applying the connectivity mapping approach to acute mye-
loid leukemia (AML), Ramsey et al. integrated gene signatures
from a mouse model of AML and a cohort of AML patients to
query the ssCMap. They identified entinostat as a candidate
drug able to alter the AML condition toward the normal state.
This prediction was followed up experimentally in cell line as
well as mouse models, and the authors were able to validate the
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predicted effects of entinostat on the signature genes, and
showed that in vivo treatment with this compound resulted in
prolonged survival of leukemic mice [91].

Johnstone et al. used a comparative microarray analysis of
compound-induced changes in gene expression for a possible
drug repurposing, and they discovered a novel compound. This
finding suggests a possible mechanism of calmodulin signaling
using piperazine as promoters of central nervous system (CNS)
neurite growth [54]. This study suggests that calmodulin can be
seen as a novel target enhancing neuron regeneration.
Furthermore, their analysis showed that a previously unrecog-
nized potential for piperazine phenothiazine antipsychotics can
be repurposed for neuron regeneration [54].

Jin et al. [92] presented a novel computational drug-
repurposing method to screen a combined set of drugs together
for treating type 2 diabetes [93]. Interestingly, they found that a
combination of Trolox C and Cytisine is effective for the treat-
ment of type 2 diabetes, but if used separately, neither of the
drugs are effective. Similarly, Sirota et al. [94] integrated a new
gene expression database from 100 diseases and 164 drug com-
pounds, yielding predictions for all drug compounds that show
a high consistency with already known therapeutics. As a dem-
onstration for a novel prediction, an experimental validation for
the antiulcer drug cimetidine was provided as a candidate
therapeutics in the treatment of lung adenocarcinoma (LA).

Malcomson et al. [95] has recently applied computational
drug repurposing successfully, as well, by using sscMap to iden-
tify candidate drugs that could be used to induce A20 and to
normalize the inflammatory response in cystic fibrosis. A20
(TNFAIP3) is a known nuclear factor-kB regulator, which is
reduced in airway cells. The authors used a co-expression-
based analysis to create a gene signature consisting of A20
showing high correlation. Then, Malcomson et al. performed a
connectivity mapping analysis using the sscMap framework.
The identified candidate drugs were subsequently validated in
airway epithelial cells, confirming that ikarugamycin and quer-
cetin have anti-inflammatory effects mediated by induction of
A20. They used small interfering RNA experiments to illustrate
that the anti-inflammatory effect of these two drugs is mainly
because of A20 induction.

Drug combinations

Rather than using single drugs in treating diseases, combin-
ations of multiple drugs are gaining more and more interest.
Such drug combinations are motivated by studies indicating
higher efficacy, fewer side effects and less toxicity compared
with single-drug treatments [36, 96, 97]. This seems to be par-
ticularly appropriate for complex disorders such as cancer, as
cancer cells possess compensatory mechanisms to overcome
perturbations occurring at the individual signaling pathway
level by means of, e.g. mutations of key receptors or cross-talk
between pathways [98].

For instance, Lee et al. [98] developed the Combinatorial Drug
Assembler as a genomic and bioinformatics system by using
gene expression profiling to target multiple signaling pathways
for a combinatorial drug discovery. The method performs an ex-
pression search against a signaling pathway to compare gene
expression profiles of patient samples (or cell lines) as input sig-
nature, with the expression patterns of the sample treated with
different small molecules. The method then finds the best pat-
tern that matches the combination of two drugs across the in-
put signature related to signaling pathways to detect and
predict those drugs that could be used in a combination

therapy. Furthermore, they performed in vitro validations for
NSCLC and triple-negative breast cancer (TNBC) cells and found
that alsterpaullone and scriptaid as well as irinotecan and
semustin for NSCLC, halofantrine and vinblastine for TNBC,
showed synergistic effects.

Huang et al. [99] proposed a novel systematic computational
approach called DrugComboRanker to find synergistic drug
combinations and to uncover their MoA. The drug functional
framework was built based on genetic profiles and network par-
titions of various DN clusters using a Bayesian nonnegative ma-
trix factorization. By building disease-specific signaling
networks based on disease profiles, drug combinations can be
identified by searching drugs whose targets are enriched in the
reference signaling module of the disease signaling network. An
evaluation of the method was performed for LA and endocrine
receptor-positive breast cancer.

Wang and his group [36] performed a meta-analysis to ob-
tain a list of 343 DEG of LA and used this signature to query
CMap to identify a combination of compounds whose treatment
reverse the expression direction. Compounds in categories such
as HSP90 inhibitor, HDAC inhibitor, PPAR agonist and PI3K in-
hibitor were identified as top candidates. An in vitro validation
demonstrated that either 17-AAG (HSP90 inhibitor) alone or in
combination with cisplatin can significantly inhibit LA cell
growth by inducing cell cycle arrest and apoptosis.

Parkkinen et al. [41] showed their proposed probabilistic con-
nectivity mapping method is capable of identifying drug combin-
ations. Specifically, they define a combined drug profile
consisting of drug pairs by assessing the correlation of their indi-
vidual profiles. Overall, this leads to a ranking of drug pairs rather
than individual drugs. A computational assessment of the pro-
posed method was conducted considering ATC codes and chem-
ical similarity as ground truth. Their hypothesis was that single
drugs with ATC codes having minor response effects will not re-
sult in a high relevance score, as other drugs with stronger effects
will dominate. However, their statistical analysis demonstrated
that a combinatorial matching improves the results for many
polypharmacologic drugs [41]. The authors highlight how LINCS
data set [11] could be used to extend benefits of the group factor
analysis-based probabilistic connectivity mapping in drug com-
bination. As it identifies both single or shared responses across a
large number of cell types, making it valuable for drug discovery
and development would be even possible to impose more struc-
ture on the group factor analysis model, by similarly inferring re-
sponse of a specific cell line to a drug, enabling high relevant
information for personalized medicine studies.

Experimental validations

Using a computational biology approach in combination with
CMap can help in finding new forms of drugs, predicting drug
candidates, pharmacological and toxicological properties in
chemicals [19, 100–102]. However, these predictions need to be
evaluated experimentally, either by using cell viability after drug
treatment in vitro or tumor growth after drug treatment in vivo
and, in some cases, using survival analysis of drug treatment in
the clinic. Moreover, disease samples collected from patients are
used to investigate the dynamics of disease progression; apart
from that, diverse preclinical models, such as cell lines and ani-
mal models, could be used in experiments to interpret CMap re-
sults, understand disease and validate hypothesis. In this section,
we discuss studies that provided such experimental validations.

Notably, Ishimatsu-Tsuji et al. identified fluphenazine com-
pound as a novel inducer in hair-growth cycle using CMap.
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Moreover, the results showed the additive effect of two com-
pounds that are being ranked by the CMap analysis [100].
Caiment et al. studied the reliability of the CMap method for clas-
sifying and predicting a drug in different forms. The study was
performed on hepatocellular carcinoma and liver cell model
exposed to a wide range of different compounds using ssCMap
application. The results of the analysis revealed significant posi-
tive connections [103]. Moreover, the method showed how the
CMap approach is robust in predicting a drug’s carcinogenicity
based on data from representative in vitromodels by adding more
relevance for predicting human disease state and may be con-
sidered as a classification way of discovering new compounds
[103]. Also, Wang et al. established prediction models for various
adverse drug reactions, including severe myocardial and infec-
tious events. Also, they were able to identify drugs with FDA
boxed warnings for safety liability effectively. Therefore, it illus-
trates that a combination of effective computational methods
and drug-induced gene expression change can be proven as new
cutting edge to have a systematic drug safety evaluation [104].

Public data sets can be leveraged to validate drug hits and
understand drug mechanisms, e.g. drug efficacy and toxicity.
Using in silico drug screening via CMap followed by empirical val-
idations, Cheng et al. discovered that thioridazine can reduce the
viability of glioblastoma (GBM) cells and GBM stem cells, induce
autophagy and affect the expressions of related proteins in GBM
cells. Thus, thioridazine has the potential to treat GBM [55]. In
addition, thioridazine induces autophagy and apoptosis at a high
concentration, functioning through G protein-coupled receptors.

Although drugs in these previous examples were validated
in preclinical models, the question of whether the disease gene
expression was really reversed in disease models remains un-
known. A recent study in a mouse model of dyslipidemia found
that treatments that restore gene expression patterns to their
norm are associated with the successful restoration of physio-
logical markers to their baselines, providing a sound basis to
this computational approach.

PharmacoGx: a computational
pharmacogenomics platform

The availability of large-scale perturbation data sets, such as
CMap and LINCS L1000, opened new avenues for research in
pharmacogenomics. Nonetheless, issues such as lack of stand-
ards for annotation, storage, access and analysis challenge the
full exploitation of the pharmacogenomics data sets. Hence,
unifying platforms are required to integrate the currently exist-
ing data sets and the corresponding mining tools. For data inte-
gration purposes, such platforms should remove biases of
different sources such as batch effects, difference between
profiling platforms and cell-specific differences to best charac-
terize drug-induced effects. Furthermore, the unifying plat-
forms should be easy to use so that users can develop new
methods and functions for easy data manipulation and mining
within the platform [105–107]. To address these issues,
PharmacoGx, an open source package, has been recently de-
veloped [108]. To the best of our knowledge, PharmacoGx is cur-
rently the only integrative platform developed for this purpose.

The PharmacoGx platform comprises two fundamental com-
ponents: first, efficient data structures to store pharmacological
and molecular data and experimental metadata (e.g. molecular
profiles of cell lines before and after treatment by compounds)
provided by the pharmacogenomics data sets. The storage
scheme of PharmacoGx provides a common interface for

multiple data sets, standardizes cell line and drug identifiers, and
provides easy access to the data. Furthermore, it facilitates easy
and side-by-side comparison of the pharmacogemonics data sets
that are usually scattered and independently collected.

The second component of PharmacoGx is its set of functions
for data manipulation and mining tasks, such as, removing the
biases of data and creating signatures representing drug-
induced changes in the gene expression of cell lines, implemen-
tation of the connectivity mapping analysis and computing the
connectivity score to infer links between the drug-induced sig-
natures and phenotypes. Furthermore, it should be noted that
such functions are not data set specific. For instance, connectiv-
ity mapping analysis can be performed on not only the CMap
data set but also the LINCS L1000 and any other drug perturb-
ation data set that will be curated and published in the future.
This provides an opportunity to compare the query results from
several data sets alongside one another. These features contrib-
ute to the uniqueness of the PharmacoGx package.

Connectivity mapping via PharmacoGx: a case study

We designed an experiment to show that PharmacoGx package
enables users to easily query the two state-of-the-art perturb-
ation data sets (i.e. CMap and L1000), and facilitates comparison
of the results along each other. For this purpose, we illustrate a
case study similar to the phenothiazines example by Lamb et al.
in the original CMap publication. L1000 and CMap both contain
profiles of five members of phenothiazine antipsychotics (i.e.
chlorpromazine, fluphenazine, prochlorperazine, thioridazine
and trifluoperazine). We first generated a small L1000 signature
set (Supplementary Materials) consisting of 10 unique instances
of the family members and 990 randomly selected perturbation
signatures from the L1000 data set. The goal of this experiment is
to retrieve phenothiazine family members, from the L1000 and
CMap data sets, using a query signature generated from the pro-
file of only one of the family members (e.g. trifluoperazine). We
used trifluoperazine’s signature to generate a query signature by
selecting only genes whose expression values are highly affected
by the drug (—t-stat—>1). This led to a signature of length 458.
Query results have been shown in Table 5 as two ranked lists.
PharmacoGxmatched trifluoperazine signature as the most simi-
lar to the query signature in both data sets. The other family
members have also been retrieved as top hits in both lists.

Discussion

The CMap methodology has been used in numerous applica-
tions by many research groups with a particular focus in drug

Table 5. Results of retrieving phenothiazines using a query signa-
ture generated from trifluoperazine profile

L1000 rank Drug name CMap rank Drug name

1 Trifluoperazine 1 Trifluoperazine
2 Fluphenazine 2 Thioridazine
3 Thioridazine 3 Fluphenazine
4 Triflupromazine 4 Prochlorperazine
74 Fluphenazine 20 Chlorpromazine
201 Prochlorperazine
253 Chlorpromazine
271 Chlorpromazine
284 Chlorpromazine
402 Chlorpromazine
438 Chlorpromazine
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discovery and development as pointed out in this review. These
efforts have been aimed at identifying new therapeutic targets,
drug repurposing/repositioning opportunities, finding new MoA
for new or existing small molecules, predicting side effects and
improving biological understanding. Most of the potentials of
CMap mentioned are undoubtedly beneficial in pharmacogen-
omics research and useful in drug industries, as this approach
has been found to be extremely valuable in multiple biomedical
research scenarios.

The CMap method uses a simplistic model of pattern match-
ing techniques based on an unproven hypothesis to understand
the concept of cell biology in drug discovery. However, there is
no account for dynamics associated with the disease or the
drug under investigation, multi-organ effects and genetic vari-
ations. Therefore, incorporating additional models and data
sources will help in understanding the effect of candidate drugs
in specific disease settings and appropriate cellular tissue and
environmental factors that are more effective in drug discovery/
repurposing applications. Applications are not limited to such
disease-oriented querying with, for example, illustrations of
CMap generating hypotheses concerning MoA being showcased.
While CMap has achieved some notable successes [37, 75], path-
ways and network-based models provide a more realistic
system-level insights into the molecular targets of the drug can-
didates, which is an essential step in drug repurposing/repos-
itioning process and phenotypic-based discovery [84].

Moreover, some limitations of the CMap approach can be
highlighted, for example, experimental replicates, a potential
issue with the CMap data (Build 1), as most small molecules
have only one replicate per cell line for each experiment. This
will present some challenges on statistical analysis, such as
finding DEG for small molecules compounds. Another limita-
tion is cell line coverage (the experiment was conducted only
using five human cancer cell lines and not all small molecules
were tested on all cell lines), the limited dosages and time
points (several small molecules were tested using 10 mM con-
centration with 6 h perturbation time point). Another possible
limitation in CMap is the presence of potential batch effect, the
similarity of gene expression profiles observed for unrelated
stimuli in grown or processed cells at the same time. Batch ef-
fects have been identified as a significant source of systematic
error that can be corrected [82]. Attempts to solve the problem
of batch effects have been made in the methods proposed. For
example, Iskar et al. [18] performed a quantitative evaluation of
CMap methods by applying a centered mean approach to nor-
malize the gene expression intensity values in CMap to reduce
batch-specific effects. Also, Iorio et al. uses the pairwise drug-
induced gene expression profile similarity (DIPS) scores be-
tween drug pairs in CMap to calculate total enrichment score
[4]. They used drug compounds with shared ATC classification,
and high chemical similarities to discretize true positives in
their approach. This is relevant in willingness to sacrifice true
positives to keep false positives low. Notably, Cheng et al. used
the ATC classification as a benchmark to address batch effects
using XCos. The novel XCos approach is used to determine
which drug compounds contain robust expression profiles in
CMap data, and which analytical approaches are more accurate
to use when evaluating CMap data set. Although some of these
limitations are derived from the practicality and resource con-
straints at the time of designing the approach, the caveats asso-
ciated with such systems abstraction methodology need to be
addressed during study design, for example, a proper biological
context, relevance of transcriptional changes to disease states,
representation of gene signatures to the global expression

profile and the overall reliability of the approach. Now with the
availability of the LINCS L1000 data set, covering cellular re-
sponses upon the treatment of chemical/genetic perturbagen,
including over 1.4 million gene expression profiles representing
�15; 000 small molecules compounds and �5000 genes (small
hairpin RNA and overexpression) in �15 cell lines. Researchers
can leverage the publicly available data to overcome some of
the CMap shortcomings.

The LINCS L1000 still lacks quality needed for comprehensive
drug discovery/repurposing, which makes it challenging for
understanding the data-processing pipeline and lead inferences,
mostly because it uses a noisy platform [109]. The current imput-
ation of the computational inferred genes used by the L1000 in
generating the data is also lagging. What is certain is that, the re-
cent methods developed using CMap/LINCS L1000 data have al-
ready shown great promises and constantly becoming more
appealing to researchers in pharmacogenomics. For more com-
prehensive understanding of drug MoA, some methodologies
incorporating other omics than transcriptomics would be benefi-
cial, including, for instance, methylation array for epigenetic
compound such as HDAC inhibitors or 5-AZA-CdR, metabolomics
and proteomics, as well as dynamic or longitudinal data, would
widen the limited view captured by the single time point of tran-
scriptomic responses. This will give the opportunity to shift drug
discovery toward personalized and precision medicine treatment
approach to enhance disease therapies.

Conclusion

In this article, we reviewed the connectivity mapping method-
ology and applications. Perturbation databases, such as CMap or
LINCS, offer a wealth of opportunities for computational drug dis-
covery approaches by enabling pharmacogenomics that extends
beyond classical pharmacology. A reason for this is that these
transcriptomic perturbation databases allow network (nonsingle
gene centered) approaches, e.g. at the pathway or network level.
So far, the majority of applications are focused on different can-
cer types. However, the principal ideas can be translated to any
other type of complex disease opening in this way the door into a
new era of drug discoveries. Research in extending connectivity
mapping concept and methodology is ongoing, and there are still
aspects such as the application of different similarity metrics
that need further investigations. Although few variations and im-
provements over the original CMap have been proposed, the field
lacks systematic evaluations of the new approaches. Therefore,
advantages and disadvantages of different methods are so far
not precisely measurable.

Key Points

• Comprehensive review of perturbation databases, e.g.
CMap and LINCS L1000, that can be used for drug dis-
covery and drug repurposing.

• Surveying applications of CMap and LINCS L1000 for
novel pharmacogenomics approaches.

• Presentation of benchmarking approaches for evaluat-
ing computational drug discovery approaches.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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8. Pacini C, Iorio F, Gonçalves E, et al. Dvd: an r/cytoscape pipe-
line for drug repurposing using public repositories of gene
expression data. Bioinformatics 2013;29(1):132–4.

9. Kim J, Yoo M, Kang J, et al. K-map: connecting kinases with
therapeutics for drug repurposing and development. Hum
Genomics 2013;7(1):20.

10. Alaimo S, Bonnici V, Cancemi D, et al. Dt-web: a web-based
application for drug-target interaction and drug combin-
ation prediction through domain-tuned network-based in-
ference. BMC Syst Biol 2015;9(Suppl 3):S4.

11. Vidovic D, Koleti A, Schurer SC. Large-scale integration of
small molecule-induced genome-wide transcriptional re-
sponses, kinome-wide binding affinities and cell-growth in-
hibition profiles reveal global trends characterizing
systems-level drug action. Front Genet 2014;5:342.

12. Qu XA, Rajpal DK. Applications of connectivity map in drug
discovery and development. Drug Discov Today 2012;17(23):
1289–98.

13. Kannan L, Ramos M, Re A, et al. Public data and open source
tools for multi-assay genomic investigation of disease. Brief
Bioinform 2016;17(4):603–15.

14. Dudley JT, Sirota M, Shenoy M, et al. Computational repos-
itioning of the anticonvulsant topiramate for inflammatory
bowel disease. Sci Transl Med 2011;3(96):96ra76.

15. Shigemizu D, Hu Z, Hung JH, et al. Using functional signa-
tures to identify repositioned drugs for breast, myelogenous
leukemia and prostate cancer. PLoS Comput Biol
2012;8(2):e1002347.

16. Subramanian A, Tamayo P, Mootha VK, et al. Gene set en-
richment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles. Proc Natl Acad Sci
USA 2005;102(43):15545–50.

17. Hieronymus H, Lamb J, Ross KN, et al. Gene expression
signature-based chemical genomic prediction identifies a
novel class of {HSP90} pathway modulators. Cancer Cell
2006;10(4):321–30.

18. Iskar M, Campillos M, KuhnM, et al. Drug-induced regulation
of target expression. PLoS Comput Biol 2010;6(9):e1000925.

19. Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease
relationships for computational drug repositioning. Brief
Bioinform 2011;12(4):303–11.

20. Ahmed J, Meinel T, Dunkel M, et al. Cancerresource: a com-
prehensive database of cancer-relevant proteins and com-
pound interactions supported by experimental knowledge.
Nucleic Acids Res 2011;39(Suppl 1):D960–7.

21. Woo JH, Shimoni Y, Yang WS, et al. Elucidating compound
mechanism of action by network perturbation analysis. Cell
2015;162(2):441–51.

22. Bisikirska B, Bansal M, Shen Y, et al. Elucidation and
pharmacological targeting of novel molecular drivers of
follicular lymphoma progression. Cancer Res
2016;76(3):664–74.

23. Korkut A, Wang W, Demir E, et al. Perturbation biology nom-
inates upstream–downstream drug combinations in raf in-
hibitor resistant melanoma cells. eLife 2015;4:e04640.

24. Tabares-Seisdedos R, Rubenstein JL. Inverse cancer comor-
bidity: a serendipitous opportunity to gain insight into cns
disorders.Nat Rev Neurosci 2013;14(4):293–304.

25. Engerud H, Tangen IL, Berg A, et al. High level of hsf1 associ-
ates with aggressive endometrial carcinoma and suggests
potential for HSP90 inhibitors. Br J Cancer 2014;111(1):78–84.

26. Segal MR, Xiong H, Bengtsson H, et al. Querying genomic
databases: refining the connectivity map. Stat Appl Genet Mol
Biol 2012;11(2).

27. Fortney K, Griesman J, Kotlyar M, et al. Prioritizing thera-
peutics for lung cancer: an integrative meta-analysis of can-
cer gene signatures and chemogenomic data. PLoS Comput
Biol 2015;11(3):e1004068–03.

28. Cheng J, Yang L, Kumar V, et al. Systematic evaluation of
connectivity map for disease indications. Genome Med
2014;6(12):540.

29. DuanQ, FlynnC,NiepelM, et al. Lincs canvas browser: interactive
web app to query, browse and interrogate lincs l1000 gene ex-
pression signatures.Nucleic Acids Res 2014;42(W1):W449–60.

520 | Musa et al.



30. Barrett T, Wilhite SE, Ledoux P, et al. Ncbi geo: archive for
functional genomics data sets—update. Nucleic Acids Res
2013;41:D991–5.

31. Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and col-
laborative html5 gene list enrichment analysis tool. BMC
Bioinformatics 2013;14:128.

32. Duan Q, Reid SP, Clark NR, et al. L1000cds2: lincs l1000 char-
acteristic direction signatures search engine. NPJ Syst Biol
Appl 2016;2:16015.

33. Zhang SD, Gant T. A simple and robust method for connect-
ing small-molecule drugs using gene-expression signatures.
BMC Bioinformatics 2008;9(1):258.

34. Chung F, Chiang Y, Tseng A, et al. Functional module con-
nectivity map (fmcm): a framework for searching repur-
posed drug compounds for systems treatment of cancer and
an application to colorectal adenocarcinoma. PloS One
2014;9(1):e86299.

35. Zhang SD, Gant T. sscmap: an extensible JAVA application
for connecting small-molecule drugs using gene-expression
signatures. BMC Bioinformatics 2009;10:236.

36. Wang G, Ye Y, Yang X, et al. Expression-based in silico
screening of candidate therapeutic compounds for lung
adenocarcinoma. PloS One 2011;6(1):e14573.

37. Kunkel SD, Suneja M, Ebert SM, et al. mRNA expression sig-
natures of human skeletal muscle atrophy identify a natural
compound that increases muscle mass. Cell Metab
2011;13(6):627–38.

38. Breitling R, Armengaud P, Amtmann A, et al. Rank products:
a simple, yet powerful, new method to detect differentially
regulated genes in replicated microarray experiments. FEBS
Lett 2004;573(1–3):83–92.

39. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, et al.
Oncomine 3.0: genes, pathways, and networks in a collec-
tion of 18,000 cancer gene expression profiles. Neoplasia
2007;9(2):166–80.

40. Yeh CT, Wu ATH, Chang PMH, et al. Trifluoperazine, an anti-
psychotic agent, inhibits cancer stem cell growth and over-
comes drug resistance of lung cancer. Am J Respir Crit Care
Med 2012;186(11):1180–8. 2015/06/08

41. Parkkinen J, Kaski S. Probabilistic drug connectivity map-
ping. BMC Bioinformatics 2014;15:113.

42. Cheng J, Xie Q, Kumar V, et al. Evaluation of analytical meth-
ods for connectivity map data. In: Pacific Symposium on
Biocomputing 2013, Kohala Coast, Hawaii, USA, 2013, 5.

43. Li Y, Hao P, Zheng S, et al. Gene expression module-based
chemical function similarity search. Nucleic Acids Res
2008;36(20):e137.

44. Harris MA, Clark J, Gene Ontology Consortium, et al. The
gene ontology (go) database and informatics resource.
Nucleic Acids Res 2004;32(Suppl 1):D258–61.

45. McArt DG, Bankhead P, Dunne PD, et al. cudaMap: a GPU
accelerated program for gene expression connectivity map-
ping. BMC Bioinformatics 2013;14:305.

46. O’Reilly PG, Wen Q, Bankhead P, et al. Quadratic: scalable gene
expression connectivity mapping for repurposing
fda-approved therapeutics. BMC Bioinformatics 2016;17(1):1–15.

47. Wen Q, Philip D, O’Reilly PD, et al. Connectivity mapping
using a combined gene signature from multiple colorectal
cancer datasets identified candidate drugs including exist-
ing chemotherapies. BMC Syst Biol 2015;9(5):1–11.

48. Wen Q, Kim C, Hamilton P, et al. A gene-signature progres-
sion approach to identifying candidate small-molecule can-
cer therapeutics with connectivity mapping. BMC Syst Biol
2016;17:211.

49. Cheng J, Yang L. Comparing gene expression similaritymetrics
for connectivity map. In: 2013 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), 2013, pp. 165–70.

50. Madani TSA, Ghoraie LS, Manem VSK, et al. Predictive
approaches for drug combination discovery in cancer. Brief
Bioinform 2016, doi: 10.1093/bib/bbw104.

51. Sanda T, Li X, Gutierrez A, et al. Interconnecting molecular
pathways in the pathogenesis and drug sensitivity of T-cell
acute lymphoblastic leukemia. Blood 2009;115(9):1735–45.

52. Yuen T, Iqbal J, Zhu LL, et al. Disease-drug pairs revealed by
computational genomic connectivity mapping on gba1 defi-
cient, gaucher disease mice. Biochem Biophys Res Commun
2012;422:573–7.

53. Lim SM, Lim JY, Cho JY. Targeted therapy in gastric cancer:
personalizing cancer treatment based on patient genome.
World J Gastroenterol 2014;20(8):2042–50,

54. Johnstone AL, Reierson GW, Smith RP, et al. A chemical gen-
etic approach identifies piperazine antipsychotics as pro-
moters of cns neurite growth on inhibitory substrates. Mol
Cell Neurosci 2012;50(2):125–35.

55. Cheng HW, Liang YH, Kuo YL, et al. Identification of thiorida-
zine, an antipsychotic drug, as an antiglioblastoma and
anticancer stem cell agent using public gene expression
data. Cell Death Dis 2015;6:e1753–05.

56. Kang S, Rho SB, Kim B. A gene signature-based approach
identifies thioridazine as an inhibitor of
phosphatidylinositol-3-kinase (pi3k)/akt pathway in ovarian
cancer cells. Gynecol Oncol 2011;120(1):121–7.

57. Toscano MG, Navarro-Montero O, Ayllon V, et al. SCL/tal1-
mediated transcriptional network enhances megakaryo-
cytic specification of human embryonic stem cells. Mol Ther
2015;23(1):158–70.

58. Tiedemann RE, Schmidt J, Keats JJ, et al. Identification of a
potent natural triterpenoid inhibitor of proteosome
chymotrypsin-like activity and NF-b with antimyeloma ac-
tivity in vitro and in vivo. Blood 2009;113(17):4027–37.

59. Hassane DC, Guzman ML, Corbett C, et al. Discovery of
agents that eradicate leukemia stem cells using an in silico
screen of public gene expression data. Blood 2008;111(12):
5654–62.

60. McArt DG, Dunne PD, Blayney JK, et al. Connectivity mapping
for candidate therapeutics identification using next gener-
ation sequencing RNA-seq data. PLoS One 2013;8(6):
e66902–6.

61. Li H, Lovci MT, Kwon YS, et al. Determination of tag density
required for digital transcriptome analysis: application to an
androgen-sensitive prostate cancer model. Proc Natl Acad Sci
USA 2008;105(51):20179–84.

62. Spijkers-Hagelstein JAP, Pinhancos SS, Schneider P, et al.
Chemical genomic screening identifies ly294002 as a modu-
lator of glucocorticoid resistance in mll-rearranged infant
all. Leukemia 2014;28(4):761–9.

63. Iorio F, Saez-Rodriguez J, Bernardo DD. Network based eluci-
dation of drug response: from modulators to targets. BMC
Syst Biol 2013;7:139.

64. Jiang W, Chen X, Liao M, et al. Identification of links between
small molecules and mirnas in human cancers based on
transcriptional responses. Sci Rep 2012;2:282.

65. Wang J, Meng F, Dai E, et al. Identification of associations be-
tween small molecule drugs andmirnas based on functional
similarity. Oncotarget 2016;7(25):38658–69.

66. Clark NR, Hu KS, Feldmann AS, et al. The characteristic direc-
tion: a geometrical approach to identify differentially ex-
pressed genes. BMC Bioinformatics 2014;15:79.

A review of connectivity map | 521



67. McLauchlan H, Elliott M, cohen P. The specificities of protein
kinase inhibitors: an update. Biochem J 2003;371(1):199–204.

68. Claerhout S, Lim JY, Choi W, et al. Gene expression signature
analysis identifies vorinostat as a candidate therapy for gas-
tric cancer. PLoS One 2011;6(9):e24662.

69. Khan SA, Virtanen S, Kallioniemi OP, et al. Identification of
structural features in chemicals associated with cancer drug
response: a systematic data-driven analysis. Bioinformatics
2014;30(17):i497–504.

70. Zhu Y, Das K, Wu J, et al. Rnh1 regulation of reactive oxygen
species contributes to histone deacetylase inhibitor resist-
ance in gastric cancer cells. Oncogene 2014;33(12):1527–37.

71. Siu FM, Ma DL, Cheung YW, et al. Proteomic and transcrip-
tomic study on the action of a cytotoxic saponin (polyphyl-
lin d): induction of endoplasmic reticulum stress and
mitochondria-mediated apoptotic pathways. Proteomics
2008;8(15):3105–17.

72. Wen Z, Wang Z, Wang S, et al. Discovery of molecular mech-
anisms of traditional chinese medicinal formula Si-Wu-
Tang using gene expression microarray and connectivity
map. PLoS One 2011;6(3):e18278–03.

73. Lee MS, Chan JY, Kong S, et al. Effects of Polyphyllin d, a ster-
oidal saponin in paris polyphylla, in growth inhibition of
human breast cancer cells and in xenograft. Cancer Biol Ther
2005;4(11):1248–54.

74. Laenen G, Thorrez L, Bornigen D, et al. Finding the targets of
a drug by integration of gene expression data with a protein
interaction network.Mol Biosyst 2013;9:1676–85.

75. Jahchan NS, Dudley JT, Mazur PK, et al. A drug repositioning
approach identifies tricyclic antidepressants as inhibitors of
small cell lung cancer and other neuroendocrine tumors.
Cancer Discov 2013;3(12):1364–77.

76. Lee S, Lee K, Song M, et al. Building the process-drug-side
effect network to discover the relationship between biolo-
gical processes and side effects. BMC Bioinformatics
2011;12(Suppl 2):S2.

77. Pritchard JR, Bruno PM, Hemann MT, et al. Predicting cancer
drug mechanisms of action using molecular network signa-
tures.Mol Biosyst 2013;9(7):1604–19.

78. Kumar N, Hendriks BS, Janes KA, et al. Applying computa-
tional modeling to drug discovery and development. Drug
Discov Today 2006;11(17):806–11.

79. Huang H, Liu CC, Zhou XJ. Bayesian approach to transform-
ing public gene expression repositories into disease diagno-
sis databases. Proc Natl Acad Sci USA 2010;107(15):6823–8.

80. Gu Q, Chen XT, Xiao YB, et al. Identification of differently ex-
pressed genes and small molecule drugs for tetralogy of fallot
by bioinformatics strategy. Pediatr Cardiol 2014;35(5):863–9.

81. Issa NT, Kruger J, Byers SW, et al. Drug repurposing a reality:
from computers to the clinic. Expert Rev Clin Pharmacol
2013;6(2):95–7.

82. Kibble M, Saarinen N, Tang J, et al. Network pharmacology
applications to map the unexplored target space and thera-
peutic potential of natural products. Nat Prod Rep
2015;32(8):1249–66.

83. Jensen K, Ni Y, Panagiotou G, et al. Developing a molecular
roadmap of drug-food interactions. PLoS Comput Biol
2015;11(2):e1004048–02.

84. Iorio F, Rittman T, Ge H, et al. Transcriptional data: a new
gateway to drug repositioning? Drug Discov Today
2013;18(7):350–7.

85. Kibble M, Khan SA, Saarinen N, et al. Transcriptional re-
sponse networks for elucidating mechanisms of action of
multitargeted agents. Drug Discov Today 2016;21(7):1063–75.

86. Dudley JT, Schadt E, Sirota M, et al. Drug discovery in amulti-
dimensional world: systems, patterns, and networks.
J Cardiovasc Transl Res 2010;3(5):438–47.

87. Yu J, Putcha P, Silva JM. Recovering drug-induced apoptosis
subnetwork from connectivity map data. Biomed Res Int
2015;2015:708563.

88. Gao L, Zhao G, Fang JS, et al. Discovery of the neuroprotective
effects of alvespimycin by computational prioritization of
potential anti-parkinson agents. FEBS J 2014;281(4):1110–22.

89. Ravindranath AC, Perualila-Tan N, Kasim A, et al.
Connecting gene expression data from connectivity map
and in silico target predictions for small molecule
mechanism-of-action analysis.Mol Biosyst 2015;11(1):86–96.

90. Ma C, Chen HH, Flores M, et al. Brca-monet: a breast cancer
specific drug treatment mode-of-action network for treat-
ment effective prediction using large scale microarray data-
base. BMC Syst Biol 2013;7(Suppl 5):S5.

91. Ramsey JM, Kettyle LMJ, Sharpe DJ, et al. Entinostat prevents
leukemia maintenance in a collaborating oncogene-
dependent model of cytogenetically normal acute myeloid
leukemia. Stem Cells 2013;31(7):1434–45.

92. Jin L, Tu J, Jia J, et al. Drug-repurposing identified the combin-
ation of trolox c and cytisine for the treatment of type 2 dia-
betes. J Transl Med 2014;12:153.

93. Lucas FAS, Fowler J, Kopetz S, et al. Abstract 5371: drug repos-
itioning with a bioinformatics platform that integrates the
TCGA, CMAP and CCLE.Cancer Res 2014;74(Suppl 19):5371.

94. Sirota M, Dudley JT, Kim J, et al. Discovery and preclinical
validation of drug indications using compendia of public
gene expression data. Sci Transl Med 2011;3(96):96ra77.

95. Malcomson B, Wilson H, Veglia E, et al. Connectivity map-
ping (sscmap) to predict a20 inducing drugs anti-
inflammatory action in cystic fibrosis. Proc Natl Acad Sci USA
2016;113(26):E3725–34.

96. Gupta EK, Ito MK. Lovastatin and extended-release niacin
combination product: the first drug combination for the
management of hyperlipidemia. Heart Dis 2002;4(2):124–37.

97. Sun X, Vilar S, Tatonetti NP. High-throughput methods for
combinatorial drug discovery. Sci Transl Med 2013;
5(205):205rv1.

98. Lee J, KimDG, Bae TJ, et al. Cda: combinatorial drug discovery
using transcriptional response modules. PloS One 2012;
7(8):e42573.

99. Huang L, Li F, Sheng J, et al. Drugcomboranker: drug combin-
ation discovery based on target network analysis.
Bioinformatics 2014;30(12):i228–36.

100. Ishimatsu-Tsuji Y, Soma T, Kishimoto J. Identification of
novel hair-growth inducers by means of connectivity map-
ping. FASEB J 2010;24(5):1489–96.

101.Gottlieb A, Stein GY, Ruppin E, et al. Predict: a method for
inferring novel drug indications with application to person-
alizedmedicine.Mol Syst Biol 2011;7(1):496.

102.Bao H, Wang J, Zhou D, et al. Protein-protein interaction net-
work analysis in chronic obstructive pulmonary disease.
Lung 2014;192(1):87–93.

103.Caiment F, Tsamou M, Jennen D, et al. Assessing compound
carcinogenicity in vitro using connectivity mapping.
Carcinogenesis 2014;35(1):201–7.

104.Wang K, Weng Z, Sun L, et al. Systematic drug safety evalu-
ation based on public genomic expression (connectivity map)
data: myocardial and infectious adverse reactions as applica-
tion cases. Biochem Biophys Res Commun 2015;457(3):249–55.

105.Safikhani Z, El-Hachem N, Quevedo R, et al. Assessment of
pharmacogenomic agreement. F1000Res 2016;5:825.

522 | Musa et al.



106.Safikhani Z, Freeman M, Smirnov P, et al. Revisiting incon-
sistency in large pharmacogenomic studies. bioRxiv
2015;026153.

107.El-Hachem N, Gendoo DM, Ghoraie LS, et al. Integrative
pharmacogenomics to infer large-scale drug taxonomy.
bioRxiv 2016;046219.

108.Smirnov P, Safikhani Z, El-Hachem N, et al. Pharmacogx: an
R package for analysis of large pharmacogenomic datasets.
Bioinformatics 2016;32(8):1244–6.

109.Young WC, Yeung KY, Raftery AE. Model-based clustering
with data correction for removing artifacts in gene expres-
sion data. arXiv, 2016.

A review of connectivity map | 523



PUBLICATION

II

Exploiting Genomic Relations in Big Data Repositories by Graph-Based
Search Methods

A. Musa, M. Dehmer, O. Yli-Harja and F. Emmert-Streib

Machine Learning and Knowledge Extraction 1.1 (2018), 205–210
DOI: 10.3390/make1010012

Publication reprinted with the permission of the copyright holders





machine learning &

knowledge extraction

Opinion

Exploiting Genomic Relations in Big Data
Repositories by Graph-Based Search Methods

Aliyu Musa 1,2, Matthias Dehmer 3,4,5, Olli Yli-Harja 2,6,7 and Frank Emmert-Streib 1,2,∗

1 Predictive Medicine and Data Analytics Lab, Department of Signal Processing,
Tampere University of Technology, 33720 Tampere, Finland; aliyu.musa@tut.fi

2 Institute of Biosciences and Medical Technology, 33520 Tampere, Finland; olli.yli-harja@tut.fi
3 Department of Mechatronics and Biomedical Computer Science, UMIT, 6060 Hall in Tyrol, Austria;

matthias.dehmer@umit.at
4 College of Computer and Control Engineering, Nankai University, Tianjin 300071, China
5 Institute for Intelligent Production, Faculty for Management, University of Applied Sciences Upper Austria,

4400 Steyr Campus, Austria
6 Computational Systems Biology Lab, Tampere University of Technology, 33720 Tampere, Finland
7 Institute for Systems Biology, Seattle, WA 98109, USA
* Correspondence: v@bio-complexity.com; Tel.: +358-50-301-5353

Received: 26 September 2018; Accepted: 21 November 2018; Published: 22 November 2018
����������
�������

Abstract: We are living at a time that allows the generation of mass data in almost any field of science.
For instance, in pharmacogenomics, there exist a number of big data repositories, e.g., the Library of
Integrated Network-based Cellular Signatures (LINCS) that provide millions of measurements on the
genomics level. However, to translate these data into meaningful information, the data need to be
analyzable. The first step for such an analysis is the deliberate selection of subsets of raw data for
studying dedicated research questions. Unfortunately, this is a non-trivial problem when millions of
individual data files are available with an intricate connection structure induced by experimental
dependencies. In this paper, we argue for the need to introduce such search capabilities for big
genomics data repositories with a specific discussion about LINCS. Specifically, we suggest the
introduction of smart interfaces allowing the exploitation of the connections among individual raw
data files, giving raise to a network structure, by graph-based searches.

Keywords: knowledge extraction; computational pharmacogenomics; systems pharmacogenomics;
network science; computational biology; genomics; big data; databases

1. Introduction

In the last 20 years, technological progress in high-throughput assays, e.g., next-generation
sequencing, led to a tremendous increase of our data generation capabilities in genomics. As a result,
there are many data collections available providing millions of data points about DNA sequence,
gene expression, metabolic, protein structure or protein interaction data [1]. However, to reveal the
information buried within these data collections, such data need to be analyzable [2]. The problem
is that accessing selected subsets of these “big data” for performing a dedicated analysis is non-trivial
due to the sheer number of data and, more importantly, the complexity of the connections between
different data points. Unfortunately, most data collections do not provide efficient interfaces enabling
a direct access to subsets of raw data, thus hampering downstream analysis.

For reasons of clarity, we would like to highlight that, here, we are concerned with accessing
and selecting raw data, not knowledge that has been derived by processing and analyzing raw data
and stored in knowledge databases. Instead, the data repositories we are concerned with in our paper,
store raw data files (see Figure 1 for a brief overview). In the following, we discuss this problem
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by focusing on the pharmacogenomic data repository LINCS (Library of Integrated Network-based
Cellular Signatures) [3–8] and describe how this lack in querying capability could be compensated.

2. Preliminaries

Before we discuss the problem under consideration, we would like to clarify a couple of terms
used throughout the paper. We use the term data repository for a very general collection and storage of
individual data files without providing any dedicated accessing or searching capabilities. Sometimes,
this may also be referred to as a data library. Here, by lack of dedicated accessing and searching
capabilities, we mean that information about data files can in principle be searched but in an inefficient
way, which may be as simple as a manual browsing of the data.

In contrast, we use the term database to refer to an organized collection and storage of data
for which a database management system (DBMS) is available that allows querying the data from
the database. The term database system refers to the combination of a database with a DBMS.
Here, the term “organized” refers to a specific type of a database, e.g., a relational database or
object-oriented database.

It is important to note that each type of data organization (data repository, database system, etc.)
comes with its own characteristics. Interestingly, the conceptual idea discussed in the following does
not fit nicely into any of these well-known, existing categories, but is situated between them, extending
and modifying characteristics thereof.

3. The Pharmacogenomics Data Repository LINCS

The LINCS data repository is supported by the NIH (National Institute of Health), comprising
5000 genetic perturbagens (e.g., single-gene knockdowns or overexpressions) and 15, 000 perturbagens
induced by chemical compounds (e.g., drugs) [9]. To date, almost two million gene expressions
have been profiled using the L1000 technology [9]. Specifically, the L1000 technology measures the
expression of only 978 so-called landmark genes, and the expression values for the remaining genes
are estimated by a computational model using additional data from the Gene Expression Omnibus
(GEO) [10]. Access to the raw data is provided by GEO (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE92742) but, unfortunately, there is no search functionality provided other than to
select all raw files for download. For this reason, LINCS is merely a collection of files usually called a
data repository.

This particular example of LINCS described above is typical for the current situation of many big
data repositories. Here, we want to emphasize that a data repository is not a database itself. Instead,
it stands for a more generalized term that indicates the lack of basic functionality usually present within
a database yet providing data storage capabilities. In our context, the crucial lack of functionality is the
limited capability to provide efficient ways to query the data within the data repository for selecting
and downloading subsets of the data (files).

To rectify this problem, in our opinion, big data repositories need functionality we summarize
by the term smart interfaces. We envision a smart interface as a web interface that enables extensive
selection capabilities, providing many features for querying, exploration, downloading and analyzing
data and related meta information. It would also support programmatic access via API as a search
functionality to all the attributes contained within the data repository. Using the API, computational
scientists and developers can access the data and build flexible research pipelines. Given the genomic
context of LINCS and related data repositories, the data queries can utilize the dependency structure
between individual data files as implied by, for instance, experimental or biological conditions (see
example below). Hence, queries perform network or graph-based searches within the data repositories
exploiting in this way the existing dependency structure between the individual data files.
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Smart interfaces: A web interface enabling extensive selection capabilities of raw data,
providing features for graph-based querying, exploration, downloading and analyzing
data and related meta information.

In Figure 1, we show a visualization of our idea. A smart interface exploits the connectivity
structure among the raw data files (see Figure 1A), which can also include metadata if available,
by generating a network representation among the individual data files (see Figure 1B). In the example
of the LINCS database, these connections are given by the combination of cell lines, drugs, dosages
of drugs, etc. for which gene expression profiles have been generated. In general, these correspond
to the attributes of the data files. Importantly, these attributes remain constant and do not change if
more data points are added to a database. Once such a network representation among the data files
is generated, a user query extracts quickly the desired data files, e.g., that correspond to cell line C2,
the drugs D1 and D3 and the dosage Do3 (see Figure 1B and its connection back shown in yellow to
the data files), because each search combination connects to a list of associated data files. In this way,
a smart interface forms a connection between the data repository and the preprocessing and analysis of
the data (see Figure 1C) and its purpose is to provide a graphical-user-interface and query function for
an efficient access to selected data files. We want to emphasize that the network representation should
be part of the smart interface because, in this way, it would be easily applicable for practitioners such
as biologists or clinicians.

data repository

Data repository

Raw Data �les + metadata

Figure 1. (A) A collection of available individual (raw) data files and metadata; (B) Network
representation of connections between the raw data files. A user query (in red) corresponds to
one particular combination of attributes of the data files, which leads to an efficient selection of these
(in yellow); (C) Conceptual integration of the smart interface, which is an application programming
interface (API), into a conventional data analysis pipeline.

4. Technical Considerations

On a technical note, we would like to point out that, here, we focus on a data representation
that would allow users to immediately interact with the data. Through the smart interface, users can
perform highly specialized queries using attributes that naturally connect the individual data files.
The queries can be executed in the web browser or programmatically from the interface. This could be
achieved by using modern generalizations of relational databases [11], e.g., NoSQL [12] or graph [13]
databases, to efficiently store the data for quick access. Unfortunately, non-relational databases have
been naturally fragmented by usage and have drawbacks in scaling, resulting in relatively slow
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progress in integrating large datasets [14]. However, for genomics problems with a constant number
of attributes, e.g., cell lines, drugs, dosages, etc, as is the case for the LINCS data (see below), the
known scaling problems of graph databases do not hamper their usage because new data points do
not lead to a change in the number of attributes and, hence, the database can grow efficiently in the
number of stored data points. An example of this was given by Himmelstein et al. [15] using a graph
database for integrating information from 29 public resources to connect compounds, diseases, genes,
pharmacologic classes, side effects, etc., which helped to identified network patterns that distinguish
treatments from non-treatments drugs [15]. We would like to point out that the result of [15], and
similar approaches [16–18], is a knowledge database that operates on processed and analyzed data,
not on the raw data files as is our major concern in this paper.

For the LINCS data, one can start from a set of files and select certain attributes to create a network
representation by using graph algorithms [19]. This is similar to classical contributions focusing on data
and retrieval based on graph theoretical considerations [20,21], which do technically not fall within
the strict definition of databases because they are lacking the consideration of database management
systems as the most important building block when one refers to the term database. Hence, more
research is required to identify if a database structure, an information retrieval system [22,23] or a
graph-based file organization system [20,21] provides the most appropriate technical realization for
graph-based searches of data repositories in genomics.

5. Conceptual Idea

The general idea of a smart interface is similar to the idea behind Google. If one considers “web
sites” as “data files” and realizes that the “connections between web sites” are implicitly provided by
the “attributes of data files” (see the example above), then the analogy is apparent. Specifically, Google
identifies the connections between web sites by searching the links from and to sites by crawling the
web. This establishes a graph structure between the web sites corresponding to a very large network
upon which graph-based searches that take user queries into account can be executed.

In the case the world-wide-web (WWW) would consist of only a dozen web sites, there would
be no need for a search engine such as Google because a user could quickly go through the list of
these web sites manually. However, for billions of web sites, this is no longer feasible (even if such
a list would exist) because a linear search would lead to exponential searching times. Interestingly,
this is exactly the situation we are facing for data repositories such as LINCS. While the current raw
organization of LINCS or similar data repositories is sufficient for certain tasks, it does not favor the
selection of complexly determined subsets, such as those required for more advanced or specialized
studies. Any additional tool, such as a smart interface, that can be added to facilitate such complex
queries, would make these repositories more useful, efficient and popular. This would not only benefit
users, but also the repositories themselves by reducing work, reducing download costs and increasing
their impact, usage and user satisfaction. This implies also that the true potential of LINCS is currently
not yet unlocked due to this limitation. For technical completeness we would like to note that Google
uses a NoSQL database of columnar type called BigTable [24].

6. Further Applications

We would like to note that our idea extends beyond the LINCS data repository. Other examples
of raw data repositories that would benefit from a similar approach are:

• Gene Expression Omnibus (GEO) [1]
• NCI60 human tumour cell line anticancer drug screen [25]
• ArrayExpress [26]
• Cancer Cell Line Encyclopedia [27]

However, the largest benefit for the community would result from the integration of some (or
all) such data repositories to address the problems by a systems biology approach taking holistically
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all aspects into account. We expect that the smart interface needs to be adapted to the specific
characteristics of the data types in the corresponding data repositories but the conceptual core idea
would be generic to all these different repositories.

In our opinion, the implementation costs would be rather limited because it only requires a
software solution. However, the intellectual costs are considerable because the creation of graph-based
relations among the individual data files requires familiarity with basic graph-theoretical concepts and
graph-search methods [19,28].

7. Conclusions

The transition from simple data repositories to big pharmacological warehouses requires new
forms of data accessing strategies and we think that smart interfaces, enabling graph-based querying
capabilities, provide the needed functionalities. While current repositories offer the possibility to mirror
data to access it in a local implementation, it would carry unduly efforts and costs for most users, many of
whom would not be able to do it (and hence to benefit from the data), and this cost would be best addressed
if data repositories offering advanced search technologies were available, whether at the primary curation
site, or at a separate publicly accessible resource, or both. Otherwise, the opportunities offered by these
big data cannot be translated into new knowledge by means of modern data science [29]. We discussed
our idea for the LINCS data repository and provided a specific outline of the graph structure induced
by the available data files. However, our idea is not limited to LINCS, but we selected this data
repository because of its popularity to emphasize the need for such search capabilities.

Finally, we would like to note that, in our presentation, we focused on the network-based search
capabilities and neglected many other data aspects of practical relevance, e.g., data privacy, data
quality, etc, to convey a clear message. However, we do not want to miss emphasizing that these
aspects are also part of the data analysis pipeline (see Figure 1C) that needs to be integrated into our
framework to obtain a functional implementation.
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The LINCS L1000 data repository contains almost two million gene expression profiles

for thousands of small molecules and drugs. However, due to the complexity and the

size of the data repository and a lack of an interoperable interface, the creation of

pharmacologically meaningful workflows utilizing these data is severely hampered. In

order to overcome this limitation, we developed the L1000 Viewer, a search engine and

graphical web interface for the LINCS data repository. The web interface serves as an

interactive platform allowing the user to select different forms of perturbation profiles,

e.g., for specific cell lines, drugs, dosages, time points and combinations thereof. At its

core, our method has a database we created from inferring and utilizing the intricate

dependency graph structure among the data files. The L1000 Viewer is accessible via

http://L1000viewer.bio-complexity.com/.
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1. INTRODUCTION

We are living in the era of big data that sparked the establishment of the field data science (Smith,
2006; Ma’ayan et al., 2014; Jin et al., 2015; Emmert-Streib and Dehmer, 2019). For genomics, the
recent growth of high-throughput biomedical and pharmacogenomic data (Edgar et al., 2002;
Barrett et al., 2013; Woo et al., 2015; Musa et al., 2017) presents opportunities and at the same
time challenges for their analysis. Paramount to these problems is ensuring that comparative
genomics tools keep pace with the rate at which the data are produced (Tripathi et al., 2014;
Smirnov et al., 2016; Stupnikov et al., 2016). A major challenge researchers are facing practically
when interacting with “big data” is that most of the relevant information requires a considerable
amount of time to subset, preprocess and obtain. Therefore, novel approaches for finding, selecting
and downloading specific subdata from large data repositories are required. This is particularly a
problem for obtaining raw data (Musa et al., 2018).

One example for such a big data repository is the Library of Integrated Network-based Cellular
Signatures (LINCS) (Subramanian et al., 2017). The LINCS L1000 data repository consists of almost
two million individual files containing information about the gene expression and metadata of cell
lines perturbed by chemicals of certain dosages and durations (Vempati et al., 2014). While there
are several desktop or command line software tools available that are capable of processing and
manually extracting subsets of large data, these tools require software installation, which can be
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TABLE 1 | List of available LINCS L1000 metadata APIs.

Service

(API)

Description URL link

Cell The cell information service provides cell

line meta-information for used in the

experiments.

https://clue.io/api#cells

Gene The gene information service returns

meta-information for measured and

inferred genes in the LINCS dataset.

https://clue.io/api#genes

Profile The profile information service returns

meta-information for instances in the

LINCS dataset.

https://clue.io/api#profiles

Pert The pert information service returns

meta-information for perturbagens in the

LINCS dataset.

https://clue.io/api#perts

Plate The plateInfo service returns plate

information.

https://clue.io/api#plates

difficult and time consuming, and are only capable of processing
the data locally (Duan et al., 2016; Enache et al., 2017; Fallahi-
Sichani et al., 2017). Therefore, the datasets in the repository
can only be analyzed if the end-user has specialized software
installed. Improvements in software development but also web-
based application technologies such as the Node.js and Vue.js
JavaScript libraries, have led to the development of advanced
web-based applications with animated and interactive features.
While there are several interactive web-based tools that can
access data via an application programming interface (API)
(Subramanian et al., 2017), most of these tools have limited
interactivity and sharing capabilities, e.g., by embedding them
within web applications such as CMAP (Lamb et al., 2006).
Furthermore, they are lacking an integration with biology specific
analysis methods, e.g., for performing an enrichment analysis
(Rahmatallah et al., 2017). Importantly, all of these tools operate
on the signature level of the LINCS data, not the raw data. That
means, if a user wants to select a specific subset of raw data for a
dedicated analysis, there is no help available.

In order to facilitate the access and subset of raw data from
the LINCS data repository we developed the L1000 Viewer.
Our software is an interactive web application that does not
require the user to install dedicated software, but it operates
via any web browser on any operating system. Hence, it is
operating system independent. Our web application provides a
web interface with access to a dedicated database we created. This
database utilizes the graph dependency structure between the
individual data files of LINCS because individual does not mean
independent. Specifically, the dependency structure is induced
by the experimental conditions of the expression profiles and
can be represented as a graph or network (Musa et al., 2018).
In this graph, nodes correspond to data files and two data files
are connected if they share experimental conditions. Our web
application provides an easy-to-use interactive platform allowing
the user to select subsets of raw data files that belong to specific
forms of perturbation profiles, e.g., for specific cell lines, drugs,
dosages and time points. This retrieval of data files is efficient and

fast because of the utilization of the precomputed graph structure
of the data files. In addition, we are providing software for a
graphical summarization of the selected data showing various
distributions of experimental parameters, e.g., sample sizes per
cell line, sample sizes per concentration and sample sizes per time
point. This provides valuable information for the user regarding
the experimental design (Hinkelmann and Kempthorne, 2008)
of follow-up computational pharmacogenomics studies based on
these data.

Our paper is organized as follows. In the next section, we
discuss all methods and data we use for our analysis. In the
results section, we present our findings and provide results for
an example application of our software. In the following sections,
we discuss our results in detail. The paper finish with conclusions
and an outlook.

2. METHODS

2.1. LINCS Data
The LINCS data is a vast collection of gene expression profiles
that includes many experimental samples covering more than
seventy human cell lines. These cell lines are populations of
cells that descended from an original source cell and having
the same genetic make-up. These cells have been kept alive by
growing them in a culture separate from their original source
(Ong et al., 2017).

Specifically, LINCS contains about 1, 328, 098 gene expression
profiles as a result from applying 42, 553 perturbagens (19, 811
small molecule compounds, 18, 493 shRNAs, 3, 627 cDNAs, and
622 biologics) for a total of 476, 251 signatures (consolidating
replicates) (Subramanian et al., 2017).

2.2. Metadata and Data Standards
LINCS provides an API to annotations and perturbational
signatures in the L1000 data repository via a collection of HTTP-
based RESTful web services. An example of such a services is the
Cell Service which is a service that describes meta-information
for cell lines. Table 1 lists all the API services provided by LINCS
for querying the L1000metadata. These services support complex
queries via simple HTTP GET requests that can be executed in a
web browser or within most programming languages.

2.3. Development of the Web Application
L1000 Viewer, the web application we have developed, consists of
three main parts namely; (I) the database, (II) back-end, and (III)
front-end implementations.

First, in order to store the data in the back-end, we use
a MongoDB database. We convert and store all the raw data
into a json object structure to enable identifier reference to
each profile sample in the database. This enables the data to
be stored as a document-oriented structure that allows fast user
queries. The document-oriented model maps to the data objects
in the application code in the back-end, making the data easy to
work with. The MongoDB is a distributed database at its core,
therefore, it enables a horizontal scaling, high availability and
faster access.
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The specific document structure is constructed from the
experimental conditions of the individual data profiles within
the LINCS data repository. As a result we obtained a relational
representation of the documents using Mongoose schema.
Mongoose provides a straight-forward, schema-based solution to
model json object data into relationships. It includes built-in type
casting, validation, query building, and logic hooks environment
that wraps the Node.js native driver. This is visualized in
Figures 1A,B. By (I) identifying and (II) utilizing this structure,
our L1000 Viewer is able to efficiently provide a list of result

profiles corresponding to an user-defined query. For instance,
querying for the cell line A375, the drug neratinib, a dosage of
0.12µ and a duration of 24 h (see Figure 1C) results in 5565
files (see Figure 1D) that match the query list. That means the
L1000 Viewer is a search interface that represent a relational
structure from the underlying individual profiles corresponding
to the instances in the database collection and allows by this an
efficient querying of these profiles.

Second, for the back-end component, we decided to use
Node.js for the server side architecture. A Node.js server

FIGURE 1 | Overview of the L1000 Viewer. (A) Individual files forming the LINCS data. (B) Our graph database inferred from the relations among the individual profiles.

(C) The interface allowing to enter queries to search the graph database. Shown is an example query discussed in the text. (D) The result of a query leads to a

downloadable list. (E) Gene expression and metadata csv files.

FIGURE 2 | The entry point of the L1000 Viewer application.
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environment was utilized to interact with the database through
custom object-data modeling (ODM) calls adopted from pseudo
relational database representation in Mongoose API. The main
benefit of using this model is that you can define schemas for
your collections which are then enforced at the ODM layer by
architecture. It also has utilities for simplifying Node’s callback
patterns that make it easier to work with than the standard
MongoDB driver alone. In general, this approach makes it
even easier to use MongoDB with Node.js. Node.js is a web
application development framework that uses convention over
configuration. This means it can be efficiently used to spin a back-
end development environment and also allows users to quickly
understand the source code and contribute to development. It
also supports a rich database of user-contributed libraries called
packages that ease many complicated tasks, e.g., in handling
downloading and archiving requests on the server side. We use
packages such as backbone.js, archiver.js, underscore.js etc. to
build the back-end. The L1000 Viewer was deployed on a Linux
operating system supported by the Node.js runtime library. It is
deployed on an Nginx server using Linode node.

Third, for the work-flow designer on the front-end we used
javascript. Specifically, we use Vue.js to created the front-end
representation. Vue.js is a widely used javascript framework
and the L1000 Viewer uses it for handling all client side user
interactions. The connections between the components of the
interface are implemented using Vue.js plugins. It provides a
mechanism to display and render the structural components
from HTML tags. To interactively display the large collection of
drug-induced profiles, the HTML5 elements were used to layout
the profiles systematically.

Overall, the model-view-controller (MVC) software
architecture was used to integrate the front-end, back-end

and the database. The MVC pattern of design describes the
behavior of the application’s data, logic, rules, and generates an
output based on changes to the application. The advantage of
this is it helps in focusing on a specific part of the application
name, the ways information is presented to and accepted from,
the user.

2.4. Graphical Summary
In addition, we provide a functionality for an interactive
visualization for viewing the selected profiles on the web. A user
can click on the visualization button from the search results
to visualize the selected profiles in different plots (e.g., boxplot
representation of the profiles etc.). The metadata information of
the selected profiles are also displayed. We provide R scripts for
further metadata visualizations. Specifically, we provide scripts
that allow the user to generate graphical summary statistics of
their metadata query results. From the download function, the
user can immediately download the profiles and use the R scripts
on the subset of the data that was retrieved.

3. RESULTS

We start this section by describing the basic functionality of the
L1000 viewer web application we developed. Then we discuss its
specific components in detail and provide an example.

3.1. General Overview of the L1000 Viewer
The L1000 Viewer has an interface allowing the user to enter
queries in a disjunctive normal form (DNF), i.e., one can search
for the simultaneous presence of search terms in the form,

term1 AND term2 AND · · · AND termn (1)

FIGURE 3 | An example of a search term that can be used to search for gene expression profiles.
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For instance, in Figure 1C we entered the cell line A375, the
drug neratinib, a dosage of 0.12µ and a duration of 24 h
resulting in all profiles that are simultaneously indexed by cell
line A375 AND drug neratinib AND a dosage of 0.12µ AND a
duration of 24 h. The user can obtain a comprehensive list of
available options directly from the L1000 interface by selecting
the search field with a mouse click. This will open a pull-
down menu that lists all available options that can be used as
a search term in the query. Overall, the major categories for a
query are cell lines, drugs and small compounds, dosages and
time points.

A query finds any entity that exists among the treatment
and control profiles. All queries will return a table of
profiles listing unique ID numbers (e.g., LINCS profile ID,
Compound), and if selected, a listing of metadata associated
with the experiment will also be included in the download
link. The interface is the data access point into the L1000
data repository.

The result from a query may be downloaded as a matrix
of gene expression profiles. The array contains, for every gene,
a binary vector representing the probe signal from the gene
expression experiments (Subramanian et al., 2017).We converted
the probe IDs to gene symbols for global representation. The
L1000 Viewer allows the user to download complete matrices
in either .csv or .csv.gz format, conferring flexibility to choose
among alternative software analysis packages with optimal
criteria and easy matrix subseting.

3.2. Constituting Components
3.2.1. Data Available for Download

A large collection of almost two million L1000 gene
expression profile data can be downloaded from the web
interface, including the aforementioned GSE70138 from
the LJP, CPC and CPD data repositories. Our application
provides an easy-to-use and user-friendly interface to query
the data repository, simply by searching for the desired
experimental conditions.

From the L1000 Viewer web interface, metadata attributes
can be used as input keyword to query the data repository. Any
metadata associated with the input search can be entered in the
search box. By default, the section provides four input fields for
metadata: Cell, Perturbation, Dosage, and Time Point (Figure 1).
Users can add new search terms for specific types of metadata
by typing in the search box or remove one by clicking the close
(x) sign on the right hand side of each keyword. The tag field
is used to enter the keywords which are most descriptive of the
input metadata.

3.3. Search Input
The entry point for our L1000 Viewer is to input a search term or
a list of metadata query terms in the search box (see Figure 2)
or paste a symbol (see Figure 3) into the search box. In order
to provide guidance for setting search parameters, a query term
is a list of cell lines, drug compounds, dosages or time points.
The search button will only become enabled when the text box

FIGURE 4 | An example of the displayed search results using all four metadata information.
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is filled with a search term, or when the text box is filled with a
selection from the drop down list. By clicking the search button,
the information for the top 50 samples will be displayed in a
table below the search box. The interface provides the user with
a user-friendly scrolling functionality for displaying more than
50 results.

3.4. Search Results
When a user successfully submits a query, the application will
search and retrieve the corresponding profiles that match the
user’s input term and display the results. The performance
of the search results will depend on the user-defined input
terms. However, for any given query the application will

guarantee fast results within milliseconds. In contrast, when
the data is manually processed and retrieved directly from the
LINCS data repositories a similar process can consume up to
one day.

3.5. Download View
After the search results are displayed, the user can select
individual profiles in the search results using the check box to
fine-tune the results or decide to download all results by checking
the first selection box. Then a download button will appear at the
bottom of the page in the right corner. Clicking on this button
will bring up the download view. The download button will
generate and download gene expression profiles and signatures

FIGURE 5 | Example for a gene expression profile matrix (matrix.csv) available in the download zip folder.

FIGURE 6 | Example for a metadata matrix (metadata.csv) available in the download zip folder.
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selected within the search results as .csv files, and will also include
the metadata information associated with the profiles in a zipped
folder. an example is shown in Figure 4.

3.6. Files
There are two files generated that are available in the zipped
folder. The first is a comma-separated data matrix file (.csv)

named “matrix.csv.” It contains the gene expression profiles of
the downloaded dataset as shown in Figure 5. The rows in the
file correspond to all the gene symbol annotations for each
profile and the columns correspond to the samples. A second
file contains the meta description of the profiles. It is also a
comma-separated file named “metadata.csv.” This file contains
the meta-information of the experiment of each profile, such as

FIGURE 7 | Sample query displaying drug profiles that are treated on different cell lines with 0.37 um concentration and 24 h time point. In total, 9,837 profiles have

been retrieved.
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FIGURE 8 | Frequency distribution for cell lines across all experiments retrieved from the query in Figure 7.

time points, dosages, profile IDs, etc. The content of the file is
shown in Figure 6.

3.7. Data Visualization: An Example
In addition to the above search and downloading capability
of our L1000 viewer, described above, we provide a graphical
summarization of the selected files. Specifically, we provide code
that can be used to plot (in an R environment) the statistical
distributions of cell lines, dosage concentrations or time points.
A user can make use of the scripts to visualize the data obtained
directly from a specified query.

For instance, from the query shown in Figure 7, setting the
concentration to 0.37um and the time points to 24h, 9, 837
profiles are obtained. In Figure 8 we show the distribution of
these 9, 837 profiles over 15 cell lines. Here we leverage the
metadata annotations downloaded along with the expression
profiles obtained from the Cell Service API to show the
distribution of each cell line.

eFor the same query we obtain the distribution of different
concentrations of small molecule perturbagens, shown in
Figure 9A. One can see that there are more than 9 different
concentrations available in this data set. The compound
information for small molecule perturbagens was retrieved using
the Pert service API to identify unique and common compounds
used in the L1000 data.

Finally, in Figure 9B we show the distribution of available
time points in the data set. The R code and guidelines are

provided from the web interface in order to subset and visualize
the L1000 dataset using user specific query.

3.8. L1000 Viewer Accessibility
Access to the data indexed by the L1000 Viewer is provided
through our web interface via http://L1000viewer.bio-
complexity.com/. It enhances the biomedical data repository
by providing a simple and fast access to LINCS raw data and
allows to easily generate subsets of data. In this way, users of
the web interface can extract knowledge more efficiently when
interfacing with LINCS data.

3.9. Code Availability
All code associated with the L1000 Viewer project is open source.
The code is available from the BitBuket repository (https://
bitbucket.org/aliocee/devcrew/src/master/). The L1000 Viewer
libraries are versioned according to the Semantic Versioning 2.0.0
guidelines (http://semver.org/).

4. DISCUSSION

Advances in experimental and computational methods in
biomedical research are now producing large volumes of digital
data objects that are rapidly accumulating. At the same time,
a variety of bioinformatics tools to handle the analysis of all
this data are promptly being developed and published. However,
systematic linking of digital data entities for easy access are
currently lacking most especially for the LINCS L1000 raw data.
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Musa et al. L1000 Viewer

FIGURE 9 | (A) Distributions of different dosages (concentrations) of small molecules for the query in Figure 7. (B) Distributions of different time points for the query

in Figure 7.

That means there is a gap between the data availability and
how much of it can be employed in applications for extracting
useful knowledge.

Previous attempts to build gene expression content-based
databases have provided new support for perturbational data
accessibility (Subramanian et al., 2017; Wang et al., 2018). The
data within these databases is structured, and thus suitable
for data access; however, most attempts to represent such
data only succeeded in accomplishing this in a complex
representation. For example, web-based platforms such as the

CLUE Platform (Li et al., 2019), LINCS Data Portal (Koleti
et al., 2017), L1000FWD (Wang et al., 2018) or iLINCS (Keenan
et al., 2018) provide information about signature profiles and
metadata, but there are no easy-to-use resources that enable
the user to access selected raw data. Specifically, the CLUE
Platform is one of the most comprehensive resources for
collective knowledge about the LINCS project and L1000 data,
aggregating information from over 20, 000 perturbagens and
400, 000 signature profiles. However, the CLUE Platform is very
complex and does not provide direct access to the raw data.

Frontiers in Genetics | www.frontiersin.org 9 June 2019 | Volume 10 | Article 557
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Instead, it provides an open and free API for accessing metadata.
Moreover, most of these platforms operate on metadata like
annotated cell lines, proteins, and small molecules. Still they
lack the simplicity and interactivity for users to access the
data (Vempati et al., 2014). In comparison, our L1000 Viewer
provides an easy-to-use interface for searching and downloading
raw data.

The L1000 Viewer web application will enable the user to
easily search the LINCS L1000 raw data via an interactive web
interface. The L1000 Viewer is built using Javascript libraries, and
is deployed as a Node.js application (Tilkov and Vinoski, 2010)
in order to provide quick access. Its front end interface utilizes
the core Vue.js libraries (You, 2017) and all gene expression and
metadata are stored in a MongoDB database. Furthermore, we
developed and integrated an API in our application that enables
users to search the LINCS data repository and to automatically
generate data for download.

In contrast to stand-alone software that needs to be installed
locally on a computer, our L1000 Viewer is a web application
that can be accessed via any web browser without the need
of installing software on a computer locally. This makes it
not only easy to access but ensures also an operating system
independent functioning.

5. CONCLUSION

In this paper, we introduced the L1000 Viewer (http://
L1000viewer.bio-complexity.com/), a search engine and
graphical web interface for the LINCS data repository. The core
of our L1000 Viewer is a database that utilizes the intricate
dependency structure among the files in the LINCS data. This

resulted in a reorganization of the files and enables efficient

search capabilities based on graph-oriented operations.
Overall, the L1000 Viewer provides a useful tool for efficiently

accessing exclusive information from the LINCS data repository
that can be utilized for computational pharmacogenomics studies
(Hopkins, 2008; Davis and Chawla, 2011; Emmert-Streib et al.,
2013; Himmelstein et al., 2017), e.g., for drug repurposing and
cancer therapeutics, as well as for understanding the composition
and relationships between genes, drugs and diseases.
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Abstract

Gene expression profiling using transcriptional drug perturbations are useful for many bio-
medical discovery studies including drug repurposing and elucidation of drug mechanisms
(MoA) and many other pharmacogenomic applications. However, limited data availability
across cell types has severely hindered our capacity to progress in these areas. To fill this
gap, recently, the LINCS program generated almost 1.3 million profiles for over 40,000 drug
and genetic perturbations for over 70 different human cell types, including meta information
about the experimental conditions and cell lines. Unfortunately, Big Data like the ones gen-
erated from the ongoing LINCS program do not enable easy insights from the data but pos-
sess considerable challenges toward their analysis. In this paper, we address some of these
challenges. Specifically, first, we study the gene expression signature profiles from all cell
lines and their perturbagents in order to obtain insights in the distributional characteristics of
available conditions. Second, we investigate the differential expression of genes for all cell
lines obtaining an understanding of condition dependent differential expression manifesting
the biological complexity of perturbagents. As a result, our analysis helps the experimental
design of follow-up studies, e.g., by selecting appropriate cell lines.

Introduction

Despite continuous progress in our understanding of the genetic origin of diseases our ability

of treating and curing such diseases lacks far behind [1–5]. For this reason, it has been pro-

posed to utilize genomic information for the development of drugs to directly translate results

from basic research to clinical applications [6, 7]. A particular example of such a genome-scale

project is the Library of Integrated Network-based Cellular Signatures (LINCS) program [8].

The LINCS program [8] (https://clue.io), generated genetic and molecular signatures of

human cell lines in response to a variety of perturbations. Specifically, a vast library of gene

expression profiles that includes over one million experiments covering more than seventy
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human cell lines has been generated by measuring the expression values for 978 landmark

genes, hence, called the LINCS L1000 data. These data include experiments using over 20,000

chemical perturbagens (small drug molecules), namely drug compounds added to the cell cul-

ture to induce changes in the gene expression profile. In addition, there are genetic perturba-

tion experiments targeting a single gene to control its expression level, either suppressing it

(knockdown) or enhancing it (overexpression). The LINCS L1000 data is publicly available for

download from (https://clue.io/data) and from the Gene Expression Omnibus (GEO) database

with accession number GSE92742 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE92742).

The LINCS L1000 data provide an unprecedented compendium of both structural and tran-

scriptomic drug data. However, the availability of such Big Data [9, 10] like LINCS L1000, pro-

vide also major challenges for their analysis requiring the development of novel approaches

and methods. Examples of such approaches for exploring the LINCS L1000 data can be found

in [11]. This study focused on finding structural similarities of drugs with a combination of 3D

molecular structure to show significant associations of drugs with similar transcriptional

changes, supporting the usage of drug-related data [11]. Another study showed that perturba-

tional data can be used for finding common and cell-type specific responses to anti-cancer

drug [12]. One major challenge in drug discovery is identifying biochemical interactions of

small drug molecules [13]. For this reason, vast effort has been put into discovering the drug

MoA and understanding the genetic interactions within cells that will lead to a much fuller

understanding of how organisms develop interactions at a cellular level, as well as how diseases

such as cancer affect cells and how they can be treated [14, 15]. Several methods such as high-

throughput screen is used in identifying interactions of small drug molecules showing activity

in biological assays (cellular assays, enzyme activity assays, binding assay) for a single thera-

peutic target or pathway of interest [16–18]. These examples show the vast use of such data in

drug discovery applications.

One problem of the LINCS program is that it constitutes an ongoing endeavor. That means

at present there is no foreseeable end when the last samples are deposited. This feature is

shared with other genomic data repositories, e.g., Gene Expression Omnibus (GEO) [19], Pro-

tein Data Bank (PDB) [20] or Reactome (database of reactions, pathways and biological pro-

cesses) [21]. All of these data repositories have in common that the data have not been

generated from one laboratory sponsored by one funding agency, but multiple independently

funded laboratories generated and are still generating data to date. As a consequence, the

information contained in such repositories and also in LINCS is a function of time. A problem

resulting from this and the fact that multiple laboratories contribute to these data is the lack of

global overview statistics that characterize the content of the data. This lack of overview statis-

tics hampers the downstream usage of the LINCS L1000 data for any data analytics application,

as outlined above, severely because essentially any statistical data analysis requires knowledge

of available sample sizes and available experimental conditions in order to design an analysis

properly [22, 23]. For instance, one would like to know how many experiments have three or

more replicates for cell line HA1E? Or how many samples are available for cell line A375 hav-

ing been exposed to four different drug dosages? These and similar questions are currently

unanswered and there is no simple way for obtaining such information. For this reason regular

updates of the content of such data repositories need to be provided in order to inform the

community.

In this paper, we address this problem by exploring and summarizing the LINCS L1000

data as provided by the signature profiles. Specifically, we analyze the LINCS L1000 data for

two different layers. In the first layer we focus on the signature profiles themselves and in the

second layer we focus on the differentially expression of genes derived from the signature

Harnessing the biological complexity of Big Data from LINCS
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profiles. This means we are moving from overview distributions on a basic level to characteri-

zations of the biological activity of the cell lines in dependence on multivariate conditions, as

given by, e.g., the number of replicates or the duration of applied drug perturbations. This will

allow to gain insights into the distributions of cell types, time points and small drug molecule

dosages across multiple compounds and all experiments conducted so far.

Methods

LINCS L1000 dataset

The LINCS L1000 dataset comprises 5806 genetic perturbations (e.g., single gene knockdown

and over-expression) and 16,425 perturbations induced by chemical compounds (e.g., drugs)

[24]. So far about 1.3 million gene expression profiles have been generated and collected for

this project using the L1000 technology [25]. The L1000 platform has been developed at the

Broad Institute by the connectivity map (CMap) team to facilitate rapid, flexible and high-

throughput gene expression profiling at lower costs. Specifically, this means the L1000 technol-

ogy measures expression for 978 landmark genes and expression values for the remaining tran-

scriptome is estimated using a computational model based on data from the Gene Expression

Omnibus (GEO) [26].

Metadata pipeline

The LINCS data API provides a programmatic pipeline to annotations and perturbational sig-

natures in the L1000 dataset via a collection of HTTP-based RESTful web services. An example

for such a service is ‘Cell Service’, which is a service that describes the cell line meta-informa-

tion. Table 1 lists all the API services provided by the LINCS API for querying the L1000 meta-

data. These services support complex queries via simple HTTP GET requests that can be

executed in a web browser or with most programming languages.

Results

The LINCS L1000 data is a vast collection of gene expression profiles and meta information

that includes many experimental samples covering more than seventy human cell lines. These

cell lines are populations of cells descended from an original source cell and having the same

genetic make-up, kept alive by growing them in a culture separate from their original source

[27]. In the following, we analyze the LINCS L1000 data for two different layers. The first layer

focuses on the signature profiles themselves and the second layer on the differentially expres-

sion of genes derived from the signature profiles. This means we are moving from overview

Table 1. List of LINCS L1000 metadata APIs.

Service Description URL link

Cell Service The Cell information service returns cell line information. https://clue.io/api#cells

Gene

Service

The Gene information service returns meta-information for measured and

inferred genes in the LINCS dataset.

https://clue.io/

api#genes

Profile

Service

The Profile information service returns meta-information for instances in

the LINCS dataset.

https://clue.io/

api#profiles

Pert Service The Pert information service returns meta-information for perturbations in

the LINCS dataset.

https://clue.io/

api#perts

Plate service The PlateInfo service returns plate information. https://clue.io/

api#plates

Signatures The Signature information service returns meta-information for signatures

in the LINCS dataset.

https://clue.io/

api#signatures

https://doi.org/10.1371/journal.pone.0201937.t001
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distributions on a basic level to characterizations of the biological activity of the cell lines in

dependence on multivariate conditions, as given by, e.g., the number of replicates or the dura-

tion of applied drug perturbations. Hence, this provides an understanding of the biological

functions effected by the perturbations.

A. Signature profiles

Cell line and small molecule annotations. Various cancer cell lines and non-transformed

primary cultures were used to represent disease models in the LINCS L1000 data [28]. To

enable an integration and analysis of large cell-based screening profiles in the LINCS project,

the cell lines were annotated with labeled terms to identify the associated organs and diseases.

In Fig 1 we show the overall distribution of profiled samples for 71 cell lines across all experi-

ments. These counts include all the corresponding cell line profiles. For obtaining this infor-

mation, we used the metadata annotations that are available via the Cell Service API. By

summation over all cell lines in Fig 1 we find that, currently, the total number of signature pro-

files (excluding the profiles treated with knockdown and overexpression genes) is 215,224.

This number is much smaller than the 1.3 million raw gene expression samples because the

replicated raw sample have been summarized for obtaining the signature profiles resulting

from a comparison of treatment with control conditions.

From Fig 1 it is clear to see that there are many cell lines that are not highly profiled and

therefore have low profile counts. For this reason, in the following we focus on the 9 cell lines

Fig 1. Cell line signature profile counts. The drug signature profile count distribution is shown for all 71 cell lines across all

experiments in the LINCS L1000 dataset. Each bar gives the number of available signature profiles per cell line.

https://doi.org/10.1371/journal.pone.0201937.g001
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with the highest profile counts. In Table 2 we show the count distribution of these 9 cell lines,

each containing more than 20,000 profiles.

The LINCS L1000 data include experiments for more than 20,000 small molecule perturba-

tions. The perturbations are applied to the cell culture to induce changes in the gene expres-

sion profiles. Furthermore, there are genetic perturbation experiments targeting single genes

to control their expression levels, by either suppressing or enhancing them [29]. Detailed

information for small molecule perturbations can be retrieved using the Pert Service API that

identifies unique and common drugs used in the L1000 dataset. In Fig 2 we show the count

distribution of 6 different treatment and control samples including genetic and small molecule

perturbations. The count distributions shown correspond to the same 9 cell lines as in Table 2.

Table 2. Cell lines with the highest number of available signature profiles in the LINCS L1000 data and their corre-

sponding annotation according to the Cell Service API.

Cell line Profile count Tissue

A375 33,656 Skin

A549 37,577 Lung

HCC515 23,714 Lung

HA1E 26,164 Kidney

HEPG2 21,032 Liver

HT29 30,449 Colon

MCF7 52,373 Breast

PC3 21,032 Prostate

VCAP 21,032 Prostate

https://doi.org/10.1371/journal.pone.0201937.t002

Fig 2. Distribution of experimental conditions for 9 highly profiled cell lines. Each stack bar shows the proportion

of available profiles for different small molecules and controls used for the experimental condition.

https://doi.org/10.1371/journal.pone.0201937.g002
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The 6 experimental conditions considered are: controls, ligands, poscons, compounds, overex-

pression and shRNAs. As one can see the number of controls and compounds is always highest

for all cell lines followed by the number of overexpressed profiles.

Experimental replicates have been investigated and found to be useful in simulation and in

boosting analysis [30] and decreasing the number of replicates will adversely affect the power

of experiments [30, 31]. For this reason we studied the distribution of replicate experiments of

the LINCS L1000 data. From this we find that the plate variation is ranging mostly between 1

to 8 replicates with the majority of samples having 3 replicates. There are also conditions for

which more than 9 replicates have been generated, however, these are rare covering only 1% of

all profiles, whereas 1 to 8 replicates cover 99%. The largest number of replicates observed is

27, e.g., found for cell line VCAP, drug Vorinostat, a dosage of 10um and a time duration of

24h. In Fig 3 we show the number of replicated experiments cross the 9 selected cell lines. The

figure includes also information about 9 or more replicates and shows that the availability vari-

ous greatly between the cell lines.

Next, we show in Fig 4 results for the number of different dosages (concentrations) applied

to the 9 highly profiled cell lines. The figure shows distributions for 8 different concentrations

and 9 or more concentrations. However, almost 99% of the treated samples are measured for 1

to 8 different concentrations. From the available 49,400 perturbations, most of them were

tested for a duration of 6, 24, 48, 96 and 120 hours. Overall, the number of cell lines per com-

pound represented in the treatments ranged from 1 to 8 different time duration points (see Fig

A in S1 File). Around 99% of the perturbations affected at least one gene significantly in a sin-

gle cell line after treatment with the varying number of time points.

Fig 3. Distributions of experimental replicates for the signature profiles. The number of available replicates is

shown for small molecule treatments in the LINCS L1000 data for 9 highly profiled cell lines.

https://doi.org/10.1371/journal.pone.0201937.g003
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B. Differentially expression of genes

Differentially expression of genes and small molecule diversity. Our next analysis

focuses on the activity level of the gene expression data as quantified by differentially expressed

genes. For this analysis we utilized the L1000 raw z-scores from the GEO repository and pre-

processed these by using the R L1000 tools [32]. We utilized the signature meta-information in

Signature Service API for selecting the same subset of 9 cell lines as in Table 2 (with highest sig-

nature counts across all cell lines). Here a signature for a small molecule is defined as a vector

of z-score values, each representing differential expression of genes profile between small mol-

ecule treated samples and control samples. In total there are 169,239 z-score signature profiles

for the 9 cell lines that satisfied the well- and plate-based quality control. This signature profile

subset comprises 20,009 small molecules (out of 49,400 perturbations) that were repeatedly

measured between 1 to 8 times. To further simplify the data and the quality of the analysis, we

selected 6, 24 and 48h time points. In total this leaves us 158,054 signature profiles (i.e., any

combination of the small molecule, time, and cell line) for our analysis. These signature pro-

files come from experiments that were carried out on 391 multi-wells, where 362 wells were

used for treatment and 29 DSMO wells were for control vehicles.

In order to obtain the number of differentially expressed genes between treatment and con-

trol samples for each of the 384 plates we used the z-score signature vectors obtained from the

Signature Service setting the z-score threshold to > 2.0 and < -2.0 for up- and down-regulated

genes respectively. For measuring the signature type effects that have been shown to be robust

in biological interpretations, we use the assigned z-score thresholds to measure the biological

Fig 4. Distributions of unique dosages for the signature profiles. The number of available profiles is shown for

different dosages (concentrations) of small molecules for 9 highly profiled cell lines.

https://doi.org/10.1371/journal.pone.0201937.g004
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effects encoded in the gene expression data. We found that 19,957 small molecules from

20,009 that are used in 158,054 signature profiles yielded at least one gene that is significantly

differentially expressed when compared with the corresponding control samples. We further

found that 15,714 small molecules reveal significant differences for at least 50 genes, and 8, 211

small molecules are differentially expressed for at least 100 or more genes. Table 3 summarizes

these results.

Cell type specific differentially gene expression. Since not all cell lines measure the tran-

scription effects of small molecules for the same time points, we subset the treatments accord-

ing to cell lines and evaluate the number of significant genes for the 9 cell lines separately. In

Fig 5 we show our results giving the number of signature profiles for each cell line for three

categories. The three categories correspond to (I) at least one significant gene, (II) at least 50

significant genes, and (III) at least 100 significant genes when compared with vehicle controls.

Table 3. Summary of z-score signature profiles resulting in differentially expressed genes (DEG) between treat-

ment and control samples for the 9 cell lines in Table 2.

Differentially expressed genes Signature profiles Small molecules

No significant gene 24 19

At least 1 significant gene 158,030 19,957

At least 50 significant genes 58,739 15,714

At least 100 significant genes 23,867 8,211

Total 158,054 20,009

https://doi.org/10.1371/journal.pone.0201937.t003

Fig 5. Number of significant profiles found when comparing signature profiles of treatment and control samples.

The cell lines are categorized according to the number of DEGs and the DEG have been estimated based on the z-score

signatures profiles.

https://doi.org/10.1371/journal.pone.0201937.g005
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Since there were only 24 profiles with no significant genes in total, this category is not shown

in the figure.

Dosage specific differentially gene expression. For studying the effect of drug dosages

we repeated a similar analysis as above. Specifically, we systematically classified the small mole-

cule dosages into two categories for ‘low’ and ‘high’ concentrations. The ‘low’ concentration

group contains all measurements in nanomolar (nM) and doses less than or equal to 5 micro-

molar (μM) while the ‘high’ concentration group includes all measurements greater than 5

μM. In total, we find 63,113 and 94,941 signature profiles for low and high dosages respec-

tively. In Fig 6, the number of differentially expressed genes is shown for the 9 cell lines and

the two dosage categories. From this we observe two different behaviors. First, the number of

differentially expressed genes increases with time, e.g., cell line A375 or A549. Second, the

number of differentially expressed genes decreases with time. This behavior is only observed

for cell line VCAP. The first type of behavior is expected because higher dosages of drugs

should result in more severe changes in the expression of genes. The reverse of this effect for

cell line VCAP, a prostate cancer cell line, averaged over all drugs is counter intuitive and

points to follow-up investigations.

Drug perturbation specific differentially gene expression. Next, we analyze the number

of differentially expressed genes according to the time duration of the treatment with small

molecules. In Fig 7 we show results for 6 and 24 hours. From this we again observe two differ-

ent behaviors. First, the number of differentially expressed genes increases with time, e.g., cell

line A375 or A549. Second, the number of differentially expressed genes decreases with time,

e.g., cell line HA1E or HCC515.

Fig 6. Dosage specific differentially gene expression. The differential expression of genes for 9 cell lines is shown

categorized in Low and High dosages of small molecules.

https://doi.org/10.1371/journal.pone.0201937.g006
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Changes in biological activity. Finally, we compare the findings shown in Figs 6 and 7 to

reveal changes in the biological activity of the corresponding cell lines. In order to do this, we

estimate the fraction of change for each of the two categories ‘at least 50 significant genes’ and

‘at least 100 significant genes’ with respect to the category ‘at least 1 significant gene’. That

means we are estimating

f 50

A ¼
#profilesðat least 50 significant genesjAÞ

#profilesðat least 1 significant genejAÞ
ð1Þ

f 100

A ¼
#profilesðat least 100 significant genesjAÞ

#profilesðat least 1 significant genejAÞ
ð2Þ

wheres A corresponds either to Low dosage or 6 hours and

f 50

B ¼
#profilesðat least 50 significant genesjBÞ

#profilesðat least 1 significant genejAÞ
ð3Þ

f 100

B ¼
#profilesðat least 100 significant genesjBÞ

#profilesðat least 1 significant genejAÞ
ð4Þ

whereas B corresponds either to high dosage and 24 hours. This results in 8 percentage

values for each cell line, 4 values from Fig 6 (f 50
Low, f 100

Low , f 50
High, f

100
High) and 4 values from Fig 7

(f 50
6 hours, f

100
6 hours, f

50
24 hours, f

100
24 hours). From these we obtain four straight lines per cell line defined by

the pairs (f 50
Low, f 50

High) (green line in Fig 8) and (f 100
Low , f 100

High) (blue line in Fig 8) for dosages and

Fig 7. Drug perturbation specific differentially gene expression. The differential expression of genes for 9 cell lines

is shown categorized in the time durations (6 and 24h) of drug perturbations.

https://doi.org/10.1371/journal.pone.0201937.g007
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(f 50
6 hours, f

50
24 hours) (red line in Fig 8) and (f 100

6 hours, f
100
24 hours) (orange line in Fig 8) for time points.

Overall this means Fig 8 shows a summary of the fraction (percentage) of changes in the bio-

logical activity in dependence on different experimental conditions.

From Fig 8 we obtain two major observations. First, regarding the slope of the four straight

lines, we observe that either these are parallel or they intersect each other. A parallel behavior

is observed for cell line HEPG2 or VCAP, whereas an intersection is observed for HT29 or

A375. This means that changes in the drug dosages has a nonlinear effect for cell line HT29 or

A375 compared to, e.g., cell line HEPG2 or VCAP, if contrasted with changes in the time

points. The second major observation from Fig 8 is the change of the top y-scale. For instance

for cell line HEPG2 we find the highest percentage change of 60% for 24 hours, whereas for

cell line VCAP this is only slightly over 30%. The difference is almost a factor of two in the

activity changes.

Fig 8. Changes of biological activity. Percentage changes in the number of significant profiles for the cell lines in dependence on the dosages and time points obtained

from Figs 6 and 7. A. corresponds either to Low dosage or 6 hours and B. corresponds either to High dosage and 24 hours.

https://doi.org/10.1371/journal.pone.0201937.g008
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Discussion

In this study, we analyzed the LINCS L1000 dataset by characterizing different experimental

variables including cell types, time points, and dosages. We performed our analysis for two dif-

ferent layers. In layer one we focused on distributional characteristics of signature profiles

whereas in layer two we focused on biological activity changes as measured by the number of

differentially expressed genes.

Despite the fact that the LINCS L1000 dataset contains information for 71 cell lines, the vast

majority of data is available for 9 cell lines only, namely A375, A549, HCC515, HA1E, HEPG2,

HT29, MCF7, PC3 and VCAP, as can be seen from Fig 2 and Table 2. Each of these cell lines

contains more than 20,000 signature profiles which enables excellent analysis opportunities. In

contrast, for 46 cell lines less than 500 signature profiles are available. This means the utility of

these 46 cell lines for any pharmacogenomic application is severely limited. Overall this

means, that only 12% of all cell lines enable comprehensive large-scale data-driven pharmaco-

genomic applications.

For the number of replicates, we found that 2, 3 and 4 replicates are the majority for the 9

highly profiled cell lines, see Fig 3. However, also the number of replicates vary greatly between

the cell lines. For instance, for HT29 there are over 8000 profiles with four replicates available

whereas for A549 there are less than 2000 profiles, which means the difference is a factor of

four. For studies requiring a very large number of replicates the cell lines MCF7 and PC3 are

preferable because these cell lines provide experimental condition with over 9 replicates. To a

lesser extend this is also true for A375. This information is important for planning an analysis

in order to prevent an underpowered analysis [33] and ensure accurate estimations in a down-

stream analysis [34].

From the distribution of dosages (concentrations of drugs or small molecules) we found

that most of these are used only with one or two concentrations, see Fig 4. However, for cell

line MCF7 small molecules have been applied for even more than 9 different concentrations.

Overall, the screening character of the LINCS project is well reflected by the distributions for

different concentrations across the 9 cell lines in Fig 4 because of the high variability in the

resulting number of signature profiles.

The second part of our analysis focused on the differentially expression of genes. As an

overall results we find 24 profiles without any significant gene, 158,030 profiles with at least 1

significant gene, 58,739 with at least 50 significant gene and 23,867 profiles with at least 100

significant genes, see Table 3. For these numbers we averaged over all cell lines and experimen-

tal conditions. From this analysis we can conclude that 99.99% of all signature profiles contain

at least some activity changes induced by the applied perturbations. Interestingly, the induced

activity changes in the expression of genes seem to be moderate because 62% of all signature

profiles contain between 1 and 49 significant genes.

It has been pointed out by Iorio et al. [35] that a compound can show inconsistent tran-

scriptional effects when applied across different cell lines, its biological effect may be differenti-

ated when merging gene expression values from different cell lines. Therefore, the compounds

that were used to assess the effect on the cell lines may hold a bias towards a particular biologi-

cal effect, since a cell line might react differently to certain treatment [36–38].

By zooming into the individual cell lines, see Fig 5, these overall observations are con-

firmed, although, there are certainly noticeable variations in the level of activity changes. For

instance, for cell line A375 we find a decrease of around 40% from the number of significant

profiles in category one to category two, whereas for cell line VCAP this decrease is only about

30%. This is actually a desirable observation because it means the LINCS data reflect that natu-

ral variability and sensitivity of the different human cell lines.
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Next, we performed a detailed analysis studying the influence of the dosage and the time

points on the individual cell lines. For the dosages we observed two different behaviors, see Fig

6. Behavior one corresponds to an increase in the number of significant profiles when going

from low to high dosages, across the three gene categories, e.g., for cell line A375 or HA1E. In

contrast, behavior two corresponds to a decrease. Interestingly, this behavior is only observed

for cell line VCAP.

For the time points we obtain similar results, see Fig 7. For the first behavior the number of

differentially expressed genes increases with time, e.g., cell line A375 or A549. For the second

behavior the number of differentially expressed genes decreases with time, e.g., cell line HA1E

or HCC515.

An explanation for this is that either lower or higher concentration treatments do not kill

cells rapidly. Due to this reason, they should be tested for a longer period of time/days. In

experimental setup of the L1000 data it is possible that a higher concentration might not killed

the entire population rather induced a resistance population in which cell cycle is not be

arrested. Furthermore, it should be also noted that PC3 (high metastasis) and VCAP (moder-

ate) are not in the same state.

Finally, we compared the influence of dosage changes (Fig 6) with the influence of time

point changes (Fig 7) in order to reveal changes in the biological activity of the corresponding

cell lines and summarized these findings in Fig 8. From this we obtained two major observa-

tions. First, either the slope of the four experimental types occurs in parallel or they intersect

with each other. Second, the y-scale is not the same for all cell lines. These results demonstrate

the nonlinearity of the biological activity of the cell lines as a function of the different experi-

mental conditions (types) and, hence, show the biological complexity of the transcription

regulation.

All these results allow to gain insights that go beyond the mere features of gene expression

data, e.g., providing information about the number of samples or number of drugs used for

perturbing the cell lines. Instead, the second part of our study provides information for select-

ing cell lines with respect to their activity profiles. This information is important for the design

of any pharmacogenomic study regardless of their particular goals because it is the biological

activity of genes that decides about the effect of drugs.

Interestingly, in a previous study it has been shown that using additional cell lines provides

more information about the compound-induced biological effects when different time points

are used in the experimental design [39]. We found two time points (6h and 24h) yielded the

most number of significant genes (see Fig 7) in the L1000 data. Therefore, the time point cov-

erage can provide an understanding of how the L1000 data is represented at the gene level.

Moreover, the combination of MCF7, VCAP, A549, HT29, and PC3 cell lines covers the

majority of the transcriptional effects.

Overall, the LINCS L1000 data provides a rich and valuable source of compound-induced

data that addresses some of the problems as mentioned for the CMap data [14, 16]. For exam-

ple, a limited number of replicates, batch effect sizes and small number of profiles, now are all

increased and improved in the L1000 assay. However, there are still shortcomings: First, most

of the compounds are profiled at a high single dose only, causing different variability in dosage

measurements. Second, the dataset does not explicitly follow the conventional settings of using

experimental variables which are needed in a genome-wide transcriptional profiling study

[40], but measure only 978 gene transcripts while the rest of the transcriptome was estimated

by a model. Finally, the compounds are neither from primary-screening libraries such as

FDA-approved nor the molecularly targeted and not highly selective agents that would be of

particular interest for researchers [41].
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Conclusion

In this paper, we used the Big Data from the LINCS project to explore different experimental

settings, such as cell line coverage, time points and dosages using a data pipeline to assess com-

pound-induced transcriptional effects. As a result, first, we provided summary statistics for

distributional characteristics of gene expression signature profiles from all cell lines and their

perturbagents. Second, we revealed changes in the differential expression of genes manifesting

the biological complexity of the perturbagents. As a result, our analysis hopefully helps in har-

nessing the overwhelming complexity of the LINCS data providing guidance for the experi-

mental design of follow-up studies, e.g., by selecting appropriate cell lines.

Given the limitations of previous datasets such as the CMap [14, 16], our analysis suggests

that the L1000 data provide a good opportunity for the characterization of the compound-

induced transcriptional effects. Given the volume and complexity of this dataset for drug dis-

covery, it is necessary to understand the potential of the L1000 dataset and how it can be used

in a drug research setting where every step is driven by data and rigorous data models. For

example, the selection of appropriate tools to access, analyze and create models using the data-

set to validate hypotheses. More efficient ways are expected to quickly transform Big Data dis-

coveries into clinical applications.
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Modern research in the biomedical sciences is data-driven utilizing high-throughput technologies to 
generate big genomic data. The Library of Integrated Network-based Cellular Signatures (LINCS) is an 
example for a large-scale genomic data repository providing hundred thousands of high-dimensional 
gene expression measurements for thousands of drugs and dozens of cell lines. However, the remaining 
challenge is how to use these data effectively for pharmacogenomics. In this paper, we use LINCS data 
to construct drug association networks (DANs) representing the relationships between drugs. By using 
the Anatomical Therapeutic Chemical (ATC) classification of drugs we demonstrate that the DANs 
represent a systems pharmacogenomic landscape of drugs summarizing the entire LINCS repository on 
a genomic scale meaningfully. Here we identify the modules of the DANs as therapeutic attractors of 
the ATC drug classes.

Recent availability of large-scale pharmacogenomic data have presented new opportunities but also challanges 
for tailored patient treatment, drug design and drug safety1,2. Vast efforts have been placed into discovering the 
drug mode-of-action (MoA) and understanding the genetic interactions within cells for disease treatment3. 
Importantly, it has been found that drug-induced transcriptional profiles from cell lines can be used to charac-
terize therapeutic effects, enabling new computational ways for pharmacogenomics for identifying small drug 
molecules, compounds and drug-drug similarities solely based on gene expression profiles4–7.

The Library of Integrated Network-based Cellular Signatures (LINCS) program8, (https://clue.io/), funded by 
the Big Data to Knowledge (BD2K) Initiative at the National Institutes of Health (NIH), generated genetic and 
molecular signatures of human cell lines in response to various perturbations. The LINCS data repository is a 
vast library of gene expression profiles covering seventy-two human cell lines and include experiments for thou-
sands of chemical perturbagens (small drug molecules), and drugs added to the cell cultures to induce changes 
in the gene expression profiles. The LINCS data are publicly available from the Gene Expression Omnibus (GEO) 
database. Based on these data, several advanced computational methods have been proposed for drug repur-
posing, identification of mode-of-action (MoA) and discovering phenotypic relations9–11; for an overview see12. 
The reason why gene expression data can be utilized as surrogates for the structure of chemical compounds to 
study mechanism of action and phenotypic impact between compounds13–17 it that in18 it has been shown that 
structurally similar compounds have similar gene expression profiles, furthermore compounds with similar gene 
expression signatures tend to interact with similar protein targets19.
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Traditionally, pharmacology approaches focus on single drugs at a time to study their action, effects or safety20. 
This is similar to traditional molecular biology approaches that focused on single genes or proteins21. However, 
due to modern genomic high-throuhgput technologies, nowadays, it is possible to study many genes or proteins 
simultenously22. Pharmacogenomics and Systems Pharmacogenomics aim to utilize such genomic profiles to 
expand beyond single drugs23. For instance, in24 drug-target and drug-drug networks have been constructed 
based on the DrugBank database utilizing information about FDA approved and non-approved drugs and their 
corresponding targets. However, their analysis focused exclusively on drugs and compounds with known targets 
and did not take into consideration dynamic activity profiles as represented, e.g., by transcriptomics data. In25 
some disadvantages were avoided by using gene expression profiles for which Pearson correlation-based networks 
were constructed. A problem is that the used data were generated from many independent, uncoordinated lab-
oratories using varying platforms and samle preprations. Another drawback of this study is the small number of 
used profiles (<7,000) and the very limited number of studied drugs (~200). Similar data were used in4,17 but the 
construction of the drug network differed. Also, their analysis focused on drugs with known MoA. A different 
approach has been taken in26 where a drug-drug network has been constructed only based on known side effects 
of FDA approved drugs. A drawback is the sole focus on negative clinical parameters, limitation to FDA approved 
drugs and the neglection of dynamical aspects of drug effects. In27 in addition to gene expressin data also infor-
mation about chemical structures and drug responses have been used. Unfortuantely, the number of drugs for 
which all three sources of data are available is very limited. A common shortcoming of all these studies is a lack of 
conceptual explanations of the drug networks.

The ultimate goal in pharmacology is to know all properties, effects and actions of all drugs and componds28. 
Hypothetically, this information could be obtained from clinical trials testing each compound for every existing 
disease including subtypes and stages. From this information one could measure the similarity between dif-
ferent compounds, e.g., based on clinically relevant parameters. This would give the network structure of an 
ideal compound-space giving all relationships among all compounds corresponding to an ideal drug association 
network (iDAN). Due to the practical impossibility of such an approach the question is, is it possible by using 
genomics data to approximate such an iDAN?

The main purpose of our paper is to introduce a computational method that provides such an approximation 
leading to a systematic organization for the thousands of drugs and small compounds that are available from the 
LINCS repository. Specifically, we introduce a method for constructing Drug Association Networks (DAN) based 
on almost two million gene expression profiles for over 20,000 chemical perturbagens and seventy-two human 
cell lines. In these networks nodes correspond to drugs and two drugs are connected if their profile responses are 
similar, as measured by the statistical significance of the Jaccard Index (JI). The profile responses for each drug 
correspond to estimates of “consensus” signature profiles summarizing the transcriptional effect of drugs across 
multiple treatments on different cell lines and/or different dosages and time points. Overall, the DANs provide a 
systematic summary of the entire LINCS data repository and the complex pharmacogenomic landscape of drug 
similarities. For a conceptual overview see Fig. 1A.

For obtaining pharmacogenomically meaningful networks, we construct different DANs based on data from 
different conditions. Specifically, we construct for each cell line a DAN using only the corresponding drug signa-
ture profiles. Furthermore, we construct one DAN limited to FDA approved drugs and one DAN for all drugs and 
small compounds (comprising FDA approved and non-approved drugs). This leads to condition-specific DANs 
(see Fig. 1C for their dependencies). In total, we are inferring 74 different DANs.

In order to analyze and interpret the DANs, we investigate the DANs on three different levels. First, we study 
the structure of the DANs by identifying network modules, also called communities29–31. This will allow us to 
gain insights into the structural properties of the networks. Second, we study drugs pairwise by identifying the 
presence of significant Anatomical Therapeutic Chemical (ATC) classes in the entire network. This analysis step 
will show that drugs with similar ATC classes are actually identified in compound space. Third, we study the 
enrichment of the network modules with respect to ATC classes. By using the ATC classification of drugs, we will 
demonstrate that the DANs represent a pharmacogenomic landscape of drugs summarizing the entire LINCS 
repository on a genomic scale.

As a general results, we will show that the ATC code enriched modules in the DANs can be seen as therapeu-
tic attractors of drug classes. We will see that this allows a conceptual extension of the idea of cancer attractors32 
introduced for gene regulatory networks to represent cell states33,34 to DANs representing pharmacological states 
(need name).

Furthermore, in order to communicate the wealth of our obtained results efficiently, we developed a web 
interface accessible at (http://dan-network.herokuapp.com). Our web application allows to access the drug-drug 
interactions inferred by our method, and connecting to external links. The features of our DAN user interface 
enable searching, browsing, exploration and downloading of the network visualizations.

The paper is organized as follows. In the next section we present the Materials and Methods used for our anal-
ysis. Then we present our Results and a Discussion. This paper finishes with Conclusions.

Results
In the following, we first construct DANs from different information corresponding to different characteristics of 
the LINCS data. This results in DANs having a context specific meaning. Then we will analyze the DANs on three 
different levels. First, we focus on the structure of the DANs identifying modules in the networks. Second, we 
study drugs pairwise by identifying the presence of significant ATC classes in the entire network. Third, we study 
the enrichment of the network modules with respect to ATC classes.

Construction of drug association networks.  The first network, we construct for FDA-approved drugs 
with assigned annotations in DrugBank35,36. For this reason we call this network Napproved. In total, there are 
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1139 approved drugs in LINCS, however, only 381 have an ATC annotation. The drugs with DrugBank IDs are 
repeated in multiple experiments; therefore, the landmark genes have multiple z-scores from different exper-
iments. We first average the z-scores for each drug from different experiments and use the consensus of the 
z-scores to construct the DAN, as described in the method section. From this analysis, we obtain a network 
with 381 nodes and 4251 significant interactions. From this network, we extract the giant connected component 
(GCC) having 367 drugs (nodes) and 4244 interactions (edges). In Fig. 2A, we show the distribution of JI of all 
significant interactions for this network from profiles having between 100 to 150 DEGs.

The second network we construct, we call Nall, is for all available drugs. In LINCS data there are in total 2505 
different drugs applied in the different experiments (cell line, dosage and time point). For these, we construct a 
network with 2505 drugs and 86,585 significant interactions. From this network, we extract the GCC having 2451 
nodes and 22636 interactions. In Fig. 2B, we show the distribution of JI of all significant interactions for this net-
work from profiles having between 700 to 800 DEGs. The higher the value of the JI the more genes are commonly 
up- or down-regulated between two drugs.

Next, we construct 72 networks that are specific for the 72 cell lines. All of these networks are sub-graphs of 
Nall, i.e., ⊂N NCL

all all
l , with CL = {list of cell lines in LINCS}, due to the way we summarize all configurations, see 

Figure 1.  (A) Conceptual connection between genotype space, phenotype space and compound space 
containing DANs. (B) Multifacturial experimental space of the LINCS data. (C) For our analysis we study 7 
different DANs. (D) Overview of the connstruction of a DAN. The figure shows the gene expression profile 
signature of drugs and small molecule compounds from LINCS L1000 subset. Representation of the use of 
drug-feature matrices of different types to calculate drug connections using Jaccard Index (JI).
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Eqn. 5. In addition, it holds ∪= ∈N NCL CL
CL

all alll
l. That means, Nall contains all significant interactions identified 

for any cell line.
For our further analysis, we select from these 72 networks the five networks having the highest number 

of interactions between the drugs; see Fig. 2C for the frequency distribution of interactions for all cell lines. 
These cell lines are {MCF7, VCAP, PC3, A549, A375}. These 5 networks contain the most information, assuming 

Figure 2.  Similarity distribution of drugs over different experiments. (A) Distribution of JI of all significant 
interactions for Napproved from profiles having between 100–150 DEGs. (B) Distribution of JI of all significant 
interactions for Nall from signature profiles having DEGs between 700–800. (C) Number of significant 
interactions between drugs for different cell lines. (D) Heat map showing drug similarities using JI for selected 
drug-pairs (y-axis) in dependence on cell lines (x-axis) having a JI larger than 0.5 and appearing in ten or more 
experiments. The color indicates the value of the JI for drug-pairs. The grey color shows drug-pair not available 
in a given cell line.
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interactions provide informative knowledge. The high number of interactions in each of these networks (more 
than 10,000) ensures also that a sensible identification of modules is feasible.

In Table 4, we show a summary of these seven networks and their number of nodes and edges. All of these 
networks correspond to the GCC of the corresponding network. In the following, we will limit our analysis to 
these seven networks.

Modules in Dans.  Our first analysis consists in the identification of the modules in the seven different DAN 
networks. For this, we are using a multilevel community module detection algorithm37 to find the modules in the 
networks. The modularity and the number of modules for each network are summarized in Table 4. We would 
like to remark that the number of the modules correspond to labels, i.e., the same label for different networks does 
not mean it should contain the same drugs. In general, we find the modularity to be similar among the different 
networks except for Napproved and Nall which is smaller. This is understandable considering the used data for these 
networks is different to the others. For the number of modules we observe similar values ranging from 11 to 25 
modules.

In Fig. 3, we show the networks for Napproved and Nall and the distribution of the number of drugs in the mod-
ules. The networks for the 5 cell lines are shown in Fig. 1–5 in the Supplementary File. From the barcharts of boths 

Figure 3.  Drug network connecting the most associative drugs using JI and module annotation from LINCS 
L1000 dataset. The network representation displays drugs as circles (nodes) connected with edges. The colour 
of drug corresponds to their associative grouped module. (A) Shows the network of FDA-Approved drugs with 
their corresponding module annotations (Left), and the number of nodes in each module of Napproved (Right) (B) 
The network show All Drugs including approved and non-approved drugs colored based on grouped module 
(Left), and the number of drugs in each cluster for Nall (Right).
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networks one can see that there are a few modules containing a large number of drugs and the remaining modules 
contain only a few drugs. These large modules are also clearly visible in the network representation of the DANs 
on the left-hand-side in Fig. 3. In general, the modules in Nall are larger than in Napproved which is understandable 
because the former DAN contains 2451 nodes whereas the latter has only 367 (see Table 4).

Significance of ATC interactions in the entire network.  Next, we analyze pairwise interactions 
between drugs in terms of their corresponding ATC classes. For this analysis, we use all the significant interac-
tions which are annotated with ATC codes in the 7 DANs. The number of interactions and the distribution of 
their JI values are shown in Fig. 4. In this figure, we show only drug pairs beloning to the same ATC class corre-
sponding to homogene interactions, i.e., the label L refers to the interaction of two drugs, both from ATC class L.

For the network Napproved the number of interactions and their JI values are shown in Fig. 4A (left with red 
label). One can see that interactions between drugs from the ATC class L occur far more often than for any other 
ATC class. Interestingly, the differences in the values of the JI for these interactions (shown in the boxplot in 
Fig. 4A) are not that different for different ATC classes. The results are similar for Nall.

For the other five networks of the cell lines, the frequency of drug annotations and the distribution of JI values 
are shown in Fig. 4B. From comparing these five networks we make five observations. First, the number of ATC 
classes is much smaller than for the two networks Napproved and Nall. Second, the ATC class L is present in all net-
works for the cell lines. Third, the overlap between the five cell line networks with respect to the ATC classes is 
smaller than for the two generic networks. Fourth, the network NVCAP is the only one having more interactions for 
the ATC class G. Also the difference between the top 4 ATC classes is smaller than for the other networks, except 
NPC3. Fifth, all of the networks share that the ATC class of the larges JI values do not correspond to the ATC class 
for the largest number of interactions.

In order to reveal robust interaction patterns, we randomize the ATC class labels of the drugs and deter-
mine statistically significant ATC interactions classes. For this analysis, we study homogeneous as well as 

Figure 4.  Significant interactions between drugs with the same ATC classes. Here the notation, e.g., L means 
L − L (x-axis) (similar for other ATC codes) and their corresponding Jaccard Indices. (A) Number of significant 
interactions between the same ATC codes (i.e two drugs with the same ATC class) for the networks Napproved 
(right) and Nall (left). The boxplots show the distribution of JI of all significant interactions of drugs which are 
annotated with the same ATC codes of Napproved (right) and Nall (left). (B) Results for the 5 networks NMCF7, 
NVCAP, NPC3, NA549 and NA375. Shown results are similar as for (A). The colored y-axis label indicate the type of 
network analysed.
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heterogeneous interactions (between drugs from different ATC classes) corresponding to the inter-class effect of 
drugs. Specifically, we obtain the counts of ATC code combinations from each network (i.e. A − A, A − C, B − L 
etc.) by counting their occurancy in each DAN. Then we randomise each network 10,000 times to obtain the null 
distribution for each ATC class combination using the counts of ATC classes as test statistic for each ATC class. 
From comparing the null distributions with the test statistics we obtaine p-values to which we apply a Bonferroni 
multiple testing correction to get the adjusted p-values.

These results demonstrate that the inferred network structure of all DANs capturing meaningful drug-specific 
information that could be revealed by the significance of selected ATC classes.

Enrichment analysis of network modules.  Finally, in order to obtain a pharmacogenomically mean-
ingful interpretation of the DANs, we perform an enrichment analysis of the modules identified in the previous 
section.

The constructed DANs have nodes corresponding to known and unknown drugs and some of the nodes 
(drugs) in these networks have Anatomical Therapeutic Chemical (ATC) annotations38. We categorized these 
drugs/nodes with ATC annotations into 14 classes, summarized in Table 2. In addition, we use the label ‘X’ to 
indicate drugs for which no drug annotation is known.

We performed an enrichment analysis of drugs with ATC codes for the modules detected in each network. In 
order to test the statistical significance of ATC classes, we use Fisher’s Exact Test39. Since we are testing multiple 
hypothesis tests for each module, we apply a Benjamini Hochberg correction to control the FDR. In the enrich-
ment analysis we first find the total number of drugs in a module which are labelled with ATC codes and then 
we performed Fisher’s Exact test to determine which ATC labels are overrepresented in a particular module. The 
results of this enrichment analysis are shown in Fig. 5.

Code Description

A Alimentary tract and metabolism

B Blood and blood forming organs

C Cardiovascular system

D Dermatologicals

G Genito urinary system and sex hormones

H Systemic hormonal preparations, excl. sex hormones and insulins

J Antiinfectives for systemic use

L Antineoplastic and immunomodulating agents

M Musculo-skeletal system

N Nervous system

P Antiparasitic products, insecticides, and repellents

R Respiratory system

S Sensory organs

V Various

Table 2.  Description of ATC annotations. The first level of the ATC classification represents the organ or system 
in the body on which the therapeutic effect.

Di↓/Dj→ −1 (down) 0 (no change) 1 (up)

−1 (down) n11 n12 n13

(no change) n21 n22 n23

(up) n31 n32 n33

Table 1.  Contingency table summarizing the gene regulation profiles Ri and Rj treated by drug Dk and Dl. Here 
nkl are integer numbers giving the common genes in the categories k, l ∈ {up, nochange, down}.

Signature profile Small molecule

No significant gene 24 19

At least 1 significant gene 158,030 19,957

At least 50 significant genes 58,739 15,714

At least 100 significant genes 23,867 8,211

Total 158,054 20,009

Table 3.  Summary of z-score signature profiles for DEGs between treatments and controls on the cell line 
subset.
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In Napproved, the N (Nervous system) group is overrepresented in first module. The ATC groups R (Respiratory 
system), S (Sensory organs) and D (Dermatologicals) are enriched to the second module. The ATC group J 
(Antiinfectives for systemetic use), G (Genito-urinary system and sex hormones) and P (Antiparasitic products, 
insecticides and repellents) are enriched in 3, 4 and 5 modules. This is interesting to highlight, since the drugs 
which are overrepresented in the same modules of different classes perturb common genes or a similar subset of 
genes. This information can be used for further investigation to see if those drugs can perturb common pathways.

In the network (Nall), the ATC group L (Antineoplastic and immunomodulating agents) is overrepresented 
in first module. ATC groups H (Systemic hormonal preparations, excluding sex hormones and insulins) and D 

Figure 5.  Enrichment of individual modules in the DANs. Shown are the BH corrected q-values of Fisher’s 
exact tests for the enrichment of ATC codes in each of the modules of the DANs. Modules not shown, do not 
contain any enriched ATC code. The highlighted cells are statistically significant. The horizontal and vertical 
boxes highlight the multiple occurance of ATC classes in modules and multiple enriched modules for an ATC 
class respectively.
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(Dermatologicals) are enriched to the sixth module, however group S (Sensory organs) also show a low q-value 
(0.073, which is not significant).

For the network NMCF7, it shows the ATC group L (Antineoplastic and immunomodulating agents) and R 
(Respiratory system) are enriched in the first and third modules. However, the ATC group M show a low q-value 
(0.090) in module 5.

For the network NVCAP, no ATC group is enriched in any module however, ATC group D (Dermatologicals) 
show a low q-value (0.121) in module 6.

In the network NPC3, the ATC groups G (Genito-urinary system and sex hormones) and C (Cardiovascular 
system) are enriched in module 2. The ATC group L (Antineoplastic and immunomodulating agents), in 
module 3, also ATC group J (Antiinfectives for systemic use) has a low q-value (0.087) in module 3. The ATC 
group N (Nervous system) shows a low q-score (0.059) in module 6. The ATC groups S (Sensory organs) and D 
(Dermatologicals) are enriched in module 8. The ATC group P (Antiparasitic products, insecticides and repel-
lents) is also enriched in module 11. The ATC group L (Antineoplastic and immunomodulating agents) show a 
low q-score (0.06) in module 12. The ATC group G (Genito-urinary system and sex hormones) is enriched in 
module 13.

In the network NA549, the ATC group L (Antineoplastic and immunomodulating agents) is enriched in module 
2. The ATC group M is enriched in module 3, ATC group C is enriched in module 4. However, The ATC group L 
(0.062) and S (0.11) show low q-values in modules 3 and 13 respectively.

In The network NA375, the ATC group L (Antineoplastic and immunomodulating agents) is enriched in mod-
ules 3, 8 and 11 respectively. The ATC group C (Cardiovascular system) is enriched in mdoule 6.

The summary of the enrichment analysis of the ATC groups for the modules of the different networks is 
shown in Table 5. In this table, we highlighted the ATC groups which are enriched in at least one module in 
different networks. We also include those ATC groups which are not significant but holds low q-values between 
0.05 < α < 0.15.

Web interface for DAN of drugs.  Due to complexity of our results making it difficult to communi-
cate all details, we developed an interactive web application. The web application is publicly available at http://
dan-network.herokuapp.com/ showing visualizations of all 7 DANs summarized in Table 4. For the technical 
realization for the visualization of the networks we developed our web interface using the NodeJs40 and SigmaJS41 
libraries. Each node in the network (drug) has a dedicated pane with a list of the relevant associations and exter-
nal resources to websites such as: DrugBank, PubChem, LINCS Portal, ChemBL and KEGG Ligand with relevant 
identifiers. That means, a user can interactively explore the interactions in all 7 DANs obtaining pharmacological 
information from the linked data resources. A screen shot of our web application is shown in Fig. 6.

DAN/ATC code C D G H J L M N P R S SC SM

Approved drugs 1 1 1 1 1 1 1 7 5

All drugs 1 1 1 3 2

gray MCF7 cell line 1 1 2 2

VCAP cell line 0 0

PC3 cell line 1 1 2 1 1 1 6 5

A549 cell line 1 1 1 1 4 4

A375 cell line 1 3 2 4

SM (all networks) 3 4 3 1 1 7 1 1 2 2 2

Table 5.  Summary of module enrichments shown in Table 5 for all DANs. The columns show ATC classes 
highlighting if ATC codes are enriched in at least one module in the entire network (see Table 5). SC gives 
the number of significant ATC classes and SM gives the number of significant modules per network. SM (all 
networks) gives the number of significant modules in all DANs.

DAN Used information Drugs Edges Modularity No. of Modules

Napproved Approved drugs 367 4244 0.318 13

Nall All drugs 2451 22636 0.554 20

gray NMCF7 MCF7 cell line 750 7144 0.623 11

NVCAP VCAP cell line 520 2727 0.749 25

NPC3 PC3 cell line 612 4314 0.644 17

NA549 A549 cell line 380 2122 0.561 22

NA375 A375 cell line 635 4286 0.636 14

Table 4.  Summary of seven DANs constructed from different information. Shown is the information of the 
giant connected component. Column two describes the used information that characterizes the underlying data 
for each network.
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Discussion
In our paper, we based our analysis on the LINCS data repository providing compreshensive information about 
the effect of drugs or compounds on gene expression changes. This means LINCS enables an estimation of the 
linkage between genotype, phenotype and therapies and to identify key genes which are a significant part of the 
biological processes related to phenotype differences as approximated by gene expression values.

For our study, we went beyond single genes because we were aiming at a comprehensive overview of the 
systems relations among all drugs tested in LINCS. In order to accomplish this, we utilized differentially expres-
sion profiles to estimate DANs. Specifically, our analysis started by constructing DANs to estimate the similarity 
between drug pairs using the Jaccard Index, which estimates the proportion of differentially expressed genes that 
are common in the corresponding expression profiles. If two drugs showed a statistically significant similarity, 
we connected them by an edge. In this way, we constructed 7 different DANs for 7 different conditions, which we 
further analyzed. The results of these networks are summarized in Table 4.

We analyzed the DANs on three differnt levels. First we studied the structure of the DANs by identifying net-
work modules. Second, we studied the drugs pairwise by identifying the presence of significant ATC classes in the 
entire network. Third, we studied the enrichment of the network modules with respect to ATC classes.

The significant pairs in the networks show a variable JI distribution, shown in Fig. 2A,B. In general, the effect 
of drugs in terms of differentially expressed genes varies, i.e., some drugs show a strong effect, which means a 
large number of differentially expressed genes, while other drugs have a moderate effect changing the expression 
of only a small number of genes. If a drug, Di has a moderate effect, i.e., a small number of differentially expressed 
genes, but a strong overlap with the drug, Dj, which has a strong effect on the genes, i.e., it causes a larger number 
of differentially genes, the JI will be significant but not high. In such cases the interaction may not describe the 
same functionality of both drugs, but it can have a similar effect on some subset of gene targets. On the other 
hand, if two drugs have a similar proportion of differentially expressed genes and overlap strongly then the cor-
responding JI is higher.

After the construction of the networks, we identified modules in the networks. For this we employed the mul-
tilevel community algorithm37. The results of this analysis are summarized in Table 4. In general, the modularity 
of the networks for the five cell lines is higher than for Nall and Napproved, which has the lowest modularity. For the 

Figure 6.  The website view of the DAN network. This website shows our results of the drug-drug interaction 
network for all 20,009 drugs and small-molecule compounds profiled in the LINCS L1000 signature gene 
expression profiles.
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number of identified modules this distinction is no longer present. It is interesting to note that the number of 
modules in all networks is of the same order of magnitude as the number of our ATC classes (which is 14).

It is interesting that the modularity of Nall and Napproved is different to the five cell line DANs because these 
two network types are indeed quite different from each other due to the different information used for their 
construction.

These results suggest that the modules in the networks could represent drugs or drug classes effecting similar 
targets. That means drugs in the same module have a similar effect on some common gene targets, because of 
their significant overlapping of differentially expressed genes as measured by the JI. This can also be interpreted 
as follows: The presence of drugs in different modules suggests that each module can identify a different type of 
target-set, which is independent from other target-sets for different drugs. For instance, for Napproved, we identify 
13 modules which means that there are 13 distinct effect types of drugs. Interestingly, this number is very close 
the total number of ATC classes we were using, which is 14 (see Table 2).

In order to test this idea further, we performed an enrichment analysis of the network modules testing for the 
enrichment of ATC classes. The results are summarized in Fig. 5. Due to the complexity of these results, we dis-
cuss them in three steps. First, we discuss results for all networks combined. Second, we discuss network specific 
characteristics of significant modules and ATC classes. Third, we discuss networks and modules indivdually to 
identify commonalities.

First, from our results (see Table 5) we see that the total number of significant modules (SM (all networks)) for 
all networks enriched for the ATC classes is low varying between 7 (for ATC class L) and 0 (for ATC class A, B and 
V). Most ATC classes are only enriched in 1 or 2 modules in all networks, e.g., ATC class H, J, M, N, P, R and S.

Second, when looking at the networks individually, we found that the total number of enriched modules (SM) 
per network varies between 5 (for Napproved) and 0 (for NVCAP). Similarly, the number of significant ATC classes 
(SC) per network varies between 7 (for Napproved) and 0 (for NVCAP), see Table 5. Taken together, these observations 
confirm our interpretation of the findings for the number of modules, which did not consider ATC enrichments, 
underlining the representative character of the modules for ATC classes.

Third, we are looking at networks and modules indivdually. From these we can obtain the following summary 
for this level. Overall, we can identify four different types of drug-module enrichments discussed in the following.

Single-drug class in individual modules.  For this type of enrichment, we find only one enriched ATC 
class per module in a DAN. That means there is an unique relation between an ATC class and a module in a 
network. From our results, we find that the Napproved and NA549 have four modules which are enriched for a single 
ATC class, NMCF7 and NPC3 have two such modules, Nall and NA375 have one module, and NVCAP has no significant 
module.

The interpretation for these results is that each module is characteristic for a set of drugs represented by an 
ATC code and could be used to predict the function of unknown drugs within this module because they are likely 
to have common targets. This could be used to predict the function of unknown drugs or drug repositining.

Single-drug class in multiple modules.  For this type, an ATC class is enriched in more than one module. 
For instance, ATC class L is enriched in 3 modules in NA375; see the vertical boxes in Fig. 5. Furthermore, ATC 
class G is enriched in two modules in NPC3. This suggests that drug class G and L have possibly three, respectively 
two independent target-sets effected by these drugs. This means ATC classes G and L have multiple target sets 
which are at least partially independent from each other.

The interpretation is that if in a network a single ATC class is enriched in multiple modules, the drugs from 
this ATC class are heterogenously separated targeting different subsets of genes.

Multiple-drug classes in a single module.  For this type, we find more than one ATC class enriched in a 
module. The Napproved network has three ATC classes (D, R, and S) enriched in module 2; see the horizontal boxes 
in Fig. 5. The netwok NPC3 has two modules enriched with two drugs. Specifically, module 2 is enriched by ATC 
class C and G and moduel 8 is enriched by ATC class D and S. Finally, Nall has module 6 enriched by ATC class 
D and H.

Our interpretation for this is if multiple ATC classes are enriched in a single module, this means that, e.g., two 
drugs from two different ATC classes have at least partially common targets. These targets hight be higher order, 
i.e., not directly targeted by a drug but further downstream, but enough to change the differential expression of 
such genes. This could be used to predict a drug repurposing.

Multiple Drug classes in multiple modules.  For this type, we find an ATC class enriched in multiple 
modules together with further enriched ATC classes; see the intersection of a horizontal and vertical boxe in 
Fig. 5. For this type, we find merely one network NPC3 whereas ATC class G is enriched in module 2 and 13 and 
the enrichment in module 2 is shared with ATC class C.

This result indicates that a drug class has multiple independent target-sets and could be used for predicting the 
repurposing of known drugs as well as predicting the function of unknown drugs.

Combining all our findings, our results have a similarity to the conceptual idea of cancer attractors introduced 
by32,42 and, e.g., studied in33,34. The authors analyzed gene regulatory networks and showed that cell types can be 
seen as attractors in the epigenetic landscape representing the phenotype space of an organism, see Fig. 1A. That 
means the developmental state of cells giving raise to different cell fates can be seen as dynamical gene networks 
chaning their structure over time and as a consequence changing their position in the epegenetic landscape. 
Similar studies have been conducted by43–45. In33 it has been argued that cancer cells are trapped in abnormal 
attractors allowing in this way the extension of the conceptual idea of attractors in gene regulatory networks to 
general abnormal or tumor cell types in diseaes beyond cancer46–48.
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Our study adds in a non-trivial way to this because we do not study gene regulatory networks but DANs, 
where the drugs/compounds correspond to the nodes of the network instead of genes. Due to the fact that we 
determine the similarity between pairs of drugs based on hundreds or even thousands of expression profiles, for 
certain conditions, a DAN integrates dozens of individual gene regulatory networks, each representing a par-
ticular cell state, see Fig. 1A. This includes a temporal integration of the cells due to the perturbation effect to the 
exposed drugs. This means that despite the fact that the DANs are static they nevertheless represent dynamical 
states of the underlying cells. Hence, a DAN is capable of representing many different states of cells, correspond-
ing to phenotypes, simultenously and allows the integrated representation of the drug landscape.

It is important to emphasize the difference between the different ‘spaces’ considered. GRNs are embedded into 
the genotype space describing the activity of genes, whereas the epigenetic landscape, representing the pheno-
type space, describes cell states and their transitions. Here a cell state can correspond to a normal cell type or an 
abnormal tumour or disease cells. These states are the attractors of  32,42. Each cell state has a corresponding GRN 
and, hence, a projection into genotype space. Our DANs are embedded into the compound space representing 
therapeutic interventions. Each state in the compound space corresponds to a drug/compound that is connected 
to the phenotype space to abnormal and normal cell states. The connection between these three spaces is visual-
ized in Fig. 1A.

For our DANs, we found a graph-theoretical correspondence of an ‘attractor’ state in phenotype space, by the 
modules in the networks in the compound space. This could be demonstrated by utilizing information about the 
ATC classification of known drugs. In this way we complemented LINCS with information from DrugBank about 
known effects of drugs.

For enabling an efficient exploration and reusage of our results, we developed an interactive web interface that 
can be used to view, explore, and link drug associations for our results. The interface also provides an integration 
with external resources via added links, curated mappings, and external IDs. Content from other resources such 
as PubChem has been incorporated into the DAN web interface enabling End users to view information and 
explore new hypotheses of drug associations. These features could facilitate further research in the field on a 
large-scale and in addition could provide health care professionals with a valuable systems pharmacogenomics 
source.

Finally, we would like to note that it appears desirable to integrate different types of genomics data, e.g., tran-
scriptomics, proteomics and metabolomics data, to establish in this way an integrated systems pharmacogenom-
ics landscape of drug similarities. Unfortunately, the LINCS database, on which our analysis is based, nor any 
other current database, does not provide those different types of data that would allow to realize this approach 
practically. For this reason, our approach is the most feasible one considering the current practical data con-
straints and can be as an approximation of thereof. On a more theoretical note, we would like to add that even if 
one could realize an integrated systems pharmacogenomics landscape it is unclear if all different genomics data 
types are actually required or if they are, at least partially, redundant. Only future studies can shed light on this 
conceptual issue.

Conclusion
In this paper, we developed a systems pharmacogenomics approach and applied it to data from the LINCS repos-
itory. As a result, we constructed Drug Association Networks summarizing hundreds of drugs and thousands of 
compounds systematically with respect to their therapeutic effects. We showed that the modular structure of the 
DANs represent enriched ATC classes thus integrating the drug induced changes on the genotype states of the 
cells.

Materials and Methods
Drug perturbation data from LINCS data.  The LINCS L1000 data comprises of 5806 genetic pertur-
bations (e.g., single gene knockdown and over-expression) and 16,425 perturbations induced by chemical com-
pounds (e.g., drugs)49. About 1.3 million gene expression have been profiled and collected for this project using 
the L1000 technology50. The L1000 platform has been developed at the Broad Institute by the connectivity map 
(CMap) team to facilitate rapid, flexible and high throughput gene expression profiling at a lower cost. However, 
the L1000 technology only measures expression for 978 landmark genes and the expression values for the rest of 
the transcriptome are estimated using a computational model based on Gene Expression Omnibus (GEO)51 data. 
In this paper, we used the level 5 signature data of drug perturbations in various cell lines. Overall, the LINCS data 
were generated from a multifacturial experimental space, see Fig. 1B.

DrugBank database.  DrugBank is a comprehensive drug data resource that contains records about chem-
ical, pharmacological, and pharmaceutical features of more than 8,000 drugs, including the 2016 FDA-approved 
drugs52. We used version 5.0.11 (released 2017-12-20) of the DrugBank database for our analysis. To make the 
cross-platform comparisons compatible, we considered the DrugBank ID as the identifier of drugs across the 
DrugBank and LINCS databases. For our analysis, we used the Anatomical Therapeutic Chemical (ATC) classifi-
cation codes, controled by the WHO, shown in Table 2. This classification categorizes drugs into different groups/
classes according to the organ or system on which they act, their therapeutic effect, and their chemical character-
istics. For our analysis we use the first ATC level, which gives 14 main anatomical classes.

Metadata pipeline.  The LINCS data API provides a programmatic pipeline to annotations and perturba-
tional signatures in the L1000 dataset via a collection of HTTP-based RESTful web services. An example of these 
services includes; Cell Service, which is a service that describes the cell line meta-information. The API services 
provided by the LINCS API for querying the L1000 metadata support complex queries via simple HTTP GET 
requests that can be executed in a web browser or most programming languages such as R and Python.
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Transcriptional profiles and small molecules diversity.  We downloaded the L1000 raw z-score vectors 
from the GEO repository and pre-processed them using the R L1000 tools53. A signature of a small molecule is 
defined as a vector of z-score values, representing the differential expression between samples treated with small 
molecules and control samples. That means a z-score signature summarizes the effect of the treatment with a 
small molecule. This is in depencence on experimental condition, e.g., dosage, time point, cell line etc.

In total, there are 169, 239 z-score signature profiles marked with the highest signature count that satisfied the 
well- and plate-based quality control. This signature profile subset covers 20, 009 small molecules (out of 49, 400 
perturbagens) that were repeatedly measured with 1 to 8 replicates. For our analysis, we select the time points 6, 
24 and 48 h because they represent by far the majority of conditions. From this we find in total 158, 054 signature 
profiles (i.e., any combination of the small molecule, time, and cell line) we use for our analysis. In Table 3, we 
show some summary statistis of this data set.

The z-score signature vectors were used to study the effect of a drug treatment on the differential expression 
of genes. We used the threshold >2.0 to indicate upregulation and <−2.0 to indicate down-regulation of a gene 
respectively.

Mapping small molecules to external databases.  The L1000 small molecules were assayed across 
multiple cell lines, experimental replicates, dosages and time points. For this reason, we mapped DrugBank 
compounds and the directly measured (landmark) genes to calculate a single transcriptional profile across mul-
tiple signatures for each L1000 small molecule. We also mapped the L1000 small molecules to external database 
sources in UniChem database54. We achieved this by querying UniChem with the InChIKey of each L1000 com-
pound via UniChem API. This allows us to map the L1000 small molecules not only to DrugBank, but also to 
PubChem, ChEMBL, and KEGG Ligand covered by UniChem (see Table T1 in Supplementary File 1). The pipe-
line enables us also to identify FDA-Approved drugs and to map them to the L1000 small molecule identifiers.

After mapping the DrugBank identifiers to small molecules, the identifiers were used to calculate the signature 
profile consensus for each drug. The purpose for computing consensus is to combine signature profiles for the 
same perturbation under different conditions (e.g., cell types, different dosages, or time points). The signature 
profiles consensus were obtained using the following; First, we calculated the Spearman rank correlation of all 
signatures that belong to a drug identifier in DrugBank. Second, we calculated the weights by taking the mean 
correlation to normalize the similarities (Total correlation, see Fig. S1 in Supplementary File 1). Third, we mul-
tiplied the z-score signatures by their similarity weights. Last, we sum up the weighted z-score vectors to form a 
single signature consensus.

Drug association network.  The basic idea of the drug association network (DAN) is to generate a network 
where different drugs show a similar effect on gene expressions which means that the number of genes affected by 
them has the same type of expression profiles compared to the control data. For example, for a particular cell line 
treated by drug Di and Dj having observed phenotype changes P̂i and P̂j, these phenotypes will be similar ˆ ˆ~( )P Pi j  
if the two drugs influence (overexpression or underexpression compare to a control state) similar genes. In order 
to estimate the similarity between two drugs we use a Jaccard-like index55 between two vectors of genes which are 
characterized as 1 (up), −1 (down) and 0 (no change) by drugs Di and Dj. In the first step, we obtain a matrix by 
converting the z-scores of drug-treated expression data to a matrix of categorical data-type whereas rows repre-
sent genes and drugs correspond to columns. In this matrix, genes are categorized as differentially expressed and 
non-differentially expressed genes. The differentially expressed genes are labelled by 1, for up-regulated, and −1 
for down-regulated. The non-differentially expressed genes are labelled by 0. In the second step, we measure the 
overlapping score between pairs of drugs by using a JI as described in Eqn. 1. The JI gives a ratio of differentially 
expressed genes which are common between a pair of drug-treated data w.r.t. all other genes which are differen-
tially expressed in at least one drug-treated data. In the third step, we test the significance of the Jaccard Index. We 
perform the significance test with a non-parametric approach by randomizing gene labels of each drug data vec-
tor independently. This allows us to estimate the sampling distribution of the null hypothesis. A schematic over-
view for the construction of a DAN is shown in Fig. 1D.

Jaccard Index.  Let Dk and Dl be two drugs with regulation profiles Ri and Rj. Ri and Rj are two vectors of length n, 
whereas n is the number of genes. Their components correspond to (I) down-regulation (−1), (II) no-change (0) 
or (III) up-reguation (1). The Jaccard Index (JI) can be estimated from the contingency table (see Table 1) giving 
the overlap between the two regulation profiles representing the effect of the drugs Dk and Dl:

∩

∪
= = =

+J J R R
G G

G G
n n

n
( , )

(1)
ij i j

i j

i j t

/ 0,0

/ 0,0

11 33

here nt = n11 + n12 + n13 + n21 + n23 + n31 + n32 + n33 is the number of genes showing differential expression.

Construction of the drug association network.  The construction procedure for the DAN consists of 11 steps and 
is based on z-score vectors available in LINCS. Every z-score vector, Z = {z1, z2 ..., zn} whereas n is the total num-
ber of genes, is a function of experimental conditions, including a drug Dk and a cell line CLm, which was exposed 
to drug Dk. For briefity we simply write Z = Z(Dk,γ) to indicate that a z-score is a function of drug Dk and further 
conditions summarized by γ. We call (Dk,γ) a configuration. Due to this dependency, Z = Z(Dk,γ) can be seen as 
a profile for drug Dk.
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For reasons of notational simplicity, we index the configurations (Dk,γ) by an integer number. That means 
we map (Dk,γ) to ch ∈ C = {c1, …, ct} = {1, …, t}, whereas t is the total number of configurations. This leads to the 
notation

γ= =Z Z D Z c( , ) ( ) (2)k h

we will use in the following.

	 1.	 This step is only used for Napproved: Summarize the z-scores for all configurations with the same drug, i.e., 
DCk = {ci, c, … ck} whereas every x ∈ DCk contains drug Dk. The summarized values are given by

∑′ = .
∈

Z
n

Z x1 ( )
(3)x DCk

In this case the total number of remaining z-scores corresponds to the number of configurations and the 
number of drugs. Re-indexing of the configurations gives ch ∈ C = {c1, …, ct} whereas t is now the number 
of different drugs.

	 2.	 Convert every z-score vector into a p-value vector, P = {p1, p2..., pn}, i.e., P = P(ch).
	 3.	 Convert every p-score vector into a q-value vector (controlling FDR with Benjamini and Hochberg (BH) 

method56), Q = {q1, q2 ..., qn}, i.e., Q = Q(ch).
	 4.	 Construct a matrix R of differentially regulated genes for all configurations ch, i.e., R is a (n × t) matrix, 

whereas the components of this matrix correspond to (I) down-regulation (−1), (II) no-change (0) or (III) 
up-reguation (1).:
For each configuration ch, we have the corresponding z-score vector Z(ch) and the corresponding q-value 
vector Q(ch). The function f:(Z(ch), Q(ch))i → M maps from the q- and z-value of a gene i to its regulation 
categories, i.e., M = {−1, 0, 1}. Specifically, the function f(zi(ch), qi(ch)) is defined as follows:

α
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This gives =R f z c q c( ( ), ( ))i h i h i h, .
	 5.	 Using R to calculate the Jaccard index (Jij) as defined in Eqn. 1 for each pair of configurations ci and cj, with 

≠c ci j and ci, cj ∈ C. Specifically, calculate Jij = J(Ri, Rj), whereas the Ri and Rj are the columns of matrix R 
for the configurations ci and cj.

	 6.	 Test the significance of a Jaccard Index for each pair of configurations by the following hypothesis.
H0: The number of differentially expressed genes overlapping in two dataset treated by drugs Di and Dj is 
zero.
H1: The number of differentially expressed genes overlapping in two dataset treated by drugs Di and Dj is 
not zero.

	 7.	 The sampling distribution is obtained from gene-label randomizations for each pair of configuration 
profiles Ri and Rj from which the corresponding Jaccard index, Jij = J(Ri, Rj), is determined. This results in 
the permuted Jaccard indices, = …J ij j j j( ) { , }perm ij

perm
ij
perm

ij
permL1 2  for L = 2000.

	 8.	 From Jperm(ij), we estimate the p-values by:
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∑ >=p Pr j j

I j j

L
( )

( )
i j i j i j

perm k
L

i j i j
perm

, , ,
1 , ,

k

This gives PJ = {p1,2, p1,3, …, pn,n−1}, containing in total ⋅ −t t( 1)
2

 different p-values.
	 9.	 Controling the FDR by BH we convert PJ into q-values, QJ = {q1,2, q1,3, …, qn,n−1}, consisting in total of 

⋅ −t t( 1)
2

 different q-values.
	10.	 Construct a matrix B for all configurations C by using the qij values:

α
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Here ∈c c C,i j .
	11.	 Construct a DAN by summarizing all configurations with the same drug, i.e., DCk = {ci, c, … ck} whereas 

every x ∈ DCk contains dug Dk

∑= Θ










∈ ∈
A B

(5)
D D

x DC y DC
xy,

,
k l

k l

here Θ(w) is the theta function which gives 1 for w > 0 and 0 otherwise.
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