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ABSTRACT

This thesis introduces a modelling framework, which is developed for risk and per-
formance assessment of large and complex systems with dynamic behaviours. The
framework supports the most common reliability and operation modelling tech-
niques, and permits their customisation. This ensures a high degree of freedom for
the modeller to describe accurately the system without limitations imposed by an
individual technique. The use of an object-oriented paradigm increases flexibility
and decreases the semantics gap between the model and real world, which are is-
sues with traditional techniques. The framework is named as Analysis of Things
(AoT) to emphasise its universal nature and wide application possibilities. The AoT
models are defined by using a Triplets data format, which is platform-independent
and tabular. A single table declares the applied modelling techniques, creates the
model structure, and assigns the parameter values. The format enables straightfor-
ward manual model edit while maintaining direct database compatibility. This thesis
also documents a calculation engine, which has been developed for analysis of AoT
models. The engine compiles dynamically the most efficient simulation algorithm
for each modelling technique. A catalogue of built-in techniques is included in this
thesis to demonstrate the application of the framework. The configuration of the
simulation algorithm is presented for each technique. The AoT model creation is
illustrated by using simple example models. Various techniques can be combined to
build a comprehensive risk and performance model that systematically includes all
essential details. The advanced features of the AoT framework have wide-ranging
applications for analysis of reliability, availability, and operational performance of

complex industrial products and processes.
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1 INTRODUCTION

Reliability, availability, and operational performance are integral factors to consider
in system design and management. They provide an essential amount of informa-
tion for risk-informed decision-making. Risk and performance analyses are used, for
example, to compare design alternatives, to estimate the return of investment time,
and to optimise maintenance of the system. Today’s complex systems require so-
phisticated methods to analyse the effect of failures on overall system performance.
This is especially true when considering dynamic interdependencies between fail-
ures, production and maintenance. Modern reliability engineering still confronts
challenges that relate to the representation of the system and quantification of the
model [1]. The traditional methods are not always flexible enough to include all the
needed details, which can lead to unrealistic simplifications. For example, Fault Tree
Analysis (FTA) [2] is one of the most prominent techniques in risk assessment, but

without extensions it lacks the power to express essential dependability patterns [3].

This thesis introduces a modelling framework for probabilistic risk and perfor-
mance assessment of complex systems with dynamic behaviour. The name of the
framework is Analysis of Things (AoT), which emphasises its universal nature and
wide application possibilities. Aol supports traditional risk assessment modelling
techniques [4], such as FTA, Reliability Block Diagram (RBD) [5], Markov anal-
ysis [6], Failure Modes and Effects Analysis (FMEA) [7] and Petri nets [8]. The
customisation and the combination of the techniques are enabled. A calculation
of Key Performance Indicators (KPIs) [9], such as Overall Equipment Effectiveness
(OEE) [10], can be included in the model for assessing the overall effect of stochastic
component failures. The AoT framework can be seen as a meta-model, which gener-
alises various modelling techniques, and supports inclusion of any domain-specific
features. The possibility to customise the modelling techniques helps avoiding the
need of simplified or unnatural solutions. The flexibility and extensibility of AoT

ensures the lowest possible semantics gap between the model and real world.
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The foundation of the Aol framework is a research that started two decades
ago. The reliability-based design methods [11] were first refined to prototype soft-
ware [12, 13, 14] and then to a commercial Event Logic Modelling and Analysis
Software (ELMAS) [15, 16, 17] tool. Several risk assessment cases in various in-
dustry sectors have been made with ELMAS [18]. Especially the needs related to
the modelling of complex systems and dynamic operation phases required improve-
ments to the traditional techniques [19, 20, 21, 22]. The use of ELMAS in particle
accelerator availability modelling [23, 24] motivated us for a research and develop-
ment of an Open Modelling approach for Availability and Reliability of Systems
(OpenMARS) [25, 26]. It enables including customised features with minimal need
of programming during modelling. AoT improves OpenMARS further with more

efficient data format and more straightforward communication between sub models.

AoT uses the Triplets data format for model definition. The declaration of mod-
elling techniques, the creation of model structures, and the assignment of parameter
values can be all done with a single table. Each definition is a triplet that can be stored
asarow of a three column table. The format is human-readable, which enables defin-
ing models manually with any tool that supports editing tables. In tabular format
the model can be stored to a database directly without pre-processing. The Triplets
format is platform-independent, open and non-proprietary, which makes it suitable

for sharing information between any commercial or public-domain software.

The high flexibility of AoT is achieved by using object-oriented paradigm as a
basis of the framework. All models consists of objects, which have attributes. In
addition to creation of a model object structure and assignment of parameter values,
the model also contains definition of the model object types. Each type is a class,
which declares the types of the attributes that are assigned for the object instances.
A modelling technique is defined by declaring a catalogue of classes. The framework
contains built-in class declarations for traditional techniques, but allows a modeller

to improve them to overcome their limitations.

To verify the feasibility of Aol in practice, a calculation engine has been devel-
oped for analysis of Aol models. This thesis documents a stochastic Discrete Event
Simulation (DES) process for calculation of various explicit and concrete results
based on the models. The engine can be configured to analyse any modelling tech-
nique that is defined with the AoT framework. The configuration can also be used for

including user-defined special features in the simulation algorithm. With the help of
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dynamic compilation, it is possible to optimise the algorithm based on the content of
the simulated model. The adaptive algorithm includes only the essential procedures,
which increases the efficiency of the simulating different techniques. The distributed
processing architecture of the calculation engine permits parallel Monte-Carlo sim-
ulation in a computing cluster, which enables efficient analysis of large models. A
future plan is to develop tools with a user-friendly Graphical User Interface (GUI)
that are specially designed for the AoT framework. This forms a highly potent en-
vironment, which is suitable for comprehensive risk and performance assessment of
systems in diverse domains.

To demonstrate the application of the framework, a brief catalogue of built-in
techniques is included in this thesis. A class declaration and a configuration of a DES
algorithm are presented for each technique. The catalogue can be used as a basis for
implementation of an arbitrary new technique. The thesis also presents the creation
of simple example models by using the built-in techniques. The examples include

interconnecting of various sub models that use different modelling techniques.

1.1 Objectives of the thesis

The main objective of this thesis is to introduce the AoT framework and justify its
feasibility for the analysis of today’s complex and dynamic systems. Uniquely, the
framework enables defining the applied modelling technique before the model cre-
ation. With the detailed description of the methodology and the presented versatile
examples, this thesis aims to convince the reader that AoT is capable of creating new
modelling techniques, and customising and combining of them. This flexibility en-
ables using the framework as a common foundation for a large variety of tools. Each
tool can apply a custom-made modelling technique that is optimal for certain spe-
cial analysis need. When compared to a complex multi-purpose tool, using a highly
customised tool can be more efficient and easier to use.

The main difference between AoT and other approaches is the use of a tabular data
format for model definition. This thesis documents the Triplets format in such detail
that the reader is able to define models manually by editing a table. The novel way of
storing object-oriented models into a single table is especially suitable for transferring
information between tools and databases. This thesis provides the needed details for

implementing Triplets format import and export interfaces for new or existing tools.
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The principles of creating a DES algorithm for any modelling technique are de-
scribed in this thesis. The algorithms are created with the help of dynamic compila-
tion. This differs from the traditional approach of using static simulation algorithms.
The flexible procedure of creating simulation algorithms aims to prove that efficient
calculation of versatile analysis results is enabled for AoT modelling techniques. The
procedure of defining new modelling techniques and simulation algorithms for them
forms an environment that lowers the time required for developing new analysis
tools for special needs.

Hypothesis: By applying the object-oriented paradigm it is possible to create a
single framework that can utilise, combine and customise various risk and perfor-
mance assessment techniques to answer the challenging analysis needs of today’s
complex and dynamic systems.

Research questions related to the applying of the object-oriented paradigm to risk

and performance assessment:
1. What kind of class declaration is suitable for efficient use of individual mod-
elling techniques and enables a clear way to add connections between them?

2. How the object-oriented models can be defined clearly and efficiently by using

a tabular format?

3. What stochastic DES procedure is suitable for generic and versatile analyses of
object-oriented models?

The individual objectives of this thesis are summarised as follows:

e To introduce the AoT framework for probabilistic risk and performance as-
sessment of complex systems;

e To document the syntax of the Triplets data format, which is used for efficient

model definition;
e To present how the framework covers traditional risk assessment techniques;
o To describe how custom KPIs can be included in models;

e To present how AoT allows combining various modelling techniques and cus-

tomising them for special needs; and

e To introduce the stochastic DES procedure of the calculation engine, which

can be used for producing concrete analysis results from the AoT models.
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1.2 Research methods and restrictions

This thesis presents the result of a research, which aim was to develop a new ap-
proach for risk and performance assessment of complex systems. The principal idea
was to enable utilising entirely the available data in the most efficient manner. The
approach should support hybrid modelling by combining qualitative data from ex-
perts’ knowledge with quantitative data that is collected from various sources. The
modelling of basic situations should be as simple as with traditional risk assessment
techniques, but without restrictions for advanced modelling of system performance
characteristics, dynamic interdependencies or other complex properties. To achieve
the needed flexibility, an object-oriented paradigm was selected as a basis.

The result of the research is the AoT framework. It integrates various quantitative
risk and performance assessment techniques into a common methodological founda-
tion. In the AoT methodology the qualitative information about cause-consequence
relations is collected by defining explicit rules that form a system model. The rules
are parametrised with the quantitative information. The definition of probability

distributions for the rules enables including stochastic information in the model.

This thesis specifies the methodology of the AoT framework, and presents how
it is applied in various modelling situations. The application of the framework is
described by using simple and fictional example models. The examples are intended
to be as clear as possible for illustrating the features needed for solving the situations.
The presented modelling features, such as inclusion of maintenance actions, opera-
tion phases, mode-dependent failure rates and user-defined KPIs, have been selected

based on concrete needs of various risk assessment cases [ 18, 19, 20, 21, 22, 23, 24].

The presented examples apply basic features of traditional risk assessment tech-
niques. In addition to the definition of the example model structures, the features
of the applied modelling techniques are formally declared. The declaration includes
configuring the simulation algorithms for analysis of the models. The framework
enables applying similar declaration procedure to formally define an arbitrary mod-
elling technique. This allows including any customised features for advanced or
domain-specific needs. The focus in this thesis is on existing and well-known tech-
niques, which aims to verify the applicability of the framework in traditional mod-
elling situations. The common formal approach for declaring various techniques

enables combining and extending the presented features.
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This thesis does not include a practical analysis case study that could be used
for comparing a solution made by applying Aol with solutions from existing tech-
niques. The comparison is made in more general level by classifying different tech-
niques based on their flexibility, modelling power and other disquisition criteria.
When considering an individual case, the tool that has been developed for the ap-
plied technique affects significantly to the usability and performance of the approach.
AoT provides a common formalism for existing and customised techniques, which
enables creating tools that are compatible with any of them. Furthermore, the well-
defined data format of the framework allows including a support of AoT model cre-
ation in existing tools. Selection and implementation of tools to support AoT model
creation and analysis, and evaluation of them with respect to practical cases are issues
of a follow-up research.

This thesis concentrates on the risk and performance assessment. It does not
cover the other issues in the risk management process, such as (i) the data acquisition,
(i1) the determination of the goal and the studied KPIs, and (ii1) deciding based on

the analysis whether the residual risk is tolerable and which actions should be taken.

1.3 Outline and contributions of the thesis

This thesis is divided into 6 chapters, which contents are summarised as follows:

e Chapter 1isan introduction into the field of risk and performance assessment.
The background and motivation for the study are given, followed by the ob-

jectives, research methods, restrictions and contributions of the thesis.

e Chapter 2 presents brief reviews of the recent standards that define the risk
assessment terminology, the traditional techniques that have been used for the
risk assessment of complex systems, and the modern Model-Based Depend-
ability Assessment (MBDA) formalisms.

e Chapter 3 describes the methodology by introducing the AoT framework and
documenting the syntax of the Triplets data format. The chapter also describes

the stochastic DES process of the calculation engine, which enables analysing
AoT models.

e Chapter 4 presents how the framework can be applied with various traditional

risk assessment techniques. The declaration of the model element classes and
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the configuration of the simulation algorithm are presented for each modelling

technique.

e Chapter 5 presents simple example models by using the declared modelling
techniques. The examples include special features, such as definition of custom

KPIs and combination of different techniques.

e Chapter 6 summarises the thesis. It also contains the discussion about the
needs for this type of framework and presents suggestions how AoT could be

used in the future.

The introduced AoT framework and its tabular Triplets data format are results of
the author’s research to improve the applicability of the OpenMARS approach [25,
26]. The most distinctive feature of OpenMARS is the use of tabular model defini-
tion format. The Triplets data format improves this unique feature further by re-
ducing the number of required tables from five to one. When compared to markup
or programming languages that are used with other similar approaches, the model
definition by using tables was found more familiar for basic system engineers.

Large analysis targets create a need for modelling tools that minimise the required
manual work. A single table that collects entirely the model data is a significant
advantage when developing interfaces for GUIs and databases. AoT is open and
non-proprietary permitting any researcher or commercial tool provider to create
solutions based on it. The framework can form a common foundation for various
analysis tools, which each provide a GUI or an automatised model definition for
certain modelling techniques or special analysis needs.

The OpenMARS approach was developed in co-operation between European Or-
ganisation for Nuclear Research (CERN), Tampere University of Technology (TUT)
and Ramentor Oy. The author’s responsibility in the project was the development
of the OpenMARS methodology and the implementation of a calculation engine to
analyse the models. With minor improvements the same calculation engine is appli-
cable to analysis of AoT models. This thesis publishes first time the principles that
make the calculation engine highly configurable for various needs. The flexibility
enables using an optimal simulation algorithm for each modelling situation.

This thesis presents configurations for basic risk assessment techniques, which
can be used as a basis for configuring calculation of more advanced techniques and

their combinations. Arto Niemi together with the author have successfully tested
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the applicability of the approach for challenging modelling needs from CERN. A
particle collider operations model linked fault tree and Markov models, contained
failure rates that change based on an active operation mode, and included calcula-
tion of luminosity production [23, 24]. The n+1 redundancies with load sharing
were modelled in a research of identifying critical systems for a future circular col-
lider [27].

The main contributions of this research can be summarised as follows:

e A novel methodology for probabilistic risk and performance assessment for
complex systems is introduced. The AoT framework enables combining vari-
ous risk assessment techniques, customising them for special needs, and inclu-

sion of any system KPIs in the model.

e Tabular Triplets data format for the definition of AoT models is presented.
The platform-independent and non-proprietary format is open for use with
any GUI. Manual model edit by using various modelling techniques is enabled
with any tool that supports editing tables. The declaration of a new technique

and the definition of customised features can be included in the same model

table.

e A stochastic DES algorithm of a calculation engine is described. The algo-
rithm is compiled dynamically for each modelling technique. This increases
the flexibility when compared to other approaches that use static simulation al-
gorithms. With similar procedure any DES or other algorithm can be formed
based on the needs of the analysed model. To enable efficient analysis of
large AoT models, the calculation engine supports parallel simulation in a dis-

tributed computing cluster.
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2 STATE OF THE ART

2.1 Risk and reliability terminology in the latest standards

The field of reliability and risk assessment has decades long history, but the used
terminology has not yet been entirely fixed. This section presents the terminology
that is used in this thesis. The definitions of the terms are made based on a review of
the latest reliability, maintenance and risk assessment standards.

International Organization for Standardization (ISO) defines Risk Management
(RM) as coordinated activities to direct and control an organisation with regard to
risk [28, Sec. 2.1]. The RM process is included in systems engineering, which is de-
fined by National Aeronautics and Space Administration (NASA) as a methodical,
multi-disciplinary approach for the design, realisation, technical management, oper-
ations, and retirement of a system [29, p.3]. It focuses on how complex engineering
projects should be designed and managed over their life cycles. It is obvious that
risk is an integral issue in systems engineering and disciplined RM must be always
included.

Risk assessment is defined by ISO as the overall process of risk identification, risk
analysis, and risk evaluation [28, Sec. 3.4.1]. This thesis concentrates on quantitative

risk assessment, where:

1. the risk identification is made by creating a comprehensive model that unam-
biguously collects the available information about the uncertainty and other

features that affect the risk,

2. the risk analysis is made by using stochastic DES to calculate explicit and con-

crete results from the model, and

3. the versatile analysis results are evaluated with respect to the the context of the

studied case.
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The RM can take many forms but always the risk assessment is a crucial part of
it. Figure 2.1 illustrates how the three steps of the risk assessment are activities of the
RM process, as described by ISO [30, Fig. 3]. A brief description about the content

within this thesis is included in each step.

( Risk management )

Actions before

Risk assessment

Risk identification
Collect available
information to model

Systems
e n gi n e e ri ng Stogﬁal(s:igat:%sci:ete

event simulation

Risk evaluation
Report explicit results,
compare scenarios,...

\ Actions after

Monitoring and review

Figure 2.1 The risk assessment process as a part of RM [30, Fig. 3] and systems engineering

Risk is defined by ISO as an effect of uncertainty on objectives. An effect is a
positive and/or negative deviation from the expected. Risk can also be expressed in
terms of a combination of the consequences of an event and the associated likelthood
of occurrence. The uncertainty comes from a lack of full knowledge related to the
consequences and/or the likelthood [28, Sec. 1.1]. As an example, the likelihood
can be quantified as a probability and the consequences as a cost.

An acronym RAMS is used for terms Reliability, Availability, Maintainability
and Safety. These generic and essential risk related system quality attributes can be
used for risk management irrespective of the type of item considered. International
Electrotechnical Commission (IEC) defines an item as an individual part, compo-
nent, device, subsystem, or system [31, Sec. 192-01-01]. The system is a set of inter-
related items that collectively fulfil a requirement [31, Sec. 192-01-03]. A system is
considered to have a defined real or abstract boundary. A system structure may be

hierarchical, e.g. system, subsystem, component, etc.
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RAMS analysis studies the states of items, for example, whether an item is in up
state or down state. European Committee for Standardization (CEN) characterises
that in the up state an item can perform as required [32, Sec. 6.4]. In this thesis the
basic up state is called normal state. Sometimes more than one up states are needed.
For example, there can be a up state for each different operation mode or speed.

A basic down state is called fanlt state. It is started by a failure, which is defined as a
loss of the ability of an item to perform a required function [32, Sec. 5.1]. Corrective
Maintenance (CM) is made during the fault state. The event that re-establishes the
up state is called restoration [32, Sec. 8.9]. Preventive Maintenance (PM) is made
during a service state, which is an example of other down state. Like with the fault
state, the start and the end of the PM task define the duration of the service state.

An example of an item’s state changes is shown in Figure 2.2. The names of the
illustrated states and events are based on a CEN standard [32]. It is also possible that

some PM tasks do not necessarily interrupt an item to perform as required.

Normal state Service state Normal state Fault state Normal state

(Performs as (Preventive (Performs as (Corrective (Performs as
required) maintenance) required) maintenance) required)

Uptime Downtime Uptime Downtime Uptime

Figure 2.2 An example of state changes of an item

IEC defines reliability as the ability to perform as required, without failure, for a
given time interval, under given conditions [31, Sec. 192-01-24]. Reliability describes
how long the item stays in up state. Reliability may be quantified as a probability
or performance indicators by using appropriate measures, and is then referred to as
reliability performance. When quantified, it is assumed that the item is in a state to
perform as required at the beginning of the time interval.

Reliability measure is the probability of performing as required for certain time
interval, under given conditions [31, Sec. 192-05-05]. Unreliability is the probability
of the complement situation, which is preferred in this thesis because it refers more
clearly to the quantified reliability performance. In addition, because of E-notation

it is more convenient to have a value near zero when highly reliable systems are
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studied. For example, it is simpler to display clearly an unreliability 3.7E-8 when
compared to a corresponding reliability 0.999999963.

There exists various functions and measures to quantify the reliability perfor-
mance. In this thesis detailed quantification is made by using the Cumulative Distri-
bution Function (CDF), which defines the unreliability for different time intervals.
In addition to CDF, for example, Mean operating Time To Failure (MTTF) 31,
Sec. 192-05-11], or mean failure rate [31, Sec. 192-05-07] are ways to quantify the

reliability performance.

Availability is the ability to be in a state to perform as and when required, under
given conditions, assuming that the necessary external resources are provided [32,
Sec. 4.7]. Required external resources, other than maintenance resources, do not
affect the availability of the item although the item may not be available from the
user’s viewpoint. It should be defined for each case which required resources are
considered external and which are internal. This thesis uses a general definition: An
item is available when it can perform as required. Tangible definitions should be

made when the framework is applied in practice.

Like reliability, availability may be quantified using appropriate measures or in-
dicators, and is then referred to as availability performance. As with reliability, com-
plementary probability called #navailability is preferred for the quantified availabil-
ity performance. Instantaneous unavailability is the probability that an item is not
in a state to perform as required at a given instant [31, Sec. 192-08-04]. In addi-
tion, mean unavailability [31, Sec. 192-08-06] over the given time period is used to

quantify the availability performance.

Maintainability is the ability of an item under given conditions of use, to be re-
tained in, or restored to, a state in which it can perform a required function, when
maintenance is performed under given conditions and using stated procedures and
resources [32, Sec. 4.5]. Maintainability describes the ability to perform the CM
and PM tasks, which affects the durations of the fault and service states.

In addition to the active repair time of the CM, the duration of the fault state
can contain various delays. Similarly, the service state can contain delays in addition
to the active PM task time. For example, logistic or technical delays, or the time
needed for finding of the failure can affect the maintainability. Maintenance support-
ability is the ability of an organisation to have the correct maintenance support at

the necessary place to perform the required CM or PM activity.
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Like reliability and availability, maintainability may be quantified using appro-
priate measures or indicators and is then referred to as maintainability performance.
The total CM and PM time can be quantified with a CDF. If needed, the functions
can be defined separately for active maintenance time, and for each type of delay that
is included. Mean Repair Time (MRT) [32, Sec. 11.4] and Mean Time To Restora-
tion (MTTR) [32, Sec. 11.5] are examples of other ways to quantify the CM.

In this thesis, the maintenance supportability is handled like any other delay that
could affect the durations of the fault and service states. The length of the delay can
be quantified as detailed as necessary. Separate analysis should be made later about
the principles or origins of a delay if it is found significant from the risk point of
view.

IEC defines dependability as the ability to perform as and when required. It is used
as a collective term for item’s time-related quality characteristics, such as availability,
reliability, maintainability and maintenance supportability [31, Sec. 192-01-22]. Fig-
ure 2.3 illustrates the dependencies of the dependability characteristics, as described
by IEC[31, Sec. 192-01-23]. The up time [31, Sec. 192-02-02] is characterised by reli-
ability, and the down time [31, Sec. 192-02-21] by maintainability and maintenance

D -
Ependablhty Availability
characteristics
|
Reliability Maintainability s'\tﬁlslprlztrig?)ri]licti/

Uptime Downtime /

supportability.

~

Figure 2.3 Dependability characteristics described by IEC [31, Sec. 192-01-23]

The definition of dependability mentions that the characteristics are time-related.
This time does not necessarily refer to calendar time. The studies can also be made
related to the operation time of the system if the operation is not made continuously.
Additionally, number of cycles, number of kilometres, etc. can be considered instead
of time unit. If other than calendar time is used, the durations of the CM and PM
tasks needs to be defined carefully. Some kind of usage profile should be used to

describe the relation between units used with operation and non-operation times.

27



The dependability requires avoiding the situations when the items are not able
to perform as required. These situations can be risk sources, which alone or in com-
bination has the intrinsic potential to give rise to risk [28, Sec. 3.5.1.2]. The con-
sequences of these dependability related risk sources are, for example, break and
downtime costs of the down state, CM material and resource costs of the fault state,

and PM costs of the service state.

In addition to dependability that includes Reliability, Availability and Maintain-
ability (RAM), also Safety is included in Reliability, Availability, Maintainability and
Safety (RAMS). Safety is related to special risk sources called hazards. Hazard [28,
Sec. 3.5.1.4] is a source of potential harm [33, Sec. 3.1], which is injury or damage
to the health of people, or damage to property or the environment. Harms are con-
sequences of safety related risk sources. The basis for the both dependability and

safety related risk sources comes from the states of the items.

The risks of a system can be divided to availability and safety risks. The com-
bination of likelihoods and consequences of dependability related risk sources form
availability risks of the system. Similarly, the combination of likelithoods and conse-
quences of hazards form safety risks. The terms of the risks and RAMS, as described
in standards [28, 31, 32, 33], are illustrated in Figure 2.4.

Break and CM material
L]
L]

Likelihood Reliability Corrective Preventive Hazards
aintenance maintenance

Figure 2.4 The terms of risk and RAMS, as described in standards [28, 31, 32, 33]
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The acceptable risk depends on the considered situation. Usually the assessment
of risk is made for more than one scenarios, which allows prioritising different design
alternatives. As an example, the reduced risk can be used to justify the cost of an

investment.
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2.2 Traditional techniques for systems’ risk assessment

This section briefly describes traditional techniques that are commonly used for
quantitative risk assessment. Estimating the probabilities of events or failure rates
of components is required in order to obtain quantitative results. The estimation
requires experts’ judgements or history data. If this information is not available, the
same methods and formalisms are usually suitable for qualitative analyses.

The traditional techniques are not always flexible enough for obtaining quantita-
tive results in complex situations. For example, a simple technique can be limited to
analyse only non-repairable systems. Extensions and new techniques can avoid the
limitations by increasing the modelling power. The possibility to reduce the manual
modelling work has also been a motivation for improvements. Various modelling
targets with different needs have lead to a large variety of different modelling tech-
niques for systems’ risk assessment.

Fault Tree Analysis (FTA)[2] is one of the most prominent techniques for quan-
titative risk assessment. A fault tree is an organised graphical representation of the
factors contributing to the occurrence of a defined outcome, referred to as the top
event. Deductive (top-down) approach aims finding the combinations of conditions
that can cause the defined top event. Figure 2.5 illustrates a fault tree model struc-
ture, where the top event is a system failure. Component faults are primary events,
which are at the bottom of the fault tree. Intermediate events are between the top
event and the primary events. A gate defines the causal relation between an output
event and the contributing input events. For example, a gate can have a logic rule
OR, AND, Vote or XOR. Traditionally FTA uses special symbols for different type

of elements, but they are not strictly followed in this thesis.

System failure

> AND |«

Subsystem 1
failure

T T -y

Component | [ Component | | Component Component | | Component | | Component Component | | Component | | Component
failure 1A failure 1B failure 1C failure 2A failure 2B failure 2C failure 3A failure 3B failure 3C

Subsystem 2
failure

Subsystem 3
failure

Figure 2.5 A fault tree model structure



Similar analyses can be made also with Reliability Block Diagram (RBD) [5],
which is made up of blocks that are connected in series or parallel configuration.
Any block failure along a series path causes the entire path to fail. Parallel paths
are redundant, which means that all blocks must fail. RBD models are formed by
combining series and parallel configurations. Figure 2.6 illustrates a RBD model
structure, where the system consist of three redundant subsystems, which each have
three components. RBD can include also k-out-of-n configurations, where at least k

out of n items must operate for the redundant system to operate.

Component Component Componen
failure 1A failure 1B failure 1C
Component Component Component
failure 2A failure ZB failure 2C
Component Component Component
failure 3A failure 3B failure 3C

Figure 2.6 A reliability block diagram model structure

A fault tree can be converted to a success tree by applying the two rules of de
Morgans’s theorem!. A success tree can be then converted to a RBD by replacing
AND gates with series paths, and OR gates with parallel paths. Similar conversion
can also be made from a RBD to a fault tree. Possibility to convert the models to
both directions implies that the techniques have the same modelling power.

The modelling power of the FTA formalism can be enhanced by allowing re-
peated events. For example, the component C of the model that was illustrated in
Figure 2.5 can be shared between sub systems 1 and 2. The failure of the component
causes both sub systems to fail. If repeated events are not allowed, FTA is not ca-
pable for modelling the dependability of such system. Figure 2.7 illustrates a fault
tree model structure, where the failure of the shared component C occurs in two
locations. An analogous RBD with repeated blocks is shown in Figure 2.8. With
repeats allowed, FTA and RBD have the same modelling power [34].

Both FTA and RBD are combinatorial modelling techniques, which map the op-
erational dependency of a system on its components. Even with repeated events,
they are not suitable for modelling of certain kind of dependencies, such as shared

repair facilities, which are enabled with state-space modelling techniques [35].

'not (A or B) = not(A) and not(B)
not(A and B) = not(A) or not(B)
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Subsystem 1
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Figure 2.7 A fault tree model structure with a repeated event

Componen
failure 2A

Component Component Shared
failure 1A failure 1B component
t Component Shared
failure 2B component

Component Component Component
failure 3A failure 3B failure 3C

Figure 2.8 A reliability block diagram model structure with a repeated block

Markov analysis [6] is a simple state-space modelling technique. It can be used if
the future state of a system depends only upon its present state. This rule is called
a Markov property. For example, in a system with states functioning, degraded,
and failed, the Markov property is valid if the next state depends only upon the
current state, and not from the states before it. A Markov model consist of states and
transitions, which define the state changes. Table 2.1 gives an example of a transition

matrix, which represents a system by defining the probabilities of its state changes [4,

Tab. B.2].

Table 2.1 A transition matrix that represents state changes of the example system [4, Tab. B.2]

Current state

FUNCTIONING | DEGRADED | FAILED
FUNCTIONING 0.95 0.3 0.2
Next state DEGRADED 0.04 0.65 0.6
FAILED 0.01 0.05 0.2

In addition to a transition matrix, a Markov diagram can be used to represent
a system. Figure 2.9 illustrates the states and transitions that was defined in Ta-

ble 2.1[4, Fig. B.9]. The arrows to a state to itself are not shown. The probability of

31



such arrow can be calculated based on other arrows, because the sum of probabilities
of all transitions of a state must be always 1. This thesis does not strictly follow the

symbols that are commonly used in Markov diagrams.

0.04 0.2

0.3 0.01
0.6

Degraded 0.05

Figure 2.9 A Markov diagram that represents state changes of the example system [4, Fig. B.9]

A Markov chain is the stochastic model that is defined by a transition matrix or
a Markov diagram. If exponentially distributed delays are defined for transitions,
the model is called Continuous-Time Markov Chain (CTMC) [36]. Also the name
Markov process is used. CTMC uses rates of state changes in the transition matrix
to define the model.

Semi-Markov Process (SMP) generalises CTMC by removing the restriction that
all transition durations must be exponentially distributed. Unlike CTMCs, SMPs
have the Markov property only at certain time points. For example, failures and
restorations of a system can be such time points, and the jumps between them are
defined by using arbitrary distribution functions. The duration of each jump must
depend only on the two states between which the move is being made. Markov
Renewal Process (MRP) is equivalent to SMP, but their definition is different [37].

Another state-space modelling technique is Petri net [8], which is a graphical tool
with an exact mathematical definition. Unlike Markov models, Petri nets can have
multiple active elements at the same time. The model consist of places and transitions,
which are connected by directed arcs. The state of the model at certain point in
time is defined by dynamic rokens, which move between places when the transitions
are fired. Petri nets have various application areas, but the formalism can also be
considered as a traditional risk assessment technique.

Figure 2.10 illustrates Petri nets that define OR and AND logic rules for two
input places A and B. Arcs connect the inputs through transitions to an output place.
A transition is enabled, when each of its input places contains at least one token.

When a discrete time step is taken, each enabled transition fire by removing a token
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from each input place and placing a token in an output place. If there are more than
one outputs, they each will have a token. The tokens define the state of the model.
Traditionally Petri nets use special symbols for different type of elements, but they

are not strictly followed in this thesis.

Al or B1 A2 and B2 Al or Bl A2 and B2
Token

Discrete

Transition Transition TranS|t|on . Transition Transition Transmon
? time step ?
Place Al Place: B1 Place A2 Place B2 Place: A1 Place B1 Place A2 Place B2

Figure 2.10 Petri nets for OR and AND logic rules

The discrete time Petri nets can be used, for example, to investigate the dead-
locks of a computer system. Stochastic Petri Net (SPN) includes exponentially dis-
tributed firing times for transitions. The extension increases its modelling power to
the same as CTMC [38]. Also various other extensions exist. Generalised Stochastic
Petri Net (GSPN) [39] contains both immediate and exponentially distributed tran-
sitions. GSPN does not have more modelling power than SPN, but the presence of
immediate transitions allows a higher parametrisation degree [40]. Coloured Petri
Net (CPN) [41] belongs to high-level Petri nets [42], which are characterised by the
combination of Petri Nets and programming languages. The extension focuses on
the practical use of the formalism instead of increasing its modelling power. Ex-
tended Stochastic Petri Net (ESPN) uses arbitrary distribution functions for transi-
tions, which increases the modelling power [43].

Markov analysis and Petri nets are more powerful than FTA and RBD, but for cer-
tain needs the use of state-space modelling techniques can be unnecessarily complex.
The most suitable technique depends on the studied case. Combination of different
techniques allows using the most practical technique for each part of the model. For
example, the blocks of a RBD can be modules that are modelled by using a fault tree
or a Petri net. The sub models define first the failure rates of the modules, which are
then used to evaluate the RBD. RBD driven Petri net [44] and a Conjoint System
Model (CSM) [45] are examples of hybrid techniques that combine Petri nets and
RBD.

In a basic situation the gates in FTA can model only static relations. By adding

dynamic gates FTA can be extended to handle dynamic relations. Dynamic gates,
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such as Priority AND, sequential gate and spare, model situations where the order
of the events matters [2, Sec. 5.4.3]. Their evaluation can be made with the Markov
analysis. Once evaluated, the gate and its inputs may be replaced by a single primary
event of a fault tree. Various extensions exist for FTA also to handle e.g. (i) uncer-
tain probabilities, (ii) dependency between events, (iii) temporal requirements, (iv)
repairable components, (v) inclusion of more than two states for components, and

(vi) different distribution types for failure rate [3].

Several software tools have been created to enable efficient use of different tech-
niques. For example, CPN Tools [46] is for editing and simulation of CPN models,
GRIF BStoK [47] is for RBD driven Petri nets, and REALIST [48] for CSM. Var-
ious software tools also exist for different FTA extensions [49]. For example, EL-
MAS [15] is a tool for an advanced FTA modelling technique [19], which formed
the basis of the Aol framework. The advanced FTA includes various extensions
in the traditional FTA, and permits including user-defined procedure codes to sup-
port modelling of domain-specific features. This enables, for example, (i) combining
FTA and FMEA analysis [20], (ii) multi-state modelling of partial process flows, (i)
including dynamic rules for backup power supply [21], and (iv) defining exclusive

stochastic consequences [22].

In addition to the previously described techniques FTA, RBD and Markov anal-
ysis, the standard IEC/ISO 31010:2009 [4] refers to various other risk assessment
techniques that have also reached a satisfactory level of professional consensus. For
example, a widely used qualitative technique Failure Modes and Effects Analysis
(FMEA) [7] and its extension Failure Modes and Effects and Criticality Analysis
(FMECA) are mentioned. FMECA can be quantitative if suitable failure rate data
and consequences are used for describing the occurrence and effect of failures. PSK
6800 [50] is an example of similar qualitative technique for classification of critical-
ity. The inductive FMEA can be used together with the deductive FTA for having a

more comprehensive approach.

Another inductive technique is Event Tree Analysis (ETA) [4, Sec. B.15], which
displays potential scenarios following certain initiating event. Event trees represent
graphically sequences of events, which are not possible to represent when using fault
trees. Cause-consequence analysis [4, Sec. B.16] is a combination of FTA and ETA.
The technique analyses a critical event, which is equivalent to the top event of a fault

tree and the initiating event of an event tree.
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In addition, recent research has proposed various new techniques that satisfy cer-
tain special needs of quantitative risk assessment. For example, Functional-Failure
Identification and Propagation (FFIP)[51] is applied at early conceptual design phase
before a top event of FTA and the mechanisms leading to it are known. Dynamic
Flowgraph Methodology (DFM) [52] produces a self-contained system model from
which many fault trees can be derived via algorithmic procedures. Software Reliabil-
ity Growth Model (SRGM) [53] enables estimating the decrease of software failures
during the testing phase. Translation of FTA and RBD models to a Bayesian net-
work [54] allows the inclusion of new features, such as probabilistic gates, multi-state
variables, uncertainty on model parameters, and dependence between components,

in the model.

2.3 Model-based dependability assessment

Over the past twenty years, researchers have made continuous efforts to simplify
the analysis process by automatically synthesising dependability related data from
system models [49]. This has led to the emergence of the field of Model-Based De-
pendability Assessment (MBDA), which is also referred to as Model-Based Safety As-
sessment (MBSA) [55]. While certain techniques focus on making the analysis pro-
cess more manageable, other MBDA techniques have been developed to address the
limitations of traditional approaches [56]. The field of MBDA encompasses a large
variety of techniques, such as FPTN [57], FPTC [58], HiP-HOPS [59], SAML [60],
smartIflow [61], AltaRica[62], and Figaro [63]. This section presents a brief review
of different MBDA techniques and a comparison of their features.

Failure Propagation and Transformation Notation (FPTN) [57] is among the pi-
oneering MBDA methods. It was designed to address limitations and improve the
integration of FTA and FMEA. FPTN proposes a systematic model of failure propa-
gation, which resembles data-flow based methods. The model consists of boxes with
input and output failure modes, and a set of predicates describing the relationship
between them. Fault trees can be created for each output failure mode based on the

information of the boxes.

Fault Propagation and Transformation Calculus (FPTC) [58] attempts to over-
come deficiencies in FPTN by using an actual architectural model of the system.

The FPTN diagram includes only the parts that are currently known to cause fail-
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ures. In FPTC the changes to the architectural model do not require a new failure
model to be built, which improves the synchronisation of the model and reality.
FPTN was designed to support both inductive and deductive analysis, but FPTC is

primarily inductive in nature.

Another technique for the synthesis of fault trees and FMEAs is Hierarchically
Performed Hazard Origin and Propagation Studies (HiP-HOPS) [59]. Unlike FPTC,
HiP-HOPS is a deductive technique. Thus, it is less prone to combinatorial explo-
sion [64]. A model starts at functional level and proceeds all the way down to the
low levels of the hardware and software implementation. HiP-HOPS has interfaces
to a number of different modelling tools, including Matlab Simulink, Eclipse-based
UML tools, and SimulationX.

The general underlying formalism and the types of analyses performed typically
gravitate MBDA techniques towards two leading paradigms [56]. In Failure Logic
Synthesis and Analysis (FLSA) the fault tree or other failure model is automatically
constructed from the information stored in the system model. The aforementioned
FPTN, FPTC and HiP-HOPS all belong to this category. The other approach is
Behavioural Fault Simulation (BFS), where faults are injected into the model that

simulates the normal system behaviour.

Safety Analysis Modelling Language (SAML) [60] is a BES technique. It utilises
finite state automata to describe system models. A model consists of modules that
have state variables and transition rules to update them. SAML can be used as an
intermediate language for MBDA techniques, but there exists also Software-intensive
Systems Specification Environment (S’E) [65] for design and verification of SAML

models.

State Machines for Automation of Reliability-related Tasks using Information
FLOWs (smartIflow) [61] is a modelling language that has been specially designed
for the purpose of automating the safety analysis process. In smartIflow compo-
nents are considered as finite state machines. The information exchange between the
components is undirected, which differs from all previously mentioned techniques.
Using directed connections often leads to problems in failure situations where the
cause-effect relationship reverses [66]. The direction of an undirected connection is
determined automatically, which makes the definition of the direction unnecessary
for the model creator. Another difference is that smartIflow uses object-oriented

approach to characterise the component types by using model classes.
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Another technique that uses undirected connections is AltaRica 3.0 [62]. It is
a high-level modelling language, which is dedicated to safety analysis. In AltaRica
the relations are defined in detail by creating connections between model element
attributes. This is done by using transitions and assertions [67]. The earlier versions
of the language are AltaRica LaBRI and AltaRica Data-Flow. Like smartIflow, they
all use an object-oriented paradigm to organise large models into hierarchies. A li-
brary of reusable components can be created by defining classes. A class is a generic
component, which can be instantiated in the model. AltaRica 3.0 enriches the model
structure with blocks, which are similar to prototypes from prototype-based [68]
programming languages. A block is like a class that is automatically instantiated as

an unique occurrence in the model.

The underlying mathematical formalism of AltaRica 3.0 is Guarded Transitions
Systems (GTS) [69]. It is a state automata, which generalises RBDs, Markov chains
and SPNs. GTS can represent instant loops and acausal components. The direction
of the flow propagation is determined at run time. AltaRica 3.0 compiler translates
models into GTS by flattening the structure of classes and blocks. Also Dynamic
Fault Tree (DFT) can be translated into GTS [70], and automatic conversion from
SAML models has been planned [71]. A fault tree compiler, a stochastic simulator,
and various other assessment tools exists for GTS [72]. Both AltaRica 3.0 and GTS
have a strictly defined grammar [67].

Unlike smartIflow and various other techniques, AltaRica is a standalone tech-
nique without direct connections to design models. Creation of a dedicated depend-
ability model requires more work, but it allows using the optimal level of abstraction
and inclusion of only the needed details from reliability and risk analysis point of
views. Another standalone technique is Figaro [63], which is a reasoning system
that is based on a Scala programming language. The models can include Scala and
also Java programs. Figaro is a description language of KB3 [73] workbench, which

enables automated dependability analysis of complex systems.

Table 2.2 summarises the classification of the referred MBDA techniques by us-
ing four previously mentioned disquisition criteria. The table includes also a char-
acterisation of the approach that is presented in this thesis. The AoT framework
uses standalone models, which are dedicated to risk and performance analysis. BFS
can be made by using Aol models. Basic modelling techniques, such as FTA and

Markov analysis, use basic directed relations in AoT, but advanced relation defini-
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tion by creating connections between model element attributes is also enabled. The
basic directed relations can be seen as shortcuts that encapsulate certain more de-

tailed connection definitions. The object-oriented paradigm is used as a basis for
AoT models.

Table 2.2 Model-Based Dependability Assessment (MBDA) formalisms

USE OF DESIGN  UNDERLYING RELATION OBJECT-

MODELS FORMALISM MODELLING ORIENTED
FPTN standalone FLSA basic no
FPTC yes FLSA basic no
HiP-HOPS  yes FLSA basic no
SAML yes BFS basic no
smartlflow  yes BFS advanced yes
AltaRica standalone BFS advanced yes
Figaro standalone BES both yes
AoT standalone BES both yes

Based on the four classification criteria, Aol shares the most similarities with
Figaro. However, at least two clear differences can be recognised between AoT and
other techniques. The first is the use of tabular model definition format, which is
not used in any other approach. Tables was selected for AoT because an average
modeller usually understands tabular format easier than any markup language, such
as Extensible Markup Language (XML) [74]. Figaro uses a programming language
that is based on Scala, which might create a high threshold for a modeller.

The other difference is the separation of the modelling technique definition from
the model creation. AoT is a framework that includes several built-in techniques
and permits their customisation. Each technique is defined with the same tabular
format, which allows using built-in techniques as a basis for a new technique. Other
approaches use only fixed techniques and possibly allow their combination.

The AoT framework improves the OpenMARS [25, 26] approach. In Open-
MARS the model definition is divided to five different tables. Each table forms a
clear modelling step, which helps basic users to understand the use of the format.
Separate tables also simplify the definition of privileges, because edit of only a cer-
tain table can be allowed for a user. The AoT framework uses the Triplets data for-
mat, which emphasises less the features that simplify the manual model definition

for a basic system engineer. The most important design principle of the Triplets
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format was efficiency. All definitions are made in a single table. This simplifies the
storing of the model data into databases and the transferring of the models between
different tools. When compared to OpenMARS, the Triplets format is more plain
and compact, but still compatible with the original OpenMARS format. The defi-
nition of the Triplets format and the AoT framework follows as strictly as possible
the terminology that is used with object-oriented paradigm and graph theory. These
theoretically more suitable terms might not be the most familiar for a basic system

engineer, which was considered more with the OpenMARS approach.
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3 OBJECT-ORIENTED METHODOLOGY FOR
RISK AND PERFORMANCE ASSESSMENT

This chapter specifies the methodology of the Analysis of Things (AoT) framework.
All the definitions are made by using tabular Triplets data format. Section 3.1 defines
the syntax of the format and explains how different type of definitions are made.
Section 3.2 introduces the fundamental classes, which form the basis for all mod-
elling techniques. The models are analysed with stochastic discrete event simulation,
which principles are presented in Section 3.3. The next Chapter 4 gives examples on

how to apply the methodology that is specified in this chapter.

3.1 Triplets data format for object-oriented model definition

The AoT models consist of objects. Each object is an instance of a class, which de-
fines the type of the object. The modelling techniques are defined by declaring a
catalogue of classes. A new class can be declared if a technique requires a new type of
model objects for certain special need. Several models can use the same technique.
Each model can contain any number of objects, which use all or some of the classes
provided by the technique.

A class inherits all attribute declarations of its super class, and can extend them by
declaring new attributes. An attribute is declared by defining its type and name. The
type of an attribute is a class. For example, a class can declare an attribute, which
type is Number and name is level”. An object assigns attribute values, which are
objects. For example, an object can assign that the "level” is 5. The model objects
that can contain attributes are called “elements”.

Triplets data format uses a single table for defining the modelling technique, the
structure of model objects, and the parameter values. The plain and compact data

format is designed to enable efficient manual model editing while permitting direct

41



storing to databases. The simple example tables shown in this thesis can be easily
manually edited. When the size of the model increases, the use of a GUI or a direct
import from management systems or other databases is preferred. The Triplets data
format open and non-proprietary, which allows using it with any model definition
software or calculation tool.

The use of a single table does not exclude the possibility for dividing the model
definition to separate modules. For example, all models that use the same modelling
technique can include the same predefined module table. The inclusion is performed
simply by including the rows of the module tables in the handled model table. This
ensures efficient utilising of the previously implemented similar solutions. New
modelling techniques and customised special features can be easily shared for public
use with any platform-independent file or data format that supports storing tabular

information.

3.1.1 Different definition rows

The Triplets data table has three columns. Because the same table is used for the
entire model definition, the content of each table column slightly differs based on
the made definition. Headings A, B and C are used for distinguishing the columns.

Following list gives a general idea of the nature of each column:

e COLUMN A: The object of the definition
e COLUMN B: A keyword that indicates the type of the definition

e COLUMN C: The value defined for the object

In this thesis the definition tables have two additional columns. The first column
shows the row number, which can be used as an index when certain definition needs
to be referred from a table. The last column contains comments to explain the mean-
ing of the definition. Table 3.1 illustrates how different type of Triplets data format
definitions are presented in this thesis.

Following names are used for the different definition types:

Class declaration Keyword ”class” is used in column B to declare a new class.
The name of the new class is defined in column A. The class inherits the fea-

tures of a super class that is defined in column C. (see row 1 in Table 3.1)
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Table 3.1 Examples to illustrate different type of definitions made with the Triplets format

A B C COMMENTS
1 ClassName class ClassSuper Declaration of a class
2 ClassName container  ClassMember  Declaration of a container
3 ClassName/attributeName  attribute  ClassAttr Declaration of a class attribute
4 container/instanceName instance  ClassType Instance creation
5 elementl/connectionName  connect element2 Element connection
6 element/attributeName = value Attribute value assignment
7 element/attributeName add value Actribute value add to list

Container declaration Keyword ”container” is used in column B to declare a
container class. Column A defines the class, which instances are containers of

objects. The type of the contained objects is defined in column C. (row 2)

Attribute declaration Keyword ”attribute” is used in column B to declare an
attribute for a class. Column A defines the name of the class and the name of
the attribute. A slash (/) symbol is used as a delimiter. Column C defines the
type of the declared attribute. (row 3)

Instance creation Keyword "instance” is used in column B to create new model
objects. Column A defines the container and the name of the new object.
A slash (/) symbol is used as a delimiter. Column C defines the type of the

created object. (row 4)

Connection adding Keyword “connect” is used in column B to add a connec-
tion between model elements. Column A defines the connecting element and
the name of the connection. A slash (/) symbol is used as a delimiter. Column

C defines the connected element. (row 5)

b

Value assignment Equals sign "=" is used in column B to assign a value to an el-
ement attribute. Column A defines the element and the name of the attribute.
A slash (/) symbol is used as a delimiter. Column C defines the value that is

assigned to the attribute. (row 6)

Value add Keyword ”add” is used in column B to add a value to an element at-
tribute. Column A defines the element and the name of the attribute. A slash
(/) symbol is used as a delimiter. Column C defines the value that is added to
the attribute. (row 7)
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3.1.2 Naming conventions, restrictions and an array definition

Rules 3.1 - 3.3 summarise the naming conventions that are used with the Triplets
data format. The restrictions help avoiding potential problems caused by names
containing special characters. The rules also help the error detection. Based on the
name the modeller can immediately recognise whether the definition is for a class
or an instance. The rules follow the Java naming conventions [75]. In addition,
Rule 3.4 about duplicate definitions is added to help avoiding potential mistakes.
An error message should be shown if the modeller unwittingly makes the same def-

inition more than once.

Rule 3.1. The class, instance and attribute names shall only consist of a-z, A-Z, 0-9

and underscore () characters.
Rule 3.2. Each class name starts with an upper-case letter.
Rule 3.3. Each instance and attribute name starts with a lower-case letter.

Rule 3.4. It is not allowed to declare the same class, container nor attribute, create
the same instance, nor assign a value to the same attribute more than once.

Rule 3.4 does not exclude the possibility to assign an array of values to an attribute
instead of a single value. In Triplets data format all attributes can be used as arrays if
more than one value needs to be defined for the same attribute. An array is actually
an ordered map, which allows associating values to keys. An array definition is made
by adding the key inside square brackets ”[ ]” as a sutfix of the defined attribute name.
This creates a syntax “attribute[ key]”. In addition to integer, the key can be also a
string, which follows the same naming conventions as instance and attribute names
(see Rules 3.1 and 3.3). The basic use of an attribute name without a key is considered
as an array definition with an empty string as a key.

The key can be omitted if keyword ”add” is used instead equals sign in column
B. The value add appends the value to the first available integer key. Usually in pro-
gramming languages zero is the first index of an array, but in AoT the first integer key
in value adding is ”1”. For example, if value add is used twice for "attributenName”,
the values are assigned to “attributeName[1]” and “attributeName[2]”. The key-
word ”add” supports adding of more than one values in a single definition by using
a comma (,) symbol as a delimiter. The "add” keyword helps defining the model in

situations where the number of the added values is not fixed.
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Table 3.2 gives examples of erroneous and allowed assignments of more than one

value for the same attribute.

Table 3.2 Definition of more than one value for the same attribute

A B C COMMENTS
la element/attributeName = vall Duplicate assignment to attribute -> Error
1b element/attributeName = val2 Duplicate assignment to attribute -> Error
2a element/attributeName[x] = vall Duplicate assignment with key "x” -> Error
2b element/attributeName[x] = val2 Duplicate assignment with key "x” -> Error
3a element/attributeName[one] = vall Assign value vall to attribute with key “one” -> OK
3b element/attributeName[two] = val2 Assign value val2 to attribute with key "two” -> OK
4a element/attributeName add wvall Append new attribute value vall -> OK
4b element/attributeName add  val2 Append new attribute value val2 > OK
4c element/attributeName add Val3,val4 Append new attribute values val3 and val4 -> OK

3.1.3 Referring to objects

All model objects have an Unique Identifier (UID). It is formed by combining the
UID of the container and the name of the object. A slash (/) symbol is used in the
UID as a delimiter between the container and the name. This recursive definition
ends always to the base folder of the model (see Table 3.10 on page 51), which con-
tains all model objects either directly or via some sub container. The UID of the
base folder is an empty string, which leads to the UID format that starts always with
a slash symbol. For example, the UID /folder /subfolder /element is for an element in
a ”subfolder” of a folder”, which is located in the model base folder. The UIDs are
formed similarly for attributes of elements.

The slash symbols split the UID to a list of names. The first name is always an
empty string, which refers to the base folder of the model. After that, each name
refers uniquely to exactly one attribute of the container object that was referred by
the previous names. For example, an UID /folder /subfolder /element splits to four
names: ”” (an empty string), “folder”, “subfolder” and “element”. To ensure that the
name always refers to exactly one attribute, the name contains also the key of an
array definition whenever needed.

A path is similar to UID, but it can refer to more than one object. The slash

symbols split also the path to a list of names. If a name of a path omits the array key,
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it refers to all keys of the attribute. A path can also define a comma separated list or
an interval of keys. Intervals are allowed for both integers and characters. Table 3.3

shows examples of using a path to refer multiple attributes in a value assignment.

Table 3.3 Referring to multiple attributes in a value assignment

A B C  COMMENTS
1 element/attributeName[ 1, 2] = val Assign to "attributeName[1]” and "attributeName[2]”
2 element/attributeName[one, tWO] = val Assign to "attributeName[one]” and "attributeName[two]”
3 element/attributeName[ 1—4] = Val The same as the definition "attributeName[ 1, 2, 3, 4]”
4 element/attributeName[a—d] = val The same as the definition "attributeName[a, b, ¢, d]”

5 element/attributeName = wval Assigns values to all keys of "attributeName”

In Triplets data format the container in an instance creation, and the element in a
value assignment (see Table 3.1 on page 43) are paths or UIDs. An UID can be seen
as a special case of a path that refers to exactly one object. If a path starts with a slash
symbol, it is called an absolute path. Otherwise it is a name path, which first name
refers to all objects that have the defined name. This allows making definitions only
to an element in certain container or to all elements with the defined name. Table 3.4

gives examples of different path definitions.

Table 3.4 Examples of different path definitions

A B C COMMENTS

1 /folderName/elementName/attributeName val  The folder folderName in the model base folder

2 folderName/elementName/attributeName val All folderName folders in any container

val The element elementName in the base folder

3 /elementName/attributeName

4 elementName/attributeName = val All elementName elements in any container

The number of objects that a path refers to depends on the previous definitions.
This kind of dynamic definition helps making changes to the model. Changing of
the number of similar elements that have the same name does not require changing
the element definitions if they are made by using name paths. Table 3.5 gives an
example of a model that contains various similar systems and items. The number of
systems can be updated in row 1 without a need for updating the rows 2 and 3, which
define the items of each system and the attribute values of the items. Similarly, if in
row 2 the number of items in each system is changed, any changes are not needed to

row 3.
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Table 3.5 An assignment can be made irrespective of the number of the items

A B C COMMENTS
1 /systern[ 1—3] instance Folder One folder for each system
2 system/item[a, b] instance  Element  Two items in cach system
3 item/attributeName = val The same value assigned for all items

3.1.4 Connections

The adding of connections by using the keyword ”connect” is similar to the value
adding with the keyword ”add”. The connected element is added to the first avail-
able integer index of the connection attribute. However, the difference is that with
connections the path definitions are used for both columns A and C. Handling of
both path definitions independently would lead adding connections between all ele-
ments that are defined by both columns. Simultaneous handling of both name paths
and array definitions enables more possibilities for defining the connections. This is
especially useful in vast models that contain various similar structures.

Table 3.6 gives examples of different possibilities in connection adding. The con-
nections are added between the components that were created in previous Table 3.5.
The connection attribute name ”to” is used in each definition. The modelling tech-

» » » »:

niques can define any name, such as “source”, “target”, “child”, parent”, “input” or
» »:

output”, ”in” or "out”, for the connection attribute, which allows creating several

type of connections between elements.

Table 3.6 Examples to illustrate different type of connection definitions

A B C COMMENTS
1 /system[1]/item[a]/to connect /system[2]/item[b] Exact definition of both clements
2 [system[1-3]/item[a]/to connect  /system[1-3]/item[b]  From each itemfa] to cach item[b]
3 /system/item[a]/to connect /system/item[b] Connection inside same system
4+ item[a]/to connect item[b] Connection inside all common containers
5 /system[1]/item[a]/to[X] connect /system[3]/item[b] Key X distinguishes the connection

Following list describes the different type of connection definitions:

e Insimplest case the connection is added between two elements, which are both
defined by using an UID (see row 1 in Table 3.6).
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e The intervals and lists are handled independently for both columns, which
makes it possible to add all combinations of connections between elements
(row 2).

e If an array keys are omitted, the connections are made only if the key is com-

mon for both elements (row 3).

e If only element names are used for both connected elements, the connection

is added only if the two names are found in the same container (row 4).

e The key of an array definition can be used to distinguish different connections
that are made with the same connection attribute (row 5). For example, with
function models (see Section 4.4) the dividend can be distinguished from other
connected operands of a division function by using a key of the connection

attribute.

3.1.5 Prototypes and inclusion

Previous sections introduced how the name path can be used to refer all elements
with a same name. This can be used to create several similar structures by making
the definitions only once. However, the creation of the structure needs to be made
after all the similar elements have been created. This order is not convenient when
modelling techniques provide template structures. The definition of a technique
needs to be before the model structure definition because the classes must be declared
before the element creation. This means that also the template structures should be
defined before the creation of the elements that use them.

A prototype is an answer to the need of defining template structures in a modelling
technique definition. Prototypes are elements that have a class as their container. A
modelling technique can create any number of prototypes for a class and also add
connections between them. The instances of the class are containers of elements
that are automatically created based on the prototypes. The connections are added
to the created elements based on the connection definitions of the prototype. Also
the connections from an attribute to a class prototype are allowed.

Table 3.7 gives an example of a template structure definition. The new declared
MyElement class has two prototypes. A special keyword ”prototype” is used for the
prototype definitions. A connection is added between the two prototypes. The
class has also an attribute "first”, which is defined to refer to the prototype "tempY”.
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The creation of an instance /myObject creates automatically also /myObject /tempX
and /myObject/tempY . Based on the defined template structure, both attributes
/myObject /tempX /to and /myObject /first refer to /myObject /tempY .

Table 3.7 An example to illustrate the prototype definition

A B C COMMENTS
1 MyElement class Element Declaration of a special element class
2 MyElement/tempX prototype  Element A template clement for the class
3 MyElement/tempY prototype  Element A template element for the class
4+  MyElement/tempX/to  connect MyElement/tempY A connection between template elements
5 MyElement/first attribute  Element An attribute for the class
¢  MyElement/first connect MyElement/tempY  Connect a template clement to actribute
7 /myObject instance MyElement Create an instance of the class

If the name of a prototype is used when new instances are created for the container
element, the connections defined for the prototype are added also to the created el-
ement. The array definition is used to give a different key for the created element.
For example, Table 3.8 creates an instance /myObject /tempX/[key ] by using the name
"tempX”, which was in previous Table 3.7 used as a prototype name. In this case a
”to” connection to the element /myObject /tempY is created automatically also for
the instance /myObject /tempX[key ]. This feature is needed, for example, when cre-

ating mode-dependent events (see Section 4.2.4).

Table 3.8 Using an array definition with the name of a prototype

A B C COMMENTS

8 /myObJect/teme[key] instance  Element A new element has the same name with a prototype

Another special keyword is "include”, which permits inclusion of attributes of
a class for an object after the creation of the instance. The need of the inclusion
is related to the use of template structures that are defined by prototypes. In basic
instance creation, the correct class can be defined directly when the object is created.
The creation of instances automatically based on prototypes does not have similar
possibility, which means that the proper class needs to be defined after the element
creation. This feature is needed, for example, when defining the delay distribution

of an event after the creation of the state-event template structure (see Section 4.1).
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To avoid the problems of multiple inheritance [76], a Rule 3.5 is used. The rule
causes that the inclusion can’t be used to combine two arbitrary classes. It can be

used only to extend the features of an element.

Rule 3.5. An object can include only sub classes of its own class.

The inclusion is allowed also for prototypes, which can be seen as default inclu-
sion for all the automatically created elements. Because of Rule 3.5, the use of the
included class directly when the prototype is created would restrict the possibilities

to include classes to the objects, which are automatically created based on the proto-

type.

3.2 Fundamental classes of the AoT framework

The AoT framework contains a special ModelObject class, which is a built-in root
of the class hierarchy. All other classes have exactly one super class. A Primitive
is a class, which instances store only a single value, such as a string or a number.
Primitives do not contain any attributes. Other objects are instances of an Element
class. A Vertex and an Edge classes specify two main categories of elements. The
model structures that are formed by interconnected vertices and edges are similar to
graphs in graph theory [77, 78]. Different modelling techniques declare their own
Vertex and Edge sub classes. Aol models can contain also special elements, which
are instances of Tool or Folder classes. Table 3.9 shows the declaration of these
fundamental classes. They form the basis for all modelling techniques of the AoT
framework. Figure 3.1 illustrates the class hierarchy that is formed by the funda-

mental model object types.

ModelObject

Primitive Element

| String ”Numberl |Vertex ” Edge ” Tool ” Folderl

Figure 3.1 The class hierarchy that is formed by the fundamental model object types
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Table 3.9 The declaration of the fundamental model object classes

A B C COMMENTS

1 Primitive class ModelOb] ect Does not contain attributes
2 String class  Primitive Unformatted text (a sequence of characters shown in a single line)
3 Number class Primitive Any number

4 Element class ModelObject Contains attributes, which are either elements or primitives

5 Vertex class  Element An element that is related to modelling of a state

6 Edge class  Element An element that models the relationships between states
7 Tool class  Element An element that handles or analyses the models

8 Folder class Element A container, which can group elements

In addition to strict attribute declarations with a name and a type, Aol permits
also declaring a class as a container of certain type of objects. For example, Folder is
defined as a container of Element instances. Folders can contain any number of ele-
ments, which in AoT are seen as attributes of the folder. The name of the contained
element is also the name of the attribute the folder has. The contained elements are
called members of the container to distinguish them from elements that are attributes
with a predefined name. All model objects are created as members or assigned to pre-
defined attributes of a container.

A hierarchy can be formed based on the containers of the model objects. This
structure helps handling of large models. The root of the container hierarchy is
a base folder of the model. It is a special built-in container of independent model
objects, which do not belong to any other container of the model. Table 3.10 shows
the creation of a model base folder instance, which is used as a default container of
otherwise independent model objects. It is also possible to use, for example, a Node
instance as a default container. This might be useful with simple models that contain

only State and Event elements.

Table 3.10 Creation of the default base folder

A B C COMMENTS

1 / instance Folder Creation of the default base folder

Each element can contain other elements and primitives, which are the leafs of

the tree formed by the container hierarchy. The structure enables grouping of the
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model elements, which helps handling of large models. For example, certain folder
can contain all elements of a sub model. Figure 3.2 illustrates the container hierarchy

of a model.

[base folder of the model]

folder for sub model A ]

element Al I 1

[primitiveAl.l] [primitiveAl.Z]
-l element A2 }[

folder for sub model B }

element B1

element B3

Figure 3.2 An example of a container hierarchy of model objects

primitive A2.1] [primitive AZ.Z]

sub element B1.1
primitive B1.1.1

Tools are special objects, which store the attributes needed for handling of the
models. For example, a simulator tool (see Chapter 3.3) needs to store the number
of simulated rounds and the simulation time period. These attributes are stored to
a separate tool instance, because they do not belong to any element of the model
structure. In addition to analysis of models, tools can store the attributes related to
the visual presentation of the model. For example, a software that is used for GUI of
model creation and edit can include a tool element in the model. The attributes that
are stored to the GUI element can be for example the used view, zoom or window

location. Also settings related to reports might need storing of attribute values.

3.2.1 Primitives store the parameter values

Primitive classes are used for storing basic string and number values as element at-
tributes. Table 3.11 presents the declaration of the String sub classes. Each class
restricts the format that is allowed for the values. For example, all strings are not
proper Uniform Resource Locators (URLs) [79]. The most strict possible defini-
tion for an attribute type helps the use of the model because the user can understand
the required format, and errors messages can be shown directly if the given value

does not have a proper format.
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Table 3.11 Primitive classes for storing string values

A B C COMMENTS
1 Text class String Formatted text (possibly contains line breaks etc.)
2 Name CIQ.SS Stl’il’lg A string with only characters a-z, A-Z, 09 and _ allowed
3 Path class String A string, which is proper path to refer model objects
4 URL class String Reference to external location

5 Boolean class  String  Either true or false

Table 3.12 presents the declaration of Number sub classes. Sometimes only an
integer is allowed or the proper values must be between certain interval. More
Number sub classes can be declared to make the needed restrictions for the input
values. Duration and Rate are examples of classes that extend the available number

value input format.

Table 3.12 Primitive classes for storing number values

A B C COMMENTS

1 Integer class Number A whole number without fractional component
2 Probability class Number Allows number from closed interval between 0 and 1)
3 Duration class Number Time interval given with value and time unit

4+ Rate class  Duration  Value per time unit

The Duration class allows using time units in number values, which simplifies
the assignment of durations. Table 3.13 lists the time units and the corresponding
factors, which are used to convert a duration to a number. The factor shows the
units magnitude compared to 1 hour, which is the base unit in this framework. The
definition of the duration is also possible by using multiple value-unit pairs. For
example, a value 3d 5h 15m is converted to number 77.25. As a special definition,
an empty string is converted to infinite duration, which gives a simple way to define
that something never happens.

The time unit of Rate values is defined with a slash (/) character as a prefix for the
time unit. The base unit for rates is 1/b. For example, a rate value 3/d is converted
to number 0.125. If needed, it is possible to declare new classes that use other base

unit than hour.
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Table 3.13 The time units and the corresponding factors

Unit Name Factor
s second 1/3600
m minute 1/60

h hour 1

d day 24

o

year, annus 8766

Unlike elements, the primitives do not contain their own attributes. There ex-
ists one exception, which enables straightforward reading of values from external
locations. Table 3.14 shows how attributes for URL definition are introduced for
primitives. In addition to the "url” attribute, the "urlQuery” can be used to define
components of the URL [79].

Table 3.14 Attributes for reading attribute values from external locations

A B C COMMENTS

1 Primitive/url attribute URL The URL of the external location which contains the value

2 Primitive/urlQuery attribute String The definition of URL query string

Table 3.15 shows examples how the reading of attribute values from external lo-
cations can be defined. The value for the attribute "url” can be directly an URL of
a file that contains the assigned value. The "urlQuery” attribute enables including
more information how the value is found from the read location. For example, if one
Excel file contains values for several data, the file can be defined for all instances by
using class default value definition. After that, each instance of the class needs only
to use URL query for the definition of the cell that contains the value that belongs
to the instance. Naturally it is also possible to define the information of the URL
query directly to the "url” attribute.

3.2.2 Vertices and edges form the model structure

The model structures are formed by vertices and edges, which have connections.

Usually each connection has a direction, but some modelling techniques can use
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Table 3.15 Examples of reading attribute values from external locations

A B C COMMENTS
1 objA/attrName/url = http://.../data.txt Read value from a file
2 ClassB/attrName/url = http://.../data.xlsx Define a file for all instances
3 objB/attrName/urlQuery[cell] = B2 Instance defines only a cell
4+ objC/attrName/url = hup://.../dataxlsx?cell=C2  Definealso a query in URL

also undirected connections. The difference between Vertex and Edge objects is
that vertices model certain system state, and edges the relationships between them.
Different modelling techniques, which can use binary, discrete, or continuous states,
follow this general categorisation when they declare the model element classes.
This thesis uses simplified visualisation of model structures. Rounded blue rect-
angles are used for vertices and grey rectangles (without rounded corners) for edges.
Arrows are used to visualise the connections between elements. The use of con-
stant symbols emphasises the similarities between structures of different modelling
techniques. The use of only rectangular shapes maximises the space for adding of

descriptive text inside the elements. Figure 3.3 illustrates the used symbols.

Vertex Edge Connection
w_

Figure 3.3 Symbols that are used in this thesis to visualise model structures

Table 3.16 declares the four main Vertex classes, which each have a corresponding
Edge class. These elements form the basis for the application of the AoT framework
with different modelling techniques (see Chapter 4).

The Event class defines the simplest edges of the AoT models. An event has a de-
lay of its activation, which can be stochastic. By default the delay is positive infinity,
which means that the event never activates. The sub classes of Event can define any
distribution function for the delay. Table 3.17 shows the declaration of the "delay”
attribute. Similar delay can be included in Operator and Transition edges. The
Function edge does not include delay, which means that all calculations are made

immediately.
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Table 3.16 The declaration of the four vertex classes and the corresponding edges

A B C COMMENTS
1 State class Vertex Models a particular set of circumstances
2 Node class  Vertex  Models an item with finite number of distinct states
3 Place class  Vertex  Suteis defined by an integer (number of tokens)
4 Variable class  Vertex  Stteis defined by a numeric value
5 Event class Edge Changes an active state
6 Operator class Edge Makes updates to nodes
7 Transition class Edge Makes updates to places
8 Function  class Edge  Makes updates to variables

Table 3.17 The declaration of basic attributes of Event class

A B C COMMENTS

1 Event/delay attribute Duration A delay before an event is activated

2 Event / delay = The default the event never activates

Each State vertex models a circumstance of the studied subject, which is either
active (/true) or not. A Node vertex combines predefined number of states to model
different circumstances related to an item. In addition to states, the nodes contain
also events. Place and Variable classes are needed when the number of distinct
states is not restricted. A place has an integer, which models the state. With vari-
ables the number of possible states in uncountable. The state is modelled by using a
number value. Table 3.18 shows the declaration of attributes that are used for mod-

elling of states.

Table 3.18 The declaration of basic vertex attributes

A B C COMMENTS
1 Node container State Nodes contain predefined states
2 Node container Event Nodes contain events to model state changes
3 Node/initialState attribute State Reference to an initial state
4 Place/tokens attribute Integer An integer to model the state of a place

5 Place/initialTokens  attribute  Integer  Initial statc of a phase
6 Variable/value attribute Number A number to model the state of a variable

7 Variable/initialValue  attribute  Number Initial state of a variable
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To avoid confusions, this thesis uses dedicated terms for connections of different
type of model structures. An Event edge models a change of a state between soxrce
and target states. Similarly, an Operator edge models directed connections between
child and parent nodes, an Transition edge between input and output places, and
Function edge between iz and out variables. Table 3.19 shows the declaration of

attributes of edges that are used to create connections between vertices.

Table 3.19 The declaration of connection attributes

A B C COMMENTS
1 Event/source attribute  State Event connection from a source state
2 Event/target attribute  State Event connection to a target state
3 Operator/child attribute  Node Operator connection from a child node
4 Operator/parent attribute  Node Operator connection to a target node
5 Transition/input attribute Place Transition connection from an input place
6 Transition/output attribute Place Transition connection to an output place
7 Function/in attribute Variable Function connection from an in variable
8 Function/out attribute Variable Function connection to an out variable

AoT includes a concept of symmetry, which gives more possibilities to model
structure creation. In previous table the connection attributes were defined for Edge
classes, but sometimes it would be more natural to define to a vertex that it is con-
nected to an edge. The symmetry enables that when a connection is defined to either
one of the connected elements, they both will automatically have a value in a con-
nection attribute. Table 3.20 shows the symmetry definitions for the previously de-
fined edge connections. The name of the connection attribute is given as a key of the
?symmetry” assignment and the given value defines the name of the attribute that is
used when the connection is added also to the connected element. The symmetry
definition declares automatically the needed connection attribute for the connected
class. If symmetry is defined for an undirected connection, both the attribute key
and the given value have the same connection attribute name.

As an example, if an user wants to connect an event to a state, the symmetry
definition enables that either a target connection to the event, or a source connection
to the state can be added. Table 3.21 illustrates the situation by first creating the
state and element instances, and then by showing the two alternative connection
definitions in rows 3a and 3b. The symmetry of ”source” and “target” connections

ensures that the both definitions create the same relation between the two elements.
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Table 3.20 Symmetry definitions for the connection attributes

A B C COMMENTS
1 Edge/symmetry attribute name An attribute for symmetry definitions
2 Event/symmetry[source] = target  IfXisasourceof Y then Y is a target of X

5 Event/symmetry[target] source  IfXisatargetof Y then Y is a source of X

4+ Operator/symmetry[child]

parent If X is a child of Y then Y is a parent of X

child If X is a parent of Y then Y is a child of X

5 Operator/symmetry|[parent]

6 Transition/symmetry[input] Output  IfXisan input for Y then Y is an output for X

7 Transition/symmetry[output] = Input  IfXisan output for Y then Y is an input for X
s Function/symmetry[in] = out If X isinto Y then Y is out from X
9 Function/symmetry[out] = in If X is out from Y then Y is in to X
Table 3.21 An example of symmetry definitions
A B C COMMENTS
1 /eventX instance Event Create an event instance
2 /stateY instance State Create a state instance

3a /eventX/target connect /stateY Basic connection adding

3b /stateY/source connect /CVCl’ltX An alternative way enabled by symmetry definition

In addition to direct connections between elements, the AoT framework includes
modes and messages to enable interactions between distinct elements. Each message
and mode is identified with a name, which creates a communication interface. This
is especially suitable for a composite model that is comprised of interconnected sub
models. The communication interface obviates the need of knowing the exact UIDs
of elements when connections between sub models are added.

The messages are defined to Event elements. A message is sent when the event
activates. Similarly, the modes are defined to State elements. The mode is started
when the state activates and ended when the state activation ends. As defined by
Rule 3.6, messages are created when a mode starts and ends. All elements can lis-
ten the messages. For example, an event with a listener activates if a message with
a proper name is sent. Elements can listen also mode changes, which means that
the elements are noticed when certain mode starts or ends. Table 3.22 presents the

declaration of the communication interface attributes.
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Table 3.22 The declaration of communication interface attributes

A B C COMMENTS
1 Event/message attribute Name Messages are sent when the event activates
2 State/mode attribute Name Modes are started and ended based on the state activations

3 Element/listener attribute  Name Al elements can listen messages and mode changes

Rule 3.6. Each mode start creates a message with a suffix "Start”, and each mode
end a message with a suffix "End”.

As defined by Rule 3.7, elements can listen the complement mode, which means
that they are noticed by the starts and ends of modes in the opposite order. This can
be useful if there exists more than two states but only two modes (see Table 5.12 on

page 135).

Rule 3.7. Each mode has a complement mode, which is denoted with a suffix "Not”.
The complement mode is started when the original mode ends, and ended when the
original mode starts.

As an example, Table 3.23 defines elements from two distinct models. An event
of model 1 sends messages and a state has a mode. The events from model 2 listen
the messages and mode changes. A connection is created between elements of dis-
tinct models without needing to know the actual UIDs of the elements. Figure 3.4

illustrates the visualisation of modes and messages that is used in this thesis.

Table 3.23 An example of using modes and messages

A B C COMMENTS
1 modell/eventA/message = messageName An event of model 1 sends messages
2 modell/stateB/mode = modeName A state of model 1 has a mode
3 modelZ/eventX/listener = messageName An event of model 2 listens messages
4 modelZ/eventY/Iistener = modeNameStart An event of model 2 listens mode start

3.2.3 Reading the object-oriented model from Triplets data format

Table 3.1 on page 43 illustrated seven different definition types for Triplets data for-

mat. The Section 3.1.5 introduced the special "prototype” and ”include” definitions.
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Figure 3.4 Visualisation of modes and messages

The nine different keywords divide the reading of the Triplets data format definitions
to nine different cases. The use of strictly defined keywords enables straightforward
reading of the Triplets data format definitions. The use of exactly three columns for
whole model definition simplifies the handling of the model data further.

If the keyword in Column B matches to ”class”, a new class is being declared.

Following checking is made to validate that the definition is proper:

Column C must contain a previously declared class name, or a built-in class

ModelObject, which will bee the super class of the declared new class.

Column A must not contain a previously declared class name (see Rule 3.4).

The class name in Column A must be a proper class name (see Rule 3.1).

The class name in Column A must start with an upper case character (see
Rule 3.2).

If the keyword in Column B matches to ”container”, a container declaration is
being made for a class. Following checking is made to validate that the definition is

proper:

e Column A must contain a previously declared class name, which will be de-

fined as a container class.

e Column C must contain a previously declared class name, which will be de-

fined as a type of the contained objects.

e The class of the container must have not been previously declared to contain
the contained type of objects. This means that the container class or any of
its super classes must not have been declared to contain any super class of the

contained type of objects (see Rule 3.4).
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If the keyword in Column B matches to "attribute”, an attribute is being declared

for a class. Following checking is made to validate that the definition is proper:

e Column A must split to exactly two name strings by using a slash (/) symbol
as a delimiter. The first name is considered as a class name and the last as an

attribute name.

e The class name in Column A must match a previously declared class name,

which will be defined as a owner class of the attribute.
e The name in Column A must be a proper attribute name (see Rule 3.1).

e The attribute name in Column A must start with a lower case character (see
Rule 3.3).

e The owner class must not contain a previously declared attribute with the

same name (see Rule 3.4).

e Column C must contain a previously declared class name, which will be de-

fined as a type of the attribute objects.

e If a super class of the owner class contains an attribute with the same name,
its type must be a super class of the attribute type. This permits declaration

of sub classes that have more strict rules for the types of its attributes.

If the keyword in Column B matches to "prototype”, a prototype is being created

to a class. Following checking is made to validate that the definition is proper:

e Column A must split to exactly two name strings by using a slash (/) symbol
as a delimiter. The first name is considered as a class name and the last as a

prototype name.

e The class name in Column A must match a previously declared class name,

which will be defined as a owner class of the prototype.
e The name in Column A must be a proper instance name (see Rule 3.1).

e The prototype name in Column A must start with a lower case character (see
Rule 3.3).

e The owner class must not contain a previously created prototype with the

same name (see Rule 3.4).
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e Column C must contain a previously declared class name, which will be de-

fined as a type of the prototype.

If the keyword in Column B matches to "instance”, a model object is being cre-

ated. Following checking is made to validate that the definition is proper:

e Column C must contain a previously declared class name, which will be de-

fined as a type class of the created object.

e Column A must be a proper path, which defines a container and the name of
the created object. If the path is just a name, it is used as an object name and
the model base folder is used as a container. Otherwise the path is split to a
list of names by using a slash (/) symbol as a delimiter, where the first names

are considered as a container path and the last as an object name.
e The object name in Column A must be a proper instance name (see Rule 3.1).

e The object name in Column A must start with a lower case character (see
Rule 3.3).

e The container path in Column A must refer to at least one container, which

are considered as container objects.

e The class of the container objects must have been previously declared as a con-

tainer of the type class objects.

e Objects with the same name must have not been created for the same container

objects previously (see Rule 3.4).

If the keyword in Column B matches to "include”, a class is being included to an
element or a prototype. Following checking is made to validate that the definition

1s proper:
e Column C must contain a previously declared class name, which will be con-
sidered as the included class.

e Column A must be a proper path, which refers to at least one object or a

prototype.

e The object in Column A must be an instance of a class that is a super class of

the included class.

e The object in Column A must have not already included a class (see Rule 3.4).
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If the keyword in Column B matches to ”connect”, a connection is being added
between elements or prototypes. Following checking is made to validate that the

definition is proper:

e Column A must be a proper path, which defines the connection elements and
the name of the connection attribute. The path is split to a list of names by
using a slash (/) symbol as a delimiter, where the first names are considered as

the connection element path and the last as the connection attribute name.

e The connection element path in Column A must refer to at least one element

or a prototype.

e Column C must be a proper path, which defines at least one connected ele-

ments or a prototype.

e There must be at least one pair of a connection and connected elements that

share properly a common container (see Section 3.1.4).

e For all found connection and connected element pairs, the connection at-
tribute name in Column A must have been declared as an attribute of the class
of the connection element, and the type of the attribute must be a super class

of the type of the connected element.

If the Column B matches to equals =" sign, a value is being either assigned to an

attribute. Following checking is made to validate that the definition is proper:

e Column A must be a proper path, which defines an element and the name of
the assigned attribute. The path is split to a list of names by using a slash (/)
symbol as a delimiter, where the first names are considered as an element path

and the last as an attribute name.

e The element path in Column A must refer to at least one element. The ele-
ment path can also refer to a class or a prototype, which changes the definition
from an element value assignment to a default value assignment, which can be

handled similarly.

e The attribute name in Column A must have be a declared as an attribute of
the class of the element, and the a type of the attribute must be a sub class of

aPrimitive.
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e If the type class of the attribute is a Number, it must be possible to parse the
content of Column C to a number value. Special parsing could be included
in the tool that reads the models for certain sub classes of a Number, such as

Duration.

e The same attribute must have not been assigned for the same element previ-

ously (see Rule 3.4).

If the keyword in Column B matches to "add”, a value is being either added to an

attribute. Following checking is made to validate that the definition is proper:

e Column A must be a proper path, which defines an element and the name of
the added attribute. The path is split to a list of names by using a slash (/)
symbol as a delimiter, where the first names are considered as an element path

and the last as an attribute name.

e The element path in Column A must refer to at least one element. The ele-
ment path can also refer to a class or a prototype, which changes the definition
from an element value add to a default value add, which can be handled simi-

larly.

o The attribute name in Column A must have be a declared as an attribute of
the class of the element, and the a type of the attribute must be a sub class of

aPrimitive.

o If the type class of the attribute is a Number, it must be possible to parse the
content of Column C to a number value. Special parsing could be included
in the tool that reads the models for certain sub classes of a Number, such as

Duration (see Section 3.2.1).

If the Column B does not match to any of the nine keywords, the definition is
erroneous. In addition, all rows that do not pass the validity check that was listed
above are considered as erroneous. The reading of the model data may continue after
an erroneous definition has been skipped, but a clear error message must be shown

to the user.
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3.3 Stochastic discrete event simulation of the model

The AoT models are decoupled from calculation. The Triplets data format forms a
platform-independent interface between the model definition and the tools that anal-
yse the models. A tool can be an analytical solver for certain modelling technique,
such as a calculator of the minimal cut sets of FTA models, or a simulator for vari-
ous techniques. This thesis presents a generic stochastic Discrete Event Simulation
(DES) [80] framework for analysis of any type of Aol models. The flexible approach
can be configured to support any modelling technique and their combination.

3.3.1  Dynamic compilation of the simulation algorithm

The flexibility of the stochastic DES framework is achieved by using configurations
that can be customised to define the used simulation algorithm for each technique.
Figure 3.5 illustrates how a calculation engine, a simulator tool and configurations
of modelling techniques are dynamically compiled to a Java [75] simulation pro-
gram. The dynamic compilation ensures that only the procedures that are needed
by the analysed model are included in the simulation algorithm. This increases the
efficiency of the analysis process because the used algorithm is always as simple as

possible.
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Figure 3.5 The dynamic compilation of the Java simulation program

The Java simulation program is built by using a template method pattern [81],
which is an example of an Inversion of Control (IoC) design principle [82]. In object-
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oriented programming, the IoC is used to increase the modularity of the program.
In traditional programming the custom code calls for static libraries, but with IoGC, it
is the generic framework that calls task-specific codes. The calculation engine calls a
calculationProcess() template method of the simulator tool, which implements
the method by defining the simulation algorithm core. Similarly, the classes of dif-
ferent modelling techniques implement the template methods that are called by the
simulator tool during the execution of the simulation algorithm.

The pre-processing of the modelling techniques’ configuration is handled by the
calculation tool. It reads the procedures of the template methods and translates them
to a Java code that is suitable for dynamic compilation. The DES process requires
efficient handing of events queue, which is provided by the calculation tool. The pre-
processing and the event handing are the only static parts of the process. Other parts

are defined by the configuration, which makes the approach highly customisable.

3.3.2 Definition of the simulation algorithm by using Triplets format

The definition of the simulation algorithm includes the creation of a simulator tool
and the configuration of the modelling techniques’ template methods. Like the ele-
ments of the model, the simulator tool is an instance of a class. Table 3.24 presents
the use of Triplets data format for declaration of a general DES simulator tool class

and creation of a tool instance.

Table 3.24 The definition of a simulator tool

A B C COMMENTS
1 DES class Tool Declaration of simulator tool class
2 DES/maxRounds attribute Integer "The rounds limit parameter of the simulator
3 DES/period attribute  Duration  The time period parameter
+ DES/maxRounds = 1000 By default 1000 rounds are simulated
5 DES/period = 10a By default the time period of each round is 10 years
6 /simulator instance  DES The creation of a simulator tool instance (UID: /simulator)

The attributes of the simulator tool define a limit to the total simulated time. The
attributes that are declared for the modelling technique and assigned for the model

elements are used as other parameters of the simulation. The analysis of the model
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should not update the values of the model attributes. The configuration declares
variables, which update is allowed during the simulation process. The variables can

be divided to three categories:

Status variables store the current situation of the simulation process. For ex-
ample, a variable that stores the number of already simulated rounds and a

variable that stores the current state of a vertex are status variables.

Statistics variables collect the statistics data during the simulation process. For
example, a variable that stores the cumulative count of state activations is a

statistics variable.

Result variables are updated after the simulation process. They are calculated
based on statistics variables. For example, a mean number of state activations

is a result variable.

The configuration declares the variables to the simulator tool and to the classes
declared by the modelling techniques. Table 3.25 presents the basic status, statistics

and result variables declaration of the general DES simulator tool.

Table 3.25 Basic status, control and result variables declaration for DES tool

A B C COMMENTS

1 DES/CurrentRound attribute Number Status: Current simulation round

2 DES/currentTime attribute  Duration  Status: Current simulation clock time

3 DES/stepLength attribute  Duration  Status: The length of current simulation step
+ DES/eventsHandled attribute Integer Statistics: The cumulative cvent activations
5 DES/stepsTaken attribute  Integer Statistics: The number of steps taken

6 DES/simulatedTime attribute Duration Result: Store the total simulated time

The procedures that read the parameters and update the variables are defined for
template methods. The first implemented procedure is the calculationProcess (),
which is called by the calculation engine. The simulator tool implements the method
by defining a simulation algorithm core, which calls template methods of the model
elements. The configuration defines the procedure codes of the template methods
by using a programming language that is based on Java. The use of any Java libraries

and data structures is enabled.
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For implementation of the template method program codes, an attribute with

name “procedure” and type Text is declared for all elements. There exists also three

type of functions, which return either a number, a Boolean or an element. Each

function type has its own attribute name. Table 3.26 presents the declaration of the

program code definition attributes.

Table 3.26 The declaration of procedure attributes

A B C COMMENTS
1 Element/procedure attribute  Text  An actribute to define procedures
2 Element/function attribute Text An attribute to define number functions
3 Element/logic attribute Text An attribute to define Boolean functions
4 Element/select attribute Text An attribute to define element functions

The codes can be assigned directly as an attribute value or read from an external

location (see Table 3.15 on page 55). The key of the array definition defines the name

of the assigned procedure or function. A template method can call any procedures

and functions, which codes are assigned by using the corresponding attribute key.

Table 3.27 presents examples of procedure and function definitions.

Table 3.27 Examples of using the procedure attributes

A B

C

COMMENTS

1 ClassName/procedure[template]

2 ClassName/function[value]
3 ClassName/logic[test] =
4+ ClassName/select[find]

// procedure code An example of a procedure definition

return 0; An example of a number function
return true; An example of a logic function
return THIS, An example of a select function

Instead of using the Triplets format, this thesis presents the procedure and func-

tion code definitions by using listings. The used format is similar to Java method

definition. The use of listings helps the reading of the procedure and function codes

that have multiple lines. The return value of the method defines whether the code

is a procedure or certain type of function. The name of the model element class

is added as prefix of the method name. To illustrate the format that is used in this

thesis, Listing 3.1 presents the same example program codes that were assigned in

Table 3.27.
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void ClassName.template () {

// procedure code

double ClassName.value () {

return O0;

boolean ClassName.test () {

return true;

Element ClassName.find () {
return THIS;
}

Listing 3.1 The format of the procedure and function definitions of this thesis

To enable the most straightforward procedure code definition, a special syntax
has been included in the used programming language. The following keywords can

be used for basic handling of AoT model elements and attributes:

THIS: Enables an access to a Java object that represents the element itself.

CALCULATION: Enables an access to a Java object of the calculation tool.

MODEL: Enables an access to a Java object that represents the whole model.

ACTIONS: Enables an access to a Java object that handles the actions queue.

RANDOM: Enables an access to a Java object that generates random numbers.

All AoT model elements and the simulator tool are handled in procedure code
as they were Java objects. A Java class Element represents the Aol model elements.
The container of an element and all attributes of type Element are handled with the
methods that are defined for the Java object. The following built-in methods are

available for the Element class:

String Element.getUID(): Returns the UID of the element.

e String Element.getName(): Returns the name of the element.

String Element.getKey(): Returns the key of the array definition or an

empty string if array is not used with the element.

Element Element.getContainer(): Returns the container of the element.
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e Element Element.getElement (String name): Returns an element that is
assigned or connected by using the given name. The first element is returned
if more than one assignments or connections have been made with the same

name. Null is returned if no elements exist with the given name.

e void Element.setElement (String name, Element element): Assignsan

element attribute with the given name to the element.

The AoT attributes of type Primitive are handled in procedure code as String,
double and long instance variables of the Java object. The AoT Number attributes
are translated to doubles and Integer attributes to longs. The use of Java primitive
data types permits the use of assignment operators, such as ’=’, >+=" and *++".

The handling of all AoT features, such as the container declaration and the array
definition, is not directly possible with Java instance variables. To help the needed
pre-processing, the upper case version THIS is used in procedure code instead of the
Javakeyword this. For example, the expression THIS. attrName = 2; assigns value
2to attribute "attrName”. Also the key of the array assignment can be given directly.
For example, the expression THIS.attrName [key]++; adds the value that is stored
to key “key” of the attribute attrName”.

The pre-processing of the procedure and function codes enable similar simpler
handling for element attributes. The procedure code THIS.name uses the method
THIS.getElement (String name) if the name” is an attribute of type Element.
Similarly, the procedure code THIS .name = element usesthe built-in method THIS.
setElement (String name, Element element).

Sometimes there is a need to have an access to all attributes that are defined with
certain name. This is needed, for example, when an operation is made for all con-
nected elements by using a for-loop. Following built-in methods are available for the

Element class to handle situations where values with all keys needs to be accessed:

e List<Element> Element.getElements(String name): Returns a list of el-
ements that have been assigned for the element by using the given attribute
name (with any array key). An empty list is returned if the element does not

contain any elements with that attribute name.

e List<String> Element.getStrings(String name): Returns a string list

that have been assigned for the element by using the given attribute name (with
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any array key). An empty list is returned if the element does not contain any

strings with that attribute name.

e List<Number> Element.getNumbers(String name): Returns a list of num-
bers that have been assigned for the element by using the given attribute name
(with any array key). An empty list is returned if the element does not contain

any numbers with that attribute name.

The procedures and functions are called like methods of Java objects. The pre-
processing is also needed when a method is called, because different type of elements
do not have always the same methods. To help the pre-processing, the keyword THIS
is always used with the methods. For example, THIS.activate () calls a procedure
of name activate for the element.

The procedure codes have an access to the calculation tool with the keyword
CALCULATION, which in this case is a simulator tool. The previously listed element
methods can be used for handling the simulator attributes.

The keyword MODEL enables accessing the other model elements from any pro-
cedure and function code. The get and set of any number attribute value is also
enabled. The MODEL object has the following methods:

e Element MODEL.getElement(String path): Returns the element based on

the given path.

e List<Element> MODEL.getElements(): Returns the list of all elements of
the model.

e List<Element> MODEL.getElements(String... className): Returns a

list of elements of given class or classes.

e double MODEL.getNumber (String path): Returns the value of a number at-
tribute based on the given path.

e void MODEL.setNumber (String path, double number): Sets the number

attribute value based on the given path.

The DES needs the handling of events, which in this case are called more generally
actions. An action triggers certain event or activates other element. The ACTIONS
object is a queue that stores actions in a chronological order. The first action in the
queue is always the next that will be handled. The calculation engine implements

the ACTIONS object, which provides following methods:
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e Action ACTIONS.add(double time, Element target) Actions are added
when the simulation round starts and during the handling of other actions.
Each action has a time of its occurrence and a target element. To keep the
actions queue in the chronological order, each new action is inserted to the
correct location based on the occurrence time. The adding method returns

the new created action.

e Action ACTIONS.add(Element target) Same as above, but adds an imme-
diate action. The current simulation time (MODEL. currentTime) is used as a

time of the added action.

e double ACTIONS.getFirstTime() Peeks the first action from the queue and
returns the time of its occurrence. This is needed when the calculation decides
whether an action handing can be started or a simulation step needs to be

taken. Positive infinity is returned if no actions exist.

e Element ACTIONS.getFirstTarget() Peeks the first action from the queue
and returns the target element. This is needed to find the correct handler for

the action. Null is returned if no actions exist.

e double ACTIONS.removeFirst() The first action is removed from the queue
after it has been properly handled. The occurrence time of the next action is
returned. The return value is positive infinity if the last action of the list was

removed.

e Action ACTIONS.remove(Element target) Remove an action that has the
given target element from actions queue. Returns the removed action, or null

if actions with the defined target do not exist.

e void ACTIONS.clear() Clears all actions from the queue. The actions from

a previous round needs to be cleared before a new simulation round starts.

An Actionisabasic Java object, which stores the time and the target of the action.
The stored values are assigned by using the add methods of the ACTIONS queue. The

Action Java object provides a method for reading of each stored value:

e double Action.getTime() Returns the time of occurrence.

e Element Action.getTarget() Returns the target element of the action.
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Random numbers are frequently needed in stochastic DES. The implementation
of a random number generation can be done with the help of Java Random class.
The RANDOM object provides following methods to give an access to the generation of

Java pseudo-random numbers:

e void RANDOM.init () Initialises the random number generator.

e void RANDOM.init(long seed) Initialises the random number generator us-
ing a certain seed. This allows repeating the same simulation results, which is

useful for debugging purposes.

e double RANDOM.prob() Returns uniformly distributed probability value be-
tween 0.0 and 1.0. This random value can be used for different distribution

functions.

e double RANDOM.exp(double mean) Returns exponentially distributed value

with given mean.

3.3.3 The configuration of a generic DES tool

The calculation engine calls a calculationProcess() template method, which is
implemented by each analysis tool. This thesis presents a general DES tool, which
can be applied with various modelling techniques. The DES algorithm repeats de-
fined number of rounds and calculates the analysis results based on them. Defined
simulation time period is handled during each round. At first the model elements
create initial actions, which are stored to a chronologically ordered list. An Action
has a time of occurrence and a target model object that handles the event. The contin-
uous time DES takes an adaptive time step to the first action time, which is handled
by the target model object. New actions are possibly created and inserted to the list.
This process is repeated until the simulation period is reached.

Listing 3.2 shows the procedure code of the simulation algorithm skeleton, which
divides the DES process to template methods. The definition is made by using the
configuration format that was presented in the previous section (see Listing 3.1 on
page 69). Figure 3.6 illustrates the defined algorithm skeleton. Other calculation
tools can implement similarly their own calculationProcess() template method.
Different algorithm core can be used, for example, if times between the events are

not considered or if only basic calculations are made (see Section 4.6).
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void DES.calculationProcess () {
THIS.simulationStart ();
do {
THIS.roundStart ();
while (true) {
while (THIS.actionStart()) {
THIS.actionHandle ();
THIS.actionEnd ();

}

if (THIS.roundEnd ()) {
break;

¥

THIS.step ();
}
} while (!THIS.simulationEnd());
THIS.createResults ();
}

Listing 3.2 The simulation algorithm skeleton of the general DES tool

( Simulation round

Event
Handle

Simulation

Simulation
End

Create
Results

Figure 3.6 The algorithm skeleton that divides the DES process to template methods

Each template method of the simulation algorithm skeleton is defined by the con-
figuration of the simulator tool. The configurations of the modelling techniques
define similar methods for the model objects. In simplest case the simulator tool
only calls the each template method every time for all other model objects, but there
can be also other logic rules and operations defined for the simulator tool. Special
definition is needed at least for action handling, which is called only for the target
element of the handled action. Chapter 4 presents how the classes of the modelling

techniques define the template methods that are called from the simulator tool.
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The method simulationStart () is called at the beginning of each simulation.
Here a reset is made for the variables that control the simulation process and collect
the statistics data. For example, the simulator tool resets the variable that stores
the current simulation round. The simulator also resets here the random number
generator of the calculation engine. Listing 3.3 shows the procedure code of the

simulationStart () template method.

void DES.simulationStart () {
RANDOM.init (); // parameter can be added if fixed seed is needed
THIS.currentRound = 0; // reset the status variable: currentRound
THIS.eventsHandled = 0; // reset the statistics variable: eventsHandled
THIS.stepsTaken = 0; // reset the statistics variable: stepsTaken
for (Element element : MODEL.getElements()) {
element.simulationStarted (); // call the template method for all elements

}

Listing 3.3 The DES tool definition of the simulationStart() template method

The method simulationStart () calls simulationStarted() template method
for each model element. The method can be used to reset the different statistics
variables of each element class. For example, each event instance has a variable that
stores the cumulative number of times the event activates. When this variable is
divided by the number of simulated rounds, the result value gives the mean number
of the activations of the event.

The method simulationEnd() is called after a simulation round has ended. If
the rounds limit is reached, the next phase is the creation of the analysis results. If
more simulation rounds are still needed, the next phase is the start of a new simula-
tion round. Listing 3.4 shows the procedure code of the simulationEnd () template

method.

boolean DES.simulationEnd () {
return THIS.currentRound == THIS.maxRounds;

}

Listing 3.4 The DES tool definition of the simulationEnd() template method

The method roundStart () is called before the handling of a new round starts.
The simulator tool resets the simulation clock and clears the actions list. The reset
is needed also for some model object variables. For example, the initial state of a
node is activated, which creates the actions of initial events. Listing 3.5 shows the

procedure code of the roundStart () template method.
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void DES.roundStart () {
THIS.currentTime = 0; // reset the status variable: currentTime
ACTIONS.clear(); // reset the events queue
for (Element element : MODEL.getElements ()) {
element .roundStarted(); // call the template method for all elements

}

Listing 3.5 The DES tool definition of the roundStart() template method

The method roundEnd () is called before simulation steps are taken. The current
round is ended if the simulation clock equals the time period of each round. Oth-
erwise an adaptive time step can be taken. The elements can do operations here if,
for example, some update is required for statistics variables. The simulator tool in-
creases here the current simulation round variable. Listing 3.6 shows the procedure

code of the roundEnd () template method.

boolean DES.roundEnd () {

if (THIS.currentTime == THIS.period) {

for (Element element : MODEL.getElements()) {
element .roundEnded (); // call the template method for all elements

}
THIS.currentRound++; // increase the status variable: currentRound
return true; // a round has been simulated

}

return false; // a time step needs to be still taken

}

Listing 3.6 The DES tool definition of the roundEnd() template method

The method actionStart () is called after each action handling and after taking a
time step. A new action is handled if the simulation clock equals the time of the first
action. If no actions occur at the current time, a step needs to be taken. Listing 3.7

shows the procedure code of the actionStart () template method.

boolean DES.actionStart () {
return ACTIONS.getFirstTime() == THIS.currentTime;
}

Listing 3.7 The DES tool definition of the actionStart() template method

The method actionHandle() is called if an action needs to be handled. The
handing activates the target element, which has a template method activate () that
defines the procedure of the activation. Listing 3.8 shows the procedure code of the

actionHandle () template method.
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void DES.actionHandle () {
ACTIONS.getFirstTarget ().activate(); // action activates the target element
}

Listing 3.8 The DES tool definition of the actionHandle() template method

The method actionEnd() is called after an action has been handled. The ele-
ments can update the statistics variables here. After all procedures related to the
action are made, the simulator removes the handled action from the actions queue.

Listing 3.9 shows the procedure code of the actionEnd () template method.

void DES.actionEnd () {
for (Element element : MODEL.getElements()) {
element.actionEnded (); // call the template method for all elements
}
ACTIONS.removeFirst (); // the handled event can be removed from the queue
}

Listing 3.9 The DES tool definition of the actionEnd() template method

The method Step is called if there exists no action at current time. The step
is taken to the occurrence time of the next action or to the end of the simulation
period if no actions occur before it. The simulator tool calculates the length of the
step that is taken and stores it to a variable, which can be used by other elements
when they update statistics variables. For example, the length of the step is added
to a cumulative time variable of a state element if the state is active during the step.
When this variable is divided by the the total simulated time, the result value gives
the probability of the state. Listing 3.10 shows the procedure code of the step()
template method.

void DES.step() {
double nextTime = ACTIONS.getFirstTime ();
if (nextTime > THIS.period) {
nextTime = THIS.period; // step to period end if no events before it
}
THIS.steplength = nextTime - THIS.currentTime; // assign status variable
for (Element element : MODEL.getElements ()) {
element.stepTaken(); // call the template method for all elements
}
THIS.stepsTaken++; // increase the statistics variable: stepsTaken
THIS.currentTime = nextTime; // a time step has been taken

}

Listing 3.10 The DES tool definition of the step() template method
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The method createResults() is called when all simulation rounds have been
finished. Here the analysis results are calculated based on the statistics variables.
Listing 3.11 shows the procedure code of the createResults() template method.

void DES.createResults () {
THIS.simulatedTime = THIS.period * THIS.currentRound; // a result value
for (Element element : MODEL.getElements ()) {
element.createResult(); // call the template method for all elements

}

Listing 3.11 The DES tool definition of the createResults() template method

All classes do not necessarily implement all template methods, but each method
can be always called to all elements. The code pre-processing ensures that the call
of an undefined template method is just skipped. Avoiding all unnecessary proce-
dure code executions is the most significant mean for improving the efficiency of the
simulation process (see Section 3.4).

The elements’ template methods form the interface between the simulation al-
gorithm and the configuration of the modelling techniques. The definition of the
template methods is configured for each class of the technique. The presented simu-

lation algorithm core calls following template methods for all element classes:

simulationStarted() initialises the statistics variables of the element. For exam-
ple, a value zero is initialised to active time and activation count variables of

each state element.

roundStarted() resets the status and statistics variables that are related to a sim-

ulation rounds. For example, an initial state of a node is activated.

roundEnded() updates the statistics variables that are related to a simulation

rounds. For example, the active time of the simulated round is stored.

activate() handles the activation of the element. For example, an activated event

changes the active state of a node.

actionEnded() updates the statistics variables that are related to actions. For ex-

ample, the activation count of activated state elements is increased.

stepTaken() updates the statistics variables that are related to a simulation steps.

For example, the step length is added to the activation time of active states.

createResult() updates the result variables of the element. For example, the

mean number of activations of a state is calculated.
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3.3.4 The configuration of the state changes

The configuration of Event, State and Node classes define the core of the DES pro-
cess action handling. The modelling techniques extend the configuration to define
the action handling of Operator and other element classes (see Chapter 4). Basic sim-
ulation steps are taken between event activations, which update the currently active
state of a node. Each activation can trigger activations to other model elements.
Table 3.28 presents the declaration of the basic status and statistics variables that

are needed in the core procedures of the action handling.

Table 3.28 Variable declarations for the core of the action handling

A B C COMMENTS
1 Node/currentState attribute State Status: Store the currently active state
2 State/activeTime attribute Duration Statistics: Store the active time of the state
3 State/activationCount attribute Integer Statistics: Store the number of activations

The core status variables are handled by the procedures of the Event, State and
Node classes. For the calculation of basic results, the simulation process collects cu-
mulative statistics variables for the time the state is active and for the number of the
state activations. Listing 3.12 shows the reset of the used two statistics variables.

void State.simulationStarted () {
THIS.activeTime = 0; // reset the statistics variable: activeTime

THIS.activationCount = 0; // reset the statistics variable: activationCount

}

Listing 3.12 The reset of the statistics variables of the State class

Each simulation round starts with the activation of the initial node states. List-
ing 3.13 shows the procedure of a Node class that activates the initial state when a
round starts.

void Node.roundStarted () {
THIS.currentState = null; // reset the current state
ACTIONS.add (THIS.initialState); // activate the initial state
}

Listing 3.13 The activation of the node initial state

Listing 3.14 shows the definition of the action handling for the State class. A

state activation updates the “currentState” status variable of a node. After the state
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change, an action is created for the container node to activate, for example, the op-
erators that are connected to the node. The applied modelling technique defines the
handling of the node action and creation of the actions for the connected elements
(see Chapter 4).

void State.activate() {
if (THIS.getContainer ().currentState != null) { // not done at round start
THIS.getContainer ().currentState.sendEndMessages ();
}
THIS.getContainer ().currentState = THIS; // current container node state
THIS.sendStartMessages ();
THIS.activationCount++;
ACTIONS.add (THIS.getContainer ()); // check node
THIS.createNextAction(); // find the first event to activate

}

Listing 3.14 The activation handling of the State class

The method sendEndMessages () is called before a state activation ends. The call
is not made at the beginning of each simulation round when the currentState” is not
defined for the container node (see line 2 in Listing 3.14), but all other state changes
call the method. Listing 3.15 presents the procedure code of the method.
void State.sendEndMessages () {

for (String mode : THIS.getStrings("mode")) {
for (Element element : MODEL.getElements()) {

if (element.getStrings("listener").contains(mode + "End")) {
ACTIONS.add(element); // activate immediately the listener

}

if (element.getStrings("listener").contains(mode)) {
element .modeEnd (); // notice an end of a mode

}

if (element.getStrings("listener").contains(mode + "Not")) {

element .modeStart (); // notice a start of a complement mode

}

Listing 3.15 Sending the mode end messages of the State class

The method handles the message sending that is related to the modes of the state
(see Table 3.22 on page 59). The method callsmodeEnd () and modeStart () template
methods, which can be implemented by the listener elements (see Section 4.2.4). The

method handles also the complement modes (see Rule 3.7).
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Similarly, the method sendStartMessages () is called after an activation of a new

state. Listing 3.16 presents the procedure code of the method.

void State.sendStartMessages () {
for (String mode : THIS.getStrings("mode")) {
for (Element element : MODEL.getElements()) {

if (element.getStrings("listener").contains(mode + "Start")) {
ACTIONS.add(element); // activate immediately the listener

}

if (element.getStrings("listener").contains(mode)) {
element .modeStart (); // notice a start of a mode

}

if (element.getStrings("listener").contains(mode + "Not")) {

element .modeEnd (); // notice an end of a complement mode

}

Listing 3.16 Sending the mode start messages of the State class

Each state change creates a new action for a target event, which activates a next
state after certain delay. The procedure createNextAction() handles the selection
of the created action. Because only one state is active, an action is created only for
the event that has the shortest delay. Listing 3.17 presents the procedure code of the
method.

void State.createNextAction() {
Element firstTarget = null;
double firstTime = Double.POSITIVE_INFINITY;
for (Element target : THIS.getElements("target")) {
double targetTime = target.getEventTime ();
if (firstTime > targetTime) {
firstTarget = target;

firstTime = targetTime;

}
if (firstTarget != null) {
ACTIONS.add(firstTime, firstTarget);

}

Listing 3.17 The next event action creation the State class

Listing 3.18 presents the code of getEventTime() and getDelayTime() func-
tions, which are used for defining a delay before event activates. The Event sub

classes can overwrite the getDelayTime () function (see Section 4.1) for defining
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stochastic delays. Overwriting the getEventTime () is needed, for example, if cer-
tain factor updates the event time (see Listing 4.25 on page 111).

double Event.getEventTime () {
return CALCULATION.currentTime + THIS.getDelayTime();

double Event.getDelayTime () {
return THIS.delay;
}

Listing 3.18 The delay time of the Event class

Listing 3.19 shows how the event activation is configured for the Event class. At
first an event finds an active state from the event sources. An activated event activates
a target state only if one of its sources is active. Otherwise the event activation is
ignored. This ensures that always exactly one state of a node is active.

void Event.activate() {
for (Element source : THIS.getElements ("source")) { // find active source
if (THIS.getOwner ().currentState == source) {
EVENTS.add (THIS.target); // activate the state
THIS.sendMessages ();

break;

}

Listing 3.19 The definition of the activation of the Event class

In previous Listing 3.19, a call of the sendMessages () procedure was added after
the state activation. It configures the handling of the message sending (see Table 3.22
on page 59). An action is added for all events that listen the sent message. Listing 3.20
presents the code of the method. The procedure is similar to sending the messages
of mode start and end (see Listings 3.15 and 3.16 on page 80)

void Event.sendMessages () {
for (String message : THIS.getStrings("message")) {
for (Element element : MODEL.getElements()) {
if (element.getStrings("listener").contains(message)) {
ACTIONS.add(element); // activate immediately the listener

}

Listing 3.20 Sending the messages of the Event class
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3.3.5 Calculation of basic analysis results

The analysis results are calculated based on the simulation data, which is collected
by using the statistics variables. For example, the result values for instances of a
State class are calculated based on ”activationCount” and "activeTime” statistics
variables. The "activationCount” is updated during the action handling (see List-
ing 3.14 on page 80). The update of the "activeTime” statistics variable is presented
in Listing 3.21. The template method is called for all elements during simulation
step (see Listing 3.10 on page 77).

void State.stepTaken() {
if (THIS.getContainer ().currentState == THIS) { // if active
THIS.activeTime += CALCULATION.steplLength;

}

Listing 3.21 The reset of the main element statistics variables

The values, which are calculated to the result variables, are stored to element
attributes. For example, Table 3.29 presents basic result variable declarations for the
State class. These mean and probability variables can be used for the calculation of
results that are related to nodes. For example, the unavailability of a fault node is the
?activeProb”, and the MTTF is the "activationMTB” of the *fault” state.

Table 3.29 The declaration of basic result variables for states

A B C COMMENTS
1 State/activeTimeMean attribute  Duration Result: Mean cumulative active time
2 State/activationCountMean attribute Number Result: Mean number of activations
3 State/activeProb attribute Probability Result: Probability that the state is active
4 State/activationDuration attribute Duration Result: Mean duration of one activation
5 State/activationMTB attribute Duration Result: Mean time between activations

Listing 3.22 shows the procedure code for calculating the basic result values for
instances of the State class. The createResult () template method is called for all
elements when the simulation ends (see Listing 3.11 on page 78). The calculation
uses the statistics variables of the state and the simulator. Because only cumulative
statistics variables are needed, these simple results can be calculated with minimal

memory consumption. In this case the higher number of simulated rounds does
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not increase the memory consumption. More detailed results require more statistics
variables for collecting the needed data.

void State.createResult () {
THIS.activeTimeMean = THIS.activeTime / CALCULATION.currentRound;
THIS.activationCountMean =

THIS.activationCount / CALCULATION.currentRound;

THIS.activeProb = THIS.activeTime / CALCULATION.simulatedTime;
THIS.activationDuration = THIS.activeTime / count;
THIS.activationMTB = THIS.simulatedTime / THIS.activationCount;

}

Listing 3.22 The calculation of basic analysis results for states

3.4 Improving the efficiency of the simulation process

The procedure codes that are presented in this thesis are not optimised from the effi-
ciency point of view. It is possible to obtain similar analysis results with an improved
algorithm that uses less calculation time. Similarly, improvements are needed for cal-
culating more detailed results. This thesis presents the basic procedure codes, which

can be used as a basis for optimising the configuration.

3.4.1 Removing unnecessary method calls

Removing the unnecessary method calls is the most significant way for improving
the efficiency of the simulation process. A template method is called for all model
elements after each activation has ended (see Listing 3.9 on page 77) and during each
simulation step (see Listing 3.10 on page 77). Both of these template methods are re-
peated several times during the simulation process, which means that even a minor
improvement can have a significant effect on the efficiency. The pre-processing of
the simulation algorithm can update the code to skip the call of a template method
for elements that never need any operation in the situation. For example, the calcula-
tion engine can automatically update each for loop to go through only the elements
that have implemented the template method. More complex improvements require
manual updates to the defined configuration.

The number of method calls can be reduced by changing the situation when the
update is made. New status variables might be needed to make the update differently.

For example, in basic situation the cumulative active time of a state is added during
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each simulation step (see Listing 3.21 on page 83). An alternative approach is to
update the cumulative active time only once after an activation ends. This requires

a new status variable, which declaration is presented in Table 3.30.

Table 3.30 The declaration of the previous activation status variable

A B C COMMENTS

1 State/activationStart attribute Duration Status: Store the start time of an activation

The use of the new "activationStart” status variable is added to the original acti-
vation handling of the State class (see Listing 3.14 on page 80). This change makes
the stepTaken() template method obsolete for state elements, which reduces sig-
nificantly the number of procedure calls that are made during the simulation pro-
cess. Listing 3.23 presents the updated activation handling of the State class. The
“activeTime” of a previous active state is increased when the new state is activated.

void State.activate() {
if (THIS.getContainer ().currentState != null) { // not done at round start
THIS.getContainer ().currentState.activeTime +=
CALCULATION.currentTime -
THIS.getContainer ().currentState.activationStart; // use the variable
THIS.getContainer ().currentState.sendEndMessages ();
}
THIS.getContainer ().currentState = THIS; // current state of node
THIS.getContainer ().currentState.sendStartMessages ();
THIS.activationCount ++;
THIS.activationStart = CALCULATION.currentTime; // update the variable
ACTIONS.add (THIS.getContainer ()); // check node
THIS.createNextAction();
}

Listing 3.23 The updated activation handling of the State class

Sometimes it is possible to calculate a value based on other values instead of up-
dating it separately. For example, if a node contains only two states, it is sufficient
to add the cumulative active time only for one of them. Because always exactly one
node state is active, the difference between the total simulated time and the cumula-
tive active time of the other state gives the statistics variable value for the other. This
improvement requires a special class for nodes that always have exactly two states
and a configuration that makes the needed updates for the statistics variables of the

other state when the activation changes. This example shows that new special sub
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classes might be needed for the simulation efficiency purposes even if the modelling

of the same situation would also be possible with a general super class.

3.4.2 Generic statistics and result variables handling

A basic result creation procedure (see Section 3.3.5) calculated mean values, which
can be obtained by using only cumulative statistics variables. If more detailed result
values, such as minimum, maximum, quantiles or distributions, are needed, also
more statistics variables need to be stored. This requires new procedure code for
updating the variables. Because the calculation of the result values is similar for var-
ious variables, a generic calculation procedures can be created for avoiding the need
of writing the same procedure codes several times. In addition, the generic variable
handing improves the efficiency of the calculation process.

The generic variable handling requires including a new Java object in the calcu-
lation engine. The keyword VARIABLES is used in procedure codes for for accessing

the object. Following methods are available for the generic variable handing:

e void VARIABLES.add(Element element, String name) Initialises an ele-

ment attribute with a given name as a statistics variable.

e void VARIABLES.round() Stores the round end value of each statistics vari-

able.

e void VARIABLES.results() Calculates the result values for each statistics

variable.

The element classes initialise the variables when the simulation starts. For ex-
ample, Listing 3.24 shows the adding of basic statistics variables for instances of the
State class. The original initialisation was only a reset of the variable value (see
Listing 3.12 on page 79). After the change the update of the statistics variable values
is still made similarly during the simulation process. The VARIABLES object only
automatises the calculation of various result values.

void State.simulationStarted() {
VARIABLES.add (THIS, "activeTime");
VARIABLES.add (THIS, "activationCount");
}

Listing 3.24 The reset of the statistics variables of the state class
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The method VARIABLES . round () is called after each simulation round (see List-
ing 3.6 on page 76). The result values of all variables are calculated when the method
VARIABLES.results() is called after all simulation rounds are finished (see List-
ing 3.11 on page 78). Various result values are calculated based on the stored statis-
tics variables of each simulated round. Each result value has its own suffix, which is
added to the variable name to get a name of the result value attribute. Following list

shows examples of the result values that are calculated for a variable "activeTime”:

e “activeTime MEAN”: The mean active time.

e “activeTime MIN”: The minimum active time.

e “activeTime MAX”: The maximum active time.

e “activeTime QUANTILE5”: The 5% quantile of the active time.

e “activeTime QUANTILE95”: The 95% quantile of the active time.

For example, the result value that is stored to an attribute "activeTime MEAN”
can be used instead of the separately declared (see Table 3.29 on page 83) and manu-
ally calculated (see Listing 3.22) attribute "activeTimeMean”. It is simple to calculate
the mean value, so this change does not simplify the procedure code much, but with
more detailed result values the change is more significant. For example, the quan-
tiles can be calculated based on the values that are stored when VARIABLES . round ()
is called after each round. After ordering the values, the 5% quantile is obtained from
index, which is the number of values divided by 20. Similarly, the 95% quantile is
obtained from index, which is the last index minus the number of values divided by
20. For nodes that represent faults these quantiles calculate the time periods for 5%
and 95% reliability and unreliability.

The values that are stored after each round form a distribution, which gives even
more detailed result than the mean and quantile values. Sometimes similar results are
needed from other parts of the simulation period. This can be done by storing values
always after certain interval. The result can be list of mean values that describe how
the value evolves in different parts of the simulation period, or a full distribution
and quantiles for each interval.

In all of the previously mentioned situations, the generic result calculation sim-
plifies the definition of the configuration and makes the storing of the needed result

values more efficient. The most suitable level of details in result values can be se-
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lected based on the needs of the studied case and the possible restrictions related to

the memory consumption.

3.4.3 Parallel computing

The simulation process repeats several rounds, which are independent. The possi-
bility to calculate each round independently makes the process suitable for parallel
calculation. Powerful laptops and desktop computers have usually more than one
core, which should be all used for optimising the calculation speed. The parallelisa-
tion is especially important if the simulation is made in a computing cluster that can
have a high number of cores.

The division of the simulation process to cores is made before the call of the tem-
plate method calculationProcess(). At first the identical models are loaded to all
cores. The attribute values of each model are the same with the original model, but
the division assigns a new value for the "maxRounds” attribute of the simulator tool
of each model. It is not necessarily possible to divide the simulated rounds equally
to all cores. The value for the maxRounds” attribute of a core can be calculated by

using a function

N 1 if N mod ]
rounds(i) = INfm]+1 i N modm>i (3.1)
|IN/m| f Nmodm <1,

where the total number of simulated round is N, the number of available cores is 72,
and the core index : =0,1,...,mm — 1.

After the number of simulated rounds is defined, the simulation process is exe-
cuted normally in each core. The statistics variables of all cores need to be combined
before the results are calculated by calling the template method createResults().
If all the statistics variables are handled by using the VARIABLES object, the combi-
nation is done by merging the objects of each core. The statistics variable values are
stored to the VARIABLES object after each round, so the merge of two objects just ap-
pends all the stored round values of each handled statistics variable from one object
to other. After the combination, the template method createResults() is executed

by using the combined VARIABLES object that contains data from all cores.
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4 APPLICABILITY OF AOT WITH BASIC
MODELLING TECHNIQUES

The AoT framework is created for customisation and combination of risk and per-
formance assessment modelling techniques. This chapter uses the methodology that
was specified in Chapter 3 to apply the Aol framework with basic modelling tech-
niques. The declaration of the classes and attributes, and the configuration of the
simulation algorithm are presented for each technique. The same approach can be
used for definition of an arbitrary technique, which is the most suitable for certain
special type of case. In Chapter 5 an example model is created by using the techniques

that are presented in this chapter.

4.1 Delay distributions of state changes

An Event is a fundamental element class that handles the basic state changes in AoT
models. Events have a probability and a delay (see Table 3.17 on page 56), which
define when the event changes an active state of a node. If the delay is stochastic, the

sub classes of Event define how the delay of each activation is obtained.

Table 4.1 lists the Event sub classes that are presented in this thesis. A new class
can be declared similarly for any distribution function. Adding a new distribution
requires declaring the parameter attributes for the new class and configuring the cal-
culation for the simulation algorithm. As a naming convention, a prefix Event is

used with all sub class names.

These Event classes are available in all modelling techniques. Following sections
present the declaration of the classes. To improve the efficiency of the delay defi-
nition, the presented sub classes ignore the ”prob” attribute, which is used by the

Event class (see Listing 3.18 on page 82).
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Table 4.1 Basic built-in Event classes

A B C COMMENTS
1 EventExp class  Event  Exponential distribution
2 EventWeibull class  Event  Weibull distribution
3 EventNorm class  Event  Normal distribution
4+ EventLognorm class Event Lognormal distribution
5 EventHistory class  Event  Distribution class that is used when there is history data available

41.1 Definition of a event distribution

Each Event sub class can redefine the function getEventTime () or getDelayTime ()

to define the stochastic delay (see Listing 3.18 on page 82). The definition is made

with the help of distribution functions. Table 4.2 presents the notation that is used

in this section to specify various distribution functions. Each function is defined by

declaring an Event sub class and by configuring its simulation algorithm by using the

procedure code. Basic Java operations and a Math library class are used for numeric

operations in the code

Table 4.2 A general notation for the definition of event distributions

Symbol

Description

Fy
Qx
U

~

c

u

exp(x)
In(x)

Cumulative distribution function of event class X

Generalised inverse distribution function of event class X

Next random event time from the distribution

Current simulation clock time

Mean or expected value

Standard deviation

Uniform random variable in the interval [0, 1]

Natural exponential function e*

Natural logarithm function log, (x)

The basis of the definition is a cumulative distribution function

Fy(x)=P(X <x)=wu, 4.1)

which gives the probability # that the event X activates before (or equal to) certain

duration x.
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During the simulation process random variables are generated from specified dis-
tributions. The variable generation is made by using generalised inverse distribution

function

Qx(#) = inf {Fy(x)>u}, (4.2)

xeR

as the quantile function
Fy Y(u) = Qy(n), if Fy is continuous and strictly monotonically increasing, (4.3)

is not always defined. Next activation times are calculated by adding the delay time

obtained from (4.2) to current simulation clock time:

U(n) =t +Qx(u) (44)

In AoT, the function getEventTime () defines the U(#). An Event sub class can

redefine also the procedure createEvent (), if needed.

4.1.2 Exponential distribution

Exponential distribution assumes a constant failure rate (1/ «). The key property of
the distribution is that it is memoryless. It is also a simple distribution with only
one parameter. Table 4.3 presents the declaration of the mean” () attribute for the

EventExp class.

Table 4.3 The attribute declaration of the exponentially distributed events

A B C COMMENTS

6 EventExp/mean attribute Duration The mean (i) of the exponential distribution

The mean delay time (u) is used as a parameter in the cumulative distribution

function

Fpp(x)= 1—exp<_7x> (4.5)

and in the generalised inverse distribution function

Qexp(#)=—pIn(1—un). (4.6)
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Listing 4.1 shows the redefinition of the getEventTime () function, which uses
the "mean” attribute value as a parameter.

double EventExp.getDelayTime() {
return -THIS.mean * Math.log(l - RANDOM.prob());
}

Listing 4.1 The redefinition of the delay function for the EventExp class

4.1.3 Weibull distribution

Weibull distribution is defined with scale (o) and shape (3) parameters. Additionally,
auser can define an activation free time or location (y), which fixes the point in time
from which the activations begin to occur. Table 4.4 presents the declaration of the

EventWeibull class attributes.

Table 4.4 The attribute declaration of the Weibull distributed events

A B C COMMENTS
7 EventWeibull/scale attribute  Duration  Scale parameter of the Weibull distribution (2)
8 Event\Weibull/shape attribute Number Shape parameter the Weibull distribution (3)

9 EventWeibull/location  attribute  Duration  End of failure frec time (1)

The scale (@), shape (3) and location (y) are used as parameters in the cumulative

distribution function

p
1—exp<—<x;y> > ifx>y
F(x)= “7)
0 ifx<y

and in the generalised inverse distribution function
Qw(u):y—aln(l—u)l/ﬂ. (4.8)

Equations (4.7) and (4.8) reduce to basic two parameter Weibull distribution func-
tions if the location parameter y = 0. If also the shape parameter 8 = 1, the Weibull
distribution reduces to an exponential distribution.

Listing 4.2 shows the redefinition of the getEventTime () function, which uses

» »

the "scale”, "shape” and "location” attribute values as parameters.
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double EventWeibull.getDelayTime () {
return THIS.location + THIS.scale *
Math.pow(-Math.log(1l - RANDOM.prob()), 1 / THIS.shape);
}

Listing 4.2 The redefinition of the delay function for the EventWeibull class

4.1.4 Normal distribution

Normal distribution is defined with mean (u) and standard deviation (o) parameters.

Table 4.5 presents the declaration of the EventNorm class attributes.

Table 4.5 The attribute declaration of the normal distributed events

A B C COMMENTS

10 EventNorm/mean attribute Duration Mean of the normal distribution (u)

11 EventNorm/deV attribute Number Standard deviation of the normal distribution (o)

The random variable is defined with the generalised Box-Muller transform [83],
which uses two independent random variables. The mean (u) and standard deviation

(o) parameters are in the generalised inverse distribution function

Qororm(#1,1y) =+ 04/ —2Inu, cos(2mu,). 4.9)

Listing 4.3 shows the redefinition of the getEventTime () function, which uses
the ”mean” and “dev” attribute values as parameters.

double EventNorm.getDelayTime () {
return THIS.mean + THIS.dev * Math.sqrt(-2 * Math.log(RANDOM.prob())) =*
Math.cos (2 * Math.PI * RANDOM.prob());
}

Listing 4.3 The redefinition of the delay function for the EventNorm class

4.1.5 Log-normal distribution

Log-normal distribution is defined with scale (¢) and shape (5) parameters. Addi-
tionally, a user can define an activation free time or location (y), which fixes the point
in time from which the activations begin to occur. Table 4.6 presents the declaration

of the EventLognorm class attributes.

93



oA W N =

Table 4.6 The attribute declaration of the log-normal distributed events

A B C COMMENTS
12 EventLognorm/scale attribute Duration Scale parameter of the log-normal distribution (1)
13 EventLognorm/shape attribute Number Shape parameter of the log-normal distribution (o)

14 EventLognorm/location attribute  Duration  End of activation free time ()

The random variable is defined by using the Equation (4.9). The scale «, shape 8

and location y are used as parameters in the generalised inverse distribution function

Qlognorm(”l’”Z):}/+eXp(Qnorm(M1’M2))’ (410)

where the scale (@) of the log-normal is the mean (u) parameter of the normal dis-
tribution, and similarly the shape (8) of the log-normal is the standard deviation (o)
parameter of the normal distribution.

Listing 4.4 shows the redefinition of the getEventTime () function, which uses

the "scale”, ”shape” and "location” attribute values as parameters.

double EventLognorm.getDelayTime () {
return THIS.location + Math.exp(THIS.scale + THIS.shape *
Math.sqrt (-2 * Math.log(RANDOM.prob())) *
Math.cos (2 * Math.PI * RANDOM.prob()));
}

Listing 4.4 The redefinition of the delay function for the EventLognorm class

4.1.6 History data fitting

Instead of estimating the parameters directly, the distribution can be defined by using
history data fitting. Table 4.7 presents the declaration of the EventHistory class
attributes, which can be used for storing the history data. In addition to the event
times, a weight and a type can be stored to each history data value. The weight
allows defining several similar data values by using one definition. The type enables
including also other information in the data than the basic activation times. For
example, if there is information that an item has been in use for certain time without
a failure, the type attribute can be used to indicate that the assigned data value is
different than the basic failure time data. The EventHistory class contains also a

prototype event that implements the fitting.
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Table 4.7 The attribute declaration of the history data fitting events

A B C COMMENTS
15 EventHistory/data attribute Duration  Event time values
16 EventHistory/weight  attribute ~ Number  Weighes for history data values if needed
17 EventHistory/weight = 1 Default weight of cach history data value is 1
18 EventHistory/type attribute Number  Types for history data values if needed
19 EventHistory/type = 1 Default type of each history data value is 1
20  EventHistory/fitting  prototype  Event "The event that implements the firting

As an example of a history data, Figure 4.1 shows a result of a year long reliability

test where two items survived the testing. Table 4.8 presents the history data in a

data matrix. The two similar data values are merged to a data row with weight value

2. The type is 1 if the data defines a time to failure. The type 0 indicates that the data

gives information about the use of the item without a failure.

mNWRO

A LV 4
R
--»
; ' ‘ >
100d 200d 300d

Figure 4.1 A result of a year long reliability test

Table 4.8 The failure history from the Figure 4.1 in a data matrix

Item  Time

Weight  Type

180d
160d
300d

4.&5. la

200d

—_ N = =
_ O e

Table 4.9 shows the creation of a EventHistory and the assignment of the data of

Figure 4.1 by using the Triplets data format and the attributes of the EventHistory

class. The keyword ”add” is used for assignment, which permits the adding of several

comma separated values by using only one definition row.
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Table 4.9 An example of an assignment of a fitting from history data

A B C COMMENTS
1 JexampleHist instance  EventHistory Create a history event instance
> /[exampleHist/fitting  include  EventWeibull Use Weibull firting
3 JexampleHist/data add 180d, 160d, 300d, 1a, 200d  List of history duration values
4 JexampleHist/weight add 1,1,1,2,1 Weights for the history data values
5 JexampleHist/type add 1,1,1,0,1 Types for the history data values

The history data is fitted to a distribution when the simulation starts. The class
of the "fitting” attribute event defines the used fitting algorithm. Listing 4.5 presents
the call of the procedure fitFromData() for the fitting event. There exist various
algorithms to fit a data to different distributions. For example, with a two parameter
Weibull fitting, the history data results in a distribution with scale parameter value
332 days and shape value 2.375 [84]. The definition of the distribution parameters

from the history data can also be done externally with a separate tool.

void EventHistory.simulationStarted() {
THIS.fitting.fitFromData();
}

Listing 4.5 The fitting of the history data when the simulation starts

After the fitting, the EventHistory class can use the event from the attribute
“fitting” to get the delay times for the event activations. Listing 4.6 shows the redef-

inition of the getEventTime () function.

double EventHistory.getDelayTime () {
return THIS.fitting.getDelayTime ();
}

Listing 4.6 The redefinition of the delay function for the EventHistory class

4.2 Advanced Fault Tree Analysis modelling technique

The advanced Fault Tree Analysis (FTA) modelling technique [19] is an extended
version of the standard FTA [2]. The advanced FTA extends traditional FTA with

modelling of repair (Section 4.2.1), delays and alternative consequence (4.2.2), cost

risk (4.2.3), mode-dependent events (4.2.4) and maintenance actions (4.2.5).
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4.2.1 Advanced FTA: Basic features

The advanced FTA technique models consist of fault nodes, which have two states
(normal, fault) and two events (failure, restoration). Table 4.10 presents the declara-
tion of the Fault node class. These declarations extend the basic Node class attributes
(see Table 3.18 on page 56).

Table 4.10 The Fault node declaration of the advanced FTA modelling technique

A B C COMMENTS
1 Fault class Node Node with only two states and two events
2 Fault/normal prototype  State Normal state of the node
5 Fault/fault prototype  State Fault state of the node
4 Fault/failure prototype  Event Event from normal to fault
s Fault/restoration prototype  Event Event from fault to normal
6 Fault/failure/source connect Fault/normal  Connect source state to event
7 Fault/failure/target connect Fault/fault Connect event to target state
s Fault/restoration/source  connect Fault/fault Connect source state to event
9 Fault/restoration/target ~ connect Fault/normal  Conncet event to target state
10 Fault/initialState connect Fault/normal  Start from a normal state

Figure 4.2 illustrates prototype structure of fault nodes. The state of the node
changes between "fault” and "normal”. An event from "fault” to “normal” is failure”

and the event to opposite direction is “restoration”.

Event:
failure

normal fault
Event:

restoration

Figure 4.2 Fault nodes have two states (normal and fault) and events (failure and restoration)

Gate operators define the connection logic between the fault nodes. Table 4.11
presents the declaration of the Gate operator class and various sub classes. Each logic
rule is implemented by a sub class. More gate classes can be created for special needs,

such as implementing priority AND and other dynamic gates.
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Table 4.11 The declaration of Gate operators of the advanced FTA modelling technique

A B C COMMENTS
11 Gate class Operator Operator that handles Boolean logic rules
12 OR class Gate Logic operator for rule "At least one”
13 AND class Gate Logic operator for rule "All”
14 Vote class Gate "At least m” or ”k out of n” (m = n-k-+1)
15 Vote/atLeast attribute  Integer "The number child faults needed at least
16 XOR class Gate Logic operator for rule “Exactly one”
17 Limits class Gate Rule "At least m but at most h”
18 Limits/atLeast attribute Integer The number of children needed at least
19 Limits/atMost attribute Integer The number of children allowed at most
20  Never class Gate Logic operator for rule "Never”
21 AlWQ.yS class Gate Logic operator for rule "Always”
22 Cond class Gate Logic operator for a probability condition
23 Cond/prob attribute Probability Probability of the parent after child
24 Ignore class Gate Gate is ignored in simulation

Connections between Fault and Gate elements are made by using “child” and
”parent” attributes (see Table 3.19 on page 57). The connection attributes are sym-

metric (see Table 3.20 on page 58), which means that the connection is always created

to both directions when either one of the attributes is assigned.

The analysis of the advanced FTA technique is configured by implementing the
template methods of the simulation algorithm core (see Figure 3.6 on page 74). The
handling of state changes was presented in Section 3.3.4. Each state change creates
an activation of the container node (see Listing 3.14 on page 80). The activation of
Fault nodes creates new activations for the connected parent” Gate elements. The

procedure code of the activate () method is presented for Fault class in Listing 4.7.

void Fault.activate() {

for (Element parent

ACTIONS.add(parent);

Listing 4.7 The activation of fault nodes

The procedure code of the activate() template method is presented for Gate
class in Listing 4.8. The gates contain a logic rule, which defines the update that is
needed for the ”parent” Fault elements. A template method checkTrue () is defined
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by the sub classes of the gate. The procedures toTrue () and toFalse() change the

state of the parent nodes.

void Gate.activate() {
if (THIS.checkTrue()) {

for (Element parent : THIS.getElements("parent")) {

parent.toTrue ();

}
else {

for (Element parent : THIS.getElements("parent")) {

parent.toFalse ();

}

Listing 4.8 The activation of gate operators

The fault and gate activations are repeated until the top node of the fault tree

is reached, or when no changes are needed. Listing 4.9 presents the codes of the

toTrue () and toFalse() procedures.

void Fault.toTrue() {

if (THIS.currentState != THIS.fault) { // change only if needed

if (THIS.currentState != null) {

// not done at round start

THIS.currentState.sendEndMessages (); // send end messages of the state

THIS.failure.sendMessages (); // send also event messages

}
THIS.currentState = THIS.fault;

THIS.currentState.sendStartMessages ();

THIS.currentState.activationCount++;
ACTIONS.add (THIS); // notice also the connected gates about the change

void Fault.toFalse() {

if (THIS.currentState != THIS.normal) { // change only if needed

if (THIS.currentState != null) {

// not done at round start

THIS.currentState.sendEndMessages (); // send end messages of the state

THIS.restoration.sendMessages ();

}
THIS.currentState = THIS.normal;

// send also event messages

THIS.currentState.sendStartMessages ();

THIS.currentState.activationCount++;
ACTIONS.add (THIS); // notice also the connected gates about the change

}

Listing 4.9 The change of a fault node state
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The changing of the state is made directly, which means that the use of Gate oper-
ators overrides the basic state activations of nodes (see Listing 3.14 on page 80). The
update of the statistics variable and the message sending are made in the procedure
like in basic state activation, but the action creation of the target events is skipped.
The skipping of irrelevant procedures improves the efficiency of the simulation pro-
cess.

The Boolean checkTrue () functions of gates use the same function of fault nodes
to check the state of each ”child” node. Listing 4.10 presents code of the function,
which returns true if *fault” state is currently active. Special Fault node classes with

more that two states can redefine this template method.

boolean Fault.checkTrue() {
return THIS.currentState == THIS.fault;
}

Listing 4.10 The checking of a fault node state

As an example, Listings 4.11 - 4.14 present the implementation of the function
checkTrue () for OR, AND, Vote and Cond gates. The algorithms check the states of
all ”child” nodes and the logic rule of the gate. Other Gate sub classes with different

logic rules can be configured similarly.

boolean OR.checkTrue () {
for (Element child : THIS.getElements("child")) {
if (child.checkTrue()) {

return true;

}
return false;

}

Listing 4.11 The logic rule check for the OR gate

boolean AND.checkTrue() {
for (Element child : THIS.getElements("child")) {
if (!'child.checkTrue()) {

return false;

return true;

}

Listing 4.12 The logic rule check for the AND gate
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boolean Vote.checkTrue () {
int count = 0;
for (Element child : THIS.getElements("child")) {
if (child.checkTrue()) {
count ++;
if (count >= THIS.atLeast) {

return true;

}
return false;

}

Listing 4.13 The logic rule check for the Vote gate

boolean Cond.checkTrue () {
for (Element child : THIS.getElements("child")) {
if (child.checkTrue()) {
return RANDOM.prob() < THIS.prob;

}
return false;

}

Listing 4.14 The logic rule check examples for the Cond gate

The basic analysis result of advanced FTA technique models can be obtained from
the State class result values. For example, the MTTF can be calculated by dividing
the "activeTime” of the “fault” state by its "activationCount”. Similarly, the unavail-
ability is calculated by dividing the "activeTime” by the total simulated time. The

calculation of basic result values was presented in Section 3.3.5.

4.2.2 Advanced FTA: Delays and alternative consequences

The basic FTA connections are immediate. Table 4.12 presents the declaration of
new Gate sub classes for inclusion of Delay connections. Instead of updating the
connected nodes directly, an action is created to a Concequence element, which ac-
tivates later the target nodes of the original gate.

Listing 4.15 configures the activation handling of the Delay gate. The procedure
overwrites the basic Gate template method (see Listing 4.8 on page 99). Like events,
delay gates use the getDelayTime () function to get the delay of the created action.
This enables defining stochastic delays by declaring sub classes, such as DelayExp
and DelayWeibull, which redefine the function (see Section 4.1).
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Table 4.12 The declaration of the Delay gate

A B C COMMENTS
1 Delay class OR Logic operator for a delay
2 Delay/delay attribute Duration The delay after a source node fault
3 COI’ISunCl’lCC class Gate A special element for activation after the delay

4 Delay/conseq prototype Consequence An element is create for each delay gate

void Delay.activate() {
if (THIS.checkTrue()) {
ACTIONS.add (CALCULATION. currentTime + THIS.getDelayTime (),
THIS.conseq);

}
else {
for (Element parent : THIS.getElements("parent")) {
parent.toFalse ();

double Delay.getDelayTime () {
return THIS.delay;
}

Listing 4.15 The activation of delay gates

Listing 4.16 configures the activation of the Consequence element, which is simi-
lar to the procedure of a basic Gate class (see Listing 4.8 on page 99), but the activated
nodes are parents of the container delay gate. The activation is made only if the logic
rule is still true. The Delay extends OR gate, which implements the checkTrue ()
template method (see Listing 4.11 on page 100) for handling of the situations where
more than one ”child” nodes are connected for the delay gate.

void Consequence.activate() {
if (THIS.getContainer ().checkTrue()) {
for (Element parent : THIS.getContainer ().getElements("parent")) {

parent.toTrue ();

}

Listing 4.16 The activation of a consequence of delay gates

Modelling of alternative consequences is another special situation that handling

is not possible with basic gates. By connecting a fault node to two or more gate oper-
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ators, it is possible to model the situation where an event has multiple consequences.
For example, a common cause failure is an event that causes two or more items to
fail. However, this approach is not suitable for handling a situation where the conse-
quences are exclusive. Table 4.13 declares Select gate, which is used for modelling

of the situation where only one of the many consequences is selected to occur.

Table 4.13 Declaration of the Select gate for modelling of alternative consequences

A B C COMMENTS

5 Select class OR A special gate for handling of alternative consequences

6 Select/prob attribute Probability Probabilities of different consequences

The array definition is used to assign probabilities of each consequence. Each
”parent” connection has its own probability. The keys of the array definition are
used to connect the parent node to the probability. Table 4.14 illustrates how prob-

abilities can be assigned for to connected parent nodes.

Table 4.14 An example of the alternative consequence definition

A B C COMMENTS

1 parentNodeA/child[a] connect selectGate  Parentnode A is connected to a select gate
2 parentNodeB/child[b] connect selectGate  Parent node B is conneeted to a select gate
3 selectGate/prob[a] = 0.6 Parent node A has probability 0.6

+  selectGate/prob[b]

0.4 Parent node B has probability 0.4

The sum of the probabilities must equal to 1.0. If this is not the case, the values
are considered as weights of the consequences. Listing 4.17 shows a procedure to
ensure that the probabilities are proper.

void Select.simulationStarted() {
double sum = 0;
for (Element parent : THIS.getElements ("parent")) {
sum += THIS.prob[parent.getKey()];

}
if (sum !'= 1.0) {
for (Element parent : THIS.getElements("parent")) {
THIS.prob[parent.getKey ()] /= sum;
}
}

}

Listing 4.17 The reset of the consequence probabilities
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Listing 4.18 configures the activation handling of the Select gate. The procedure
overwrites the basic Gate template method (see Listing 4.8 on page 104). A random
probability number is used to select the ”parent” node that is activated.

void Select.activate() {
if (THIS.checkTrue()) {
double prob = RANDOM.prob();
for (Element parent : THIS.getElements("parent")) {
prob -= THIS.prob[parent.getKey()];
if (prob < 0) { // select this parent
parent.toTrue ();

return;

}
else {
for (Element parent : THIS.getElements("parent")) {
parent.toFalse ();

}

Listing 4.18 The activation of select gates

4.2.3 Advanced FTA: Cost risk analysis

Cost can be associated to the number of state activations and to the duration a state
is activate. The cost risk analysis can assess both negative and positive impacts. The
cost of a repair each time a failure occurs, or the loss of a production associated to
the system downtime are examples of negative impacts. Positive impact can be, for
example, the revenue of the production. The cost definitions allow estimating the
risk, which is the mean cumulative cost caused by the state activations and active
times during the analysis period. In addition to the mean result, the distribution of
risk should be calculated to understand the probabilities of high (or low) costs.

The costs are defined by using the attributes that are declared in Table 4.15. Dif-
ferent type of risks can be modelled by using the array definition, where the name
of the cost type is given as the key of the array attribute. All cost definition values
must use the same currency or other cost unit. This thesis uses Euro (€) as a cost
unit.

The cost attribute values are combined with statistics variables to calculate the

risk results. In the simplest case, the mean total cost result is calculated for each
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Table 4.15 The declaration of the cost attributes for the advanced FTA modelling technique

A B C COMMENTS

1 State/costCount attribute Number A cost for each time the event activates

2 State/costTime attribute Rate A cost per time unit the state is active

Fault node. Table 4.16 presents the declaration of the result value. The costs of
the "normal” state are considered positive, and the costs of the "fault” state negative.
Listing 4.19 presents the calculation of the cost risk result. The total cost of the
whole simulation is divided by the number of simulated round to get the mean cost

risk.

Table 4.16 The declaration of a cost risk result value

A B C COMMENTS

3 Fault/meanCost attribute Number The mean total cost of a fault node

void Fault.createResult () {
THIS .meanCost = 0;
for (Number cost : THIS.normal.getNumbers("costCount")) {
THIS .meanCost += cost * THIS.normal.activationCount;
}
for (Number cost : THIS.normal.getNumbers("costTime")) {

THIS .meanCost += cost * THIS.normal.activeTime;

}

for (Number cost : THIS.fault.getNumbers("costCount")) {
THIS .meanCost -= cost * THIS.fault.activationCount;

}

for (Number cost : THIS.fault.getNumbers("costTime")) {
THIS .meanCost -= cost * THIS.fault.activeTime;

}

THIS .meanCost /= CALCULATION.currentRound;

Listing 4.19 The calculation of the cost risk results for fault nodes

For more detailed cost results, a new cost statistics variable can be added and
updated during the simulation process. The procedure of the update would be added
to the toTrue () and toFalse() template methods (see Listing 4.9 on page 99). It is
possible to calculate quantiles and distributions of the cost risk by using the generic

result calculation (see Section 3.4.2) for the cost statistics variable.
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4.2.4 Advanced FTA: Mode-dependent events

The delay distributions can change based on a mode. Modes are defined by certain
active states (see Table 3.22 on page 59). This situation is called mode-dependency.
Table 4.17 presents the declaration of a special EventMode class, which handles the

mode-dependent failure rates.

Table 4.17 The declaration of the EventMode class for handling of mode-dependency

A B C COMMENTS

1 EventMode class Event A special class for handling of mode-dependency
2 EventMode/WaitTime attribute Duration An attribute for storing the event time in wait mode

3 EventMode/isWaiting  attribute  Boolean  Valueis truc if the mode is not active

Table 5.12 on page 135 presents an example of defining a mode-dependent fail-
ure rate. Generally, the idea is that there can be more than one "failure” events
from ”normal” to "fault” state, which are active based on the operating mode. The
”restoration” event can be mode-independent. Figure 4.3 illustrates a structure of a

mode-dependent fault node.

Mode-dep.
failure

Mode-dep.

failure
o
normal modeB

Mode-indep.
restoration |

Figure 4.3 A fault node with more than one mode-dependent failure events

The template methods modeEnd () and modeStart () are called after a change of
a mode (see Listings 3.15 and 3.16 on page 80). Listing 4.20 presents the procedure
codes of the methods for the EventMode class. If the event is not in use, the mode
change only updates the value of the "isWaiting” attribute. Otherwise an action is

either removed from or added to the ACTIONS queue.
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void EventMode.modeEnd () {
Action future = ACTIONS.remove (THIS);
if (future '= null) { // store the time to activation if action exist
THIS .waitTime = future.getTime() - CALCULATION.currentTime;
}
THIS.isWaiting = true;

void EventMode.modeStart () {
if (THIS.waitTime > 0) { // add new action if wait time is defined
ACTIONS.add (CALCULATION.currentTime + THIS.waitTime, THIS);
THIS.waitTime = O0;
}
THIS.isWaiting = false;
}

Listing 4.20 The procedure code of the end and start of a mode

The event is in use only when its ”source” state is active. The getEventTime () is
called from createNextAction() procedure (see Listing 3.17 on page 81) when the
event is taken into use. This creates a future action and adds it to the ACTIONS queue.
Listing 4.21 presents the redefined getEventTime () function of the EventMode class.
If ”isWaiting” is true, the delay time is stored to "wait Time” attribute. The delay time
is used for creating an action when the mode is later started. A positive infinity is
returned if the mode is not active, which skips the action creation.

double EventMode.getEventTime () {
if (THIS.isWaiting) { // if currently waiting, store the delay to waitTime
THIS.waitTime = THIS.getDelayTime ();
return Double.POSITIVE_INFINITY;
}
return CALCULATION.currentTime + THIS.getDelayTime ();
}

Listing 4.21 The redefined method to get mode-dependent event time

A reset of the "isWaiting” needs to be made when a simulation round starts. If a
”listener” has not been defined or if a complement mode (see Rule 3.7 on page 59) is
listened, the mode is active when a round starts. Listing 4.22 presents the procedure
code of the roundStarted () template method.

void EventMode.roundStarted () {
THIS.isWaiting =
THIS.listener != null && !THIS.listener.endsWith("Not");
}

Listing 4.22 A reset of the mode state when a simulation round starts
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4.2.5 Advanced FTA: Maintenance actions

Maintenance actions can be included in advanced FTA models. Table 4.18 declares
an Maintenance class, which handles different type of service operations. In AoT, a
maintenance is a special type of element, which has a time interval and a cost of its
activation. The start and end times of the maintenance define when the interval is

active.

Table 4.18 The declaration of the Maintenance class for handling of service operations

A B C COMMENTS

1 Maintenance class Element A special element to model maintenance actions

2 Maintenance/interval attribute Duration The maintenance interval (e.g. once per year)

3 Maintenance/interval = Default is infinity so without defining there is no actions
4 Maintenance/start attribute Duration The first time to make the maintenance the action

5 Maintenance/start = By default the interval defines the start time

6 Maintenance/end attribute Duration The last time to make the maintenance action

7 Maintenance/end = By default there is no end limit

s Maintenance/cost attribute  Number — The cost of the action

Listing 4.23 presents the procedure of the roundStarted() method, which cre-
ates the first maintenance actions at the beginning of each simulation round. If the
start” value is not defined, the ”interval” defines the time of the first action. The
default value is positive infinity, which means that the attribute value has not been
assigned. Either the "start” or "interval” needs to be defined to create the first action.

void Maintenance.roundStarted() {
if (THIS.start == Double.POSITIVE_INFINITY) {
ACTIONS.add (THIS.interval, THIS);
}
else {
ACTIONS.add (THIS.start, THIS);

}

Listing 4.23 The definition of the roundStart() template method of the Maintenance class

Listing 4.24 presents the procedure of the activate () template method, which
handles the maintenance action. The time of the next event is defined, if the end limit
is not yet reached. The template method handleMaintenance () is implemented by

sub classes.
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void Maintenance.activate() {
THIS.handleMaintenance (); // defined by sub classes
if (CALCULATION.currentTime + THIS.interval <= THIS.end) {
ACTIONS.add (CALCULATION.currentTime + THIS.interval, THIS); // add next

}

Listing 4.24 The handling of a maintenance action

Table 4.19 declares sub classes of the Maintenance class. Different type of actions
have their own attributes to define the effect of the maintenance action. The AoT

approach includes following classes to model different type of maintenance actions:

e Preventive maintenance is carried out to reduce the probability of failure.
The maintenance causes that the ageing of the component changes according
to an effect factor. For example, with value 0.75 the element ages 75 % of the
calendar time, which means that the time to next failure grows by a factor of
1/0.75. If the interval or the effect of a maintenance action changes, a new

factor value must be assigned.

e Inspection can detect symptoms of developing failures. If the inspection is
made during the symptom time, it has certain probability to detect the devel-
oping failure and to avoid it. When compared to a repair after a failure, the
restoration time can be shorter and the cost lower if the failure can be detected

and repair started before it occurs.

e Improvement is a maintenance that is carried out to reduce the degradation,
which could lead to a wear-out or ageing failure. After the improvement, the
component is in better condition than before the maintenance action, which
postpones the the next failure. The improvement is defined by an effect factor.
For example, with a value 0.75, the component is 75 % “younger” than before

the maintenance action.

e Replacement replaces the element to be as good as new. The restoration time
of a scheduled replacement can be shorter and the cost lower when compared

to a repair after a failure.

e Finding detects and repairs latent failures, which are not found in normal op-
erations. A probability is defined to define if the finding can detect an existing

latent failure when the action is made.

109



Table 4.19 The declaration of the maintenance action sub classes

A B C COMMENTS
9 Preventive class Maintenance Preventive maintenance without any special action
10 Preventive/effect attribute  Number Ageing effect factor
11 Preventive/effect = 1.0 Default factor is 1.0 (no effect)
12 Inspection class Maintenance  Detection of symptoms to avoid a failure
13 Inspection/symptom attribute  Duration Time before the failure when detection is possible
14 Inspection/symptom = By default inspection finds all faults
15 Inspection/prob attribute Probability The probability that the inspection is successful
16 Inspection/prob = 1.0 By default inspection is always successful
17 Improvement class Maintenance  Improves the condition of the component
18 Improvement/effect attribute Number How much the action affects to the component age
19 Improvement/effect = 1.0 Default factor is 1.0 (no effect)
20 Improvement/minAge attribute Duration Minimum age to make the improvement
21 Improvement/minAge = 0 No minimum age limit by default
22 Replacernent class Maintenance Replace the element to be as good as new
23 Replacement/minAge attribute  Duration Minimum age to make the replacement
24 Replacement/minAge = 0 No minimum age limit by default
25 Finding class Maintenance  Finding of hidden failures
2 Finding/prob attribute  Probability  The probability to find the hidden fault
27 Fmdmg/prob = 1.0 By default finding action finds fault always

The maintenance actions are added as attributes of a special FaultMaint class.

It

includes EventMaint for “failure” event to handle maintenance effects. The “factor”

attribute models the changes to the failure rate. The declaration of the classes is

presented in Table 4.20. It would be also possible to declare a special Fault class that

contains a "service” state. Like the down state "fault” is active during the restoration

after a failure, the ”service” state is active during the maintenance actions.

Table 4.20 The declaration of the FaultMaint node class

A B C COMMENTS
28 FaultMaint class Fault Special fault node that can handle maintenance actions
29 FaultMaint container Maintenance Maintenance fault nodes are containers of actions
30 EventMaint class Event Special event that can handle maintenance actions
31 FaultMaint/failure include EventMaint Use special event for failure
32 EventMaint/factor attribute Number An effect factor from preventive maintenance
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Preventive maintenance defines its effect by updating a factor that changes the
failure times. Listing 4.25 presents the reset of the EventMaint “factor” attribute,
and how the EventMaint overwrites the getEventTime () function (see Listing 3.18
on page 82) to include the factor on event creation.

void EventMaint.simulationStarted () {

THIS.factor = 1; // reset the factor before checking actions

void Preventive.simulationStarted() {
THIS.getContainer ().failure.factor *= THIS.effect; // failure event factor

double EventMaint.getEventTime () {
return CALCULATION.currentTime + THIS.getDelayTime() / THIS.factor;
}

Listing 4.25 Including the effect factor in event time

Other Maintenance sub classes implement the handleMaintenance () template
method to define the effect of the maintenance actions. Listing 4.26 implements
the method for Inspection action. If a future action exists for the failure event of
the node, the symptom time and probability of success is checked. If the failure is
prevented, a new event is created. Otherwise the same future event is added back.

void Inspection.handleMaintenance () {
Action future = ACTIONS.remove(THIS.getContainer ().failure);
if (future != null) { // if a future failure action exists
if (future.getTime () - CALCULATION.currentTime < THIS.symptom &&
RANDOM.prob() < THIS.prob) { // inspection prevents failure

THIS.getContainer ().failure.createAction(); // create new failure

}
else { // add the failure back
ACTIONS.add (future.getTime (), future.getTarget ());

}

Listing 4.26 The handling of an inspection action

Listing 4.27 presents the procedure code of the handleMaintenance () template
method of the Improvement action. The item is improved only if certain minimum
age is reached. The check is made with the help of a "activationStart” attribute (see
Table 3.30 on page 85) of the "normal” state, which is updated each time a *failure”
action is created. The time of the found future action is updated based on the "effect”

factor.
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void Improvement.handleMaintenance () {
if (CALCULATION.currentTime -
THIS.getContainer () .normal.activationStart > THIS.minAge) {
Action future = ACTIONS.remove(THIS.getContainer ().failure);
if (future != null) { // if a future failure action exists
ACTIONS.add ((future.getTime () - CALCULATION.currentTime) /
THIS.effect + CALCULATION.currentTime, future.getTarget ());

}

Listing 4.27 The handling of an improvement action

Listing 4.28 presents the implementation of the handleMaintenance () template
method for the Replacement action. The procedure is similar to Improvement, but
instead of updating the action time, a new failure is created.

void Replacement.handleMaintenance () {
if (CALCULATION.currentTime -
THIS.getContainer ().fault.activationStart > THIS.minAge) {
Action future = ACTIONS.remove(THIS.getContainer ().failure);
if (future != null) { // if a future failure action exists

THIS.getContainer ().failure.createAction(); // create new failure

}

Listing 4.28 The handling of a replacement action

Listing 4.29 implements the method handleMaintenance () for Finding action.
If the node state is currently "fault” and the finding is successful, a new immediate
restoration action is created.

void Finding.handleMaintenance () {
if (THIS.getContainer ().currentState == THIS.getContainer ().fault &&
RANDOM.prob () < THIS.prob) {
ACTIONS.add (THIS.getContainer (). restoration);

}

Listing 4.29 The handling of a finding action

The cost definition is common for all type of maintenance actions. In simplest
case the calculation of costs is done after the simulation ends. By using the intervals
and the defined cost of an action, the maintenance costs can be added to the total
costs of a Fault node (see Listing 4.19 on page 105). For more detailed results, a cost

statistics variable needs to be added an updated each time a maintenance action is

handled.
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4.3 Reliability Block Diagram modelling technique

The Reliability Block Diagram (RBD) [5] modelling technique connects fault nodes
to form a diagram of success logic. The structure is created inside a special RBD
node, which contains predefined start and end nodes. The RBD node is at normal
state if there is a path from start to end that does not contain nodes that are at fault
state. Otherwise the RBD node is at fault state. Parallel and serial fault logics are
modelled by connecting the fault nodes in the diagram. The redundancy structures
are modelled with a specific "atleast” attribute, which defines the number of source
connections required. Table 4.21 declares the RBD modelling technique classes and

introduces their attributes.

Table 4.21 The RBD modelling technique

A B C COMMENTS
i FaultRBD class Fault A fault node in a RBD
> RBD class FaultRBD A fault node described by RBD
3 RBD/start prototype  FaultRBD  Predefined start node for the diagram
+ RBD/end prototype  FaultRBD  Predefined end node for the diagram
5 RBD container  FaultRBD  The intermediate fault nodes of the RBD
6 FaultRBD/target attribute  FaultRBD A actribute for creating connections
7 FaultRBD/symmetry[target] = source If X is a source of Y then Y is a target of X
s FaultRBD/atLeast attribute  Integer The number of source connections required
9 FaultRBD/atLeast = 1 By default one source connection is enough

A special FaultRBD class is used in the RBD to allow defining when the check
of state change is needed. Listing 4.30 presents the procedure code of the method
activate(), which overwrites the original procedure that was defined for Fault
class (see Listing 4.7 on page 98). The only difference is that each activation calls a

checkState () template method of the container RBD node.

void FaultRBD.activate() {
getContainer ().checkState(); // notice the possible RBD node state change
for (Element parent : THIS.getElements("parent")) {
ACTIONS.add(parent);

}

Listing 4.30 The activation of a RBD fault node
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Listing 4.31 presents the procedure code of the RBD node checkState () method.
The possible state change is made by using the toTrue() or toFalse() methods
of the Fault node (see Listing 4.9 on page 99). They update the RBD node to the
"normal” state if a path exists. Otherwise the RBD node is updated to fault” state.

void RBD.checkState () {
if (THIS.pathExists()) {
THIS.toFalse(); // to normal state
}
else {
THIS.toTrue(); // to fault state

}

Listing 4.31 The check of a RBD state

The pathExists() function is presented in Listing 4.32. It uses breadth-first
search to check if the RBD model has a path from the ”start” to the “end” node. At
first the ”start” node is added to a search list, which contains all the nodes that are
successfully connected to the start node. If the list contains a node that has a con-
nection to the “target” node, the RBD model path is OK.

boolean RBD.pathExists () {
List<Element> pathOK = new ArrayList<Element>();
pathOK.add (THIS.start);
int index = 0;
while (index < pathOK.size()) {
for (Element target : pathOK.get(index).getElements("target")) {

if (target == THIS.end) {
return true;

}

if (!'target.checkTrue() && !'pathOK.contains(target)) {
int sourcesCount = O0;
for (Element source : target.getElements("source")) {

if (pathOK.contains (source)) {
sourcesCount ++;

}

if (sourcesCount >= target.atleast) {
pathOK.add (target);

}
index++;
}

Listing 4.32 The check if a path exists
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Before a new node is added to the search list, the checkTrue() function of the
Fault class is used to check the node state (see Listing 4.10 on page 100). The node
must also have enough connected source nodes. By default only one connected
source node is needed, but by using the atLeast” attribute it is possible to define

that more connections are required.

The classes of the RBD are based on a Fault class, which allows including them
in advanced RBD models. The result value calculation of a Fault node can be used
to get basic results. If needed, the RBD and FaultRBD classes can declare their on
statistics variables and configure calculation of special result values. For example,
the probability that there exists an OK path that reaches the FaultRBD node might

be an interesting result value in some situations.

4.4 Function modelling technique

Function modelling technique allows to create an environment for visual program-
ming of mathematical operations. Variable and Function element classes (see Ta-
ble 3.16 on page 56) are used for creation of model structures. Attributes *in” and

”out” are used for connections of variables and functions (see Table 3.19 on page 57).

Table 4.22 declares special Variable classes for connecting the function models
to attributes of other modelling techniques. There exist also a Random variable class,
which value is get each time from a random generator, and a StoreTime variable

class, which can be used to store current simulation time.

Table 4.22 The declaration of the Variable classes for the function modelling technique

A B C COMMENTS
1 VariableRead class Variable A variable which reads its value from an attribute
2 VariableRead/path attribute Path An attribute path to read the value from
3 VariableWrite class Variable A variable which writes its value to an attribute
4 VariabIeWrite/path attribute Path An attribute path to write the value to
5 VariableSync class Variable A variable is read from and written to an attribute
6 VariableSync include VariableRead Synchronized variable is read from an attribute
7 VariableSync include VariableWrite Synchronized variable is written to an attribute
8 Random class Variable A random value between 0 and 1
9 StoreTime class Variable A variable that can store the current simulation time
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Listing 4.33 presents the activate () method of the Variable class. The meth-
ods updateIn() and updateOut () update the value from an ”in” connected func-
tion, and ask all “out” functions to make the needed changes after the updated value.

void Variable.activate() {
THIS.updateIn(); // check value of an "in" connected function

THIS.updateOut (); // update "out" connected functions

void Variable.updateIn() {
if (THIS.getElement("in") != null) { // if "in" function is defined
THIS.getElement ("in").updateIn(); // update its value
THIS.value = THIS.getElement("in").getValue(); // and assign it

void Variable.updateOut () {
for (Element out : THIS.getElements("out")) {

out .updateOut (); // update "out" connected functions

}

Listing 4.33 The configuration of the handling of a variable action

Listing 4.34 presents the changes that are needed for classes VariableWrite and
StoreTime. In addition to updating the connected functions, the VariableWrite
class writes the value to the defined attribute. The class StoreTime stores the current

time before making the updates.

void VariableWrite.updateOut () {
MODEL . setNumber (THIS.path, THIS.value); // assignment to defined path
for (Element out : THIS.getElements("out")) {
out .updateOut ();

void StoreTime.activate() {
THIS.value = CALCULATION.currentTime;
THIS.updateOut ();

}

Listing 4.34 The changes needed by the special variable classes

Listing 4.35 presents the basic configuration of the Variable class value handling.
Variables reset the initial value when simulation rounds start. The getValue () func-
tion is used when the value of the variable is needed. The VariableRead and Random

sub classes rewrite the function to define special value reading and generation.
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void Variable.roundStarted () {
THIS.value = THIS.initialValue;

double Variable.getValue() {

return THIS.value;

double VariableRead.getValue() {
return MODEL.getNumber (THIS.path);

double RANDOM.getValue () {
return RANDOM.prob();
}

Listing 4.35 The configuration of the value handling of variables

Listing 4.36 presents the activate() template method of the Function class.
The updateIn() method updates the in” variables before the calculation of the
function value. The updateOut () method calculates the result value and changes

the value of the connected ”out” variables. The updates are not needed if the vari-
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able value does not change.

void Function.activate() {

THIS.updateIn(); // update all input variables

THIS.updateOut (); // calculate value and update all output variables

void Function.updateIn() {
for (Element in : THIS.getElements("in")) {
in.updateIn(); // update all input variables

void Function.updateOut () {
double result = getValue(); // calculate value
for (Element out : THIS.getElements("out")) {
double outValue = out.getValue();
if (outValue != result) { // update if changed
out.value = result;

out .updateOut ();

}

Listing 4.36 The configuration of the function value calculation
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Table 4.23 presents the declaration of basic built-in Function sub classes. List-
ings 4.37 - 4.40 show how they implement the getValue () method. The minuend
in Subtraction and the dividend in Division class procedures are defined by using

» »

a special “in[ minuend]” and "in[dividend]” connections.

Table 4.23 The declaration of basic built-in functions for the function modelling technique

A B C COMMENTS
10 Addition class Function Built-in sum function (+)
11 Subtraction class Function Built-in difference function (—)

12 Multiplication class  Function  Builtin product function (+)

13 Division class Function Built-in quotient function (/)

double Addition.getValue () {
double result = 0;
for (Element in : THIS.getElements("in")) {
result += in.getValue();
}
return result;

}

Listing 4.37 The configuration of the value calculation for addition

double Subtraction.getValue() {
double result = 0;
for (Element in : THIS.getElements("in")) {
if (in.getKey().equals("minuend")) {
result += in.getValue();
}
else {

result -= in.getValue();

}
return result;

}

Listing 4.38 The configuration of the value calculation for subtraction

double Multiplication.getValue() {

double result = 1;

for (Element in : THIS.getElements("in")) {
result *= in.getValue();

}

return result;

}

Listing 4.39 The configuration of the value calculation for multiplication
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double Division.getValue() {
double result = 1;
for (Element in : THIS.getElements("in")) {
if (in.getKey().equals("dividend")) {
result *= in.getValue();

}
else {
result /= in.getValue();

}
return result;

}

Listing 4.40 The configuration of the value calculation for division

Corresponding assignment operators are declared in Table 4.24. As presented for
AddAssignment in Listing 4.41, their first result value is obtained from an "out” con-
nected variable. The assignment operators help avoiding loops in function models,
which simplifies the update algorithms. A new Function class and the getValue ()

template method can be defined similarly for any mathematical operation.

Table 4.24 The declaration of basic built-in assignment functions

A B C COMMENTS
14 AddAssignment class Addition Built-in sum assignment (+=)
15 SubAssignment class Subtraction Built-in difference assignment (—=)

16 MulAssignment class Multiplication Built-in product assignment («=)

17 DiVAssignment class Division Built-in quotient assignment (/=)

double AddAssignment.getValue() {
double result = THIS.getElement ("out").getValue();
for (Element in : THIS.getElements("in")) {
result += in.getValue();
}
return result;

}

Listing 4.41 The configuration of the value calculation for addition assignment

Listing 4.42 presents how the activate() template method is called for all ele-
ments of VariableWrite class when the simulation starts. This allows using func-
tion models for calculation and update of attribute values before they are used in the
simulation. The activation updates the value from an ”in” connected operator and

assigns it to the defined attribute (see Listings 4.33 and 4.34 on page 116).
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void VariableWrite.simulationStarted() {
THIS.activate ();
}

Listing 4.42 The calculation of the function values when the simulation starts

By adding a "listener” (see Table 3.22 on page 59) for a Variable element, it is
possible to update the values during the simulation process. A message needs to be
created when the attribute value is updated. The listener notices this message and
updates the change to all connected functions.

The calculation of basic function result values is made with the help of the generic
statistics handling (see Section 3.4.2). New Variable classes can be declared if certain
special result values are needed. Table 4.25 declares a VariableResult class, which
presents results related to the variable value at each round end. A VariableRate

class is declared for generic production results.

Table 4.25 Declaration of variable that collects result values

A B C COMMENTS
18 VariableResult class Variable A variable which round end result value is shown
19 VariableRate class Variable A variable models a rate of a general production

20 VariableRate/production attribute Number The production result values

Listing 4.43 shows how the ”value” and "production” attributes are added to
generic statistics handling for the VariableResult and VariableRate classes. The
stepTaken() method (see Listing 3.10 on page 77) increases the production based
on the current "value” attribute. This configuration automatically creates various
result attributes, such as "value MEAN” and "production QUANTILE 5”.

void VariableResult.simulationStarted() {

VARIABLES.add (THIS, "value");

void VariableRate.simulationStarted () {

VARIABLES.add (THIS, "production");

void VariableRate.stepTaken() {
THIS.production += CALCULATION.stepLength * THIS.value;
}

Listing 4.43 The configuration of the variable result values
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4.5 Petri net modelling technique

The Petri net [5] modelling technique contains places and transitions, which are
connected with arcs. The number of tokens defines a state of a place, which in AoT
are defined as an attribute of a main element class Place (see Tables 3.16 and 3.18 on
page 56). The upstream and downstream arcs are modelled as "input” and ”output”
connection attributes (see Table 3.19 on page 57) of a Transition class. Table 4.26

declares the attributes for inclusion of transition delay, weights and negative logic.

Table 4.26 The declaration of Petri net transition attributes

A B C COMMENTS
1 Transition/delay attribute  Duration  Delay before the transition is fircd
2 Transition/inputWeight  attribute  Integer Weights of the input connections
3 Transition/inputWeight = 1 Default weight is 1
4+ Transition/outputWeight  attribute  Integer Weights of the output connections
s Transition/outputWeight = 1 Default weight is 1
¢  Transition/inhibit attribute  Boolean  Possibility to define not logic

A place activation creates transitions, which in timed Petri net are fired after cer-
tain delay. Firing of a transition removes a token from “input” places and adds it to
output” places. Attributes “inputWeight” and "outputWeight” are used if the num-
ber of tokens is other than one. The key of the array definition connects the weight
to the connected place. A transition is valid if the number of tokens at ”input” con-
nected places is at least or equal to the value of the corresponding “inputWeight”
attribute. If the ”inhibit” is true for the arc, the number of tokens at the source
places must be strictly lower than the weight. After the delay, the number tokens of
the target places is updated based on the corresponding ”outputWeight” values.

The handling of tokens is analogous with the state changes (see Section 3.3.4).
Listing 4.44 presents the configuration of the roundStarted () template method for
the Place class. When a simulation round starts, the initial number of tokens is
assigned. A first action is added automatically to start the transition process.

void Place.roundStarted() {
THIS.tokens = THIS.initialTokens; // reset the tokens
ACTIONS.add (THIS); // create the transitions

}

Listing 4.44 The configuration of the round start template method for the Place class
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Listing 4.45 presents the activate () method of the Place class. When a place
activates, it creates actions for all “output” connected transitions.

void Place.activate () {
for (Element output : THIS.getElements("output")) {

output.createAction(); // create new actions for output transitions

}

Listing 4.45 The configuration of the activation template method for the Place class

Listing 4.46 configures the validity check for the createAction() method of the
Transition class. If the transition is not valid, the possibly already existing action is
removed. Otherwise, if there was not already an action in the future ACTIONS queue,
the delay time of the transition is used to create a new action.
void Transition.createAction() {

boolean valid = true;
for (Element input : THIS.getElements("input")) {
if (THIS.inhibit !=
(input.tokens < THIS.inputWeight[input.getKey()1)) {

valid = false;

break;

}
Action future = ACTIONS.remove (THIS);
if (valid) A
if (future != null) { // use the previously created action if possible
ACTIONS.add (future.getTime (), THIS);
}
else {
ACTIONS.add (CALCULATION.currentTime + THIS.getDelayTime (), THIS);

}

Listing 4.46 Basic delay handling of the Transition class

Listing 4.47 configures the activation of transitions, which occurs when the tran-
sition is fired after the delay. An action is created for each updated “output” place to
notice the change for the connected transitions.

void Transition.activate() {
for (Element output : THIS.getElements("output")) {
output.tokens += THIS.outputWeight [output.getKey ()];
ACTIONS.add (output);

}

Listing 4.47 The configuration of the situation when a transition is fired
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Like events in state change handling (see Section 4.1), and delay gates in advanced
FTA (see Listing 4.15 on page 102), the transitions use getDelayTime () function
to get the delay before the transition is fired. This enables defining stochastic de-
lays with sub classes, such as TransitionExp and TransitionWeibull. Listing 4.48
presents the basic delay handling of the Transition class. The sub classes can rede-
fine the template method to return a stochastic delay time that is based on a certain

distribution function.

double Transition.getDelayTime () {
return THIS.delay;
}

Listing 4.48 Basic delay handling of the Transition class

Predicates and assertions can be included in transitions by defining them in string
format. Array definitions can be used if more than one predicates or assertions are
needed. Their functional implementation is not specified in this thesis. The sim-
plest approach for the calculation engine that is presented in this thesis is to create
handleAssertions() and ”checkPredicates()” methods, which allow defining any
procedure codes for the special assertion and predicate rules.

With the help of the generic statistics handling (see Section 3.4.2), the calcula-
tion of basic Petri net result values is simple. Listing 4.49 shows how the "tokens”

attribute is added to generic statistics handling. This automatically creates various

result attributes, such as "tokens MEAN” and "tokens QUANTILE 5.

void Place.simulationStarted () {
VARIABLES.add (THIS, "tokens");
}

Listing 4.49 The Petri net tokens attribute is also a statistics variable

4.6 Using other than discrete event simulation tool

Section 3.3 presented a DES tool, which can be configured for analysis of all the mod-
elling techniques that were defined in previous sections of this chapter. However,
the discrete event simulation is not always the most suitable approach. Aol enables
defining other calculation tools for such cases. This section presents examples of

techniques, which use other than the DES tool.
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4.6.1 Markov modelling technique

The Markov [6] modelling technique uses a model, which consist of states and state
transitions. In AoT a transition is modelled by an Event element. The basic state
handling (See Section 3.3.4) forms a continuous-time semi-Markov process. Because
other than exponential distributions are allowed for delays of state changes, the
Markovian property is valid only when the states start.

Discrete-time Markov process defines probabilities of state changes without con-
sidering delays. This simplification ensures that the Markovian property is always
valid. Table 4.27 shows the declaration of StateMarkov and EventMarkov classes for
creating discrete-time Markov models. The probabilities of EventMarkov elements

define the next activated state.

Table 4.27 The Markov modelling technique

A B C COMMENTS
1 StateMarkov class State Special state class for the Markov model
2 EventMarkov class Event Special event class for the Markov model

3 EventMarkov/prob  attribute  Probability  Probability of a state change

The sum of probabilities must equal to 1.0. Like with alternative consequences
(see Section 4.2.2), the given values are considered as weights of the consequences.
Listing 4.50 shows how to translate the weights to probabilities.

void StateMarkov.simulationStarted () {

double sum = 0;

for (Element target : THIS.getElements("target")) {
sum += THIS.prob[target.getKey()];

}

if (sum !'= 1.0) {
for (Element target : THIS.getElements("target")) {

target.prob[target.getKey ()] /= sum;

}

Listing 4.50 The reset of the Markov state transition probabilities

Listing 4.51 configures the selection of an event to activate. The StateMarkov
rewrites the createNextAction() method of the State class (see Listing 3.17 on

page 81). A random probability number selects the ”target” event that is activated.
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void StateMarkov.createNextAction() {
double prob = RANDOM.prob();
for (Element target : THIS.getElements("target")) {
prob -= target.prob;
if (prob < 0) { // select this target
ACTIONS.add (TARGET);

return;

}

Listing 4.51 The activation of the select gate

When compared to continuous-time analysis, the algorithm for discrete-time sim-
ulation is simpler. Table 4.28 declares a tool, which repeats at most maxSteps” num-
ber of discrete time steps for each round. Depending on the significance of the initial
state of the model, the analysis can simulate only one simulation round with a large

number of "maxSteps”, or several rounds with less steps in each round.

Table 4.28 The definition of a simulator tool for discrete-time simulation

A B C COMMENTS

1 Discrete class DES Declaration of a simulator tool for discrete-time simulation
2 Discrete/maxSteps ~ attribute  Integer  The steps limit of cach round

3 /simulator instance Discrete The creation of a simulator tool instance (UID: /simulator)

Listing 4.52 presents the simulation algorithm core, which simplifies the proce-
dure of DES tool (see Listing 3.2 on page 74). The algorithm core does not need
the step() template method as the lengths of the time steps are ignored during the
simulation process. Also the ending of a simulation round is handled differently.

void Discrete.calculationProcess () {
THIS.simulationStart ();
do {
THIS.roundStart ();
while (THIS.actionStart()) {
THIS.actionHandle ();
THIS.actionEnd ();
}
} while (!THIS.simulationEnd());
THIS.createResults ();
}

Listing 4.52 The simulation algorithm skeleton of the discrete-time simulation tool
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Listing 4.53 presents the changes needed to the actionStart () method of the DES
tool (see Listing 3.7 on page 76). The "currentTime” attribute counts the handled
steps. A simulation round ends if the actions queue is empty or when the maxSteps”
limit is reached.
boolean Discrete.actionStart () {

if (ACTIONS.getFirstTarget () !'= null &&
THIS.currentTime < THIS.maxSteps) {

THIS.currentTime++;

return true;
}
for (Element element : MODEL.getElements ()) {
element .roundEnded (); // call the template method for all elements
}
THIS.currentRound++; // increase the status variable: currentRound

return false;

}

Listing 4.53 The redefinition of the actionStart() for discrete-time simulator

4.6.2 Failure Modes and Effects Analysis modelling technique

The Failure Modes and Effects Analysis (FMEA) [7] modelling technique is an ex-
ample for including qualitative information in AoT models. Table 4.29 declares a

FMEA fault node and attributes for severity, occurrence and detection of the failure.

Table 4.29 The attributes for the FMEA modelling technique

A B C COMMENTS
1 FMEA class Fault A special fault for including qualitative information
2 FMEA/severity attribute Text Text to describe severity of the failure
3 FMEA/occurrence attribute  Text Text to describe occurrence rate of the failure
+ FMEA/detection  attribute  Text Text to describe detectability of the failure
5 FMEA/sev attribute  Integer  Inceger between 0 and 10 1o rate the severity
6 FMEA/occ attribute  Integer  Integer between 0 and 10 to rate the oceurrence likelihood
7 FMEA/det attribute  Integer  Integer between 0 and 10 to rate the detectability
s FMEA/rpn attribute  Integer  The risk priority number (RPN)

The FMEA procedure can be continued by defining actions for failure mitigation
that improve the current situations. Table 4.30 declares a special Action class, which

can be used to include actions in a FMEA fault nodes.
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Table 4.30 The attributes of the Action class of the FMEA modelling technique

A B C COMMENTS
9 Action class Element A special class for including FMEA actions
10 FMEA container Action The FMEA fault node contains actions
11 Action/what attribute Text Text to describe recommended action to reduce the risk priority
12 ACtiOl’l/WhO attribute Text Person responsible for the recommendation and the actions
13 Action/date attribute Time Target date to complete the recommended actions
14 Action/sev attribute  Integer The reduced severity if recommended mitigation is applied
15 Action/occ attribute  Integer The reduced occurrence likelihood recommended action is applied
16 Action/det attribute  Integer The improved detectability if recommended action is applied
17 Action/rpn attribute Integer The updated priority number if recommended action is applied

The value of the attribute "rpn” is obtained by multiplying the values of the ”sev”,
occ” and “det” attributes. In AoT, it is possible to create a tool that automatically
calculates and assigns attribute values based on other attributes. Table 4.31 declares a
Calculator tool, which is much simpler that the previously defined Discrete and

DES simulation tools.

Table 4.31 The declaration of a simple calculator tool

A B C COMMENTS

1 Calculator class Tool Calculator tool for automatic value assignment

Listing 4.54 presents the calculationProcess() method of Calculator tool.
Instead of defining a simulation algorithm core (see Listing 3.2 on page 74), it only
calls the calculate () template method for all model elements.

void Calculator.calculationProcess () {
for (Element element : MODEL.getElements ()) {
element.calculate(); // call the template method for all elements

}

Listing 4.54 The calculation process of a simple Calculator tool

Listing 4.55 presents the implementation of the calculate() template method
for the FMEA modelling technique. The "rpn” attribute value is assigned automati-

cally for all elements of FMEA and Action classes.
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void FMEA.calculate() {
THIS.rpn = THIS.sev * THIS.occ * THIS.det;

void Action.calculate() {
THIS.rpn = THIS.sev * THIS.occ * THIS.det;
}

Listing 4.55 The risk priority number calculation for FMEA modelling technique
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5 EXAMPLE MODELS OF DIFFERENT AOT
MODELLING TECHNIQUES

This chapter presents example models that apply the modelling techniques that were

specified in Chapter 4. The examples illustrate how, after the declaration of a mod-

elling technique, the model structure can be created and the attribute values assigned

with a limited number of definition rows. A similar approach is applicable to mod-

elling with arbitrary techniques. With the most suitable technique the definition of

the model is as simple as possible.

5.1 Advanced Fault Tree Analysis example model

This section presents an example model, which uses the advanced FTA modelling

technique (see Section 4.2). Figure 5.1 illustrates the system model, which consist of

a power input with a backup generator, and three similar pumping units. Each unit

has two redundant pumps.

/system

/system/
systemFault
?

/system/
systemOR
/system/pumps([1] /system/pumps|[2] /system/pumps(3]
/system/ ../pumps|[1]/ ../pumps|[2]/ ../pumps[3]/
noPower pumpingFault pumpingFault pumpingFault
f t f
/system/ ../pumps([1]/ ../pumps|[2]/ ../pumps[3]/
backupStartFails pumpingAND pumpingAND pumpingAND
f
/system/ ../pumps[1]/ ../pumps[1]/ -./pumps(2]/ ../pumps[2]/ ../pumps[3]/ ../pumps[3]/
powerlnputFault pumpFault[left] || pumpFault[right] pumpFault[left] || pumpFault[right] pumpFault[left] || pumpFault[right]

Figure 5.1 An advanced FTA modelling technique example model structure
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The definition of the model is divided into three steps: Creation of the model
elements, adding of the connections, and assignment of the attribute values. The
steps are presented in separate tables, which together define the entire model. In
addition, the inclusion of cost risks and maintenance actions is presented in this
section.

Table 5.1 creates 17 elements with 10 definition rows. Table 5.2 forms the model
structure by adding 16 connections with 7 rows. The elements of the three similar
pumping units can be defined without a need to repeat a definition for each unit. The
number of elements and connections would be higher if the automatically created

structures of states and events inside each fault node are included.

Table 5.1 The model structure creation of the advanced FTA example model

A B C COMMENTS
1 /system instance  Folder  Folder for the fault trec of the system
2 system/systemFault instance  Fault  Fault trec top node
3 system/systemOR instance OR Logic OR operator of the system
4 system/noPower instance  Fault  No power to the system
5 system/backupStartFails instance  Cond  Backup starts fails at certain probability
6  system/powerlnputFault instance  Fault  Powerinput faule of the system
7 system/pumps[1-3] instance  Folder  Three similar pump model folders
§  pumps/pumpingFault instance  Fault A pumping fault for cach folder
9 pumps/pumpingAND instance  AND  AND operator for cach pumping folder

10 umps/pumpFault[left,right instance Fault ‘Two similar pump faults for each folder
pumps/pump »T1g pump

Table 5.2 The connections of the advanced FTA example model

A B C COMMENTS
11 system/child connect  system/systemOR From OR gate to system fault
12 systemOR/child connect noPower From no power to system OR gate
13 noPower/child connect  backupStartFails From backup fault to no power
14 backupStartFails/child  connect  powerlnputFault From power input fault to backup
15 systemOR/child connect  pumps/pumpingFault  From each pumping fault to OR gate
6 pumpingFault/child connect  pumpingAND From pumping AND to pumping fault
7 pumpingAND/child connect  pumpFault From both pump faults to AND gate

Table 5.3 assigns the attribute values of the advanced FTA example model. The

failures of the pumps are frequent but the redundant pump reduces the consequences
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of a failure. The power input has also frequent failures, but the possibility to start a

backup generator helps avoiding the system failures.

Table 5.3 The attribute values of the advanced FTA example model

A B C COMMENTS
18 Fault/failure include  EventExp  Allfailures are exponentially distributed
19 Fault/restoration include  EventExp  Exponentially distributed restorations
20  backupStartFails/prob = 0.1 10% probability of backup startup failure
21 powerlnputFault/failure/mean = 50d MTTE of power input is 50 days
2 powerlnputFault/restoration/mean = 1d MTTR of power input is 1 day
23 pumpPFault/failure/mean = 10d MTTF of pump is 10 days
24 pumpFault/restoration/mean 5h MTTR of pump is 5 hours

For the cost risk analysis (see Section 4.2.3), Table 5.4 presents an example of the

assignment of a repair cost for each component of the the example model. The repair

cost can be defined for all 6 pumps by using only one definition row. In addition,

a downtime loss is assigned for the system fault. All costs are in this case added to

the "fault” states of the elements. It would be also possible, for example, to add a

positive production cost to the "normal” state of the system fault node.

Table 5.4 The inclusion of cost risks in the advanced FTA example model

A B C COMMENTS
25 powerInputFault/fault/costCount[repair] = 3000 Power input repair cost: 3000€
2 pumpFault/fault/costCount[repair] = 800 Pump repair cost: 800€
27 system/fault/cost Time[loss] = 2000/h  System downtime loss: 2000€ per hour

For the inclusion of maintenance actions (see Section 4.2.5), Table 5.5 presents

how an inspection is added for the power input and preventive maintenance for the

pumps. The power input is inspected once per week. The symptom time is only

a day so the inspection can only detect and stop about one out of seven failures.

The pumps have a preventive maintenance action once a month, which reduces the

failure rate by 50 %.
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Table 5.5 The inclusion of maintenance actions in the advanced FTA example model

A B C COMMENTS
28 powerInputFault include FaultMaint Power input fault has maintenance
29 powerInputFault/insp instance Il’lSpCCtiOl’l Inspection for power input fault
30 powerInputFault/insp/interval = 7d Inspection is done weekly
31 powerlnputFault/insp/symptom = 1d Symptom time is only one day
52 pumpFault include  FaultMaint  Pump faults have maintenance
33 pumpFault/prev instance  Preventive  Preventive maintenance for pumps
3+ pumpFault/prev/prob = 0.5 Maintenance halves the failure rate
35 pumpFault/preV/interval = 30d Action is done once per month
3 pumpFault/prev/cost = 200 An action costs 200€

5.2 An example of including modelling of phase changes

This section presents a phase change example model. The definition of the model can
be made by using basic AoT state change modelling (see Section 3.3.4). The model
defines a continuous-time semi-Markov process (see Section 4.6.1). As in previous
example, the definition of the model is divided into three steps: Creation of the
model elements, adding of the connections, and assignment of the attribute values.
The steps are presented in separate tables, which together define the entire model.
In addition, the inclusion of connections from a distinct model is presented in this
section.

Figure 5.2 illustrates a phase change model, which consist of three phases and

their connections. Table 5.6 creates the elements of the example model.

/phases

/phases/start

/phases/

prepare /phases/stop

/phases/toWait

/phases/
toPrepare /phases/wait

/phases/
produce

Figure 5.2 An example of a phase change model structure
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Table 5.6 The element creation of the phase change example model

A B C COMMENTS
1 /phases instance Node A node to model phase changes
2 phases/prepare instance  State The prepare state of the phase change model
3 hases/produce instance State The produce state of the phase change model
p p P p 3
4 phases/wait instance  State The wait state of the phase change model
5 hases/start instance Event The produce start event of the phase change model
p P P 3
6 phases/stop instance  Event  The produce stop event of the phase change model
7 hases/toWait instance Event The wait start event of the phase change model
P P g
8 hases/toPrepare instance Event The prepare start event of the phase change model
P P prep p g

Table 5.7 adds the connections of the phase change model. The event “toWait” has

two sources, which means that the ”wait” state can start irrespective of the current

state. After a wait, the basic operation restarts from the ”prepare” phase.

Table 5.7 The adding of the phase change example model connections

A B C COMMENTS
9 start/source connect  prepare From prepare to start
10 start/target connect  produce From start to produce
11 stop/source connect  produce From produce to stop
12 stop/target connect  prepare From stop to prepare
13 toWait/source connect prepare, produce From prepare or produce to wait
14 toWait/target connect wait From wait transition to state
15 toPrepare/source connect wait From wait to prepare transition
16 toPrepare/target connect prepare From prepare transition to state

Table 5.8 assigns the attribute values of the model. In basic situation the phase

changes between preparation and production. There is a delay of 2 days before each

start of the "produce” phase, and the length of each production is 1 day. The initial

state of the model is the "prepare” phase.

Table 5.8 The assignment of the phase change example model attribute values

C

COMMENTS

A B
7 phases/initialState  connect
18 start delay
19 stop delay

phases/prepare The initial state is prepare

The delay to start the production

The duration of the production




In this example, external actions cause an interruption of the basic operation cy-
cle. The AoT framework includes messages and listeners for modelling of connec-
tions between distinct models (see Table 3.22 on page 59). The *wait” phase is started
when an external systemFailure message is sent. Similarly, the "wait” phase ends after

a systemOK message. Table 5.9 presents the assignment of event listeners.

Table 5.9 The assignment of external message listeners of the phase change example model

A B C COMMENTS
20 to\Wait/listener = systemFailure Wiait state starts after an external message
21 toPrepare/listener = systemOK Wiait state ends after an external message

The external messages are sent from an distinct model, such as the advanced FTA
model that was presented in Section 5.1. In this case, the messages are added to the
events of the systemFault node. Table 5.10 presents the assignment of the message
sending attributes. The table continues the definitions that was made in Section 5.1
for the advanced FTA example model. Figure 5.3 illustrates the the connections
of the two models. The state and event structure of the systemFault node, and the

assigned messages and listeners are shown.

Table 5.10 The assignment of the message sending of the advanced FTA example model

A B C COMMENTS
37 systemFault/failure/message = systemFailure Send message when system fault starts
38 systernFault/restoration/message = systemOK Send message when system fault ends

/system

/phases |

temFail
/system/systemFault 5ys en; aflure

I
../systemFault/failure

*

/system/systemOR oo

/phases/
prepare

/phases/start

/phases/
produce

[~ /phases/stop

../systemFault/normal systemOK ../systemFault/fault
T /phases/toWait
/systemFault/restorati phases/
../systemFault/restoration toPrepare

!

T
systemOK

1
systemFailure

Figure 5.3 An example of distinct models that are connected with messages and listeners
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The separate models can also have connections to the opposite direction. For ex-
ample, the active state of the phase change model can affect the failure rate in the fault
model. Modes (see Table 3.22 on page 59) are used as an interface for defining such
connections. Table 5.11 presents the assignment of a prep mode for the "prepare”

state and a prod mode for the ”produce” state.

Table 5.11 The assignment of a production mode of the phase change example model

A B C COMMENTS
22 prepare/mode = prep A prep mode is defined for the prepare state
22 produce/mode = prod A prod mode is defined for the produce state

The mode-dependent events (see Section 4.2.4) can listen the mode changes. Ta-
ble 5.12 continues the definitions that was made in Section 5.1 for the advanced FTA
example model. It changes the pump faults to be mode-dependent. The original fail-
ure event listens the prod mode. A new event is created for the "prep” mode. The
delays in both models are exponentially distributed. During the ”produce” state the
mean delay is 10 days (see Table 5.3 on page 131) and during the "prepare” state 20
days. Because the modes are defined only for the "prepare” and "produce” states,
during the ”wait” state there are no pump failures. These definitions do not affect to

the restoration time, which is not mode-dependent.

Table 5.12 A mode-dependent failure rate for the advanced FTA example model

A B C COMMENTS
39  pumpFault/failure include  EventMode  The original event is mode-dependent
40 pumpFault/failure/listener = prod Active when producing
3  pumpFault/failure[prep] instance  Event Create new event instance
3  pumpFault/failure[prep] include  EventMode  The new event is mode-dependent
3  pumpFault/failure[prep] include  EventExp The new event is exponential
3  pumpFault/failure[prep]/listener = prep Active when preparing
3  pumpFault/failure[prep]/mean = 20d Less failures when not producing

This example connects phase change and advanced FTA models by using modes
and messages. It is also possible to connect a node that models an arbitrary semi-
Markov process as a child of a gate in an advanced FTA model. This requires a dec-
laration of a node sub class, which configures the isTrue () method (see Listing 4.10

from page 100) to define the state of the model that represents the fault situation.
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5.3 Using Reliability Block Diagram to model success logic

This section presents an example model, which uses the Reliability Block Diagram
(RBD) modelling technique (see Section 4.3). The success logic of RBD makes mod-
elling of certain situations simpler when compared to failure logic, which is used in
FTA. The first part of the example is a bridge circuit model [2, Sec. 7.5.5], which is
illustrated in Figure 5.4. The second part defines a sub model for each block of the

first model, which illustrates the possibilities to divide the model to distinct levels.

/bridgeFault

/bridgeFault/ /bridgeFault/

blockFault[A] blockFault[C]
/bridgeFault/ /bridgeFault/ . /bridgeFault/
start blockFault[E] end
/bridgeFault/

/bridgeFault/
blockFault[B] blockFault[D]

Figure 5.4 A RBD modelling technique example model structure

The RBD consist of 5 interconnected blocks. There exist 4 combinations that
interrupt the system operation: AB, CD, AED, BEC. Instead of finding these com-
binations manually, RBD finds them automatically based on the model structure.

The elements and connections of the example are defined in Table 5.13.

Table 5.13 A bridge circuit RBD example model

A B C COMMENTS

i /bridgeFault instance RBD Reliability block diagram of bridge fault
2 bridgeFault/blockFault{A-E] instance FaultRBD Block faults A,B,C,D and E

3 start/target connect  blockFault[A,B]  The startis connected to blocks A and B
4+ blockFault[A,B]/target connect  blockFault[E] A and B are connected to the block E

5 blockFault[E]/target connect  blockFault{C,D]  Theblock E is connected to C and D

6 blockFault[A]/target connect  blockFault[C] The block A is connected to the block C
7 blockFault[B]/target connect  blockFault[D] The block B s connected to the block D
s blockFault[C,D]/target connect end Blocks C and D are connected to the end
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Each block can contain its own RBD. For example, Table 5.14 includes the RBD
class for the blocks of the previous bridge circuit example, and presents similar inner
model for each. The model is an example of the n out of m logic, where at least 3

out of 5 items are required for the block to operate.

Table 5.14 A 3 out of 5 RBD example model

A B C COMMENTS
1 blockFault[A-E] include  RBD A RBD fault contains inner model
2 blockFault/itemFault[1-5] instance FaultRBD Five item faults
5 blockFault/logic instance  FaultRBD An element with vote rule
4 start/target connect  itemFault[1-5]  start connected to all item faults
5 itemFault[1-5]/target connect  logic Item faults connected to logic operator
6 logic/target connect  end Logic operator connected to end
7 logic/atLeast = 3 At least 3 out of 5 required

Similar definition of inner models could be continued further. For example, each
item fault of the model could be defined by a fault tree. This approach enables defin-
ing more detailed inner models for elements that are considered the most important.
The less significant parts of the model could be defined directly by using a failure

probability or distribution function.

5.4 Examples of including function modelling

This section presents two example models, which use the function modelling tech-
nique (see Section 4.4). The first model combines basic mathematical functions to
update an attribute value. This allows including the calculation of proper input val-
ues in the AoT model, which can reduce manual work in attribute value assignment.
The second model illustrates the calculation of production by using a special user-
defined function. The free algorithm creation ensures the flexibility that is some-
times required for inclusion of domain-specific features, such as calculation of special
Key Performance Indicator (KPI).

Figure 5.5 illustrates a simple function model structure. The elements and the

connections are defined in Table 5.15. The model implements the equation:

duration[ 1]+ duration[2]

divisor

result = ¢.1)
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Figure 5.5 A function modelling technique example model structure

/calculation |

/calculation/
sumDuration

/calculation/
duration[1]

result
/calculation/
dividedDuration

/calculation/
dividend
/calculation/
duration[2]

/calculation/
divisor

Table 5.15 A simple calculation example by using the function modelling technique

A B C COMMENTS
1 /calculation instance Folder Simple calculation example
2 calculation/result instance Variable Result of the calculation
3 calculation/dividedDuration ~ instance = Division  Quotient calculation
4+ calculation/dividend instance  Variable  Divident value
5 calculation/divisor instance  Variable  Divisor value
6  calculation/sumDuration instance  Addition  sum calculation
7 calculation/duration[1,2] instance  Variable = Duration values
s dividedDuration/out connect  result Result value is dividend / divisor
9 dividedDuration/in[dividend] connect  dividend  Connect the dividend
10 dividedDuration/in connect  divisor Connect the divisor
11 sumDuration/out connect  dividend  The sum s the dividend of the division
12 sumDuration/in connect duration  Thesum is duration[1] + duration[2]

Table 5.16 illustrates the definitions that connect the previously defined function

model to an attribute of another model. The VariableWrite variables are activated

automatically before simulation starts (see Listing 4.42 on page 120). The activation

calculates the result value of the model and updates in to the defined attribute path,

which in this case is folder felement /attribute.

Table 5.16 Connecting the function model to an attribute of another model

A B C COMMENTS
13 calculation/result include  VariableWrite Result of the calculation
14 calculation/result/path = folder/element/attribute  Store the calculated value
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Sometimes the modelling of a complex value calculation is simpler by defining a
user-defined function when compared to creating a structure that connects various

basic built-in functions. For example, the equation

Lptf’ Zlf‘s L,

Lint(tf): (52)

L,tjv+L, 7 (exp(—ty,/t;)—exp(—ts/T1)) :tp =1y,

defines how much integrated luminosity the Large Hadron Collider (LHC) in CERN
can produce. This system KPlis formed based on the time length of a fill ¢, the peak
value of instantaneous luminosity L ,, luminosity lifetime 7, and luminosity level-
ling time ¢;,, [85].

Equation 5.2 can be modelled with a user-defined IntLumi function, which is
declared in Table 5.17. By using the "url” attribute, the code could be read from a
separate file (see Table 3.14 on page 54) instead of a table cell. The procedure code
is presented in Listing 5.1. The key of an array definition is used to distinguish the
connected ”in” variables (see Table 3.6 on page 47). The fill time is calculated from a

difference of the current simulation time and the stored fill start time.

Table 5.17 Declaration of a user-defined function

A B C COMMENTS
1 IntLumi class Function A class for calculation of integrated luminosity
2 IntLumi/function[getValue] = (see Listing 5.1)  The function algorithm

double IntLumi.getValue() {
double fillTime = CALCULATION.currentTime - startTime;
if (£fillTime <= levelTime) {
return THIS.out.getValue() + peakLumi * fillTime;

}
double levelled = peakLumi * levelTime;
double decay = peakLumi * lifetime *

(Math.exp(-levelTime / lifetime) - Math.exp(-fillTime / lifetime));
return THIS.out.getValue() + levelled + decay;
}

Listing 5.1 The user-defined code for the integrated luminosity function

In this example the variable values are referred directly by using the key of the
connection attribute. For example, instead of THIS.in[’peakLumi’’] . getValue ()

just peakLumi is used. A pre-processing of user-defined function codes needs to be
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included in the calculation engine for enabling this simplification. The principles of
the procedure code pre-processing, which is made in the calculation engine, are not
included in this thesis.

Table 5.18 shows the element creation and the attribute value assignment of the
example function. The Variable instances are created directly to the connection at-
tributes of the IntLumi function. It would be also possible to first create the elements

separately and then connect them to the function.

Table 5.18 An example of a function with user defined code

A B C COMMENTS
1 /luminosity instance  Folder Luminosity calculation example
2 luminosity/intLumi instance  IntLumi Luminosity production function of a ill
5 intLumi/in[startTime] instance  StoreTime "The stored start time of a fill
4+ intLumi/in[level Time] instance  Variable Constant levelling time
5 intLumi/in[levelTime]/value = 6.5h Value for the parameter
6  intLumi/in[peakLumi] instance  Variable Constant peak luminosiy
7 intLumi/in[peakLumi]/value = 5e34 Value for the parameter
s intLumi/in[lifetime] instance  Variable Constant luminosity lifetime
9 intLumi/in[lifetime]/value = 9.3h Value for the parameter
10 intLumi/out instance  VariableResult  Result luminosity production

The messages and listeners (see Table 3.22 on page 59) are used for connecting the
function model to phase change model. The interface is used for avoiding the need
of knowing the exact element UIDs of the phase change model. Any model that uses
the correct message sending interface can be used with the defined function model.
The start time is stored when a prodStart message is received, and the calculation of
the luminosity production is made after the prodEnd message. Table 5.19 presents

the assignment of the listeners.

Table 5.19 An example of a function with the user-defined code

A B C COMMENTS

1 intLumi/in[startTime] /listener = prodStart Store the time when a production starts

2 intLumi/out/listener prodEnd Calculate the production of a fill

Table 5.11 on page 135 presents an example of a phase change model with a proper

interface. The assignment of a prod mode was made for the ”produce” state. The use
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of default mode suffixes ”Start” and "End” (see Rule 3.6 on page 58) allows using only

one "mode” assignment to send the needed messages. Similar definitions should be

made to the model that defines the phase changes of the luminosity production.

5.5 A Petri net example model

This section presents an example model, which uses Petri net modelling technique

(see Section 4.5). Figure 5.6 illustrates an order management process, where an order

is closed when it is paid and delivered. A goal of ten completed orders per day is set

to demonstrate the weight modelling.

order fill
start order
send
invoice

Figure 5.6 A Petri net example model

payment

accept
payment

close order daily T
order finished goal

Table 5.20 presents the creation of the model elements. Each place and transition

of a Petri net is translated directly to an element of the corresponding AoT model.

Table 5.20 The definition of the Petri net example model elements

A B C COMMENTS
1 /orderStart instance  Place Token at this place starts the process
2 /ﬁllOrder instance Transition Order process is stated
3 /Shlp instance Place The product is sent to customer
4 /invoice instance Place The invoice is sent to customer
5 /payment instance  Transition  The customer pays the invoice
6 /accept instance Place Made payment is accepted
7 JcloseOrder instance  Transition  Close the order when all ready
8 /OrderFinished instance Place The order process has ended
9 /dallyGoal instance Transition Check when daily goal is achieved
10 /success instance  Place Success after daily goal

Table 5.21 adds the connections of the Petri net model structure. Each arc is trans-

lated directly to a connection of the corresponding Aol model. A weight is defined
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for an arc from "closeOrder” to “dailyGoal”. The key of an array definition is used
for indicating the connection that has the weight. The other arcs of the order process

have the default weight 1, so special attribute value assignments are not needed.

Table 5.21 The definition of the Petri net example model connections

A B C COMMENTS
11 fillOrder/input connect  orderStart Start the order process
12 fillOrder/output connect  ship,invoice Start product and invoice sending
13 payment/input connect  invoice Wait for payment after sent invoice
14 payment/output connect  accept Accept after customer has paid
15 closeOrder/input connect  ship,accept Ship and payment before close
16 closeOrder/output connect  orderFinished  Endofan order process
17 dailyGoal/input[goal] connect  orderFinished  Conneet to daily goal
18 dailyGoal/inputWeight[goal] connect 10 Weight of the daily goal
19 dailyGoal/output connect  success Success after daily goal

Like AoT function models, a Petri net can be connected to advanced FTA or other
techniques by using messages and listeners (see Table 3.22 from page 59). At least the
first orderStart place should be activated by an external event. Stochastic delays can
be defined for transitions of the model by including, for example, TransitionExp
and TransitionWeibull classes. The result of the model could be the number of
daily goals reached.

Also direct connection of Petri net and advanced FTA models is possible. For
example, the situation that no tokens exist in a place element can represent a fault,
or vice versa. This requires a customisation of the Gate operators to allow also Place
elements as ”child” connections (see Table 3.19 from page 57), and configuration of

the isTrue () template method (see Listing 4.10 from page 100) for Place class.
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6 DISCUSSION AND CONCLUSIONS

This thesis introduced the AoT framework for probabilistic risk and performance
assessment of complex systems. A tabular Triplets data format is used for defining
object-oriented models. Uniquely, the framework and the data format enables declar-
ing the applied modelling technique before model creation, including customised
features for handling of special needs, and combining various modelling techniques.
This thesis also described the principles of a calculation engine, which can be config-
ured for any modelling technique. When compared to traditional static simulation
algorithms, the dynamic compilation of stochastic DES algorithms enables higher

flexibility and more freedom to optimise the calculation of versatile analysis results.

Chapter 4 presented the declaration of traditional risk assessment techniques and
various modelling features, which have been selected based on a large variety of con-
crete analysis cases from different industry sectors [18, 19, 20, 21, 22, 23]. With
similar procedure any advanced or domain-specific features can be included in AoT
models. Chapter 5 illustrated the model creation with the declared modelling tech-
niques. Based on a review, other MBDA approaches do not similarly separate mod-
elling technique declaration from model creation. With this feature AoT enables
declaring an optimal modelling technique for any special situation, which makes the
model creation as simple and efficient as possible. A future target is to build a generic

library that provides predefined modelling techniques for various analysis needs.

The Triplets data format enables storing the declared modelling technique and
the created model into a single table. When compared to high-level programming
or markup languages that are used by other MBDA approaches, tables were found
more familiar for basic system engineers. The tabular format and its array definition
are especially suitable for modelling large systems with repetitive structures, such
as the CERN’s PS booster RF system availability model [86]. The applicability of
tabular model definition has been verified in practise by modelling the dynamic op-

eration phases of luminosity production [24] and by identifying the critical systems
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of a future circular collider [27]. Together the possibility of defining models by edit-
ing a table and the flexibility of declaring custom-made modelling techniques form
an environment that simplifies the development of new analysis tools. This is use-
ful, for example, in special situations where existing tools are not flexible or efficient
enough. Based on a brief review, an in-house software was required at least in relia-
bility studies [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]. In such situations, AoT can

reduce the time required for developing domain-specific analysis software.

Future trends are likely to yield more robust integration between existing tech-
niques and paradigms [56]. Safety Analysis Modelling Language (SAML) [60] and
Guarded Transitions Systems (GTS) [69] are examples of integrative approaches.
Their specifications can be written with high-level tools, transformed into the in-
tegrative model, and verified with a selected verification tool. Open-Probabilistic
Safety Assessment (PSA) [98] and Petri Net Markup Language (PNML) [99] are
similar model exchange formats for traditional techniques. Unlike the state-of-the-
art model exchange and integration formats, the format presented in this thesis is
tabular. As the Triplets data format is highly flexible, platform-independent, open
and non-proprietary, it is suitable for integrating various modelling techniques and
analysis tools. The clear data format also helps the development of graphical and
automatised model creation interfaces, which enable more user-friendly application

of the framework.

Instead of trying to replace existing tools, exchange formats and integration ap-
proaches, a future target is to make the AoT framework compatible with them. AoT
modelling techniques have not been declared to support SAML, GTS, Open-PSA nor
PNML, but no issues are known that would prevent it. Translating models can re-
quire certain restrictions, but even a limited compatibility to one direction would be
beneficial for both approaches. A cabability to translate models from a format to an-
other increases the number of suitable model definition interfaces and analysis tools
for both formats. Similar benefits can be achieved by declaring modelling techniques
to support, for example, coloured Petri net [41], Functional-Failure Identification
and Propagation (FFIP) [51], Dynamic Flowgraph Methodology (DFM) [52], Soft-
ware Reliability Growth Model (SRGM) [53] and Bayesian networks [54]. Project
Evaluation and Review Technique (PERT)[100] for project management and Design
Structure Matrix (DSM) [101] for requirement engineering are examples of integra-

tion possibilities from outside the field of reliability modelling.
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The AoT framework aims to unify the declaration of modelling techniques and
to enable their customisation. A common methodological foundation simplifies
the combination of different techniques. In addition to risk assessment, analysis of
the system performance is enabled by including a calculation of any KPI [9] in the
model. The needed flexibility is achieved by using object-oriented paradigm as a basis
of the AoT framework. A modelling technique is defined by declaring a catalogue of
model object classes and their attributes. This approach is especially suitable to situa-
tions where complex, dynamic or domain-specific features need to be included in the
analysis. With these properties the AoT framework proves the research hypothesis:
By applying the object-oriented paradigm it is possible to create a single framework that
can utilise, combine and customise various risk and performance assessment techniques

to answer the challenging analysis needs of today’s complex and dynamic systems.

The freedom and flexibility in modelling technique declaration enables a large va-
riety of different approaches and solutions for each situation. This thesis presented
fundamental classes, which form a common basis for all modelling techniques. The
model elements are divided to vertices and edges, which makes the model structures
similar to graphs in graph theory [77, 78]. The common base classes help under-
standing the similarities of different techniques. As illustrated by figures of this the-
sis, using special symbols only for vertices and edges enables clear model structure
visualisation of an arbitrary technique. Also the combination of different techniques
is more intuitive when the elements share common super classes that denote the con-
nection possibilities. This approach of using fundamental base classes for various
techniques is an answer to the first research question: What kind of class declaration
is suitable for efficient use of individual modelling techniques and enables a clear way to

add connections between them?

The Triplets data format improves the tabular model definition that was devel-
oped for the OpenMARS [25, 26] approach. A single table enables declaring the
modelling techniques, creating the model structures, and assigning the model param-
eter values. Each definition is a triplet, which can be stored as a row of a three-column
table. This thesis introduced nine keywords that divide the definitions to nine dif-
ferent cases. This strict and clear format simplifies the manual model definition and
enables straightforward reading of tabular models. With this approach the Triplets
data format is an answer to the second research question: How the object-oriented

models can be defined clearly and efficiently by using a tabular formar?
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This theses presented a calculation engine to prove that the models of the AoT
framework can be solved. The engine compiles dynamically a Java simulation pro-
gram by combining a generic algorithm core and the configuration of a modelling
technique. The IoC design principle [82] is applied for increasing the modularity of
the simulation program. Only the procedures that are needed by the applied mod-
elling techniques are included, which increases the efficiency of the analysis process.
The possibility to freely configure the statistics data collection enables optimising the
memory consumption for each technique or case. For large analyses the approach
supports parallel simulation in a computing cluster. With these features the pre-
sented calculation engine is an answer to the third research question: What stochastic
DES procedure is suitable for generic and versatile analyses of object-oriented models?

A higher-level motivation of this research was to improve the decision-making
process. A made decision can be justified to be correct only if available information
is fully taken into account and used in a sophisticated way. There exists usually some
uncertainty related to the studied situations, which causes that a correctly justified
decision made at some time point can be found later to be either good or bad. To
make more good decisions, the available information should be improved, or it must
be used more wisely. The flexibility of the AoT framework enables including system-
atically all essential details in the system model, which forms a basis for sophisticated
risk and performance assessment. Considering these analysis results is integral when

making justified decisions in complex system design and management.
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