
Farhad Javanmardi

GENERATING SPEECH IN DIFFERENT
SPEAKING STYLES USING WAVENET

Master of Science Thesis
Faculty of Information Technology and Communication Sciences (ITC)

Examiners: Prof. Paavo Alku
Prof. Okko Räsänen

May 2020

i

ABSTRACT

Farhad Javanmardi: Generating speech in different speaking styles using WaveNet
Master of Science Thesis
Tampere University
Audio-Visual Signal Processing
May 2020

Generating speech in different styles from any given style is a challenging research problem
in speech technology. This topic has many applications, for example, in assistive devices and
in human-computer speech interaction. With the recent development in neural networks, speech
generation has achieved a great level of naturalness and flexibility. The WaveNet model, one of
the main drivers in recent progress in text-to-speech synthesis, is an advanced neural network
model, which can be used in different speech generation systems. WaveNet uses a sequential
generation process in which a new sample predicted by the model is fed back into the network as
input to predict the next sample until the entire waveform is generated.

This thesis studies training of the WaveNet model with speech spoken in a particular source
style and generating speech waveforms in a given target style. The source style studied in the
thesis is normal speech and the target style is Lombard speech. The latter corresponds to the
speaking style elicited by the Lombard effect, that is, the phenomenon in human speech com-
munication in which speakers change their speaking style in noisy environments in order to raise
loudness and to make the spoken message more intelligible. The training of WaveNet was done
by conditioning the model using acoustic mel-spectrogram features of the input speech. Four
different databases were used for training the model. Two of these databases (Nick 1, Nick 2)
were originally collected at the University of Edinburgh in the UK and the other two (CMU Arctic
1, CMU Arctic 2) at the Carnegie Mellon University in the US. The different databases consisted
of different mixtures of speaking styles and varied in number of unique speakers.

Two subjective listening tests (a speaking style similarity test and a MOS test on speech quality
and naturalness) were conducted to assess the performance of WaveNet for each database. In
the former tests, the WaveNet-generated speech waveforms and the natural Lombard reference
were compared in terms of their style similarity. In the latter test, the quality and naturalness of the
WaveNet-generated speech signals were evaluated. In the speaking style similarity test, training
with the Nick 2 yielded slightly better performance compared to the other three databases. In the
quality and naturalness tests, we found that when the training was done using CMU Arctic 2, the
quality of Lombard speech signals were better than when using the other three databases. As the
overall results, the study shows that the WaveNet model trained on speech of source speaking
style (normal) is not capable of generating speech waveforms of target style (Lombard) unless
some speech signals of target style are included in the training data (i.e., Nick 2 in this study).

Keywords: Speech generation, Lombard style, Speaking style, WaveNet

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

I would like to extend my deepest thanks to my supervisors Prof. Paavo Alku and Prof.
Okko Räsänen for showing me a brilliant research path and guiding me during this pro-
cess. They gave me freedom and encouragement to explore, and I am very glad our
collaboration did not end here.

I would like to thank each and every member of our Speech Communication Technology
team, especially Lauri Juvela and Sudarsana Kadiri. They always provided me great
motivation, guidance and fun research atmosphere.

I would like to thank my dear friends Mehrdad Nahalparvari and Sina Rahimi Motem who
were very supportive and caring and tolerated my many grumpy days.

I would like to thank my aunt, Sahar Zafari, and my uncle, Aidin Hassanzadeh for helping
me to set sail on this unknown world called Finland and follow my dreams.

I dedicate this thesis to my dear parents and siblings whom without their love, support
and encouragement, I would not be who I am today.

Tampere, 6th May 2020

Farhad Javanmardi

iii

CONTENTS

1 Introduction . 1

2 Background . 3

2.1 Characteristics of Speech Signals . 3
2.1.1 Lombard Speech . 4

2.2 Speech Generation . 4

2.3 Speech Conversion Technologies . 5
2.3.1 Voice Conversion . 6
2.3.2 Speaking Style Conversion . 7

3 Neural Networks . 9

3.1 Deep Learning . 15

3.2 Feedforward Neural Networks . 16

3.3 Convolutional Neural Networks . 16

3.4 WaveNet . 21

4 WaveNet-based generation of speech in different speaking style 24

4.1 System Overview . 24

4.2 Feature Extraction . 24
4.2.1 Log Mel Energies . 25
4.2.2 µ-law Transformation . 26

4.3 WaveNet Architecture . 27

4.4 Speech Generation . 28

5 Experiments . 29

5.1 Databases . 29

5.2 Experimental details . 30

5.3 Evaluation Procedure . 32

6 Results . 34

6.1 Speaking Style Similarity Test . 34

6.2 Quality and Naturalness Test . 36

7 Conclusions . 39

References . 41

iv

LIST OF FIGURES

2.1 Typical framework for speech generation. 5
2.2 The overall framework for a voice conversion system. 6
2.3 The general framework for a parametric speaking style conversion system. 8

3.1 A perceptron structure. xi represents the inputs, y is the output, wi are
the weights and b represents bias. A perception uses step function as an
activation function. 10

3.2 The representation of artificial neural network. 11
3.3 Visual representation of activation functions, rectified linear unit (ReLU) in

green, sigmoid function in red and hyperbolic tangent in blue. 12
3.4 The blue table represents a (4 x 4) input and the green table represents a

(3 x 3) kernel. 17
3.5 Convolution operation between an input image and a kernel presented in

Figure 3.4. 18
3.6 1-D causal convolution operation between an input signal and a kernel. . . 18
3.7 1-D dilated convolution operation between an input signal and a kernel. . . 19
3.8 The table in top right presents max pooling operation and the table in bot-

tom right shows average pooling operation. 20
3.9 A schematic diagram of convolutional neural networks in image classifica-

tion. Figure inspired from [81]. 20
3.10 The WaveNet architecture. Figure adapted from [8]. 21
3.11 The residual block architucture. 22
3.12 The conditional WaveNet architucture. 23

4.1 The overview of the system in the training and testing phases. 25
4.2 The triangular mel filters. 26
4.3 The process of mel-spectrogram calculation. 26
4.4 The process of speech waveform generation. After predicting the sample,

it is fed back to the network as input to predict sequentially the next sample. 28

6.1 The speaking style similarity results for WaveNet trained with Nick 1 (first
row), Nick 2 (second row), CMU Arctic 1 (third row) and CMU Arctic 2
(fourth row). The Y-axis shows the style similarity in percentage. The left
column shows the WaveNet-generated utterances in Lombard style (left
bars) and in normal style (right bars) compared to the natural normal ref-
erence. The right column shows the WaveNet-generated utterances in
Lombard style (left bars) and in normal style (right bars) compared to the
natural Lombard reference. 35

v

6.2 Results of the style similarity test for WaveNet-generated utterances in
Lombard style. The X-axis presents results for WaveNet trained with Nick
1, Nick 2, CMU Arctic 1 and CMU Arctic 2. Y-axis shows the style sim-
ilarity in percentage. Left figure represents the results of style similarity
between WaveNet-generated utterances in Lombard style and natural nor-
mal reference. right figure represents the results of style similarity between
WaveNet-generated utterances in Lombard style and natural Lombard ref-
erence. 36

6.3 Mean opinion score results for Lombard style speech quality. In X-axis,
"Ref" represents natural Lombard reference and the rest corresponds to
databases used for training the WaveNet model. Y-axis indicates the mean
scores with 95% confidence interval for all experiments. 37

6.4 Mean opinion score results for normal style speech quality. In X-axis, "Ref"
represents natural normal reference and the rest corresponds to databases
used for training the WaveNet model. Y-axis indicates the mean scores with
95% confidence interval for all experiments. 38

vi

LIST OF TABLES

5.1 Details of CMU Arctic databases . 30
5.2 Details of Nick data . 30
5.3 System configuration for training WaveNet in the final experiments. 31
5.4 Details of four experiments used for training and testing WaveNet. 31

6.1 Mann-Whitney U test p-values with Bonferroni correction for generated
Lombard speech using different databases. The significance level is 0.05

and significant if P < 0.05. 34
6.2 Mann-Whitney U test p-values with Bonferroni correction for generated

Lombard speech using different databases. The significance level is 0.05

and significant if P < 0.05. 37
6.3 Mann-Whitney U test p-values with Bonferroni correction for generated

normal speech using different databases. The significance level is 0.05

and significant if P < 0.05. 38

vii

LIST OF SYMBOLS AND ABBREVIATIONS

F0 Fundamental frequency

ANN artificial neural network

BGMM Bayesian Gaussian mixture model

CE cross entropy

CNN convolutional neural network

DBLSTM-RNN deep bidirectional long short-term memory recurrent neural net-
work

DBN deep belief networks

DNN deep neural network

DTW dynamic time warping

FNN feedfroward neural network

LSF line spectral frequency

MLP neural network

MOS mean opinion score

MSE mean squared error

NN neural network

PSOLA pitch synchronous overlap and add

RBM restricted boltzmann machines

SGD stochastic gradient descent

SSC speaking style conversion

TTS text-to-speech

VC voice conversion

VT voice transformation

1

1 INTRODUCTION

Speech is the most important means to communicate between people. It is also an effi-
cient way to transfer information. In addition to its linguistic message, speech also con-
tains rich information about various speaker traits such as age, gender, state of health
and native language. Thus, this type of information motivates researchers to study and
analyze speech and consequently, develop methods to generate different types of speech
signals artificially. Speech generation (artificially) refers to the production of high-quality
speech from various inputs such as text, but also from other forms such as acoustical
parameters or from other speech signals. For instance, people with hearing disorders as
well as people with speech or language disorders can take advantage of these applica-
tions in the form of screen readers and digital personal assistants.

The emergence of neural networks has enabled building effective speech generation
technologies for human-computer speech interaction. Examples of such technologies
are text-to-speech (TTS), particularly in the form of statistical parametric speech synthe-
sis [1], voice conversion (VC) [2] and speaking style conversion (SSC) [3]. Among these
technologies, TTS is the most popular one employing speech generation. In TTS sys-
tems, text is first converted to linguistic features. The linguistic features are converted
to acoustic features which are mapped to acoustic speech signals using speech gener-
ation. Even though some of the technologies mentioned have been studied for many
years, the recent progress due to the emergence of deep learning has improved the per-
formance of these technologies. In the case of speaking style conversion, the technology
closely associated with the topic of this thesis, conventional signal processing methods
(vocoders) have been used to analyze and synthesize the speech signal, and statistical
methods such as standard Gaussian mixture models (SGMMs) [3] or Bayesian Gaus-
sian mixture models (BGMMs) [3] or neural networks [4] have been used to convert the
vocoder parameters from one style to another. Examples of speaking style conversion
using conventional methods are the studies published in [3, 5].

Speech generation has been subject to a remarkable progress in the past five years due
to advancements in generative deep learning models such as Tacotron [6], generative ad-
versarial networks (GANs) [7] and WaveNet [8]. These methods take acoustic features as
input and generate raw speech waveforms as output. WaveNet is one of the most widely
used speech generation tools in recent TTS studies [9]. Conversion between speech
of normal style and Lombard style (i.e. the speaking style that natural talkers adopt to
when speaking in noise [10]) was studied in TTS recently using adaptation methods [11].

2

However, there are no studies in generating Lombard speech directly using the WaveNet
model trained on normal speech. Besides, generating speech in an arbitrary style would
help us to have more data for some topics in which it is difficult to gather training data.
Thus, we can use the WaveNet model as a data augmentation method. For instance,
training WaveNet on a database containing multiple talkers (healthy and Parkinson’s dis-
ease) and generate speech signals for Parkinson’s disease.

In this thesis, the WaveNet model is used to generate Lombard style from normal speak-
ing style without using mapping models (as in speaking style conversion) or conventional
signal processing methods (as in vocoding in TTS). Thus, the thesis studies acoustic-to-
acoustic mapping (as in speaking style conversion) by focusing on one part of the system,
speech generation, without using the other main component, parameter conversion. In
other words, the goal of this thesis is to study the generation of speech waveforms of
different speaking styles using the popular generative WaveNet model. We decided to
use WaveNet because of its recent progress in generating speech samples. This au-
toregressive model generates the speech waveforms by predicting conditional probability
distribution of a new sample given the past generated samples. Training of WaveNet is
done by conditioning the model by using mel-spectrogram as an auxiliary feature. When
the learning process is done, generating speech in target style is carried out. There-
after, subjective evaluations are conducted to assess the performance of the model in the
generation of Lombard speech.

The thesis is organized as follows. Chapter 2 presents the concept of speech generation
as well as describes the speech conversion technologies developed earlier. Chapter 3
explains the theoretical background of neural networks, the convolutional neural network
and WaveNet. Chapter 4 describes methodologies including pre-processing, feature ex-
traction, model architecture and speech generation. The evaluation procedure details, the
description of the databases used and the WaveNet training and testing are presented in
Chapter 5. Chapter 6 reports the results of both the speaking style similarity test as well
as the quality and naturalness test. Finally, Chapter 7 draws conclusions based on the
presented results and discusses possible future works.

3

2 BACKGROUND

In this chapter, we will first give a short, general description of the characteristics of
speech signals and then focus slightly more on the key speech communication attribute
of this thesis, speaking style. After these parts, an introduction to speech conversion
technologies will be given.

2.1 Characteristics of Speech Signals

The speech signal includes many types of information. In addition to its main component,
the linguistic message, the speech signal includes lots of information about the speaker
and about the environment where the speaker is. The speaker-specific information in-
cludes, for example, acoustic cues about the speaker’s gender, age, emotional state and
state of health. In general, the characteristics of speech signals can be analysed based
on different speech features. These features can be categorized into the following two
groups:

• Segmental features: The sound or timbre of a person’s voice is defined by seg-
mental features whose acoustic descriptors are formants (their frequency and band-
width), and time domain energy. These features are influenced by both the emo-
tional state of the speaker and by the physical properties of the speaker’s speech
organs [12]. Segmental features also depend on the linguistic content, as that is
the primary driver of timbre/lower formants.

• Suprasegmental features: These features characterize the prosodic features re-
lated to the speaking styles, namely, fundamental frequency (F0), intonation, energy
(stress) and phone durations over the utterance. These features depend on the so-
cial and psychological status of speaker [13]. Suprasegmental features such as
prosody also depend on intended message, structure of the given language etc.,
and hence are also guided by the linguistic structure of the language.

Speech signals show huge dynamics due to changes in linguistic contents, speaker, lan-
guage and emotion. This thesis will focus on one speech attribute, the style of speak-
ing. The general goal of the technology studied is to convert speech signals from one
speaking style into another, e.g., from normal to whisper or alternatively from normal to
Lombard, while maintaining the linguistic contents of the speech signal and the speaker
identity. Since generating Lombard speech is the main scope of this work, we briefly

4

introduce it in the following section.

2.1.1 Lombard Speech

The Lombard effect takes place when talkers change their speaking style in order to gen-
erate more intelligible speech in noisy environments [10]. The speaking style used in this
context is called Lombard speech or speech-in-noise. Lombard speech shows changes
in both acoustic and phonetic features compared to speech of normal style. Related to
acoustic features, the Lombard effect causes an increase in formant amplitudes [14] and
a decrease in formant bandwidths [14]. In addition, the Lombard effect raises F0 and vo-
cal intensity and decreases spectral tilt [15, 16]. Changes in phonetic properties include,
for example, increased prominence in the production of vowels compared to consonants,
and in the production of vowels and consonants compared to semivowels [17, 18].

2.2 Speech Generation

Speech generation refers to a process where acoustic speech signals are generated
from different forms of information such as text or acoustic parameters. Examples of
technologies that use speech generation are TTS, voice conversion and speaking style
conversion. The process of speech generation can be considered generally to consist
of three processes (analysis, manipulation and synthesis) as shown in Fig. 2.1. Vocoder
for speech analysis involves the parameterization of speech in terms of acoustic features
(i.e., feature extraction) which are feasible for manipulation and reconstruction of speech
(i.e., vocoder for synthesis). For example, in the case of speaking style conversion, the
source speaking style features are extracted by the vocoder in the analysis stage, then
manipulated, and finally reconstructed by the vocoder in the synthesis stage to obtain the
speech signal of the target style.

Speech synthesis typically refers to TTS, but it can be generalized to refer to any artifi-
cial generation of speech waveforms. One commonly used approach for building speech
synthesizers in TTS is statistical parametric speech synthesis, in which text and speech
are analyzed to get acoustic and linguistic features. Thereafter, the linguistic features are
mapped to acoustic features (vocoder for analysis) through an acoustic model. Finally, at
the synthesis stage, a previously unseen text is first converted to acoustic features by the
acoustic model and is then processed through a waveform synthesis method (vocoder
for synthesis) to generate target speech. Vocoders are used in both the speech analysis
and synthesis stages because they describe a speech waveform using a parametric rep-
resentation (a set of acoustic features). Therefore, vocoding enables the modification of
speech to, for example, to increase its intelligibility [19].

There are two main groups of vocoders that can be used in speech generation: (1) con-
ventional signal processing knowledge-based vocoders (which have been developed for

5

Analysis ManipulationInput
(text/parameters/speech)

Synthesized
speechSynthesis

Acoustic
features

Figure 2.1. Typical framework for speech generation.

TTS) such as STRAIGHT [20] and glottal vocoders [21, 22] and (2) learning-based neural
vocoders such as the WaveNet vocoder [8]. Both glottal vocoders and STRAIGHT em-
ploy the source-filter model in which the speech signal is produced by convolving a source
signal with a vocal tract filter. In the STRAIGHT vocoder, a source signal is spectrally flat
consisting of impulses and noise, and the spectral envelope information is parameterised
using mel-generalized cepstral coefficients [23]. In glottal vocoders, the speech signal
is divided into the glottal excitation (i.e. the estimate of the true glottal volume velocity
waveform generated by the vocal folds) and a vocal tract filter. The glottal excitation is
not spectrally flat due to the different vibration modes of the vocal folds. The vocal tract
filter is parameterized in glottal vocoders using line spectral frequencies (LSFs).

Today, neural vocoders have become the most popular vocoding methods for generat-
ing raw waveforms. In general, a neural vocoder is a trainable system which receives
acoustic features as input and generates speech waveforms as output. An example of a
trainable system is WaveNet, which learns to generate speech waveforms by condition-
ing the system on acoustic features and by modeling the distribution of the samples of
the time-domain speech waveforms [8, 24, 25, 26]. Despite the fact that WaveNet has
demonstrated its ability to generate high-quality speech, it is worth pointing out that the
model uses an autoregressive architecture which calls for a long processing time in the
system’s learning and generating stages. Thus, simplifications of the WaveNet architec-
ture have been proposed, including systems such as FFTnet [24] and WaveRNN [25].
This is discussed in more detail in Section 3.4.

2.3 Speech Conversion Technologies

Due to the emergence of deep learning, there is increasing interest in speech technol-
ogy for different speech conversion technologies. Generally, speech conversion means
converting speech of one type (e.g. speaker identity, emotion, speaking style) to speech
of another type. The most well-known area of speech conversion is voice conversion
(VC) which refers to changing the speaker identity characteristics of speech signals by
keeping the linguistic contents unchanged. Another area of speech conversion technol-
ogy is speaking style conversion (SSC). Unlike in VC, SSC aims to preserve both the
linguistic contents and the speaker identify but to change the speaking style of the un-
derlying talker. With the recent progresses of neural network methods, these two speech
conversion technologies have shown success in their ability to conduct the underlying
conversion task without compromising naturalness and quality of the speech signal [27,
28].

6

2.3.1 Voice Conversion

Voice conversion (VC) is a sub-field of speech conversion technologies aiming at mapping
the speaker identity by keeping the linguistic content intact [29]. VC techniques manipu-
late speech timbre and its prosodic features such as intonation, F0 and duration. In recent
years, VC research has achieved considerable results with the help of advanced deep
learning in applications such as transforming speaker identity [30], speech-to-speech
translation [31] and personalizing TTS systems [32].

The overall framework of the VC system is illustrated in Fig. 2.2 and it is divided into
two operation steps: (1) the training phase, which is an offline process, and (2) the
conversion phase, which is an online process. In the training phase, a mapping func-
tion of speaker-dependent features–—referred to as F(.)–—is computed between source
and target. There are some parts where the speech signal has to be processed before
achieving the mapping function F(.). Input data are pairs of source and target features
corresponding to speech signals of the same linguistic contents. First, both the source
and target signals are processed to extract features such as spectral envelope, F0, and
aperiodic component in the speech analysis stage. Typically, these components are pro-
cessed using two feature extraction methods, either generalized cepstral coefficients [23]
or LSFs [33]. After the feature extraction, dynamic time warping (DTW) is used to align
the features. Thereafter, the conversion function F(.) is obtained which can be applied to
conduct the parameter mapping operation.

Speech analysis/
Feature extraction

Speech analysis/
Feature extraction

Frame alignment

Voice conversion
offline training

Conversion
function

Source speech Target speech

Speech analysis

Feature extraction

Conversion
function

Voice conversion Speech
reconstruction

Source speech

Converted
speech

Training phase Conversion phase

Figure 2.2. The overall framework for a voice conversion system.

7

In the conversion phase, the speech analysis and feature extraction modules receive
only the source speech signal. The conversion function F(.) takes these features as
input and produces converted features as output. Finally, the converted features are
processed by the reconstruction module to produce the converted speech signal. Both
the speech analysis and reconstruction modules play an important role in VC, mainly by
using some popular speech production models such as harmonic plus noise [34], the
WORLD vocoder [35] and the STRAIGHT vocoder [20].

Many methods have been used in VC to build conversion functions. Some of the most
popular techniques used are vector quantization [36, 37], Gaussian mixture models [38,
39, 40], unit selection methods [41], and neural networks-based methods, e.g., restricted
Boltzmann machines (RBM) and its variations [42, 43, 44], deep belief networks (DBN) [45],
deep bidirectional long short-term memory recurrent neural network (DBLSTM-RNN) [46].

2.3.2 Speaking Style Conversion

Speaking style conversion (SSC) is another example of speech technology where speech
conversion is used. SSC aims at converting speech signals uttered by the speaker in
one style to sound like the same speaker’s speech produced using another style (e.g.,
from normal speaking style to shouting). In SSC, both the speaker identity and linguistic
contents of the speech signal should remain unchanged. SSC can be used in different
applications, e.g., in emotion conversion [47, 48], in speech intelligibility improvement
[49, 50], and in TTS. In the last one, SSC can be used to expand the number of speaking
styles the synthesis system can generate when the system is trained using speech from
only one style.

Speaking style conversion can be done using two different approaches. The first ap-
proach is non-parametric and it corresponds simply to performing a direct transformation
such as filtering to the source signal to achieve the conversion [51]. The second ap-
proach is to use a parametric, vocoder-based technique. A general block diagram of
the parametric approach is shown in Fig. 2.3 and its idea is explained as follows. The
parametric system has three main parts including feature extraction, mapping model
and synthesis. First, the features from the input speech are extracted by the vocoder.
There are various vocoders that can be used in this stage, namely, STRAIGHT [20],
WORLD [35]), GlottHMM [22], GlottDNN [21]), Quasiharmonic model [52] and dynamic
sinusoidal model [53]). After this process, the features are fed to the mapping model in
order to produce a new set of features. The model learning can be divided into paral-
lel learning which contains utterance pairs of source and target with the same linguistic
contents, and non-parallel learning in which the target and source speech are of different
linguistic contents. Moreover, the mapping model can be trained either in a supervised or
unsupervised manner. Bayesian Gaussian mixture model (BGMM) [3] and feed-forward
deep neural network are examples of parallel learning and cycleGAN [4] is an example
of a recently used technique for non-parallel learning. In the final stage, the vocoder

8

receives the mapped features and synthesizes the target speech of the desired style.
Fig. 2.3 demonstrates the block diagram of a parametric SSC system.

Feature extraction Mapping model SynthesisSpeech in
source style

Speech in
target style

Features to
be mapped

Mapped
features

Figure 2.3. The general framework for a parametric speaking style conversion system.

9

3 NEURAL NETWORKS

In recent years, many studies in speech processing applications have been conducted
using a new family of models: artificial neural networks (ANNs). Example of applications
that use ANNs are speech enhancement, automatic speech recognition, voice conver-
sion, and more importantly for this thesis, speech generation in different styles. Therefore,
the concepts of neural network, convolutional neural network and WaveNet are discussed
in this chapter.

In machine learning, artificial neural network (ANN), also known as neural network (NN),
is inspired by how the human brain processes information. ANN is determined by many
parallel interconnected networks of adaptive components in which their organizations
tend to act in a similar manner as in biological nervous systems [54]. In its basic structure,
an ANN is composed of a network with simple processing units called neurons. An ANN
is composed of simple processing units called neurons. Each neuron is joined to the
preceding layer of neuron through weighted connection to transmit the information signal
in the network. Its similarity with the brain demonstrates two characteristics of ANN: 1)
neurons learn to represent regularities in the data, and 2) the regularities are stored in
the connections of the neurons [55].

Neural networks methods are utilized to solve many machine learning tasks, such as clas-
sification, regression, clustering and time-series prediction. Over the years, there have
been a variety of ANN architectures introduced in which neurons, layers and activation
functions are the common elements.

Neuron: A neuron, also called a unit or a node, is the principal component of ANNs.
In the brain, synapses transfer information (stimulus) between biological neurons. The
amount of stimuli determines whether neuron can either generate electrical impulse or
not. This phenomenon is implemented by ANNs in such a way that each neuron receives
weighted inputs through its connections from other neurons. In other words, neurons
(except those at the input layer) receive their inputs from the previous layer and com-
pute outputs for the next layer of neurons. Each input is multiplied by weight w and the
sum of the weighted inputs is calculated. Finally, the output is produced by an artificial
neuron depending on its activation function. For example, perceptron is one of the most
important artificial neurons introduced by Frank Rosenblatt [56] in 1958. A perceptron
receives several inputs {x1, x2, ..., xi} ∈ R and computes the weighted sum of these in-
puts with weights wi, and then produces the output y depending on a threshold value

10

(interchangeably called as bias) b. The output is calculated as:

y(x) =

⎧⎨⎩ 1,
∑n

i=1wixi + b > 0

0,
∑n

i=1wixi + b ≤ 0
(3.1)

where n is the number of inputs (xi) to the perceptron, wi represents the weights, b is
the bias and y denotes the output. The step function is used as an activation function in
perceptron. Fig 3.1 shows the structure of a simple perceptron.

1

x1

x2

xn

b

w1

w2

wn

y

input weights

Activation
function

Figure 3.1. A perceptron structure. xi represents the inputs, y is the output, wi are the
weights and b represents bias. A perception uses step function as an activation function.

Layers: Layers are composed of a group of artificial neurons in the network. Neural
networks typically consist of three types of different layers: input layer, hidden layer and
output layer. Input layer contains D passive neurons, where D is the dimensionality of
the input data. Each neuron gets one sample of input x and delivers the output to the
next layer of neurons. The hidden layers are between input and output layers and they
are in charge of executing intermediate computation in the network. The hidden layers
are the main factor in the learning process. An ANN with more than one stacked hidden
layers is known as a deep neural network (DNN). The complexity of the network is mainly
determined by the design of the hidden layers (number of nodes, activation functions etc.).
DNN is explained in detail in Section 3.1. The output layer is composed of neurons that
compute the posterior probabilities of the output for input x. For example, in classification
tasks, the output of neuron z is the posterior probability for the input belonging to class z.
These probabilities are in the range of [0 1] and can be converted to binary outputs using
a certain threshold value, i.e., "Class k or Class z". An ANN with three different layers is
depicted in Fig. 3.2.

Activation Function: In an artificial neural network, activation functions are considered
as essential components that convert the input signal of a neuron into an output sig-
nal. Activation functions introduce non-linearity in the network. Fig. 3.3 illustrates some
important activation functions more commonly utilized in ANNs.

Logistic function: Logistic function is also known as sigmoid function and it is mathe-

11

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Figure 3.2. The representation of artificial neural network.

matically expressed as:

σ(x) =
1

1 + e−x
. (3.2)

Sigmoid neuron is a popular artificial neuron that uses sigmoid activation function σ. This
function is a smooth approximation of the step function used in perceptrons. The output
value is between 0 and 1 and thus it is generally employed in classification tasks.

SoftMax: SoftMax function is a more generalized form of the Logistic activation function
and it is particularly useful in multiclass classification tasks because the output of softmax
is interpreted as the probability distributions of a list of possible outcomes. The output of
softmax is defined as:

softmax(xi) =
exi∑
n e

xn
. (3.3)

Rectified linear unit (ReLU): ReLU has the activation function:

ReLU(x) = max(0, x) (3.4)

where x is the weighted sum of the inputs to the ReLU. This activation function is similar
to the characteristics of a biological neuron, because it promotes sparse representations
in the network [57]. This function grows unbounded for positive values of x and is 0 for
negative values of x. The unboundedness feature of ReLU implies that the neuron does
not saturate for large values and hence it converges faster.

Hyperbolic tangent (tanh): This function can be used as an alternative function to the
Logistic function which scales the output to the range of [-1 1]. The output of the hyper-

12

bolic tangent function is defined by

tanh(x) =
ex − e−x

ex + e−x
. (3.5)

1

-1

1

-1

Figure 3.3. Visual representation of activation functions, rectified linear unit (ReLU) in
green, sigmoid function in red and hyperbolic tangent in blue.

Next, we will shortly describe multi-layer perceptrons (MLPs) which are prototypical neu-
ral networks [58, 59]. The universal approximation theorem [60] promotes MLP’s expres-
sive power and states that for any bounded continuous and nonlinear function, it is always
possible to approximate the function to an arbitrary degree of accuracy using an MLP with
a hidden layer. MLPs with multiple hidden layers work much better in representing com-
plex and structured functions in comparison to shallow networks. This is because MLPs
with multiple hidden layers are able to divide the whole training input space into more
linear parts exponentially [66, 56]. Some pattern recognition tasks such as handwritten
digit recognition [61] and speech recognition [62] have shown good results using MLPs.

In this neural network architecture, all the nodes are organized in sequential layers that
only take inputs from the previous layer of nodes. Fig 3.2 represents a simple MLP with
input, output and two hidden layers. In this prototype case, all layers are fully connected
via a weight matrix and each neuron has a bias and a non-linear activation function. An
MLP calculates the hidden activation vector h and the output ŷ for input vector x as:

h = F (W ihx+ bh) (3.6a)

ŷ = G(W hoh+ bŷ) (3.6b)

where W is the weight matrix, i.e., W ih are the weights from input to hidden layer and
W ho from hidden layer to output layer, b is the bias vector, and F and G are activation
functions that are always computed element-wise. Note that notations x and W indicate
vectors and matrices respectively.

In the network, the output layer computes a prediction ŷ for an input x that is compared to
the original output y using a cost function E(W, b;x, y), or just E for the sake of simplicity.

13

The network is trained to minimize cost function E for all training samples x. The cost
function (also called loss function) evaluates the performance of the network. One of the
most common cost functions is cross entropy (CE) which is generally used in classifica-
tion tasks with the following formula:

CE =
1

N

N∑
n=1

yn log ŷn + (1− yn) log (1− ŷn) (3.7)

where N is the number of training examples, and yn and ŷn are the target and prediction
outputs of sample xn, respectively. The mean squared error (MSE) is another main cost
function to train ANNs:

EMSE =
1

N

N∑
n=1

∥yn − ŷn∥2 . (3.8)

Since the cost function E(W, b) always depends on W and b, gradient descent methods
are utilized to minimize the cost function during training. The idea is to find the gradient for
a given random weight, and repeatedly update the weights by taking small steps towards
the negative direction of the gradient. Backpropagation is an effective algorithm mainly
used to calculate the gradients for all the weights. The backpropagation algorithms [58,
59] are applied through a method called the chain rule for partial derivatives along the
network.

In order to explain how the backpropagation algorithm works on an MLP, the following
notation is used: w′

ji is the weight between the ith neuron in layer l−1 and the jth neuron
in layer l. Moreover, zlj is the weighted input to the jth neuron in layer l, and F ′ is the first
derivatives of the activation function F . Finally, hl−1

i is the activation of the ith neuron in
layer l − 1, i.e.,

zlj =
∑
i

wl
jiF (zl−1

i) + blj =
∑
i

wl
jih

l−1
i + blj (3.9)

where hl−1
i = F (zl−1

i).

As previously explained in this chapter, we need to perform gradient descent to train the
parameters in the network. Since these parameters are differentiable, cost function E can
be minimized using gradient descent so that it computes the derivatives of cost function
with respect to the weights W and bias b terms, i.e., ∂E

∂wl
ji

and ∂E
∂blj

. After computing these

gradients, the weights and biases are updated by moving a small step in the direction of
the negative slope. That is, in the case of using stochastic gradient descent(SGD),

w ≡ w − η∇E(w) (3.10a)

∆wi(τ + 1) = −η∇E(wi) = −η
∂E

∂wi
(3.10b)

where ∆wi(τ + 1) is the weight update, τ is the index of training (epochs), and η is the
learning rate that specifies how much the weights can change on each update. The same
update rule applies to the bias by replacing b with w.

14

Backpropagation is a technique that gradient descent uses to calculate the gradients of
the cost function by computing the relationship between the error term and all weights
and biases in the network. This can be done by propagating the errors at the output
layer backwards through the network. First, for each node in the output layer L, the
backpropagated error ∂L

j is obtained as:

∂L
j ≡ ∂E

∂zLj
=

∂E

∂hLj

∂hLj

∂zLj
(3.11)

Then, the backpropagated errors ∂L
j in the lth layer with respect to the backpropagated

errors ∂L
j+1 in the next layer is calculated:

∂l
j ≡

∂E

∂zlj
=

∑
i

∂E

∂zl+1
i

∂zl+1
i

∂zlj
=

∑
i

wl+1
ij ∂l+1

i F ′(zlj) (3.12)

where we used Equation (3.9) to derive

∂zl+1
j

∂zlj
=

∂

∂zlj

∑
i

wl+1
ij F (zlj) + bl+1

i =
∑
i

wl+1
ij F ′(zlj) (3.13)

and from the definition in 3.11
∂l+1
i ≡ ∂E

∂zl+1
i

(3.14)

For the gradient ∂E
∂wl

ji

in terms of error ∂l
j , we have

∂E

∂wl
ji

=
∂E

∂zlj

∂zlj

∂wl
ji

= hl−1
i ∂l

j (3.15)

where we used the equivalence

∂zlj

∂wl
ji

=
∂

∂wl
ji

∑
i

wl
jih

l−1
i + blj = hl−1

i (3.16)

and for the gradient ∂E
∂blji

∂E

∂blj
=

∂E

∂zlj

∂zlj

∂blj
= ∂l

j (3.17)

where the hl−1
i term is eliminated when computing

∂zlj

∂blj
=

∂

∂blj

∑
i

wl
jih

l−1
i + blj = 1. (3.18)

While stochastic gradient descent is used as a popular optimization strategy, learning
with it can lead to slow convergence. This is because frequent updates might lead the
gradient descent into competing directions which means that it takes a longer time for the
network to minimize the loss function. Batch-based optimization is a technique that al-

15

lows to speed up the learning by calculating the gradient and updating the parameters of
the network once a small sample of randomly chosen training inputs has passed through
the network. There are also several optimization methods that can increase convergence
speed, such as momentum, Adam [63], adagrad [64], adadelta [65], RMSprop [66], Nes-
terov accelerated gradient [67]. Here we briefly explain stochastic gradient descent with
Adam, which is used in the next sections of this project.

Adam: The Adam optimization algorithm [63] is an alternative optimizer to classical
stochastic gradient descent that can be utilized to iteratively adjust the weights and bi-
ases during training. In this method, individual adaptive learning rates are calculated
for network parameters using the estimation of first-order and second-order moments
of the gradient. More specifically, an exponential moving average of the gradient and
the squared gradient are computed by the algorithm under control of two parameters
β1 and β2. The algorithm benefits from two other extensions of SGD; adagrad which
works well on tasks with sparse gradients, and RMSprop which works well on online and
non-stationary tasks. The Adam as adaptive learning rate optimization decreases the
fluctuations of gradient in irrelevant directions of features space in comparison to vanilla
SGD. Moreover, the speed of convergence is faster for Adam optimizer [63].

In this section, we have introduced the MLP network which is referred to as feedforward
neural network (FNN) described in Section 3.2. Another types of FNN, convolutional neu-
ral networks (CNNs) and the WaveNet, which is composed of a deep CNN are presented
in detail since they are used in the subsequent sections of this work. Before presenting
the details of the mentioned networks, we briefly explain deep neural networks.

3.1 Deep Learning

ANNs with more than one hidden layer are known as deep neural networks (DNNs) [68,
69]. DNNs have recently shown discriminative and representation learning capabilities in
several application domains such as computer vision, automatic speech recognition and
natural language processing.

An ANN with a single hidden layer can approximate any function. However, it may fail
to perform in some complicated tasks where the data is not large or the input does not
have sufficient features. Moreover, some experiments have shown that shallow network
architectures can not efficiently find desirable representations of their inputs [70, 71] Fur-
thermore, limited training data represents a sparse subset of samples from the whole
population in real life. Since ANNs are data-driven networks, they can only approximate
the true distribution based on the training data. Therefore, the evaluation of ANNs using
unseen samples from under-represented parts of distribution will lead to a dissatisfying
performance of ANNs, in other words poor generalization [72]. On the other hand, DNNs
are the expanded version of ANNs are better in terms of extracting hidden patterns from
the training inputs due to the extensive number of parameters [69]. This benefits the

16

DNNs with the greater ability of learning higher level representation of input data, and
subsequently with the superior potential of approximating the under-represented regions
of population in training data. Thus, the DNNs can better generalize to unseen samples
from under-represented spaces in the training data [63].

The use of deep architectures has shown significant success which is due to both tech-
nological reasons and theoretical factors. For the former, developments in computational
technology paved the way for deep architectures. In particular, multi-processor graphics
cards or GPUs enhanced computational power to speed up the learning process with
large datasets, enabling involving millions of network parameters in the models. For the
theoretical factor, the inventions of new algorithms such as unsupervised pre-training,
ReLU [57] and dropout [73] have resulted in significant improvements in classification
tasks in image [74] and speech recognition [75].

Despite the obvious advantages of DNNs, training the DNNs can be problematic. As pre-
viously mentioned in this chapter, stochastic gradient descent is typically applied with the
backpropagation algorithm to update the network parameters by minimizing the cost func-
tion in training. This algorithm is guaranteed to reach a local minimum regardless of the
depth of the networks. However there is no guarantee that the training reaches the global
minimum of the cost function for large and deep networks. Instead, a local minimum,
which is typically close to the global minimum error will be reach for networks [76, 77].
In addition, random initialization plays an important role in the performance of the deep
networks, in which case the network weights and biases are initialized with small random
values for all neurons. Poor initialization can affect the learning process by increasing the
time to converge the network training to a desirable accuracy [68].

3.2 Feedforward Neural Networks

One of the most common ANNs is the feed-forward neural network. ANN is called FFN
when there is no cycle between the connections in the network. In the other words, in
this kind of networks, the information is always propagating forward from the first layer
of neurons to the last layer of neurons which produces the outputs. FNNs are mainly
fully connected layers, see Fig 3.2, so that a neuron is only connected to neurons from
the previous and to following layers. MLP described earlier in this chapter and CNNs
described in Section 3.3 are the most widely used types of FNNs [78, 79].

3.3 Convolutional Neural Networks

Convolutional neural networks (CNNs), also known as ConvNet, are another type of FNN,
proposed in the late 1990s by Le Cun for handwritten digit recognition [80]. CNNs have
been shown to be highly powerful neural networks yielding excellent results both in gen-
erative and discriminative tasks in image, speech, audio, text and video.

17

As it is evident from the name, CNNs utilizes a mathematical linear operation which is
known as convolution. In other words, CNNs are the neural networks in which convolu-
tion operation is applied instead of general matrix multiplication in at least one of their
convolutional layers. Generally, the convolution operation between two real-valued func-
tions is the integral of the product between one of the functions and the reversed and
shifted version of the other one. Since the data is discretized in a computer and repre-
sented as integer values, the convolution operation between two discrete functions x and
k is defined as:

x ∗ k =

∞∑
τ=−∞

x(τ)k(t− τ) (3.19)

where the asterisk (∗) denotes the convolution operation. According to CNNs terminology,
the first function x represents the input and the second function k is referred to a learnable
filter or kernel.

In CNNs, convolution operation is done when a kernel with a specific size, e.g., 5x5,
is passed through the input—image—so that the elements of the kernel are convolved
with the elements of the input and the resulting products are summed up to produce
the output. Through this procedure, kernel is learned and optimized in a way that they
could capture important features of the input. Mathematically, we can define a discrete
two-dimensional convolution operation as:

Y (i, j) = (X ∗K)(i, j) =
∑
m

∑
n

X(i+m, j + n)K(m,n) (3.20)

where K is the filter, X is the input and Y is the output which is also called the feature
map. Fig 3.4 shows an example of a 2-D input image and a kernel. In order to clarify
how convolution operation works, we demonstrate an example of a 2-D convolution of
the input image with a kernel in Fig 3.5. First, the elements of the orange region—the
receptive field in input—are multiplied by the elements of the kernel. Then the results
are added to compute the output of convolution for the corresponding region which is
demonstrated in red. This process is continued until producing the final output. Since
the dilated causal convolution is employed in the neural model studied in this thesis, the
WaveNet model, we also briefly introduce the causal and dilated convolution operations.

The causal convolution operation: In this type of convolution operation, each element

2 0 1 0

5 3 2 3

0 4 0 4

5 3 2 1

1 2 0

2 1 2

0 2 0

Figure 3.4. The blue table represents a (4 x 4) input and the green table represents a (3
x 3) kernel.

18

2 0 1 0

5 3 2 3

0 4 0 4

5 3 2 1

27 16

21 0

2 0 1 0

5 3 2 3

0 4 0 4

5 3 2 1

27 2

21 27

1 16

21 27

2 0 1 0

5 3 2 3

0 4 0 4

5 3 2 1

2 0 1 0

5 3 2 3

0 4 0 4

5 3 2 1

27

27 16

2 27

16

2721

2x1 0x2 1x0

5x2 3x1 2x2

0x0 4x2 0x0

0x1 1x2 0x0

3x2 2x1 3x2

4x0 0x2 4x0

5x1 3x2 2x0

0x2 4x1 0x2

5x0 3x2 2x0

3x1 2x2 3x0

4x2 0x1 4x2

3x0 2x2 1x0

Figure 3.5. Convolution operation between an input image and a kernel presented in
Figure 3.4.

of the output is computed from the present and past elements in the input. In other words,
the output value does not depend on future input values. For simplicity, we present an
example of causal convolution for a 1-D input in Fig. 3.6. The output values (shown in
red) are produced by computing the dot products of the kernel with the corresponding
elements of the input.

1 2 4

Input signal

Kernel

Output

6 2 0 3 2 6 2 0 3 2 6 2 0 3 2

10 14 14 10 14 14 10 14 14

1 2 4 1 2 4

Figure 3.6. 1-D causal convolution operation between an input signal and a kernel.

The dilated convolution operation: In the dilated convolution, a dilation factor d defines
which elements of the input are skipped in the convolution operation. For instance, d = 2

specifies that every 2nd element of the input is skipped when convolving by the elements
of the kernel. Fig 3.7 shows a dilated convolution with d = 2 and a kernel size 3. In this
example, a new kernel size is generated by adding zeros between the values of the kernel
in order to skip every other element of the input. Then the output is simply calculated by
summing the resulting products of the input’s elements and the kernel’s elements.

Stride: The stride is one of the methods that can be performed in a convolution operation.
The stride defines how the filter moves from one point to the next point: when the stride

19

1 2 4

Input signal

Kernel

Output

6 2 0 3 2 2

14 16

1 0 2 0 4Kernel

6 2 0 3 2 2

1 0 2 0 4

14 16

1 0 2 0 4Equivalent kernel

Figure 3.7. 1-D dilated convolution operation between an input signal and a kernel.

is larger than one, some parts of the input are ignored by the convolution operation. In
Fig 3.5 we used 1 x 1 strides in the convolution.

Zero padding: Zero padding is another important method that specifies the size of fea-
ture maps. This method pads the input with zeros around the border before convolution.
The convolution operation without zero padding–—known as the valid convolution—–
might lead to shrinkage of the feature maps in each convolution operation. Alternatively,
with zero padding (adding zeros in each axis of the input), the kernel gains access to the
bordering elements in the input, and thus, the feature maps will be of the same size as
the input.

In addition to convolution, there are two more operations that are commonly used in
CNNs: ReLU activation function and pooling operation. ReLU is mostly applied after
every convolution operation so that the output of a convolutional layer is received to the
activation function in order to produce a non-linear output. In a CNN, since convolution
is a linear operation, ReLU is used to introduce non-linearity in the network. Hence, non-
linear real-world phenomena can be modeled by the CNN. Thereafter, pooling operation
reduces the feature map size yet maintaining the main information. Typically, It helps to
make the output of the convolution operation invariant to small changes of the input. This
layer operates on the width and height of the feature map and resizes it using two different
pooling operations:

• Max Pooling: In this method, a small window of an arbitrary size is specified (for
example, a 2 X 2 window) and the largest value of each window on the feature map
is the output of max pooling operation.

• Average Pooling: This method calculates the average value of each window on
the feature map.

An example of max pooling and average pooling operations are shown in Fig 3.8.

Besides, there is an output layer at the end of CNNs which receives the feature map from
several convolution and pooling operations. This feature map preserves high-level fea-
tures of the input. Therefore, the output layer uses this high-level information to produce

20

Feature map

1 2

5 4

4 3

5 6

7 9

3 1

4 7

3 0

Max pooling with
2x2 window

Average pooling with
2x2 window

5 6

9 7

3 4.5

3.55

Figure 3.8. The table in top right presents max pooling operation and the table in bottom
right shows average pooling operation.

the output. As an example for classification task, the output layer uses a softmax activa-
tion function to compute the probability of each class given the input data. In other words,
it classifies the input data into the existing classes. Fig 3.9 demonstrates an example of
CNN in image classification.

Convolution Pooling Convolution Pooling Convolution

Output

dog

cat

Input

Figure 3.9. A schematic diagram of convolutional neural networks in image classification.
Figure inspired from [81].

In summary, the CNN can be characterized by the following issues:

• Typically, CNNs uses three different operations, e.g. convolution, activation (ReLU),
pooling.

• CNNs are widely used in classification tasks where they take the input, process it
and assign it to certain classes.

• CNNs are able to eliminate useless parameters while retaining necessary informa-
tion.

• CNNs are implemented in such a way that convolutional layers receive 1-D, 2-D or
3-D inputs and correspondingly produce 1-D, 2-D or 3-D outputs.

• The size of the output depends on the input size, zero padding, the stride and the
kernel size.

• Convolution operation has parameters, but activation (ReLU) and pooling operation
do not.

21

3.4 WaveNet

WaveNet, introduced by Google in [8], is one of the most well-known deep generative neu-
ral network models utilizing CNNs. WaveNet has in recent years become a remarkably
effective technique to solve complex tasks in speech processing. It has shown exten-
sive progress in many areas of speech technology including TTS [9], speech enhance-
ment [82] and voice conversion [83, 84]. WaveNet was inspired by PixelCNN [85]. Unlike
PixelCNN, which automatically generates the contents of a 2-D image by predicting pixels
from its nearest neighbors, WaveNet operates on 1-D time-series audio data to generate
raw signal waveforms. Therefore, it has quickly become a popular tool in speech gener-
ation because of its flexibility to generate time-domain speech waveforms using acoustic
features in conditioning the model.

The WaveNet generative model is capable of learning probability distributions of the input
data. In other words, it computes the conditional probability distribution for sample xn

given previous predicted samples {x1, ..., xn−1}. Thus, the probability of a waveform x is
expressed as:

p(x) =
N∏

n=1

p(xn|x1, ..., xn−1). (3.21)

This formula expresses two main aspects of WaveNet. The first aspect refers to the
fully probabilistic property of WaveNet in which it calculates a probability distribution and
chooses a discrete value with the highest probability from the distribution. The second
aspect is WaveNet’s autoregressive structure where the past generated samples are used
to produce the next sample. The WaveNet architecture is shown in Fig. 3.10.

ReLU ReLU

Causal
convolution

Inputs

skip-connections

1x1
convolution

1x1
convolution SoftMax

Output probability
distribution

Post-processing stage

Residual block N

Residual block N-1

Residual block 2

Residual block 1

residual-connections

Figure 3.10. The WaveNet architecture. Figure adapted from [8].

According to Fig 3.10, WaveNet is composed of a stack of residual blocks including dilated

22

Dilated
convolution

SigmoidTanh

1x1
convolution

Residual block

Input

skip-connection

residual-connection

Figure 3.11. The residual block architucture.

causal convolutions which are responsible for extracting features, and a post-processing
part that receives information from each residual block and processes it to produce the
output.

Residual block: The residual block uses two shortcut connections, i.e., residual and
skip connections, to speed up the convergence and shorten the training time. In addition,
both residual and skip connections ease the process of gradient propagating for all layers
which helps to avoid the vanishing gradient problem. Moreover, both connections carry
features from data, residual connection is passed to the next layer and skip connection to
the model output. Fig 3.11 demonstrates the structure of the residual block.

Dilated causal convolution: Since the causal convolution guarantees that generating
a new sample is dependent on previous samples, it requires many layers to increase
the receptive fields which are necessary to generate a waveform. Thus, WaveNet uses
dilated causal convolution by doubling the dilation for each layer and resets it at certain
intervals to provide large receptive fields with a few layers. Furthermore, this architecture
decreases the computational cost.

Gated activation function: This unit is responsible for introducing non-linearity in the
network after the dilated causal convolution operation. It is formulated as:

z = tanh(Wf,k ∗ x)⊙ σ(Wg,k ∗ x) (3.22)

where W ∗ x represents a dilated convolution operation, ⊙ is an element-wise multiplica-
tion, f and g are the hyperbolic tangent and sigmoid activation functions, respectively, k
is layer index and W represents learnable kernels.

23

WaveNet with conditioning: WaveNet predicts the conditional probability distribution of
a sample based on both previous generated samples and auxiliary information. Con-
ditioning WaveNet with extra inputs aids to control the characteristics of the generated
speech utterances. For example, in the WaveNet reported in [8], linguistic features and/or
speaker codes were conditioned to train the network aiming to generate speech while
maintaining certain speaker characteristics. Equation 3.21 can be written as follows:

p(x|h) =
N∏

n=1

p(xn|x1, ..., xn−1, h) (3.23)

where h is auxiliary information. Training WaveNet without h would generate sample xn

that has the highest probability value depending on the past predicted samples, which
means that the final result corresponds to a generalization of what WaveNet has learnt
to generate [86]. For instance, in order to generate a sequence of speech for a single
speaker, WaveNet would generate a mixed sequence of phones from multiple speak-
ers’ voices. Fig 3.12 shows a conditional WaveNet architucture and Equation 3.23 with
conditioning is written as:

z = tanh(Wf,k ∗ x+ Cf,k ∗H)⊙ σ(Wg,k ∗ x+ Cg,k ∗H) (3.24)

where the C is the learnable kernel, Cf,k ∗ H represents 1x1 convolution operation and
H is the transformed feature. It should be noted that both input speech and H have the
same time-resolution after computing H = f(h).

ReLU ReLU

skip-connections

1x1
conv SoftMax

Post-processing stage

1x1
conv

O
utput

Dilated
conv

Input
Auxiliary
feature

Dilated
conv

1x1
conv

1x1
conv

Tanh Sigmoid

1x1
conv

residual-connections

Figure 3.12. The conditional WaveNet architucture.

24

4 WAVENET-BASED GENERATION OF SPEECH IN
DIFFERENT SPEAKING STYLE

In this chapter, we describe the approach studied for generating speech in different
speaking style using WaveNet. The WaveNet model receives a speech uttered in a nor-
mal style as input and outputs a speech utterance in Lombard style. Furthermore, we
train the model by conditioning it using a time-frequency representation of speech, i.e.
the mel-spectrogram.

4.1 System Overview

Fig. 4.1 depicts the block diagram of the system which is split into the training and test
parts.

During the training phase, the input speech signal is converted to 25 -ms frames with
an overlap of 80%. Then, a time-frequency domain representation, the mel-spectrum, is
calculated for each frame as an acoustic feature for conditioning. The obtained data is
divided into the training, validation and test sets. Before feeding the training and validation
sets to the network, the input waveforms are quantized into 256 possible values using
the µ-law transformation. Finally, the conditioned WaveNet is trained with the encoded
input speech signal and its corresponding acoustic features to predict the conditional
probability for a new sample given the previous generated samples. Once the learning
process is completed, the system is ready to generate speech waveforms from the test
set mel-spectrograms using the trained model. The evaluation procedure, experiments
and results will be discussed in the following chapters.

4.2 Feature Extraction

Time-frequency representations are widely used in speech processing applications. The
WaveNet model takes advantage of auxiliary information to learn the prosodic features of
speech (e.g. intensity, F0, etc.). Thus, we need to process the speech signal to compute
these acoustic features. This is because each speech signal contains the characteristic
pattern of spectral magnitudes over time which can be utilized as auxiliary information in
the speech generation process.

25

Training data

Training phase

Testing phase

Feature
extraction

μ-law	encoding WaveNet
training

mel-spectrogram

Quantized waveform

Feature
extraction

WaveNet
training

mel-spectrogram

Initial sample
input

Generated speech
speech signal

μ-law	decoding

Figure 4.1. The overview of the system in the training and testing phases.

There are some steps, referred to as pre-processing, before extracting features from a
speech signal. In the pre-processing phase, the speech signal needs to be split in frames
in order to capture the spectral information using the Fourier transform. Computation
of the frame-based Fourier involves windowing the speech waveform with a soft window
such as the Hamming, Hann or triangle window. In this work, we use the Hamming
window with a duration of 25ms and and with an overlap of 80% defined as:

wn = 0.54− 0.46 cos(
2πn

N − 1
) (4.1)

where N is the length of the Hamming window and n = 1,2,...,N . In conditioning WaveNet,
the spectrum is transformed to a perceptual frequency domain representation using log
mel energies, which will be describe next.

4.2.1 Log Mel Energies

The mel scale is designed to simulate the frequency-selectivity of the human auditory
system. It is also a scale of pitches in which the frequency interval between each mel
band is perceptually equal. The human auditory system has higher resolution for low
frequencies and therefore frequency intervals in successive mel bands are wider for high
frequencies. Conversion of frequency from the fHz scale to the mel scale m is computed
using the following formula:

m = 2595 log10(1 +
fHz

700
) (4.2)

26

where mel is the scale of pitch.

Frequency Hz

W
ei

gh
t

1

Figure 4.2. The triangular mel filters.

In order to calculate the log mel energies, the speech signal is divided into short frames
of 25ms using an overlap of 80%. After this process, we calculate the short-time Fourier
transform (STFT) of each frame to convert the time domain speech signal to the fre-
quency domain. Next, the square of the absolute value of the STFT is computed to
obtain the power spectrum. Then, the mel energies are obtained by filtering the power
spectrum using a filterbank (e.g., triangular filters shown in Fig. 4.2). In order to cover the
whole frequency range and to obtain fine resolution, a filterbank with 20, 40 or 80 bands
is typically used. In this thesis, 80 mel bands are used. Finally, by taking the logarithm of
the mel-band energies we obtain the log mel energies as acoustic features for WaveNet.
The feature extraction process is shown in Fig. 4.3.

1. Signal framing
(25-ms frames, 5-ms increment, Hamming-window)
2. Short-time Fourier transform
3. Filterbank energies (80 mel banks)
4. Logarithm
5. Normalization

Figure 4.3. The process of mel-spectrogram calculation.

4.2.2 µ-law Transformation

In addition to the feature extraction process, we also need to apply another transformation
to make input speech suitable for the network. Typically, digital time domain waveforms
of the speech signal are represented using 16-bit integer values, hence WaveNet has to
predict probabilities of 65, 536 levels for each sample to model all possible signal values.
This would result in an excessively complex network. This problem can be avoided by
applying the µ-law transformation to quantize the input speech to a 8-bit form before
feeding to WaveNet. The µ-law transformation is defined as

f(xt) = sign(xt)×
ln 1 + µ|xt|
ln 1 + µ

(4.3)

27

where µ = 255 and −1 < xt < 1. This quantization allows the softmax layer to predict the
probability distribution for only 256 possible values, and also present a proper represen-
tation of the speech signal to WaveNet. Moreover, the reconstructed quantized speech is
sufficiently similar to the original one, as stated in [8].

4.3 WaveNet Architecture

In this study, we train WaveNet by conditioning it on mel-spectrogram of the speech signal
of a particular speaking style (i.e. normal style) in order to generate speech of a desired
style (i.e. Lombard style). We also use thousands of utterances spoken by different
speakers as training examples and adjust hyperparameters to train the WaveNet model.

As described in Section 3.4, WaveNet is composed of several stacked residual blocks
including dilated causal convolution, gated activation function, residual and skip connec-
tions. For this thesis we design 30 residual blocks in such a way that dilation factor of
dilatation causal convolution is reset after 10 layers. Thus, the dilation pattern 1,2,4,...,512
is repeated three times to form 30 dilated causal convolution layers. Moreover, the num-
ber of channels for the residual block and skip connection is 512 and 256, respectively.
For the loss function and optimizer, we utilize cross entropy and Adam optimizer with a
fixed learning rate of 0.001.

Before training the model, we choose short segments of the quantized speech signals x

and their corresponding mel-spectrograms h as inputs to WaveNet instead of the whole-
length signals due to memory restriction and longer computation time involved in the
latter case. These segments are then converted to an one-hot representation with L

rows (i.e., the number of quantization levels) and T columns (i.e., the timesteps). After
this process, it is important to perform the time-resolution adjustment before feeding the
data to WaveNet. Therefore, we add an upsample layer to the network so that when
the mel-spectrogram is passed through it, its length becomes equal to that of the input
segment.

In the training phase, one batch containing the one-hot representation and acoustic fea-
ture is fed into WaveNet at every training epoch. Each residual block provides residual
and skip connections as output so that residual connection acts as the input to the next
block and the skip connection is stored. When the process is done in the last residual
block, skip connections are merged in order to pass into the WaveNet output. Finally, the
softmax layer predicts the probability distribution for the next sample in the sequence. It
should be noted that the WaveNet output has the same size as the input segment.

28

4.4 Speech Generation

Speech generation is carried out by using the trained WaveNet model. As previously
explained, WaveNet is trained using plenty of speech data in normal style aiming at gen-
erating speech in Lombard style. Once the learning process is done and the trained
WaveNet is capable of modelling prosodic features of speech, we store the WaveNet
parameters and continue with the generation step.

Speech generation in WaveNet is a sequential process so that the sample xt+1 is pre-
dicted using a sequence of the predicted past samples x1, x2, ..., xt. We start generating
speech in target style using an initial input value (e.g., 128) and acoustic features of
the test speech signal. First, we prepare the one-hot representation of the initial input,
and then we upsample the mel-spectrogram of the test speech signal in order to feed
WaveNet. The softmax function in the output layer is used to output conditional proba-
bility distribution of a sample for L possible classes. A discrete value with the maximum
likelihood from the distribution is selected as a new sample. This new sample is appended
at the output vector and its one-hot representation with acoustic features of the test signal
is fed back into the WaveNet to generate the next sample. We continue this process until
the test utterance has been generated over its whole length. Fig. 4.4 depicts the speech
generation process.

WaveNet

waveform length
0

255

one-hot
representation

0

255
prediction

Append to the previous generated samples

Auxiliary feature

Figure 4.4. The process of speech waveform generation. After predicting the sample, it
is fed back to the network as input to predict sequentially the next sample.

The system development and speech generation are done in Python. In addition, the
Pytorch library—–an advanced machine learning library written in Python—–is used for
implementing and training the WaveNet model.

29

5 EXPERIMENTS

In this work, we aim to train the WaveNet model using both a large amount of normal
style data from multiple speakers, and a small amount of normal and Lombard styles
data from single-speaker to study how well WaveNet is capable of generating utterances
of two speaking styles (normal and Lombard). Therefore, in this chapter we explain
the procedures used to evaluate the performance of WaveNet and present the speech
databases used in this thesis. We then describe in detail all the experiments that we
have carried out to train and test the WaveNet model.

5.1 Databases

Two speech databases were used to train and evaluate WaveNet. These databases were
the CMU Arctic speech database [87] and the Hurricane Challenge speech database [88].
As previously explained, the data was split to the training, validation and test sets. For
this purpose, we used both the CMU Arctic and Hurricane databases for training and
validation sets while the test set contained only speech from the Hurricane database.

The CMU Arctic database The CMU Arctic speech database was collected at the Lan-
guage Technologies Institute at Carnegie Mellon University. These databases were origi-
nally developed for TTS. The CMU Arctic database contains seven different databases so
that each database includes nearly 1132 phonetically balanced English utterances that
are approximately 3 s long. Each utterance is recorded from a single speaker in a speci-
fied style. The recordings have been conducted in a soundproof booth using a sampling
rate of 16 kHz. The seven CMU Arctic databases are identified by the initials of the cor-
responding speaker. The databases are as follows: BDL (an US English male speaker),
RMS (an US English male speaker), SLT (an US English female speaker), CLB (an US
English female speaker), KSP (an Indian English male speaker), AWB (a Scottish English
male speaker) and JMK (an US English male speaker of Canadian ascent). The CMU
Arctic databases are described in Table 5.1.

The Hurricane Challenge speech database The Hurricane Challenge database was
collected using 72 phonetically balanced lists of 10 sentences of the Harvard corpus [89].
The data was spoken by a male British professional talker named Nick, who produced
the entire set of the 720 Harvard utterances. Therefore, this data is referred to as "the
Nick data" in this thesis. The Nick data was recorded both in normal and Lombard styles

30

Table 5.1. Details of CMU Arctic databases

Database Speaker # utterances Duration(approx.)

BDL 1 US male 1132 56 min.

RMS 1 US male 1132 56 min.

SLT 1 US female 1132 56 min.

CLB 1 US female 1132 56 min.

KSP 1 Indian male 1132 56 min.

AWB 1 Scottish male 1138 57 min.

JMK 1 US male 1132 55 min.

Table 5.2. Details of Nick data

Database Styles # utterances Duration(approx.)

Nick data Normal 2544 110 min.

Nick data Lombard 720 35 min.

in quiet and in the presence of noise. The sampling frequency was 16 kHz. In total, there
are 2544 utterances of normal style and 720 utterances of Lombard style in the Nick data.
Table 5.2 shows the summary of the Nick data.

From now on, we will refer to the five male speakers of CMU Arctic data as CMU Arctic
1, all seven speakers of CMU Arctic data as CMU Arctic 2, normal speech of Nick data
as Nick 1, both normal and Lombard styles of Nick data as Nick 2.

5.2 Experimental details

In order to perform our experiments, we decided to first find a baseline configuration
for all experiments. To do this, we started the first experiment using Nick 1 to study
how different elements such as the input length, receptive field size, number of dilated
causal convolutions and batch size influence the performance of the WaveNet model in
generating speech waveforms. Thus, we trained and tested the WaveNet model (see
Fig. 3.12) several times with various configurations. Table 5.3 shows the obtained system
configuration after several tests. Training WaveNet with the setting shown in Table 5.3
gave a lower loss value in the training and validation phases. This is because we used
more dilated causal convolution layers, a longer segment length and a shorter hop-size
in this configuration. Decreasing the hop-size results in a higher frame rate for the mel-
spectrogram, thus we can extract more information from the speech signal, and the model
can learn better the underlying structure of the signal. Moreover, for the shorter segment
lengths, we used zero-padding to fill the receptive field which makes the beginnings of
sequences less reliable for training. Therefore, by increasing the training segment length
the model sees a larger proportion of valid signals in the training phase.

31

Table 5.3. System configuration for training WaveNet in the final experiments.

Filter length 3

Batch size 1

epoch 150

residual blocks 30

dilation pattern 1,2,4,8,...,512

loss function categorical crossentropy

Optimizer Adam

Learning rate 0.001

Since the configuration shown in Table 5.3 indicated a reasonable computation time and
acceptable performance in predicting speech samples, we selected it as a baseline con-
figuration for running all experiments in order to generate speech in normal and Lombard
styles. The experiments carried out in this thesis are:

• Experiment 1. In this experiment, 2444 utterances of Nick 1 (1 hour and 45 min-
utes of normal style) were used to train and evaluate WaveNet so that training set
consisted of 2344 speech examples and validation set contained 100 speech files.

• Experiment 2. 5660 speech signals of CMU Arctic 1 (4 hours and 40 minutes of
normal style) were assigned for training and validation sets.

• Experiment 3. This experiment included 7930 utterances from CMU Arctic 2 (6
hours and 36 minutes of normal style) from which we used 7830 speech samples
for training and 100 samples for validation.

• Experiment 4. We used 3064 utterances from Nick 2 (1 hour and 45 minutes of
normal style and 25 minutes of Lombard style) in such a way that the training set
consisted of 2964 utterances and the validation set contained 100 utterances.

We used the common test set for all the four experiments. The test set contains 100 ut-
terances of Nick data in normal style and 100 utterances of Nick data in Lombard style as
unseen data for generating speech waveforms. These experiments enabled us to study
the performance of WaveNet when trained with the larger amount of normal style data,
and smaller amount of normal and Lombard styles data regarding generating speech
waveforms of the target style (Lombard). The description of four experiments is summa-
rized in Table 5.4.

Table 5.4. Details of four experiments used for training and testing WaveNet.

Experiments Database styles Training set utterances Test set utterances

1 Nick 1 Normal 2444

1. 100 utterances of Nick data in normal style
2. 100 utterances of Nick data in Lombard style

2 CMU Arctic 1 Normal 5660

3 CMU Arctic 2 Normal 7930

4 Nick 2 Normal and Lombard 3064

All these experiments were run on GPU in Triton, the high-performance computing cluster

32

provided by Aalto University. We trained our model, conditioned on the mel-spectrogram,
for each experiment using the configuration presented in Table 5.3 and generated speech
in both normal and Lombard styles. We generated 100 speech waveforms in Lombard
style and 100 speech waveforms in normal style for all the experiments. The reason of
generating speech in normal style was to study the performance of WaveNet in differ-
ent system configurations and to find fixed parameters for further training. Moreover, by
comparing the generated normal speech utterances to Lombard speech we could an-
alyze whether WaveNet is capable of mimicking the Lombard effect. Finally, randomly
selected samples were taken from the generated data to be used in the two listening
tests described in section 5.3.

5.3 Evaluation Procedure

In the assessment of speech generation methods such as the WaveNet vocoder, sub-
jective evaluations are widely used. In this work, we apply two different subjective lis-
tening tests: the speaking style similarity test and mean opinion score (MOS) test. In
the former, we ask subjects (untrained listeners) to evaluate the speaking style similar-
ity between natural Lombard speech and their WaveNet-generated counterparts. In the
latter, we evaluate the overall quality and naturalness of the WaveNet-generated speech
utterances.

Speaking Style Similarity Test. We train WaveNet using speech data of normal style
(the source style) and generate speech in Lombard style (the target style) without chang-
ing the linguistic contents of speech. Therefore, it is important to evaluate the similarity
between the generated Lombard utterances and their natural counterparts (i.e both natu-
ral normal speech and natural Lombard speech). Since there are several similarity tests
that have been used in the literature [90], we decided to employ the evaluation setup used
in [11] to measure style similarity. In a speaking style similarity test, a pair of utterances is
used in the assessment: one is a natural speech reference in either normal or Lombard
style and the other one is the generated speech sample. The listener is asked to answer
the following question “Do you think that these two samples have been produced using
the same speaking style? Some of the samples may sound slightly distorted. Please try
to ignore the distortion and concentrate on identifying the speaking style." The listener
chooses an answer from the following four options:

• Speaking style sounds the same, I’m absolutely sure

• Speaking style sounds the same, but I’m not completely sure

• Speaking style sounds different, but I’m not completely sure

• Speaking styles sounds different, I’m absolutely sure

Quality and Naturalness Test. The mean opinion score (MOS) test is the most popular
listening test for evaluating the quality and naturalness of speech, for example, in TTS and
in speech coding. This test aims to describe how much the quality and/or naturalness

33

of a speech utterance is affected by the underlying processing (e.g. speech coding or
generation). In the MOS test conducted in the thesis, the listeners were asked to rate the
quality of the generated speech sample using the following scale:

• "5" for excellent

• "4" for good

• "3" for fair

• "2" for poor

• "1" for bad

The MOS was finally calculated by taking the mean value of the answers.

In speaking style similarity test, we randomly chose 16 pairs utterances from all experi-
ments described in section 5.2 so that first utterance is either natural normal reference
or natural Lombard reference and second utterance is WaveNet-generated speech wave-
forms in normal and Lombard styles. In MOS test, 16 utterances of WaveNet-generated
speech signals were randomly selected from all experiments (8 normal style and 8 Lom-
bard style). In addition, we also chose two utterances from natural normal reference and
two utterances from natural Lombard reference. Totally, 20 utterances were used in MOS
test.

In order to conducted the listening tests, we made two simple HTML webpages for both
tests. In a non-English speaking country (Finland), it is difficult to find native English
speakers. Therefore, we recruited listeners among students of Aalto University who have
been studying at least 5 years in a program whose language of instruction is English. The
listening tests were conducted by 20 listeners who were situated in a quite office room
using high-quality headphones in the evaluations. The subjects rated first the style sim-
ilarity of 16 pairs utterances after that the quality and naturalness of 20 utterances were
rated. The obtained results for speaking style similarity and MOS tests are presented in
Chapter 6.

34

6 RESULTS

This chapter presents the results of the subjective evaluations. The results of the speak-
ing style similarity test are described first in section 6.1 after which the results of the
quality and naturalness evaluation are described in section 6.2.

6.1 Speaking Style Similarity Test

The results of speaking style similarity are shown in Fig 6.1. The plots depict the re-
sults of the style similarity test between the WaveNet-generated utterances and the nat-
ural reference utterances in Lombard style (left) and in normal style (right). The four
databases that were used in the WaveNet training are shown in different rows. In the
ideal case, the listener should distinguish the generated normal speaking style samples
from the corresponding reference samples of Lombard style. Moreover, in the ideal case,
the WaveNet-generated Lombard samples should be distinguished from the correspond-
ing natural samples of normal style. These ideal cases indeed manifest themselves in
Fig. 6.1 by the blue bars which show high values.

Fig 6.2 shows the performance of WaveNet trained with four databases (Nick 1, Nick
2, CMU Arctic 1 and CMU Arctic 2) regarding speaking style similarity for WaveNet-
generated Lombard speech. Left figure presents the style similarity between WaveNet-
generated utterances in Lombard style and natural normal reference. Right figure rep-
resents style similarity between WaveNet-generated utterances in Lombard style and
natural Lombard reference. As can be seen, WaveNet trained with Nick 2 performed
better than other three databases in generating Lombard speech signals. In addition,
non-parametric Mann-Whitney U test [91] with Bonferroni correction was conducted to

Table 6.1. Mann-Whitney U test p-values with Bonferroni correction for generated Lom-
bard speech using different databases. The significance level is 0.05 and significant if
P < 0.05.

Nick 1 Nick 2 CMU Arctic 1 CMU Arctic 2

Nick 1 – 0.000 0.452 1.0

Nick 2 0.011 – 0.001 0.000
CMU Arctic 1 0.452 0.001 – 1.0

CMU Arctic 2 1.0 0.016 1.0 –

35

0

20

40

60

80

100

St
yl

e
sim

ila
rit

y
in

 p
er

ce
nt

ag
e

Nick 1
Compared with natural normal reference

0

20

40

60

80

100
Compared with natural Lombard reference

0

20

40

60

80

100

St
yl

e
sim

ila
rit

y
in

 p
er

ce
nt

ag
e

Nick 2

0

20

40

60

80

100

0

20

40

60

80

100

St
yl

e
sim

ila
rit

y
in

 p
er

ce
nt

ag
e

CMU Arctic 1

0

20

40

60

80

100

Lombard Normal
0

20

40

60

80

100

St
yl

e
sim

ila
rit

y
in

 p
er

ce
nt

ag
e

CMU Arctic 2

Lombard Normal
0

20

40

60

80

100

Different: Absolutely sure
Different: Not sure
Same: Not sure
Same: Absolutely sure

Figure 6.1. The speaking style similarity results for WaveNet trained with Nick 1 (first
row), Nick 2 (second row), CMU Arctic 1 (third row) and CMU Arctic 2 (fourth row). The
Y-axis shows the style similarity in percentage. The left column shows the WaveNet-
generated utterances in Lombard style (left bars) and in normal style (right bars) com-
pared to the natural normal reference. The right column shows the WaveNet-generated
utterances in Lombard style (left bars) and in normal style (right bars) compared to the
natural Lombard reference.

36

Nick
 1

Nick
 2

CMU Arct
ic 1

CMU Arct
ic 2

0

20

40

60

80

100

St
yl

e
sim

ila
rit

y
in

 p
er

ce
nt

ag
e

Compared with natural normal reference

Different: Absolutely sure
Different: Not sure
Same: Not sure
Same: Absolutely sure

Nick
 1

Nick
 2

CMU Arct
ic 1

CMU Arct
ic 2

0

20

40

60

80

100

St
yl

e
sim

ila
rit

y
in

 p
er

ce
nt

ag
e

Compared with natural Lombard reference

Different: Absolutely sure
Different: Not sure
Same: Not sure
Same: Absolutely sure

Figure 6.2. Results of the style similarity test for WaveNet-generated utterances in Lom-
bard style. The X-axis presents results for WaveNet trained with Nick 1, Nick 2, CMU
Arctic 1 and CMU Arctic 2. Y-axis shows the style similarity in percentage. Left fig-
ure represents the results of style similarity between WaveNet-generated utterances in
Lombard style and natural normal reference. right figure represents the results of style
similarity between WaveNet-generated utterances in Lombard style and natural Lombard
reference.

analyze whether the database used showed a statistically significant effect in similarity.
The results in Table 6.1 indicate that the difference between the Nick 2 and the other
databases is significant. On the other hand, Nick 1, CMU Arctic 1 and 2 are not signifi-
cantly different.

6.2 Quality and Naturalness Test

Fig. 6.3 depicts the MOS results for generated speech of Lombard style. This plot shows
the mean scores with 95% confidence intervals for all experiments.

It can be seen that the WaveNet vocoder trained with the CMU Arctic 1, CMU Arctic 2
and Nick 2 received high ratings, while the WaveNet trained with Nick 1 clearly failed to
generate speech of decent quality and naturalness in Lombard style. This is because
Nick 1 has less data per speaker in comparison to the other databases. Consequently,
WaveNet training could not see sufficient variations in the data to generate high-quality
speech in Lombard style. Instead, the model training using the CMU Arctic 2 results in
higher quality and naturalness compared to the other databases. The main reason for
this is that CMU Arctic 2 includes a large amount of data which shows different variation
due to, for example, multiple speakers, accents and genders. In addition, Table 6.2 shows
non-parametric Mann-Whitney U test with Bonferroni correction for quality of the gener-
ated Lombard utterances. The U test indicates that CMU Arctic 2 and natural Lombard
reference (Ref) are not significantly different. Likewise, there is no statistically significant
differences between CMU Arctic 1 and Nick 2, however, the generated Lombard speech
from CMU Arctic 1 received slightly higher rating as also indicated by Fig. 6.3.

37

Ref

Nick
 1

CM
U A

rc
tic

 1

CM
U A

rc
tic

 2

Nick
 2

1

2

3

4

5

M
O

S

Lombard style voice quality

Figure 6.3. Mean opinion score results for Lombard style speech quality. In X-axis,
"Ref" represents natural Lombard reference and the rest corresponds to databases used
for training the WaveNet model. Y-axis indicates the mean scores with 95% confidence
interval for all experiments.

Table 6.2. Mann-Whitney U test p-values with Bonferroni correction for generated Lom-
bard speech using different databases. The significance level is 0.05 and significant if
P < 0.05.

ref Nick 1 Nick 2 CMU Arctic 1 CMU Arctic 2

ref – 0.000 0.001 0.005 1.0

Nick 1 0.000 – 0.000 0.000 0.000
Nick 2 0.001 0.000 – 1.0 0.001

CMU Arctic 1 0.005 0.000 1.0 – 0.004
CMU Arctic 2 1.0 0.000 0.001 0.004 –

The results of the MOS test for generated speech of normal style shown in Fig. 6.4
demonstrate that all the databases achieved closer mean scores to the natural normal ref-
erence (Ref) mean score. Among the databases, it was observed (see Fig. 6.4) that train-
ing WaveNet with Nick 1 and Nick 2 seems to perform better than other two databases
(CMU Arctic 1 and 2). Besides, the results of U test for quality of the generated normal
style speech shown in the Table 6.3 confirms that the differences between all databases
and natural normal reference are not statistically significant.

38

Ref

Nick
 1

CM
U A

rc
tic

 1

CM
U A

rc
tic

 2

Nick
 2

1

2

3

4

5

M
O

S

Normal style voice quality

Figure 6.4. Mean opinion score results for normal style speech quality. In X-axis, "Ref"
represents natural normal reference and the rest corresponds to databases used for train-
ing the WaveNet model. Y-axis indicates the mean scores with 95% confidence interval
for all experiments.

Table 6.3. Mann-Whitney U test p-values with Bonferroni correction for generated normal
speech using different databases. The significance level is 0.05 and significant if P < 0.05.

ref Nick 1 Nick 2 CMU Arctic 1 CMU Arctic 2

ref – 0.611 1.0 1.0 0.733

Nick 1 0.611 – 1.0 0.341 0.003
Nick 2 1.0 1.0 – 1.0 0.011

CMU Arctic 1 1.0 0.341 0.7 – 1.0

CMU Arctic 2 0.733 0.003 0.011 1.0 –

39

7 CONCLUSIONS

In this thesis, speech generation related to a specific attribute of natural speech com-
munication, speaking style, is studied. The study focuses on the WaveNet model–—a
recently developed advanced neural vocoder–—which was trained using speech spoken
in a source style (normal) to generate speech of a target style (Lombard). Training of
WaveNet was conducted by conditioning the model on a time-frequency representation
(the mel-spectrogram) of the input speech.

We trained the WaveNet model using four different speech databases, namely, Nick 1
(1 hour and 45 minutes of normal style), Nick data (2 hours and 10 minutes of normal
and Lombard styles), CMU Arctic 1 (4 hours and 40 minutes of normal style) and CMU
Arctic 2 (6 hours and 36 minutes of normal style). These databases consist of corpora
that include both large amounts data from multiple speakers (CMU Arctic 1, CMU Arctic
2) and also sets with small amounts of speech from single speakers (Nick 1, Nick data).
These databases enabled us to study the performance of WaveNet when trained with the
larger amount of normal style data, and smaller amount of normal and Lombard styles
data regarding generating speech waveforms of the target style (Lombard).

Two subjective evaluations (a speaking style similarity test, and a MOS test) were con-
ducted to evaluate the performance of the WaveNet model for each of the database. In
the speaking style similarity test, the style similarity between the natural Lombard refer-
ence and WaveNet-generated speech waveforms were compared. In the MOS test, we
assessed the quality and naturalness of the WaveNet-generated speech signals. When
the WaveNet model was trained using a small amount of speech consisting of normal and
Lombard styles of a single speaker (i.e. the Nick data), we found a large style similarity
between the WaveNet-generated Lombard signals and their natural Lombard references.
However, the corresponding similarity was clearly smaller when the WaveNet model was
trained using speech data from the other three databases consisting of normal style of
multiple speakers. On the other hand, when WaveNet was trained using a large amount
of normal style data from multiple speakers (i.e., CMU Arctic 2) we found that the quality
and naturalness of WaveNet-generated Lombard speech signals were superior compared
to the WaveNet-generated speech signals from the other three databases.

In summary, the study shows that WaveNet is an effective tool to generate speech of
a given target style (i.e. Lombard in the case of the current study) using the mel-
spectrogram. However, the training strategy of WaveNet affects both the style similarity
between the generated speech signals and their natural reference as well as the quality

40

and naturalness of the generated signals. In particular, it was observed that WaveNet
trained using a small amount of Lombard speech of a single speaker gave better results
in terms of speaking style similarity than using a large amount of normal speech from
multiple talkers. On the other hand, the model training using a large amount of data in
normal style improved WaveNet’s performance in terms of speech quality and natural-
ness. Overall, we can conclude that the WaveNet model trained on speech of normal
style is capable of generating speech waveforms of Lombard style when the training data
has some speech signals in Lombard style.

41

REFERENCES

[1] Zen, H., Tokuda, K. and Black, A. W. Statistical parametric speech synthesis. Speech
Communication (2009), pp. 1039–1064.

[2] Mohammadi, S. H. and Kain, A. An overview of voice conversion systems. Speech
Communication (2017), pp. 65–82.

[3] Seshadri, S., Juvela, L., Räsänen, O. and Alku, P. Vocal Effort Based Speaking
Style Conversion Using Vocoder Features and Parallel Learning. IEEE Access
(2019), pp. 17230-17246.

[4] Seshadri, S., Juvela, L., Yamagishi, J., Räsänen, O. and Alku, P. Cycle-consistent
adversarial networks for non-parallel vocal effort based speaking style conversion.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2019), pp. 6835–6839.

[5] López, A., Seshadri, S., Juvela, L., Räsänen, O. and Alku, P. Speaking Style Con-
version from Normal to Lombard Speech Using a Glottal Vocoder and Bayesian
GMMs. Proceedings of Interspeech 2017, Interspeech: Annual Conference of the
International Speech Communication Association (2017), pp. 1363-1367.

[6] Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z.,
Xiao, Y., Chen, Z., Bengio, S. et al. Tacotron: Towards end-to-end speech synthesis.
Interspeech (2017).

[7] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. Generative adversarial nets. Advances in Neural Infor-
mation Processing Systems (2014), pp. 2672–2680.

[8] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A. and Kavukcuoglu, K. Wavenet: A generative model for raw
audio. ArXiv (2016).

[9] Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang,
Y., Wang, Y., Skerrv-Ryan, R. et al. Natural tts synthesis by conditioning wavenet on
mel spectrogram predictions. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2018), pp. 4779–4783.

[10] Lombard, E. Le signe de l’elevation de la voix. Ann. Mal. de L’Oreille et du Larynx
(1911), pp. 101–119.

[11] Bollepalli, B., Juvela, L., Airaksinen, M., Valentini-Botinhao, C. and Alku, P. Normal-
to-Lombard Adaptation of Speech Synthesis Using Long Short-Term Memory Re-
current Neural Networks. Speech Communication (2019).

[12] KAIN, A. High resolution voice transformation. PhD thesis. 2001.
[13] Kuwabara, H. and Sagisak, Y. Acoustic characteristics of speaker individuality:

Control and conversion. Speech communication (1995), pp. 165–173.

42

[14] Lu, Y. and Cooke, M. Speech production modifications produced by competing talk-
ers, babble, and stationary noise. The Journal of the Acoustical Society of America
(2008), pp. 3261–3275.

[15] Hansen, J. H. L. Analysis and compensation of speech under stress and noise for
environmental robustness in speech recognition. Speech Communication (1996),
pp. 151-173.

[16] Summers, V., Pisoni, D., Bernacki, R., Pedlow, R. and Stokes, M. Effects of noise on
speech production: Acoustic and perceptual analyses. The Journal of the Acousti-
cal Society of America (1988), pp. 917-28.

[17] Junqua, J.-C. The Lombard reflex and its role on human listeners and automatic
speech recognizers. The Journal of the Acoustical Society of America (1993), pp.
510–524.

[18] Garnier, M., Bailly, L., Dohen, M., Welby, P. and Lœvenbruck, H. An acoustic and
articulatory study of Lombard speech: Global effects on the utterance. Ninth Inter-
national Conference on Spoken Language Processing (2006).

[19] Cooke, M., King, S., Garnier, M. and Aubanel, V. The listening talker: A review of
human and algorithmic context-induced modifications of speech. Computer Speech
& Language (2014), pp. 543–571.

[20] Kawahara, H., Masuda-Katsuse, I. and De Cheveigne, A. Restructuring speech
representations using a pitch-adaptive time–frequency smoothing and an instantaneous-
frequency-based F0 extraction: Possible role of a repetitive structure in sounds.
Speech communication (1999), pp. 187–207.

[21] Airaksinen, M., Bollepalli, B., Juvela, L., Wu, Z., King, S. and Alku, P. GlottDNN - A
Full-Band Glottal Vocoder for Statistical Parametric Speech Synthesis. Interspeech
(2016).

[22] Raitio, T., Suni, A., Yamagishi, J., Pulakka, H., Nurminen, J., Vainio, M. and Alku,
P. HMM-Based Speech Synthesis Utilizing Glottal Inverse Filtering. Audio, Speech,
and Language Processing, IEEE Transactions on (2011), pp. 153–165.

[23] Tokuda, K., Kobayashi, T., Masuko, T. and Imai, S. Mel-generalized cepstral analysis-
a unified approach to speech spectral estimation. Third International Conference on
Spoken Language Processing (1994).

[24] Jin, Z., Finkelstein, A., Mysore, G. J. and Lu, J. FFTNet: A real-time speaker-
dependent neural vocoder. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2018), pp. 2251–2255.

[25] Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E.,
Stimberg, F., Oord, A. van den, Dieleman, S. and Kavukcuoglu, K. Efficient Neural
Audio Synthesis. Proceedings of the 35th International Conference on Machine
Learning (2018), pp. 2410–2419.

[26] Prenger, R., Valle, R. and Catanzaro, B. Waveglow: A Flow-based Generative Net-
work for Speech Synthesis. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2019), pp. 3617-3621.

43

[27] Saito, Y., Ijima, Y., Nishida, K. and Takamichi, S. Non-parallel voice conversion us-
ing variational autoencoders conditioned by phonetic posteriorgrams and d-vectors.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2018), pp. 5274–5278.

[28] Tobing, P. L., Wu, Y.-C., Hayashi, T., Kobayashi, K. and Toda, T. Non-Parallel Voice
Conversion with Cyclic Variational Autoencoder. Proc. Interspeech 2019 (2019),
pp. 674–678.

[29] Childers, D., Wu, K., Hicks, D. and Yegnanarayana, B. Voice conversion. Speech
Communication (1989), pp. 147 - 158.

[30] Childers, D., Yegnanarayana, B. and Wu, K. Voice conversion: Factors responsible
for quality. IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (1985), pp. 748–751.

[31] Wahlster, W. Verbmobil: foundations of speech-to-speech translation. Springer Sci-
ence & Business Media, 2013.

[32] Turk, O. and Schroder, M. Evaluation of Expressive Speech Synthesis With Voice
Conversion and Copy Resynthesis Techniques. IEEE Transactions on Audio, Speech,
and Language Processing (2010), pp. 965-973.

[33] Wu, Z. Spectral mapping for voice conversion. PhD thesis. 2015.
[34] Stylianou, Y. Applying the harmonic plus noise model in concatenative speech syn-

thesis. IEEE Transactions on Speech and Audio Processing (2001), pp. 21–29.
[35] Morise, M., Yokomori, F. and Ozawa, K. WORLD: A Vocoder-Based High-Quality

Speech Synthesis System for Real-Time Applications. IEICE Transactions on Infor-
mation and Systems E99.D (2016), pp. 1877-1884.

[36] Gray, R. Vector quantization. IEEE Assp Magazine (1984), pp. 4–29.
[37] Abe, M., Nakamura, S., Shikano, K. and Kuwabara, H. Voice conversion through

vector quantization. Journal of the Acoustical Society of Japan (E) (1990), pp. 71–
76.

[38] Toda, T., Black, A. W. and Tokuda, K. Voice Conversion Based on Maximum-Likelihood
Estimation of Spectral Parameter Trajectory. IEEE Transactions on Audio, Speech,
and Language Processing (2007), pp. 2222-2235.

[39] Kain, A. and Macon, M. W. Spectral voice conversion for text-to-speech synthe-
sis. IEEE International Conference on Acoustics, Speech and Signal Processing,
(ICASSP) (1998), pp. 285-288.

[40] Stylianou, Y., Cappé, O. and Moulines, E. Continuous probabilistic transform for
voice conversion. IEEE Transactions on Speech and Audio Processing (1998), pp.
131–142.

[41] Hunt, A. J. and Black, A. W. Unit selection in a concatenative speech synthesis sys-
tem using a large speech database. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (1996), pp. 373-376.

[42] Chen, L.-H., Ling, Z.-H., Song, Y. and Dai, L.-R. Joint spectral distribution modeling
using restricted boltzmann machines for voice conversion. Interspeech (2013).

44

[43] Wu, Z., Chng, E. S. and Li, H. Conditional restricted boltzmann machine for voice
conversion. 2013 IEEE China Summit and International Conference on Signal and
Information Processing (2013), pp. 104–108.

[44] Nakashika, T., Takiguchi, T. and Ariki, Y. Voice conversion using speaker-dependent
conditional restricted Boltzmann machine. EURASIP Journal on Audio, Speech,
and Music Processing (2015), pp. 1–12.

[45] Nakashika, T., Takashima, R., Takiguchi, T. and Ariki, Y. Voice conversion in high-
order eigen space using deep belief nets. Interspeech (2013), pp. 369-372.

[46] Sun, L., Kang, S., Li, K. and Meng, H. M. Voice conversion using deep Bidirectional
Long Short-Term Memory based Recurrent Neural Networks. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015), pp.
4869-4873.

[47] Inanoglu, Z. and Young, S. Data-driven Emotion Conversion In Spoken English.
Speech Communication (2009), pp. 268-283.

[48] Inanoglu, Z. and Young, S. A system for transforming the emotion in speech: Com-
bining data-driven conversion techniques for prosody and voice quality. Eighth An-
nual Conference of the International Speech Communication Association (2007).

[49] Picheny, M. A., Durlach, N. I. and Braida, L. D. Speaking clearly for the hard of
hearing II: Acoustic characteristics of clear and conversational speech. Journal of
Speech, Language, and Hearing Research (1986), pp. 434–446.

[50] Uchanski, R. M., Choi, S. S., Braida, L. D., Reed, C. M. and Durlach, N. I. Speak-
ing clearly for the hard of hearing IV: Further studies of the role of speaking rate.
Journal of Speech, Language, and Hearing Research (1996), pp. 494–509.

[51] Vydana, H. K., Kadiri, S. R. and Vuppala, A. K. Vowel-based non-uniform prosody
modification for emotion conversion. Circuits, Systems, and Signal Processing (2016),
pp. 1643–1663.

[52] Erro, D., Sainz, I., Navas, E. and Hernaez, I. Harmonics plus noise model based
vocoder for statistical parametric speech synthesis. IEEE Journal of Selected Top-
ics in Signal Processing (2013), pp. 184–194.

[53] Hu, Q., Stylianou, Y., Maia, R., Richmond, K., Yamagishi, J. and Latorre, J. An in-
vestigation of the application of dynamic sinusoidal models to statistical parametric
speech synthesis. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2015).

[54] Haykin, S. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.
[55] Haykin, S. S. et al. Neural networks and learning machines/Simon Haykin. New

York: Prentice Hall, 2009.
[56] Rosenblatt, F. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological Review (1958), pp. 386.
[57] Glorot, X., Bordes, A. and Bengio, Y. Deep sparse rectifier neural networks. Pro-

ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics. 2011, pp. 315–323.

45

[58] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning internal representa-
tions by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[59] Werbos, P. J. Generalization of backpropagation with application to a recurrent gas
market model. Neural Networks (1988), pp. 339–356.

[60] Hornik, K., Stinchcombe, M., White, H. et al. Multilayer feedforward networks are
universal approximators. Elsevier, 1989.

[61] Cireşan, D. C., Meier, U., Gambardella, L. M. and Schmidhuber, J. Deep, big, simple
neural nets for handwritten digit recognition. Neural Computation (2010), pp. 3207–
3220.

[62] Mohamed, A.-r., Dahl, G. E. and Hinton, G. Acoustic modeling using deep belief
networks. IEEE Transactions on Audio, Speech, and Language Processing (2011),
pp. 14–22.

[63] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. International
Conference on Learning Representations (2014).

[64] Duchi, J., Hazan, E. and Singer, Y. Adaptive subgradient methods for online learn-
ing and stochastic optimization. Journal of Machine Learning Research (2011), pp.
2121–2159.

[65] Zeiler, M. D. Adadelta: an adaptive learning rate method. ArXiv (2012).
[66] Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude. Coursera: Neural Networks for Machine Learning
(2012), pp. 26–31.

[67] Nesterov, Y. E. A method for solving the convex programming problem with conver-
gence rate O (1/kˆ 2). Dokl. akad. nauk Sssr (1983), pp. 543–547.

[68] Hinton, G. E., Osindero, S. and Teh, Y.-W. A fast learning algorithm for deep belief
nets. Neural Computation (2006), pp. 1527–1554.

[69] Bengio, Y. Deep learning of representations for unsupervised and transfer learning.
Proceedings of ICML Workshop on Unsupervised and Transfer Learning. 2012, pp.
17–36.

[70] Braverman, M. Poly-logarithmic independence fools bounded-depth boolean cir-
cuits. Communications of the ACM (2011), pp. 108–115.

[71] Delalleau, O. and Bengio, Y. Shallow vs. deep sum-product networks. Advances in
neural information processing systems (2011), pp. 666–674.

[72] Bengio, Y., Delalleau, O. and Simard, C. Decision trees do not generalize to new
variations. Computational Intelligence (2010), pp. 449–467.

[73] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. Dropout:
a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research (2014), pp. 1929–1958.

[74] Wan, L., Zeiler, M., Zhang, S., Le Cun, Y. and Fergus, R. Regularization of Neu-
ral Networks Using Dropconnect. International Conference on Machine Learning.
2013, pp. 1058–1066.

46

[75] Dahl, G. E., Yu, D., Deng, L. and Acero, A. Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. IEEE Transactions on Au-
dio, Speech, and Language Processing (2011), pp. 30–42.

[76] Pascanu, R., Dauphin, Y. N., Ganguli, S. and Bengio, Y. On the saddle point prob-
lem for non-convex optimization. ArXiv (2014).

[77] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B. and LeCun, Y. The loss
surfaces of multilayer networks. Artificial Intelligence and Statistics (2015), pp. 192–
204.

[78] Fukushima, K. Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernetics
(1980), pp. 193–202.

[79] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998), pp. 2278–2324.

[80] Le Cun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I., Hender-
son, D., Howard, R. E. and Hubbard, W. Handwritten digit recognition: Applications
of neural network chips and automatic learning. IEEE Communications Magazine
(1989), pp. 41–46.

[81] Lecun, Y. and Bengio, Y. Convolutional networks for images, speech, and time-
series. The handbook of brain theory and neural networks. MIT Press, 1995.

[82] Kleijn, W. B., Lim, F. S., Luebs, A., Skoglund, J., Stimberg, F., Wang, Q. and Walters,
T. C. WaveNet based low rate speech coding. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2018), pp. 676–680.

[83] Kobayashi, K., Hayashi, T., Tamamori, A. and Toda, T. Statistical Voice Conversion
with WaveNet-Based Waveform Generation. Interspeech (2017), pp. 1138-1142.

[84] Niwa, J., Yoshimura, T., Hashimoto, K., Oura, K., Nankaku, Y. and Tokuda, K. Sta-
tistical Voice Conversion Based on Wavenet. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2018), pp. 5289-5293.

[85] Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A. et al. Con-
ditional image generation with pixelcnn decoders. Advances in Neural Information
Processing Systems (2016), pp. 4790–4798.

[86] Boilard, J., Gournay, P. and Lefebvre, R. A Literature Review of WaveNet: Theory,
Application, and Optimization. Audio Engineering Society Convention 146. 2019.

[87] Kominek, J. and Black, A. W. The CMU Arctic speech databases. Fifth ISCA Work-
shop on Speech Synthesis. 2004.

[88] Cooke, M., Mayo, C., Valentini-Botinhao, C. et al. Hurricane natural speech cor-
pus. LISTA Consortium:(i) Language and Speech Laboratory, Universidad del Pais,
2013.

[89] Rothauser, E. IEEE recommended practice for speech quality measurements. IEEE
Trans. on Audio and Electroacoustics (1969), pp. 225–246.

[90] Black, A. W. and Tokuda, K. The Blizzard Challenge-2005: Evaluating corpus-
based speech synthesis on common datasets. Ninth European Conference on
Speech Communication and Technology (2005).

47

[91] Rosenberg, A. and Ramabhadran, B. Bias and Statistical Significance in Evaluating
Speech Synthesis with Mean Opinion Scores. Interspeech 2017 (2017), pp. 3976–
3980.

	Introduction
	Background
	Characteristics of Speech Signals
	Lombard Speech

	Speech Generation
	Speech Conversion Technologies
	Voice Conversion
	Speaking Style Conversion

	Neural Networks
	Deep Learning
	Feedforward Neural Networks
	Convolutional Neural Networks
	WaveNet

	WaveNet-based generation of speech in different speaking style
	System Overview
	Feature Extraction
	Log Mel Energies
	-law Transformation

	WaveNet Architecture
	Speech Generation

	Experiments
	Databases
	Experimental details
	Evaluation Procedure

	Results
	Speaking Style Similarity Test
	Quality and Naturalness Test

	Conclusions
	References

