Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

An Empirical Investigation of an Object-Oriented Software
System

Michelle Cartwright and Martin Shepperd
Department of Computing
Bournemouth University

Talbot Campus
Poole, BH12 5BB
England
{mcartwri, mshepper }@bmth.ac.uk

Abstract

This paper describes an empirical investigation into an
industrial object-oriented (OO) system comprising 133,000 lines
of C++. The system was a sub system of a telecommunications
product and was developed using the Shlaer-Mellor method.
From this study we found that there was little use of OO
constructs such as inheritance and therefore polymorphism. It
was also found that there was a significant difference in the
defect densities between those classes that participated in
inheritance structures and those that did not, with the former
being approximately three times more defect prone. We were
able to construct useful prediction systems for size and number
of defects based upon simple counts such as the number of
states and events per class. Although these prediction systems
are only likely to have local significance, there is a more general
principle that software developers can consider building their
own local prediction systems. Moreover, we believe this is
possible even in the absence of the suites of metrics that have
been advocated by researchers into OO technology. As a
consequence, measurement technology may be accessible to a
wider group of potential users.

Keywords: metrics, object orientation, empirical analysis.

1. Aims of the Investigation

Although the original ideas behind object oriented technology (OOT),
derive from work on the programming language Simula in the 1960s, it
was not until the 1980s that the work was popularised and its use became
more widespread. Presently, C++ and Java are widely used and widely
taught. The OO paradigm could be regarded as the orthodoxy of the late
1990s. Unfortunately, with a few notable exceptions such as [5, 9-11, 17], we
have comparatively little empirically based knowledge of the behaviour of
systems that have been implemented using OOT. Thus as OOT, and

https://core.ac.uk/display/337273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

particularly the use of C++, continues to be heavily invested in, the need
for research into better understanding, and prediction, of the behaviour of
OOQOT is becoming a matter of some urgency.

Despite the need for empirical research into large-scale OO systems, the
majority of object-oriented metrics research has concentrated upon
defining sets of structural metrics, e.g. [1, 6]. Although this can be a useful
precursor to empirical work, on its own this type of approach has limited
practical utility. Without empirical evidence it is not possible to say how
effective these measures are, particularly in the sense of being inputs to
prediction systems (e.g. of defects, reliability, cost etc.) that are able to yield
engineering approximations to aid in the process of developing software.
Moreover, this type of analysis yields somewhat indirect insights into the
technology itself [7].

The objectives of our investigation — based upon a significant piece of
industrial OO software — are twofold, first to contribute to our
understanding OO technology and second to explore the possibility of
building prediction systems that are useful to practising software
engineers. Clearly there is an interaction between these two aims.

The remainder of this paper briefly outlines the background to our
empirical investigation and provides a brief account of the development
method employed, namely Shlaer-Mellor. This is followed by a
description of the data collection undertaken and the analysis carried out,
particularly of defect distributions. There follows a discussion of the
problem of building prediction systems and an evaluation of some simple
local models to predict defects and size. The paper concludes by relating
our results to those deriving from other empirical studies.

2. System Background

This investigation was based at a large European telecommunications
company. Presently, the organisation employs approximately 20,000 staff
and more than 2,000 software developers. A disciplined approach is
adopted for software design and implementation and the company is ISO
9000 accredited. There is considerable emphasis upon software quality, in
particular eliminating defects. As much as 45% of resources are devoted to
testing and simulation. To that end complex testing environments have
been developed. The company places a high value on training and staff
development and has an interest in new and innovative software
development methods and techniques.

The system studied is a sub-system of a much larger industrial real-time
telecommunications system which comprises several million lines of code
(LOC) and has been evolving over the past ten years. Its success is central
to the organisation’s financial health. The sub-system is written in C++
and has been designed using the Shlaer-Mellor method. It consists of 32
classes (or Shlaer-Mellor objects) which corresponds to slightly over
133,000 LOC. The sub-system was intended to add new functionality to the
existing product. Design documentation, incident reports and change data

S N

from a version control system were made available. The system has been
delivered and the change data supplied refers to defects raised at
integration testing and post delivery. All other changes, such as those
made for enhancement purposes, have been excluded. At the time of the
analysis the system had been in operation for approximately 12 months.

The developers were experienced software developers, the average level of
experience being in excess of ten years. They also had substantial
experience of telecommunications domain, although the particular
application was relatively novel. This was the first use of OOT by the
team, consequently, members had attended a series of training courses
both for OO analysis and in C++. A minority of the team had had
previous practical experience of C++.

We now briefly describe the Shlaer-Mellor method since it is not as
widespread as some other methods such as Booch [4] and Rumbaugh [14].
Shlaer-Mellor presents itself as an analysis method, but in practice,
certainly in this case, it covers high level design. The method is aimed at
real-time projects and is relatively mature, originating from 1979, with
books being published in 1988 [15] and 1992 [16]. Its origins from the
structured design and analysis methods of the 1970s can be traced quite
clearly.

The method consists of three main models, namely information, state and
process models. The information model is used to identify objects (these
are actually classes in the more widely accepted terminology), their
attributes and the relationships between objects. The state model is used to
catalogue the behaviour of objects and relationships over time, using state
transition diagrams and tables. The process model takes the actions of the
state models and defines them in terms of processes and object data stores
(these correspond to the data of an object on the information model). Each
action is depicted as an action data flow diagram, using the notation of a
traditional data flow diagram.

A system is divided into domains, each relating to a distinct area or subject
of the whole system. There are four classes of domain. The application
domain, normally one per system, is the subject matter from the point of
view of the user, (i.e. what the system is intended to do). The service
domain provides mechanisms and utilities to support the application
domain. Examples of the service domain are the user interface,
input/output and data recording/archiving. The architectural domain
provides mechanisms and structures to control the system and for data
management. It also provides policies for uniformity of software
construction, such as specifying how data is to be organised and accessed.
This domain will provide system support activities, e.g. initialisation and
shutdown, or switchover to a standby system. This domain may also be
concerned with portability issues and with performance measurement of
the system once it has been implemented. Finally, the implementation
domain, is concerned with how the requirements (of the architectural
domain) are implemented, using the prescribed programming languages,
operating systems, class libraries and networks.

Domains are linked via bridges, to allow one domain (client) to make use
of the services or mechanisms of another (server). Domains can
themselves be divided into sub-systems, partitioned according to the
clusters into which groups of objects (classes) fall on the information
model. For further details of the method, and the processes involved, the
interested reader is referred to Project Technology’s web site at
http:/ /www.projtech.com/.

3. Data Collection

The software developers utilised the version control system SCCS from
integration testing onwards. The organisation also maintained a database
of all incident reports from system testing onwards. Data from these
sources were collected and analysed in order to trace defects to specific file
changes. Fortunately each class was implemented as an individual file so
that it was possible to trace defects to classes. The distribution of defects
could then be used for project planning and to help extend our
understanding of OO software in industry.

Initially we had considered collecting the Chidamber and Kemerer (CK)
metrics suite [6]. Unfortunately only two out of the six metrics were
readily available from the available design documentation. These were
DIT (depth of inheritance tree) and NOC (number of children).
Consequently, we decided to supplement these metrics with a number of
additional measures that could be easily collected at the analysis/design
stage. The sources utilised were the CASE tool (Teamwork) model
consisting of an information model and state charts, code statistics and
defect data.

Mnemonic Variable Explanation
ATTRIB Attributes Count of attributes per class from the
information model.
STATES States Count of states per class in the state
model
EVNT Events Count of events per class in the state
model
READS Reads Count of all read accesses by a class
contained in the CASE tool.
WRITES Writes Count of all write accesses by a class
contained in the CASE tool.
DELS Deletes Count of all delete accesses by a class
contained in the CASE tool.
RWD Read /write/ [Count of synchronous accesses (i.e. the
deletes sum of READS, WRITES and DELS) per
class from the CASE tool.
DIT Depth Depth of a class in the inheritance tree
Inheritance [where the root class is zero.
Tree
NOC Number of | Number of child classes.

— 4

Children

LOC Lines of code || C++ lines of code per class.

LOC_B Lines of code || C++ body file lines of code per class.
(body)

LOC_H Lines of code || C++ header file lines of code per class.
(header)

DECT Defects Count of defect per class.

Table 1: Variables Collected

Table 1 lists the variables collected. The first nine variables characterise
the OO system architecture or structure and these may be collected at
analysis or design time. Note that duplicates are eliminated from the
counts of events and synchronous accesses. The remaining four metrics
are external measures that might be of interest to project managers. Ideally
we would, in addition, have collected effort data. Unfortunately effort data
by class proved to be unobtainable. However, the LOC information could
be regarded as a crude proxy. Note that LOC is counted as the number of
end of line markers, “;”).

4. Data Analysis

This section first considers the system as a whole and then proceeds to
analyse the data on a class by class basis.

4.1 Analysis of the System

The system comprised of just over 133 KLOC of C++. Table 2 provides a
more detailed breakdown.

Total LOC 133 632
Body files 109 603
Header file 24 029
Classes 32
Defects 259

Table 2: System Data

Using the data from Table 2 we can derive an overall defect density of 1.94
KLOC" which compares quite favourably with defect levels quoted by
Hatton [11] of 2.9 KLOC". Indeed, the figure is quite conservative since
some of the defects that have been recorded were found after integration
testing but prior to release.

There were just two inheritance trees or structures in the system, one of
two levels consisting of seven classes and the other of one level, consisting

of five classes". There are two possible explanations for this. Firstly it may
be that there is little in the problem domain that naturally lends itself to
inheritance. Secondly, and alternatively, the analysis and design method
used, Shlaer-Mellor, does not provide explicit support for inheritance — it
is not discouraged, but there is no guidance of how to look for possible
inheritance hierarchies as there is in some other OO methods. As a result
of discussions with the developers it became apparent that they
endeavoured to avoid the use of inheritance since they were of the
opinion that it would be harder to understand and therefore maintain.
The lack of use of the inheritance mechanism is in line with other
researchers’ findings, see for example [5].

4.2 Analysis by Class

This section considers the data on a class by class basis. The raw data may
be found in Appendix A.

Variable Mean Median Min Max
ATTRIB 8.66 4.5 1 32
STATES 18.03 13 0 114
EVNT 20.53 10.5 0 122
READS 16.25 11.5 0 83
WRITES 14.22 8.5 0 56
DELS 1.50 1 0 5
RWD 31.97 22 0 131
DIT 0.44 0 0 2
NOC 0.31 0 0 4
LOC 4178.50 3524.5 603 20165
LOC_B 3427.59 2775.5 396 17177
LOC_H 750.91 707 207 2988
DFCT 8.09 2 0 47

Table 3: Summary Statistics of Variables Collected

Table 3 shows some basic summary statistics in the form of the mean,
median, minimum and maximum value for each variable collected. The
first nine metrics are internal metrics whilst the next four are external

I The first level or root of an inheritance tree is counted as level 0, with its immediate
subclasses as level 1 and so on.

metrics that may be of management interest. It is apparent that since the
median value is in all cases lower than the mean each variable exhibits
some tendency to skew positively. This is the consequence of a few very
large classes.

50 1
*
40 ¢
30 o
8
20 1
10 4
o4l
DEFECT

Figure 1a: Boxplots of Defects per Class

25000 +
20000 | *
%
15000 1
o
10000 1 o
5000 + é é
*
]
ol =
LOC LOC_B LOCH

Figure 1b: Boxplots of LOC per Class

Figures la and 1b reveal the skewed nature of the distributions of some of
the metrics. Note that ‘0’ represents an outlier and “* an extreme outlier.
Figure la indicates a small number of very defect prone, and indeed a

— 7

mere 22% of the classes account for 75% of all defects, more evidence of a
20:80 rule as reported by others, for [6, 12]. Figure 1b indicates several
unusually large classes, one in excess of 20000 LOC.

160 +

120 + o

80 4

o

40+ é
o
&

ATTRIB STATES EVNT RWD

Figure 1c: Boxplots of Architectural Metrics

Figure 1c shows the distribution of values for some of the architectural or
design metrics. Again there are a number of outliers. This skewing
indicates the need to utilise parametric tests cautiously and to beware of
the effect of a small number of outlier values.

class 22

class 23 class 28

class 29 class30 class 32 class 31

Fig. 2: Inheritance hierarchy containing the outlier classes

Class 22 is by far the largest class in the system (114 possible states and LOC
= 20165, compared with the next largest, class 23, with 60 possible states and
LOC 12101 and with median class size of 13 possible states and LOC of
3524.5). It would appear that many of the measures taken are size driven.
More interesting then is to see that both of these classes are part of the
same class inheritance hierarchy (see Figure 2).

ATTRIB STATES EVNT RWD LOC DFCT
ATTRIB 1.000
STATES 0.562* 1.000

EVNT 0.318* 0.898* 1.000

RWD 0.508* 0.858* 0.859* 1.000

LOC 0.563* 0.968* 0.910* 0.848* 1.000

DFCT 0.166 0.751* 0.838* 0.769* 0.759* 1.000

* = significant at 5% confidence level.

Table 4: Spearman Rank Correlations

Table 4 contains the results of a Spearman cross correlation of some of the
variables collected (the full cross correlation is to be found in Appendix B).
Note that DIT was not included since it only took on three values (0, 1 or
2) in this dataset, likewise NOC also with three values (0, 2 or 4). A non-
parametric test was used due to possible problems of outliers and skewed
distributions. All correlation coefficients, but one, are significant at the 5%
confidence level, in other words all coefficients other than ATTRIB against
DFCT. Clearly there is considerable inter item correlation. For example,
all variables are significantly correlated with LOC — many very strongly —
which suggests that variables such as STATES are proxies for size. It also
suggests that a size effect may dominate, that is, as classes become larger so
they contain more attributes, states, synchronous accesses and become
more defect prone. For this reason the measures were size normalised in
order to look for effects which might otherwise be swamped by size. Such
a size normalisation procedure is a relatively commonplace procedure
amongst metrics researchers, see for example [8, 13].

T
X

20000 A

15000 |
X

L 10000 {
0
C X
5000 + x

i(X

0 10 20 30 40

DEFECT

Figure 3: Scatterplot of LOC against Defects

Figure 3 uses an ‘X’ to represent classes that participate in an inheritance
structure and an ‘O’ to represent singleton classes. It was suspected that
density of defects would be higher for classes in an inheritance structure
than for those not involved in an inheritance structure.

Group Count | Mean Median | Min Max

No inheritance |20 3.05 |0 0 14

Inheritance 12 16.50 | 17 0 47
Table 5a: Defects by Class

Group Count |Mean' | Median | Min Max

No inheritance |20 0.90 0 0 2.70

Inheritance 12 3.01 2.20 0 5.85

Table 5b: Defect Densities by Class

Table 5a shows a range of descriptive statistics for defects per class divided
into two categories, those not participating in inheritance structures and
those that do. Likewise Table 5b compares these categories of class this
time based upon defect density. Here the data reveals means of 0.89 defects

! Using a mean of means would yield 0.5 and 2.97 defects per KLOC, however, this is
somewhat misleading due to the variation in class size.

per KLOC and 3.01 defects per KLOC respectively. An unpaired two tailed
t-test was applied to assess whether those classes involved in inheritance
structures were truly from a distinct sub-population, or whether the
apparent increase in defects for inheritance classes occurred by chance. The
result confirmed that they were indeed from a distinct sub-population, the
F-value being calculated at 6.33, compared with a tabled value of 4.17
(p<0.001). Additionally the highest defect densities calculated were for
classes at the bottom of their respective inheritance hierarchies.

5. Building Prediction Systems

The next step was to assess the possibility of building prediction systems
f nal attributes of defect proneness (DFCT) and size (LOC). The
equations presented below have been selected on the basis that they are
simple, containing one or at most two variables. Simple models are
preferable to more complicated alternatives since they involve less effort,
not only in calculation, but more importantly in metrics collection. They
also tend to be more robust since they have fewer problems of collinearity.
This is quite a significant consideration since we have already uncovered
potential problems of high levels of inter item dependency (see Table 4).

4 OmmMmO

-0 25 50 75 100
EVNT

Figure 4: Scatterplot of Events against Defects

First we consider defects. Fig. 4 shows the relationship between the
number of events per class in the Shlaer-Mellor state model and the
number of subsequent defects to the class. An ‘X’ denotes a class in an
inheritance structure and an ‘0’ a class that has neither parents nor
children classes. A regression line is fitted which can be seen to be a good
fit as evidenced by the high R squared (see below).

R squared = 87.6% R squared (adjusted) = 87.2%

Source Sum of Squares df Mean Square F-ratio

Regression 3821.50 1 3821.50 213
Residual 539.22 30 17.97

Variable Coefficient s.e. of Coeff t-ratio prob
Constant -0.58 0.9566 -0.602 0.5520
EVNT 0.42 0.0290 14.6 = 0.0001

This analysis suggests that it is possible to predict 87% of the variation in
DFCT in terms of a simple equation based upon a near zero intercept (-
0.58) and a slope of 0.42*EVNT. Whilst the constant is slightly negative —
a somewhat counterintuitive finding — with p=0.552, it is not actually
significantly different from zero. Such a simple equation is unlikely to
suffer from the problems of over fitting which can afflict multiple
regression analysis.

Finally, we add a dummy variable INHRTS (0 if DIT=0 or NOC=0, else 1) to
the regression equation to explore whether the use of inheritance as any
additional explanatory over and above the size related independent
variable EVNT.

R squared = 89.7% R squared (adjusted) = 89.0%
s = 3.941 with 32 - 3 = 29 degrees of freedom

Source Sum of Squares df Mean Square F-ratio
Regression 3910.37 2 1955.19 126
Residual 450.35 29 15.53

Variable Coefficient s.e. of Coeff t-ratio prob
Constant -1.34 0.945 -1.42 0.1658
EVNT 0.39 0.030 12.8 < 0.0001
INHRTS 3.88 1.621 2.39 0.0234

As the analysis above indicates, both EVNT and INHRTS are significant at

0=0.05. This again supports the hypothesis that classes in inheritance
structures are more defect prone, even taking into account their size. We
would not particularly advocate the use of this second regression equation
for predictive purposes. The improvement in the adjusted R-squared is
modest and the use of the dummy variable will lead to instability.

We now turn to predicting class size or LOC. This may be of interest to
developers since the inputs are available at analysis time. LOC may bear
relationship to effort (coding, testing and so forth). Note we would have
preferred to investigate effort but unfortunately this data was unavailable.

— 12 —

20000 A

15000 -
L 10000 -
0
C

5000 -

-0 25 50 75 100
STATES
Figure 5: Scatterplot of LOC against STATES

Figure 5 shows the strong linear relationship between the size of a class as
LOC and the number of states per class as contained in the state model.
The regression equation intercept is just over 1100 indicating that there are
some fixed overheads in terms of the size of a class, even for one which
“does nothing”.

R squared = 96.7% R squared (adjusted) = 96.6%

Source Sum of Squares df Mean Square F-ratio
Regression 475082696 1 475082696 875
Residual 16296130 30 543204

Variable Coefficient s.e. of Coeff t-ratio prob
Constant 1101.01 166.70 6.60 = 0.0001
STATES 170.68 5.77 29.60 = 0.0001

Note the very high F ratio indicating the low probability of a chance
relationship and also the exceptionally high R squared indicating that over
96% of the variation in LOC can be “explained” in terms of the variable
STATES. As with the prediction system for defects we again elect for a
simple equation with a single independent variable.

It is well known that linear regression is vulnerable to the effect of
outliers. As can be seen from the scatterplots above (Figs. 4-5) there is an
outlier in the extreme top right corner of the plots.

Attribute Median Outlier
LOC 3524.5 20165
STATES 13.0 114

Table 6: Extreme Outlier Class Compared with Median Values

Table 6 reveals the extent to which this class is an outlier. Re-plotting
without this class shows basically the same distribution and recalculating
regression equations shows only very slight differences. From this we
conclude that there are underlying relationships between STATES, EVNT,
LOC and DFCT and that these can be exploited to build prediction systems
for this environment.

The next stage was to assess the significance of the prediction systems that
we had developed. A set of predicted values for LOC and DFCT were
calculated from the predictive equations derived from, and compared
with, the actual values to determine the residuals. The defect prediction
system caused certain difficulties since we have a small number of discrete
values, many of them being zero. For this reason normal accuracy
indicators, such as MMRE, were not suitable’. We approached this
problem by classifying class defect counts into four bins as follows:

Q4 >10
Q3 4-10
Q2 1-3
Q1 0

The bins were chosen to correspond to quartiles for DFCT and predicted
DECT.

PREDICTED ACTUAL

Q4 Q3 Q2 Q1 total
Q4 6 1 0 0 7
Q3 3 2 1 0 6
Q2 0 3 3 0 6
Q1 0 4 0 9 13
total 9 10 4 9 32

Table 7: Contingency Table for Predicted and Actual Defect Counts

Table 7 shows the contingency table that was generated. The chi-statistic is
significant (p = 0.0001 with 9 degrees of freedom) at 38.44. This indicates

* To illustrate the difficulties of using MMRE to assess a defect prediction system, consider
the following, where predicted DFCT;=1 and actual DFCT;=0. The formula for MRE; yields
[(1-0) | /0. Even in the event of DFCT,=0 and actual DFCT,=1 we still have an error of 100%
whilst we would consider the prediction to be quite reasonable.

that there is a non-random relationship between actual and predicted
defect counts.

By contrast, we used the MMRE indicator for the size prediction system.
Here we obtained an MMRE of just under 24%. In addition, we have
already noted that, both prediction systems described in this section are
statistically significant (p<0.001), thus it is highly unlikely that the
relationships occur by chance. The equations were also examined for
implausible relationships, thus any equations meeting the previous
criteria but intuitively implausible were rejected. Additionally all of the
equations selected have a high (adjusted) R? value indicating that the
model fits the data well — in all of the equations presented, over 80% of
the variation in the dependant variable can be 'explained' by the
independent variable(s) used in the equations. We therefore conclude that
both prediction systems are significant. Nevertheless, this analysis has
been one of model fitting which is optimistic in terms of assessing the
likely accuracy of either system for making future predictions.

6. Conclusions

This paper has described an empirical investigation of a significant real-
time C++ system that was developed using the Shlaer-Mellor method.
From this study a number of findings have emerged.

First, there is very little use of many of the constructs of the OO paradigm.
In particular, there is little use of class inheritance and hence
polymorphism. This replicates the findings of other studies such as [5, 9].
This does not necessarily mean that the developers were “right” to avoid
significant use of inheritance. Moreover, it may in part be a consequence
of the development method or the fact that the C++ language does not
enforce an OO approach. The fact that this was the project team’s first
experience of OOT may also be pertinent. They “stuck rigidly” to the
Shlaer-Mellor method but this method does not explicitly support or
encourage inheritance, though neither does it prevent or discourage its
use. It seems likely that the caution of the team, lack of support by the
method and the lack of obvious candidates for inheritance in the problem
area were all factors in what would seem to be low levels of inheritance in
the system. Nevertheless, inheritance as an OO mechanism caused the
developers considerable concern and this may be something that the OO
community wishes to address. It should be remembered that the system
was built over a period 1993 to 1994, when far less guidance was available
with regard to "good" or "proper" use of inheritance. Research work such
as Liskov's substitution principle [18] had not permeated into standard
practice and design heuristics such as [19] were not published until OO
software was more established.

Second, the classes with the highest defect densities were found in the
lowest levels of their respective inheritance structures. Chidamber and
K DIT and NOC metrics could therefore be used to pinpoint
classes that are likely to have higher defect densities. Our study indicates
that the developers’ caution about using inheritance has some foundation.

One question raised by this case study is whether the developers were
using inheritance “properly”. Qualitatively speaking we believe there may
be some problems with the design (e.g. the very large class sizes and
common changes to groups of classes indicating unfulfilled potential for
generalisation). On the other hand one would expect any non-trivial
design to be in some sense “imperfect”.

This paper does not advocate that class inheritance should be avoided.
However, given the higher defect densities of inheritance classes, extra
consideration should be given to such classes during design reviews, code
inspections and testing. We also are of the view that there is a need for
further studies to assess trade-offs between different design tactics such as
aggregation or inheritance.

Third, we do not believe that the unavailability of predefined sets of
metrics need be a particular disadvantage for developers of OO systems
wishing to adopt a quantitative approach. Our empirical work indicates
that two other measures, available by the design stage, the number of
events for a class (EVNT) and the number of states for a class (STATES)
can be useful and accurate predictors of the number of defects and LOC.
The availability of metrics will be largely determined by the methods and
tools utilised by particular developers. We have shown that, for at least
one OO environment, it is possible to build simple, yet useful, prediction
systems for attributes such as size and defects. It is highly unlikely that the
same prediction systems will fit other environments, however, the
underlying principles of collecting data and developing local prediction
systems are rather more likely to hold true.

The work complements other research in the field such as Basili et al. [3]
who utilised a version of the CK metric suite modified to suit C++. Their
study was based upon an experiment with student programmers. The CK
metrics were extracted from the code delivered at the end of
implementation, together with defect data from testing and fix data during
the repair stage. The amount of modification made to a class was
categorised as none, small or large, classes being allocated according to the
developer’s estimate of the percentage of code modified. The authors
found metrics all but LCOM to be “adequate” predictors of fault prone
classes. This would seem to be in line with our findings concerning the
positive impact of size and inheritance upon defect levels. The major
difference between the studies is that we studied a software system several
orders of magnitude larger than Basili et al. This, however, was at the
expense of control, since they were able to collect additional metrics over
and above those in our case study.

By contrast, Abreu and Melo [2] have argued that inheritance is a
technique to reduce the defect density in code when used “sparingly”, but
not at higher levels where they feel the beneficial effects will reverse.
Their analysis appears to be based upon similar case studies as the Basili et
al. work [3]. The correlation analysis suggested a negative relationship
between inheritance and defects, however, their multiple regression
equation contained a positive coefficient for the proportion of inherited
methods. Such a position is not entirely consistent with our findings, but

may in part be explained by the scale of the artefacts we have examined
and perhaps also the lack of OO experience of our developers.

To conclude, the value of this work is threefold. First, it illustrates how,
using straightforward techniques based upon linear regression, it is
possible to build accurate prediction systems both for size and defects. This
has been achieved using a small number of measures that are all readily
available early in the analysis and design stage. The prediction systems
have only local significance but we believe the approach may be of wider
interest. Second, we believe the patterns in the distribution of defects may
enable software managers to better allocate resources. Third, the emerging
body of evidence regarding the industrial application, at least of C++,
suggests that like all technologies OO must be used appropriately and that
there are many design trade-offs to be made, the impact of which we do
not yet fully understand. The need for further published empirical studies
would therefore seem to be overwhelming.

Acknowledgements

The authors would like to thank members of staff of the anonymous
organisation for assistance in the data collection. We are also indebted to
the referees for their detailed comments on a previous version of this

paper.
References

[11 Abreu, F.B. and R. Carapuca, 'Candidate Metrics for Object-Oriented
Software Within a Taxonomy Framework', Journal of Systems and
Software, 26(1), pp87-96, 1994.

[2] Abreu, F.B. and W. Melo. 'Evaluating the Impact of Object-Oriented
Design on Software Quality', in Proc. 3rd International Software
Metrics Symposium (METRICS '96). Berlin, Germany: IEEE, 1996.

[38] Basili, V.R,, L. Briand, and W.L. Melo, A Validation of Object-
Oriented Design Metrics. Technical No. CS-TR-3443, University of
Maryland, 1995.

[4] Booch, G., Object-Oriented Analysis and Design With Applications. 2
ed. The Benjamin/Cummings Series in Object-Oriented Software
Engineering, ed. G. Booch. Benjamin/Cummings: Redwood City,
California, 1994.

[5] Chidamber, S.R., D.P. Darcy, and C.F. Kemerer, 'Managerial use of
object oriented software metrics: an exploratory analysis', IEEE
Transactions on Software Engineering, 24(8), pp629-639, 1998.

[6] Chidamber, S.R. and C.F. Kemerer, 'A Metrics Suite for Object-
Oriented Design', IEEE Transactions on Software Engineering, 20(6),
pp476-93, 1994.

[71 Fenton, N. and S. Pfleeger, Software Metrics : A Rigorous and

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Practical Approach. Second Edition. 2 ed. International Thomson
Computer Press: 1996.

Gill, GK. and C.F. Kemerer, 'Cyclomatic complexity density and
software maintenance productivity', IEEE Transactions on Software
Engineering, 17(12), 1991.

Harrison, R., S.J. Counsell, and R.V. Nithi, 'An Evaluation of the
MOQOD Set of Object-Oriented Software Metrics', IEEE Transactions on
Software Engineering, 24(6), pp491-496, 1998.

Hatton, L., 'Software Failures: Follies and Fallacies', IEE Review,
43(2), pp49-52, 1997.

Hatton, L., 'Does OO Sync with How We Think', IEEE Software, 15(3),
pp48-54, 1998.

Henderson-Sellers, B., Object-Oriented Metrics: Measures of
Complexity. Object-Oriented Series, Prentice Hall: New Jersey, 1996.

Mata-Toledo, R.A. and D.A. Gustafson, 'A factor-analysis of software
complexity measures',]. of Systems Software, 17(3), pp267-273, 1992.

Rumbaugh, J., et al., Object-Oriented Modeling and Design. Prentice-
Hall: 1991.

Shlaer, S. and S.J. Mellor, Object-Oriented Systems Analysis:
Modelling the World in Data. Prentice Hall: 1988.

Shlaer, S. and S.J. Mellor, Object Lifecycles: Modelling the World in
States. Prentice Hall: 1992.

Wilde, N., P. Matthews, and R. Huitt, 'Maintaining Object-Oriented
Software', IEEE Software, 10(Jan), pp75-80, 1993.

Liskov, B., 'Data Abstraction and Hierarchy', SSIGPLAN Notices, 23(5,
pp17-34, 1988.

Riel, A.J., Object-Oriented Design Heuristics,. . Addison- Wesley: 1996.

Appendix A: Raw Data

ATTRIB | DELS|DIT [EVNT|NOC |READS|STATES|WRITES|DEFECT|LOC ([LOC_B Loc_H||
14 1 0 2 0 12 11 14 ol 3213] 2512 701
3 1 of 12 0 8 7 3 ol 2699 2127 579
3 1 0 0 0 0 2 3 o 1041 729 317
5 1 0 2 0 0 3 5 of 1169 825 344
27 1 ol 10 0 27 15 27 2| 4675 3852 829
17 1 of 10 0 17 18 17 1| 3655 2874 781f
13 1 o 11 0 13 16 13 o] 3394| 2677 717
19 1 o] 31 0 27 46 19 10] 7946] 6632] 1314
5 1 0 1 0 0 3 5 ol 1168 827 341)|
27 1 ol 10 0 27 15 27 0| 4198] 3406 799
3 0 0 0 0 0 0 0 0 761 529 239
3 0 0 0 0 0 0 0 0 754] 514 244
4 0 0 0 0 0 0 0 0 788 564 224
3 0 of 12 4 2 9 0 0o 4701] 3988 719
10 1 of 21 0 12 21 10 14| 5181] 4287 894

1 3 2| 55 0 35 15 37 26| 4445] 3747 694
32 1 o] 122 2 74 114 56 47| 20165] 17177] 2984
5 3 2| 53 0 32 17 39 26| 5114] 4287 827
24 0 1 71 2 83 60 31 25] 12101] 10320 1781
1 3 of 23 0 11 27 7 6] 4630] 3818 817
11 3 ol 33 0 15 35 16 9] 6299] 5220] 1079
2 2 1 8 0 9 4 5 2 1490] 1119 371)|
2 2 1 8 0 10 4 5 2| 1440 1058 387
3 2 1 5 0 3 6 6 9| 2161] 1652 509
2 2 1 4 0 1 3 5 2l 1116 785 331||
2 0 0 0 0 0 0 0 0 730 511 219
1 0 0 1 0 0 0 0 0 603 396 207
7 3 of 26 0 21 33 11 9| 8155 6897] 1254|
16 3 o] 33 0 16 37 19 10| 6813] 5604] 1209
6 0 1 11 2 4 7 6 3| 1940] 1464 474
3 5 2| 39 0 27 23 34 27| 5239] 4343 894
3 5 2| 43 0 34 26 35 29| 5928] 4942 984|

Appendix B: Rank Spearman Cross-Correlations

ATTRIB DELS DIT EVNT NOC READS STATES WRITES
ATTRIB 1.000
DELS -0.121 1.000
DIT -0.338 0.461 1.000
EVNT 0.318 0.534 0.382 1.000
NOC 0.258 -0.407 0.089 0.341 1.000
READS 0.495 0.497 0.362 0.876 0.181 1.000
STATES 0.562 0.496 0.103 0.898 0.251 0.866 1.000
WRITES 0.528 0.568 0.383 0.813 0.093 0.944 0.821 1.000
DEFECT 0.166 0.619 0.580 0.838 0.182 0.764 0.751 0.770
LOC 0.563 0.477 0.136 0.910 0.314 0.864 0.968 0.800
LOC_B 0.563 0.479 0.140 0.911 0.314 0.866 0.968 0.802

LOC_H 0.620 0.476 0.102 0.882 0.258 0.874 0.982 0.823

DEFECT LOC LOC_B LOC_H
DEFECT 1.000

LOC 0.759 1.000
LOC_B 0.760 1.000 1.000
LOC_H 0.741 0.988 0.987 1.000

— 20 —

