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Abstract

With the high penetration of renewable energy into the grid, power fluctuations and

supply-demand power mismatch are becoming more prominent, which pose a great

challenge for the power system to eliminate negative effects through demand side

management (DSM). The flexible load, such as heating, ventilation, air conditioning

(HVAC) system, has a great potential to provide demand response services in the

electricity grids.

In this thesis, a comprehensive framework based on a forecasting-management-

optimization approach is proposed to coordinate multiple HVAC systems to deal with

uncertainties from renewable energy resources and maximize the energy efficiency. In

the forecasting stage, a hybrid model based on Multiple Aggregation Prediction Al-

gorithm with exogenous variables (MAPAx)-Principal Components Analysis (PCA)

is proposed to predict changes of local solar radiance, vy using the local observa-

tion dataset and real-time meteorological indexes acquired from the weather forecast

spot. The forecast result is then compared with the statistical benchmark models

and assessed by performance evaluation indexes. In the management stage, a novel

distributed algorithm is developed to coordinate power consumption of HVAC sys-
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tems by varying the compressors’ frequency to maintain the supply-demand balance.

It demonstrates that the cost and capacity of energy storage systems can be cur-

tailed, since HVACs can absorb excessive power generation. More importantly, the

method addresses a consensus problem under a switching communication topology

by using Lyapunov argument, which relaxes the communication requirement. In the

optimization stage, a price-comfort optimization model regarding HVAC’s end users is

formulated and a proportional-integral-derivative (PID)-based distributed algorithm

is thus developed to minimize the customer’s total cost, whilst alleviating the global

power imbalance. The end users are motivated to participate in energy trade through

DSM scheme. Furthermore, the coordination scheme can be extended to accom-

modate battery energy storage systems (BESSs) and a hybrid BESS-HVAC system

with increasing storage capacity is proved as a promising solution to enhance its self-

regulation ability in a microgrid. Extensive case studies have been undertaken with

the respective control strategies to investigate effectiveness of the algorithms under

various scenarios.

The techniques developed in this thesis has helped the partnership company of

this project to develop their smart immersion heaters for the customers with minimum

energy cost and maximum photovoltaic efficiency.
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Chapter 1

Introduction

1.1 Motivation and scope

Conventional power station mainly depends on the tradition resources, such as coal,

petrol and gas, which is the major cause of greenhouse effect. On the other hand, most

of the power plants are located in the rural area, which are far away from the end user.

The power loss and construction cost are inevitable in the transmission. The large

scale power outages have commonly caused chaos and a serious consequence on sensi-

tive loads when happened with such as an over centralized grid structure. Therefore,

an innovative concept called microgrid was proposed to develop a distributed energy

structure in the utility. The microgrid system, as an autonomous subsystem integrat-

ing with the utility, consists of distributed energy resource (DER), storage devices

and adjustable loads. It can maximize exploitation of the available onsite renewable

energy sources, such as wind and solar, to provide a reliable, consistent power supply

for local users.
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CHAPTER 1. INTRODUCTION 2

The integration of wind turbines, solar photovoltaic (PV) and other intermittent

DERs into the grid poses a great challenge to the safety and stability of the system,

due to uncontrollable and unexpected weather conditions. It has become a com-

mon goal for the power industry to boom the low-carbon technology and improve

the energy efficiency, thus reducing carbon emission. The electricity network, thus,

is forced to upgrade self-regulation ability. Demand side management (DSM) is a

portfolio of measures to improve the energy system at the side of consumption. It

helps effectively restrain fluctuation of power flow and alleviate the supply-demand

power mismatch. Flexible loads such as heating, ventilation, air conditioning (HVAC)

system, as a promising demand response resource, can be directly controlled to par-

ticipate in demand-side regulation and provide power balance services in electricity

grids.

This thesis is completed based on industrial-led PhD project launched by Entrust

Microgrid LLP. The company has been engaged in the design of a hybrid DC/AC

microgrid for properties, buildings and communities [7]. In 2017, the company devel-

oped Smart immersion heater to provide hot water for the residents with minimum

energy cost and maximum photovoltaic efficiency. The schematic diagram of the sys-

tem is illustrated in Figure 1.1.1. However, the key issues of generic importance to

the microgrids, for example how to convert fluctuated renewable energy sources to

controllable power output, how to reduce the occurrence of ’solar curtailment’ and

how to utilize existing controllable loads to alleviate energy storage pressure, remain

to be addressed. In response to these problems, this study is dedicated to investigat-

ing the control strategy for distributed controllable loads to strengthen the balance
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between renewable generations and variable load demands in microgrid system.

Figure 1.1.1: Schematic diagram of Smart immersion heater [1]

The thesis proposes a comprehensive framework based on a forecasting-management-

optimization approach for a microgrid with the HVACs as the controllable loads. A

short-term local solar radiance is forecast with a hybrid model and national weather

forecast information. Based on the HVAC electrical model, a distributed control strat-

egy is proposed to control its power consumption. A 24-hour ahead energy scheduling

plan for HVAC unit is presented considering solar power forecasts. In order to evalu-

ate the financial cost and discomfort level for the users, a price-comfort optimization

model is formulated and a PID-based distributed algorithm is proposed to address
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the problem. Meanwhile, the distributed algorithm can be extended to accommo-

date the battery energy storage system (BESS), where a hybrid system namely as

HVAC-BESS is presented to improve storage capacity and enhance the flexibility of

the system. The research developed in the thesis consists of following structural parts:

• A hybrid forecast model is developed to predict short-term solar radiance in a

small-scale area. In order to increase the forecast accuracy of local solar irra-

diation, a multiple aggregation prediction algorithm with exogenous variables-

principle components analysis (MAPAx-PCA) model is proposed by incorporat-

ing the information derived from weather forecast service (WFS) and the local

weather historical data, where the multicollinearity problem can be avoided si-

multaneously [8]. The strongly-correlated weather indexes and time-series vari-

ables, such as dummy variable and lag variable, are selected to build the model.

Furthermore, the hybrid model is compared with classic statistical models to

show its outperformance. The obtained solar power curve is further utilized as

the input signal for dynamic test of the control strategy.

• A well-designed cooperative control strategy is proposed to integrate multiple

HVAC systems to minimize the global supply-demand mismatch through the

demand response. The microgrid system with HVAC units is considered as a

multi-agent system (MAS) with communication network and the local bus con-

nected with HVAC is assigned as an agent. The approach provides a desirable

operating frequency signal for each HVAC based on power mismatch value oc-

curring on each local bus. The method addresses a consensus problem under a
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switching communication topology by using Lyapunov argument, in comparison

with the existing distributed algorithm under a fixed communication topology.

It is verified that a jointly strongly connected topology is a sufficient condition

in order to achieve average consensus under switching topology. Furthermore,

a trend of convergence speed against feedback gain is obtained through the

simulation model. The effectiveness and robustness of the algorithms against

power constraints, dynamic behaviours, anti-damage characteristics, scalability

and time-varying communication topology are investigated by simulation cases.

• To study the effects of comfortability and electricity cost on end users, the dis-

comfort cost model and electricity cost model regarding the HVAC system are es-

tablished. A price-comfort optimization model is formulated and a proportional-

integral-derivative (PID)-based distributed algorithm is proposed to solve the

convex optimization problem. The method aims to deal with the power imbal-

ance and time-of-use (ToU) price, while minimizing the user’s total cost. Case

studies are conducted to investigate the algorithm under various scenarios.

• To enhance the flexibility of the microgrid, the BESS-HVAC hybrid energy stor-

age system is investigated in DSM program and the BESS and HVAC system

are modelled respectively, where the coordination scheme for HVAC system is

extended to accommodate BESSs. The local bus connected to MAS participates

in discovering the optimal incremental cost and local active power. The simu-

lation studies are carried out under various conditions to validate the feasibility

of the proposed solution.
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1.2 Contributions of the resesarch

There are four main contributions of the thesis that can be summarized as follows:

1. A hierarchical demand side management architecture gives a forecasting-management-

optimization solution based on the distributed HVACs. In response to the com-

pany’s goal, it provides a system solution for next generation energy and power

system for buildings and communities, for meeting the global challenge in en-

ergy security, affordability and sustainability, and battling climate change and

environment pollution. The proposed system solution provides a theoretical and

technical support for company’s home micorgrid program. The exploitation of

potential commercial value of the energy management controller can be further

developed to provide local residence with financial incentive.

2. In order to achieve an intelligent energy management system, a key priority is

to improve the forecasting capabilities of the power production. Time series

forecasting algorithms investigated in this research give an explicit mathemat-

ical model, which is simple and feasible for hardware implementation. The

proposed hybrid model can fully extract features of time-series data, which out-

performs the conventional statistical methods in simulation results. Although

statistical-based approach is not as good as machine learning algorithms in

terms of self-learning capability, it would be a practical and low-cost solution

for implementation.

3. Due to the unexpected change in the power generation, high-frequent control
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update and high-speed processor is required. Thus, the proposed distributed

approach takes advantage of its flexibility and scalability, which has a promis-

ing prospect in the future. On the other hand, participants in microgrid system

may not be willing to release their cost function to other neighbouring agents,

indicating the proposed solution could be implemented without broadcasting

private information. Additionally, the distributed algorithm can be extended to

accommodate BESS-HVAC hybrid energy storage system (ESS) thus increasing

flexibility to provide ancillary service to users from the microgrid. It is worth

highlighting that the distributed consensus algorithms presented in this the-

sis are, for the first time, designed to accommodate the HVAC system under

switching interaction topologies to address the power mismatch in microgrid.

4. The utilization of HVAC units reduces the capacity and investment cost of

ESS in the microgrid system, because the load consumption pattern can be

modulated by HVACs according to total available power generation. Thus, the

HVAC can be a low-cost option to construct or complement ESS. On the other

hand, since the benefits of the end user may be enhanced by participating in

DSM, an optimization problem is formulated where the discomfort cost and

electricity cost are taken into account. Thus, a PID-based consensus algorithm

is designed to achieve an optimal operation for customers.

5. A number of case studies are simulated and presented through the IEEE 14-, 30-

and 57- bus systems, respectively, to investigate the feasibility and scalability

of the proposed distributed algorithms.
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1.3 Roadmap through this dissertation

Chapter 2 gives an overview of the microgrid system, DSM technology and current

challenges. The solar power forecasting techniques and energy management algo-

rithms are summarized and categorized in this chapter. The MAS-based distributed

algorithms are discussed in the literature review. The applications of thermal con-

trolled load (TCL) and HVAC system in the DSM are also reviewed, respectively.

Chapter 3 introduces three statistical techniques to obtain solar radiance fore-

casting results, by selecting highly-related time series components and weather in-

dexes. The MAPAx-PCA model is focused with training dataset introduced. The

forecasting accuracy of hybrid model is compared with benchmark models by means

of performance evaluation indexes.

Chapter 4 proposes a cooperative algorithm for the distributed HVAC systems.

The electrical model and physical hardware control circuit of the HVAC system are

introduced. The algorithms under fixed and switching communication network based

on the graph theory are presented, respectively. Furthermore, the stability proof of

the algorithm under switching topology is emphatically demonstrated. The flowchart

of the algorithm implementation is given accordingly. The feedback gain that has

significant influence on the performance of control strategy is also investigated. Com-

prehensive case studies are conducted on the effectiveness of algorithm under the

influence of power constraints, time-varying renewable energy, HVAC system failure,

scalability test from 5-bus to IEEE 30-bus system and intermittent communication

topology, respectively. Furthermore, an energy dispatch scheme is developed for
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HVAC systems, based on the solar power forecasting results in Chapter 3.

Chapter 5 takes account of the comfortable cost and electricity payment of the

end user, by formulating a HVAC system optimization model. A novel PID-based

distributed algorithm is proposed and PID parameter tuning results are studied. A

comparison study is conducted to present the advantage of the algorithm in eliminat-

ing steady-state error. The simulation models are developed to examine the feasibility

of proposed algorithm to respond the dynamic ToU price, time-varying power mis-

match, 24-hour solar power forecasts and the scalability on the IEEE 57-bus system.

Chapter 6 explores the cooperative control of HVAC-BESS hybrid system in-

tegrated into IEEE 14-bus system, by establishing cost function models for HVAC

and BESS, respectively. Case studies are carried out to evaluate the performance

of hybrid system, when the microgrid is facing power constraints, dynamic power

mismatch, short-term solar power forecasts or hybrid system failures.

Chapter 7 summarizes the contributions and outcomes of the thesis. Future work

that can be carried out following the findings of this work is also discussed.
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Chapter 2

Literature Review

Distributed energy resources (DERs), which are more scalable than the central power

stations and can be locally or flexibly integrated into the power system, are gradually

replacing the conventional generation and playing a vital role in future smart grid.

In order to coordinate the contradiction between the large power system and DERs

and fully exploit the benefit of DERs, the concept of microgrid has emerged. In this

chapter, the concept of microgrid system is firstly introduced in Section 2.1, with its

components, architecture and operation model introduced. Furthermore, the distri-

bution systems of the microgrid with its applications in the test-bed are highlighted

in Section 2.1.3. One of the key issues in the energy management is to obtain an accu-

rate forecasting curve to describe the change of local weather condition. Therefore, a

range of forecasting techniques applied to solar power prediction are classified and dis-

cussed in Section 2.2. More importantly, the microgrid controller is a key technique to

achieve power flow management and maintain a dynamic balance between the supply

side and demand side. The widely-used microgrid control system can be categorized

11
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into centralized, decentralised and distributed controllers, which are summarized in

Section 2.3, respectively. On the other hand, the energy consumption curve can be

reshaped by DSM schemes and activities. The fundamentals and methods of DSM

are given in the Section 2.4.1 and the utilization of TCL appliances in DSM is em-

phasized in Section 2.4.2. Moreover, the HVAC system with its application examples

is highlighted in Section 2.4.3.

2.1 Overview of microgird system

Conventional power station mainly depends on the nonrenewable fossil fuels such as

coal, oil and gas, which emits a large amount of greenhouse gases. The large-scale

power outages pose huge risks for sensitive loads, when the mechanical or electri-

cal faults occur at the over-centralized power station [9]. Moreover, the traditional,

centralized electricity grid also causes losses in the transmission system.

With the integration of DERs and various loads in a electricity network, build-

ing a modern, localized, small-scale grid in a limited geographical area can maximize

the usage of on-site resources and reduce the economy and energy losses during the

power transmission. As an autonomous subsystem connected with the utility, the

development of microgrids is beneficial for enhancing stability of the main grid, shift-

ing the peak load demand, providing voltage support, thus creating an innovative

environmentally-friendly technology [10].
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2.1.1 Microgrids structure & operation mode

A microgrid system typically comprises five components: DER, distribution systems,

alternating current (AC) and direct current (DC) loads, storage units and control and

communication modules [11, 12]. The power supply in the microgrid mostly relies on

DER devices or/and conventional power generators, such as diesel generators. The

DER consists of solar PV arrays, wind turbines, small hydro, biogas and fuel cells,

where the micro-turbines and fuel cell can provide combined heat and power (CHP)

generation. These on-site DERs aim to maximize benefits of the local resources and

minimize the electricity and financial costs caused by long-distance high-voltage trans-

mission. The energy storage system (ESS) in the microgrid not only stores the excess

power generated by DERs, but also acts as a power regulator to provide consistent

power for the sensitive loads and eliminate supply-demand mismatch. The commonly-

used storage devices involve flywheels, batteries and super-capacitors. Due to some

DERs are operated in maximum power point tracking (MPPT) mode to maximize

the power output, the employment of ESS can generate controllable power output to

facilitate the matching of power generation and load demand. The control and com-

munication modules can be realized by a centralized controller or multiple distributed

controllers in cooperation with power electronic interfaces (PEIs), thus, plug-and-play

functionality and power conversion can be achieved. The microgrid controller plays a

vital role in automated operation and control of microgrid by generating and sending

control signals to PEIs [13]. It is used for automatic state switching, reference signal

assignment and state monitoring of physical devices [14].
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A microgrid system normally operates in two modes: grid-connected mode and the

island mode. Under the grid-connected mode, the microgrid system makes benefits

from selling the excessive electricity to the utility, when the on-site power generation is

over the local demand. Otherwise, it is required to purchase supplementary electricity

from the main grid. If the power quality from the utility exceeds a threshold level, the

microgrids should be seamlessly switched to island mode, for the sake of maintaining

stability and avoiding the disturbance of the utility failure [9].

2.1.2 Distribution systems

The distribution system represents a common bus to interconnect all physical devices.

The microgrid system is generally classified into AC microgrid and DC microgrid, de-

pending on the type of distribution system. The configuration in the AC and DC

distribution network with the application of microgrid system is extensively reviewed

in [15]. Figure 2.1.1 gives a typical microgrid architecture with AC-line configura-

tion, where all of the non-AC micro-generators and loads are converted to 50 Hz

AC grid with the power converter. The microgrid is connected the main grid via

the point of common coupling (PCC), which is located on the primary side of the

step-up main transformer. It is worth noting that the impact of considerable power

loss and harmonic voltage in the power conversion are non-negligible. In reference

[16], three separate regulators: voltage, active power and reactive power regulator are

developed in AC microgrid. The global voltage regulation and proportional reactive

load sharing can be handled. Furthermore, the existing microgrid testbeds are mainly

implemented on the AC grid, such as consortium for electric reliability technology so-



CHAPTER 2. LITERATURE REVIEW 15

Household 
AC devicesBattery Bank

AC Bus

PCC

Diesel Generator

The Utility

Wind TurbineSolar PV

Electrical Vehicles

Transformer

Figure 2.1.1: Vision of microgrid in AC-link configuation.

lutions(CERTS) testbed in America and microgrid project in Europe. CERTS testbed

is a leading practical project launched by American Electrical Power, aiming at imple-

menting the seamless transition between grid-connected and island operation in terms

of reconnected and resynchronized process and maintaining the stability of voltage

and frequency in microgrids when working on island condition. The testbed consists

of three feeders for sensitive loads and a feeder for non-sensitive loads. In each sensi-

tive feeder, sub-controller, breaker and more than one DER device are set to ensure a

consistent power supply for sensitive loads, where the sub-controller is introduced to

realize ‘plug-and-play’ and ‘peer-to-peer’ functionality [13, 17, 18]. Standing on the

history perspectives, AC power network has become the main choice for commercial

power system, as it is easy to transform AC voltage into multiple levels to accommo-

date various applications with the capability to transmit power over a long distance.
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AC power network has existed more than a century along with AC loads dominated

the entire market.

Meanwhile, the development of the DC-microgrid system has attracted researchers’

attentions in recent years, with the booming of DC loads, batteries and DC distributed

generators [19, 20]. It is expected that DC distribution network will become an

alternative way to partly replace the AC bus to supply all electricity equipments

in the future[15]. Presently, most of household appliance (computer, variable speed

drives, lights), business and industrial appliance are fundamentally powered by DC

voltage. In the existing AC grid system, DC-based generator is required to complete

DC-AC-DC power conversion, in order to supply power to DC loads in customer side.

It causes substantial energy loss and financial cost. The DC distribution network is

a new technique to tackle the problems in AC distribution system and point the way

for future power network. It ensures a higher power quality for the customer and

facilitate the installation of more distributed generator units [21].

2.2 Renewable power forecasting

The wind turbine and solar PV are typical DERs in microgrid system. The wind

and solar energy are weather-related resources, where their variability ranges from

minutely/hourly to yearly. In order to alleviate the power fluctuation with energy

management approach, it is vital to provide forecasting results of renewable power

generation for the grid operator. Thus, a number of methodologies have been devel-

oped and combined to predict wind speed or/and wind power on varied forecast scale,
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such as [22–27]. Since this research pays a attention the home/community microgrid

system, the prediction of solar energy and solar power is the research focus. An ef-

fective control system should be capable of handling the uncertainty and fluctuation

of the power generated by solar PV. In this case, solar power forecasting is a crucial

precondition to ensure optimal energy scheduling. The forecasting time horizon is

classified into the very short-term (from second to half an hour), short-term (half an

hour to 6 hours), medium-term (6 hours–1 day), long-term (1 day–1 week), based on

different energy management requirements. For instance, very short-term forecasting

aims at achieving dynamic control for renewable power generators and load tracking.

Short-term forecasting is used for scheduling energy flow among power sources, loads

and storage devices. Medium-term and long-term forecasting are responsible for price

settlement, load dispatch and maintenance scheduling, respectively.

The development of solar radiance prediction and solar power prediction has been

reviewed in many literatures [28–31]. The developed forecasting tools can be classi-

fied into three approaches: physical model, statistical model and artificial intelligence

model, which is shown in Figure 2.2.1. The numerical weather prediction (NWP)

model is the basis of physical approach, where the variability of meteorological pro-

cesses is described by atmospheric mesoscale model or global databases of meteo-

rological measurements [28]. Since meteorological modelling is not the focus of the

thesis, its literature review will not be further introduced. Statistical models mainly

discuss the influence of historical data on forecast value. The frequently used statis-

tical methods include Auto-Regression(AR), Moving Average(MA), Auto-Regression

Moving Average(ARMA), Auto-Regression Integrated Moving Average(ARIMA). It is
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remarkable that Box-Jenkins approach is an effective tool to identify the components

and parameters in time series model. Kalman filter technique is another typical para-

metric model based on the historical data [32]. The artificial intelligent algorithm

investigates the relationship between input variables and output variables without

taking the physical process into account. It can be a single model or hybrid model.

The popular single model include fuzzy logic, artificial neural network(ANN) [33],

support vector machine(SVM) [34], fuzzy logic [35], multilayer perception(MLP) [36],

genetic algorithm (GA), particle swarm optimization (PSO), expert systems. The

hybrid system is combining one or more algorithms to pursue a higher forecasting ac-

curacy [35, 37, 38]. The most widely accepted hybrid model is adaptive neural fuzzy

inference system(ANFIS) [39].

Currently, the state-of-art in machine learning is deep learning. The improved

technique can predict the outcome by perceiving the pattern from the voluminous

inputs in the context related to forecasting. Various conditions such as time stamp,

forecast horizon, input correlation analysis, data pre and post-processing, weather

classification, network optimization, uncertainty quantification and performance eval-

uations have been considered [40]. The most popular deep learning models involve

conventional neural network [41, 42], recurrent neural network [43].

2.2.1 Statistical techniques

The statistical approaches aim to build the relation between the past meteorological

parameters and future solar radiance. [44] proposes three different ARIMA models to

forecast next hour global horizontal irradiance(GHI) based on feasible meteorological
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Figure 2.2.1: Overview of solar irradiation forecasting techniques

variables, such as GHI, diffuse horizontal irradiance, direct normal irradiance and

cloud cover, as input parameters. It is demonstrated that the cloud cover formation

improves forecast accuracy. In [45], the authors propose a novel multitime-scale data-

driven model to improve the accuracy of solar PV generation forecast. The model

takes advantage of both spatial and temporal correlations among neighbouring solar

sites. It is pointed out the trade-off between the computation cost and forecast ac-

curacy. However, the above model are based on historical daily average data instead

of intra-day dynamic pattern. The authors in [46] develop a partial functional linear

regression model with the consideration of intra-day dynamic pattern of solar power

output. The forecasting results outperform that of ANN and traditional regression

model. In order to capture the stochastic nature of PV power output, a nonparam-

eteric model named as multivariate adaptive regression splines is introduced in [47],

which is more effective than machines learning algorithms. On the other hand, some
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literatures utilize available NWP information to forecast on-site PV power generation.

Taken [48] as an example, the multilinear adaptive regression spines model is estab-

lished based on the information from US Global Forecasting Services. The model is

tested by power generation data of a PV plant in Borkum, Germany.

2.2.2 Intelligent algorithms

In recent 20 years, most researchers focused on developing computational algorithms

in exploring a non-linear map without studying the inner physical model. Many case

studies demonstrated that machine learning algorithms can simplify the forecasting

process compared with other forecasting models. However, one of the challenges in

nonlinear forecast model is the selection of appropriate input variables. For example,

[49] selects daily sunshine duration, air temperature and global solar radiance as input

variables, on the bases of one-year historical data. It is indicated that the proposed

model can successfully be used for prediction, with correlation coefficient being 98.9%.

Whereas, the mean daily solar radiance and air temperature are used for building a

multilayer perception model in [33] to forecast the solar irradiance in 24 hours. The

proposed model is identified to perform well, where the correlation coefficient is in

the range 98–99% for sunny days and 94–96% for cloudy days. Following this idea,

researchers do further research on developing different solar power forecasting models

for different weather types. Therefore, three distinct ANN models are developed for

sunny, partly cloudy and overcast weather condition [50]. A comparison study of day-

ahead solar power forecasting model based on seasonal-ARIMA (SARIMA) model

and ANN model is proposed in [51], where the SARIMA model incorporates solar
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radiance information derived form NWP. These models are validated by PV plants

dataset. It is obvious that developing the model for a specific PV plant is relatively

easy than establishing a unified forecast model for PV roof of thousands of home in

the entire grid. In order to overcome this challenge, the authors in [29] explore a

site-specific forecast model to accommodate the diversity of sites. The model utilizes

SVM-based techniques combined with the national weather service forecast results.

With the development of AI, the deep learning algorithms are applied to im-

prove photovoltaic power forecast accuracy. In [52], the convolutional neural network

(CNN), long short-term memory network and a hybrid model based on these two

models are proposed. The results demonstrate that the size and characteristics of in-

put sequence is closely related to the model accuracy and the prediction performance

resulting from the hybrid model is the best. Similarly, a hybridized deep learning

framework is designed in [41], which integrates the CNN for input feature extrac-

tion with the long short-term memory network for half-hourly global solar radiation

forecasting. Another CNN framework is introduced in [42] based on meteorological

data from surrounding sites with different sampling times. A chaotic GA/PSO hybrid

algorithm is applied to optimize the hyper parameters of the novel framework. The

superiority of the novel framework is fully demonstrated by comparing with CNN

model. In [43], a recurrent neural network model is developed to investigate the per-

formances of the deep learning algorithms for the solar radiation prediction, where the

meteorological data from a local weather station is used for the training process and

variable scenarios about different sampling frequencies and moving window algorithms

are considered.
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2.2.3 Hybrid models

Generally, the hybrid model developed for forecasting can be divided into two types.

The first type combines statistical method and intelligent approach [53–55], while

the second type combines multiple intelligent methods [56–59]. In terms of first type

of model, [60] focuses on integrating ANN into statistical feature parameters (ANN-

SFP) to predict solar irradiance. The ANN-SFP model performs well in a cloudy

day compared with conventional models. In [61], an improved forecasting model is

developed to enhance the prediction accuracy under the extremely weather condition,

where the aerosol index is regarded as a key component to indicate solar radiation

attenuation. The authors in [62] present a hybrid technique consisting of SARIMA

and SVM. The forecast accuracy shows its outperformance than either of them. In

second type of models, a hybrid model incorporating fuzzy logic and neural network is

proposed in [63], where the temperature, sky information and solar irradiance level are

grouped under the fuzzification process. The accuracy of hybrid model is compared

with single intelligent algorithms. Apparently, the hybrid model with more complex

model gives a better forecasting performance than single technique. However, our aim

is to implement the forecasting algorithm within an embedded system, which is easy

to install in the customer side. A highly integrated energy management controller

would be relatively easily accepted by the market. Apparently, AI methods and

hybrid models are not feasible for hardware implementation due to the limitation of

computation speed and storage capacity. Standing on the practical point of view, the

statistical method is an appropriate solution in this research.
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2.3 Energy management algorithm in microgrid

The operation and control of microgrid is different from the conventional electricity

network, since the components in PEIs are with the properties of small inertia and fast

response. The operation of the system is required to achieve the optimal unit commit-

ment (UC), the stability of voltage and frequency, the power balance among DERs,

storage devices and variable loads. Therefore, the energy distribution in the micro-

grid is a comprehensive multi-objectives problem, including load sharing, voltage and

frequency regulation and power quality monitoring [64]. There are three mainstream

solutions proposed to effectively address these issues, namely centralized controllers,

decentralized schemes and distributed control strategies, which are reviewed in this

section.

2.3.1 Centralized/Decentralized algorithms

The centralized energy management system is calculating and assigning direct com-

mands to each DER and monitoring the operation state of microgrid system to achieve

optimal resources management. The technique is based on power generation and load

consumption, without exploring physical models of DER and various loads. In [65],

authors employ an online approach called rolling horizon strategy to schedule en-

ergy storage and solve UC issues by using mixed integer programming optimization.

The result shows that the operation cost is minimized by proposed UC rolling hori-

zon method compared with offline UC approach. The authors in [64] design a cen-

tral controller, which is composed of multi-stage economic load dispatch(ELD) block,
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generation/load forecasting block and UC block. UC block is responsible for decid-

ing the ON-OFF state of dispatchable DERs and condition monitoring of microgrid

units. Multi-stage ELD block designs and implements energy dispatch plan for DER

by considering the power forecasting results obtained by generation/load forecasting

block. On the other hand, the energy management problem can be formulated as

a multi-objective problem, where the multi-objective intelligent energy management

(MIEM) algorithm is presented in [66]. The MIEM combines multi-objective (MO)

linear programming and fuzzy logic-based expert system. The MO optimization is

used for generating power reference signal and expert system is responsible for bat-

tery scheduling. The financial cost, the environmental impact and network operation

conditions are considered in MO optimization model. Another congeneric model de-

scribed in [67] aims at minimizing financial cost and maintaining the temperature at a

lower cost, with the consideration of the real-time pricing and properties of appliance.

Meanwhile, these researches have not considered the presence of energy uncertainties,

In [68], the authors discuss the impact of wind power uncertainties, operating cost

and voltage stability by formulating a multi-objective stochastic optimal power flow

problem, in order to reduce the risk of voltage instability and forecast the voltage

collapse point.

However, the biggest problem for centralized control scheme is over-dependent

on a single control system, which may cause huge risks when the controller breaks

down. On the other hand, a wider communication bandwidth is required to achieve

bidirectional communication between the controller and each microgrid component.

The uncertainty due to time delays in the communication process might be inevitable,
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thus, the measurement and control signal may be not accurate enough or get lost in

the communication channel [69]. Moreover, the sampling rates of measurement or

control signal should be as fast as possible, while the memory and computation of

the central controller are limited. In the case of a central controller in a bulk power

system, the research and development costs is increased, while the stability of system

will be unavoidably defective.

The decentralized scheme is designed to address problems in centralized controller

[70]. This technique is capable of tolerating the communication failure and has a

better plug-and-play ability, which facilitate the system scalability [71]. Nevertheless,

there are still some inevitable drawbacks that have not been solved in the published

research. For example, in practical applications [72], the synchronization signals must

be provided to all DER units, which deteriorates the robustness of the system. On

the other hand, the voltage frequency is a global signal in the microgrid system [71].

If local controllers regulate the grid frequency simultaneously, the system stability

would be destroyed. Therefore, the coordination of local controllers is big challenging

problem for decentralized controller.

2.3.2 MAS-based distributed algorithms

Recently, multiagent system (MAS) is widely used in microgrid control technique.

The main idea of the MAS is dividing a complex large-scale system into multiple

subsystems. Each subsystem possess the features of autonomy, coordination and

communication with each other. Each agent has characteristic of intelligence and per-

ception, which means they are able to respond to changes in the environment. The
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communication protocol is feasible for each agents and it has ability to coordinate

agents in compliant mode. Therefore, instead of utilizing bi-direction communication

channel, the command information can cover the entire network under a certain com-

munication topology, which outperforms the conventional centralized control scheme.

Integration of graph theory and consensus control is a promising approach to solve

cooperative control problem in the various fields. Specifically, the topology model

is built on the communication network in the MAS. Consensus protocol is a unified

state updating rule for all agents in the complex system, based on the information

communication between the agent and their neighbours. All agents in MAS achieving

consensus is the objective of cooperative control. A variety of MAS-based consensus

control schemes are systematically reviewed in [73]. One of the key problems in MAS

is how to realize the communication link in an efficient and effective way. Ether-

net, worldwide interoperability for microwave access(WiMAX) and wireless fidelity

(WiFi) are good options for communication. The MAS concept has wide applications

in the area of unmanned aerial vehicles, unmanned ground vehicles and unmanned

underwater vehicles.

Recently, the massive applications of the MAS in microgrid system have been

presented in [74–76]. Figure 2.3.1 gives a typical MAS-based energy management

system in a microgrid, where various agents are included, such as renewable generation

agents (RGA), responsive load agents (RLA), energy market agent (EMA) and energy

storage agent (ESA). Among these agents, RGA, RLA and ESA collect the data

from DER and customers and ESS, respectively. EMA is responsible for electricity

price regulation [2]. It is remarkable that the grid frequency is an significant signal
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Figure 2.3.1: Multi-agent based distributed energy management system for microgrid

[2]

to be managed in energy dispatch problem. The integration of decentralised MAS

methods and frequency control strategy would be an effective way to achieve frequency

recovery through primary and frequency control and multi-stage load shedding [77].

To overcome the power imbalance in the microgrid, reference [78] develops a fully

distributed control scheme to discover the references for DERs, energy storages and

loads.

Neither AC microgrid nor DC microgrid is easy to stabilize the bus voltage, fre-

quency and power under dynamic weather condition and load demand [19]. Thus,

the BESS plays a vital role in supporting bus voltage and frequency and maintaining

power balance. Under a BESS-based MAS framework, each storage device is con-

sidered as an agent having access to its neighbouring agent under a communication

topology to share the power mismatch in a cooperative way. In terms of heteroge-
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neous BESSs, a consensus-based strategy is presented in [79] to achieve energy level

balancing, active/reactive power sharing and voltage/frequency synchronization in

microgrid system. As for homogeneous battery agents, a cooperative distributed con-

trol scheme demonstrated in [78] is applied to reduce the global power mismatch and

maximize the energy efficiency of the batteries, whilst the robustness and plug-and-

play capability of the algorithm are considered. However, the above literatures fail

to include the impact of energy uncertainties. Thus, the consensus model in [6] fo-

cuses on the wind power uncertainties and protection of agent’s privacy. Similarly, in

[80], a dynamically updated energy management schedule is presented by using the

demand response of batteries and controllable loads to overcome the forecast errors

and system uncertainties. On the other hand, it is inevitably to concern the transient

responses of BESSs. In [81], an adaptive droop control is proposed for balancing the

SoC (state of charge) of distributed BESSs. Regarding the DC microgrid system, a

MAS-based cooperative control strategy is presented in [82] to configure a hybrid ESS,

consisting of ultracapacitors and batteries, to achieve power-sharing under different

conditions.

2.4 Demand side management

2.4.1 The fundamental of DSM

DSM aims to plan, implement and monitor the utility activities that are developed to

influence the consumer use of electricity. The load profile is modified in time horizon

and magnitude scale by the DSM programs. The objective of DSM is to motivate
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the customer to use less electricity during the peak time or shift energy demand to

off-peak hours to flatten the load curve, or even to follow the generation pattern to

purse a desired outcome. There are various DSM techniques and six generic load

management programs, including peak clipping, valley filling, load shifting, strategic

conservation, strategic load growth and flexible load shaping [83].

Architecture and components of DSM

The architecture of DSM is composed of customer domain and smart grid domain.

Customer domain is a home-based subsystem including local generator, smart de-

vices, sensors, energy storage systems and energy management unit(EMU). Specifi-

cally, EMU can be a centralized controller to connect other components via home area

networks (HANs). By constructing an interaction network among these components,

the residential user can manage the electric resources, monitor and control appliances

through an intelligent DSM mechanism. The functionality of smart grid domain in-

volves distribution system, grid operator, energy market and service provider. In

addition to home network, the smart grid domain has interaction with the customer

domain by connecting EMU via wide area network (WAN) [3, 84]. A typical DSM

framework is shown in Figure 2.4.1.

Classification of DSM

A number of DSM techniques can be found in the existing literatures, which can

be categorized depending on the time horizon, impact of applied measures on the

customer process and optimization methods.
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Figure 2.4.1: Architecture of DSM framework [3]

Based on the timing and impact of applied measures on the customer process,

DSM methods can be categorized into three sub-categories. The first method is energy

efficiency, which includes all permanent changes on equipments or improvement on the

physical properties of the system. Such measures aim at eternal energy and emission

savings and can be the most popular methods. ToU price can be another effective

measure for DSM. It goes up on certain period when the demand is high, so that

the customer are forced to rearrange their behaviour to minimize the electricity bill.

Demand response aims to motivate end-users respond to changes in price or available

electricity by changing their normal behaviour of electricity use. It can only influence

the demand pattern, instead of curtailing load consumption. There are two types of

demand response, namely market demand response and physical demand response.

Market demand response includes real-time pricing, price signals and incentives, which

mainly depends on the transaction in the energy market. Real-time pricing reflects the

real time figures of an energy spot market without delay. In fact, the limited customer

elasticity and physical situation that cannot be mapped onto prices result in the load
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shedding in the grid that fails to be done by price alone. Physical demand response

is responsible for sending out emergency signal when the grid and its infrastructure

fail to operate in a normal performance due to the failure or maintenance. Therefore,

a good mixture of the both is necessary to make an operational scheme [85, 86].

The optimization approaches in DSM can be classified based on two characteris-

tics, which are summarized in Figure 2.4.2. Firstly, the DSM system can be designed

to obtain the optimal resource allocation through either individual customers or a clus-

ter of cooperative customers. Maximum benefits of individual user can be achieved

by the means of independent management. In this case, the global cost and objectives

for the utility will be neglected. If the end users can collaborate together to rearrange

their operation plan, the performance of the grid can be facilitated. Mathematically,

it ensures the participants in the grid are operating in a global optimum through an

effective DSM methods. Also, the DSM system can be classified by different time

scales to manage the resources of customers, such as day-ahead and real time. In

the day-ahead stage, the energy dispatch scheme for electrical resource of end user

is determined in the next 24-hours time period. DSM mechanism requires predic-

tions/estimation of electricity information obtained from the network, such as the

energy supply of local source, electricity price and appliances usage preference for the

next day. The data from sensors, smart meters or other resources will be used for

training the forecast model which is executed in EMU. In the real-time stage, the de-

vice usage preference can be altered according to real-time event and data. Typically,

the real-time DSM are based on stochastic techniques, since the model is designed to

cope with uncertainties in dataset [3].
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Figure 2.4.2: Various DSM methods and features [3]

2.4.2 Demand response of thermal controlled load

To accomplish load shaping, deferrable load is a necessary source for demand response

program. The deferrable appliances can be divided into thermal loads and shiftable

static loads (SSL) [87]. The SSL implies that the device runs at a set period of time

and consumes a certain amount of energy, while thermal loads are more dependent on

the usage and environment temperature. It is expected that by strengthening DSM

technologies, the electricity usage for heating in UK can be reduced significantly with

the energy efficiency being maximized. One of the way of maximizing efficiency is by

introducing thermal controlled load (TCL), as a potential supplier to enhance system

elasticity. TCL includes electrical heaters, HVACs and refrigerators, which is capable

of modulating short-term power consumption profile to alleviate the pressure on the

utility at peak time. For example, a second-order thermal parameter model is uti-

lized to define a typical cooling/heating system, while a distinctive control strategy

is employed to provide an ancillary service to ensure power balance [88, 89]. Further-

more, a stochastic control strategy under decentralized framework is proposed in [90],
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with the aim of modulating the profile of heterogeneous appliances. Clearly, a large

number of heterogeneous TCLs can be unified as an aggregated model for centralized

control. There are two significant variables in aggregated TCL model, such as binary

state variable (ON/OFF) and time-varying environment variable (temperature). A

population model for aggregated heterogeneous TCLs is developed by [91], where a

distributed model predictive control (MPC) scheme is proposed to manage a popu-

lation of TCLs for grid regulation service. As for homogeneous loads, a hierarchical

DSM framework is proposed in [92] to regulate the primary frequency with aggregated

HVAC units. However, the published study fails to address power imbalance problem

in the microgrid system with the use of TCLs.

2.4.3 The application of HVAC in DSM

The HVAC system in homes and buildings shows a particular advantage in demand

response, which reshapes the load consumptions in response to grid emergencies or

high-price signal [93]. Presently, the HVAC system in the market can be divided into

fixed frequency air conditioner and inverter air conditioner, based on the compressor

driving mode. The fixed frequency HVACs only operates in ON/OFF model with

constant power output, which are mostly denoted by aggregated TCL model. How-

ever, the authors in [94] propose a novel bilinear partial differential equation (PDE)

model to build distributed air conditioners. Clearly, the HVAC system has become

a popular research topic in published papers. For example, a ON/OFF scheduling

scheme is developed for air conditioners and other household electrical appliances by

applying learning-based MPC approach to maintain desired room temperature [95].
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Other research [92] focuses on solving primary frequency regulation problem. A com-

plex control system is designed to manage a population of HVAC loads, where the

trigger frequency and ON/OFF command are calculated and sent to each HVAC unit.

An aggregated model investigated in [96] is to describe the dynamic behaviour of a

large population of responsive loads, in order to achieve frequency regulation and peak

load reduction without sacrificing user’s comfort level.

The fixed frequency air conditioner has limitation on improving the flexibility of

the utility. Instead, the inverter air conditioner has been developed to operate in a

wide power range, which is appropriate to participate in demand response program.

It has won remarkable market share, due to the high energy efficiency. In [97], the

authors design a comprehensive model involving the room thermal model and inverter

air conditioner model. A MPC strategy integrated into the model is utilized to adjust

the operating frequency of inverter air conditioner, whilst various external conditions,

such as weather conditions, occupancy and time-varying electricity prices, are taken

into account. A generalised piecewise model is proposed in [98] to evaluate comfort

level regarding HVAC systems, plug-in electric vehicles and electric water heaters.

Additionally, the operating cost model of the HVAC system can be normalized to fit

the scale of comfort level, which implies a trade-off between the comfort level and

operating cost. In [99], a novel model-based DSM strategy is presented for inverter

air conditioners, in response to day-ahead ToU prices. The GA approach is employed

to schedule the indoor air temperature set-point, in order to balance the relationship

among the electricity bills, thermal comfortability and peak load reduction. Further-

more, how to maintain comfort level while meeting the needs of the grid become a
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new challenge. Authors in [100] propose a control system based on consensus theory

and inverter air conditioner group to compensate the total net power mismatch with

a fair scheme, while the distinct comfort level of different users can be satisfied.

2.5 Summary and discussion

In this chapter, the introduction of microgid system with its challenges and key is-

sues is given. The energy forecasting is a prerequisite for an energy dispatch scheme.

Therefore, a variety of solar power forecasting algorithms are reviewed and summa-

rized. The key issue in the microgrid is to maintain the system stability under the

high penetration of DERs, while strengthening the utilization of distributed resources.

A survey of intelligent energy management methods is presented, where pros and cons

are introduced. Due to the diversity of load demand, a number of DSM strategies are

introduced to help grid operator reshape the load profile, through which the ancil-

lary service can be provided and total cost of end users can be minimized. The DSM

methods on TCL appliance are briefed and the applications of HVAC are emphasized.

Based on the comprehensive understanding about challenges and gaps in a mi-

crogrid system, a hierarchical energy management architecture is proposed in Figure

2.5.1, taken the 5-bus system as an example [101]. The architecture is composed

of the data acquisition, renewable energy forecasting and energy management tech-

nique, where these functions are realized through external layer, prediction layer and

operational layer, respectively. The external layer is designed for data acquisition

and data storage in data centre, including to extract the information from a nearby
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Figure 2.5.1: A hierarchical energy management architecture

weather forecast spot and acquire local weather observation historical dataset. As

for the prediction layer, a proper forecast algorithm is utilized for analysing the data

given by the external layer to predict local weather condition. The algorithm is im-

plemented by an embedded controller to receive weather information, calculate solar

power generation in a day ahead and send results to local controller of each HVAC.

In the operational layer, each bus line can be considered as an individual agent and

the bus system is regarded as a MAS framework. In Figure 2.5.1, the thin black

solid lines signify the information exchange between neighbouring agents, where the
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communication topology is formed. It is different from the power connection, which

is described by black lines with arrow. The blue dash line with arrow represent solar

power forecast issued by prediction layer. A well-designed energy management algo-

rithm or/and an optimization method can be implemented in the local controller of

HVAC systems based on the estimated solar power generation. A detailed discussions

on each layer in proposed framework are given in Chapter 3, 4, 5 and 6 respectively.



Chapter 3

Solar power forecasting model

This chapter investigates energy forecasting technologies based on the weather forecast

service (WFS) information and historical weather data to predict weather conditions

in a small scale area. The most significant weather factors (such as: temperature)

and time series factors (such as: level and trend) are selected to build solar radiance

forecasting model. Multiple linear regression (MLR) models [47, 48] and autoregres-

sive integrated moving average with exogenous variable (ARIMAX) models [102],

as widely-used statistic techniques, are utilized as benchmarks to solve time-series

forecasting problem. Meanwhile, a hybrid multiple aggregation prediction algorithm

with exogenous variables -principal components analysis (MAPAx-PCA) models is

presented to capture more information in different temporal aggregation levels [8].

The results show that the hybrid model outperforms the benchmark models, which

are assessed by performance evaluation indexes in terms of model accuracy. Further-

more, a day-ahead solar power generation for a PV array is estimated correspondingly

by taking advantage of its output characteristics.

38
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3.1 Data acquisition

Met Office is a national WFS in the UK, which makes meteorological predictions

across all time scales from weather forecasts to climate change. Met Office Data

Point provides a free service to access available Met Office data for scientific research.

It includes forecasts for approximately 5000 sites and observations for approximately

140 sites across the UK. The website provides weather forecast for the next five

days updated every 3 hours, whilst the data is updated in real time, as shown in

Figure A.0.1 in Appendix. The closest weather forecast site to Lancaster is called

Walney Island, which is an island off the west coast of England, at the western end

of Morecambe Bay in the Irish Sea. Quite a few weather forecast indexes are given

in the Data Point, such as UV index, temperature, wind speed, weather types. The

Table 3.1.1 summarizes weather forecast information in a day from the Figure A.0.1.

It is worthwhile to note that the ultraviolet (UV) index specifies the strength of the

sun’s ultraviolet radiation, which combines effects of the position of the sun in the

sky, forecast cloud cover and ozone amounts in the stratosphere. Although the solar

radiance is not given directly, it can be predicted indirectly by using highly related

meteorological components, such as: UV index, temperature and weather type, that

are provided in Data point [103, 104]. Furthermore, information in the forecast site

cannot directly represent the local weather condition, due to geographical differences.

The Hazelrigg site of Lancaster University is selected as the forecasting site, where

its historical observation data can be provided. The dummy variable and lag variable

are used to specify the time series characteristics in dataset, where dummy variables
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imply the seasonality and lag variables emphasize the impact of historical data on

forecast value. A forecasting model is established by taking advantage of WFS and

local observation data, in order to accurately reveal the local weather condition.

3.2 Solar irradiation forecasting model

A time series is a sequence of data points, measured typically at successive times,

spaced at uniform time intervals. Time series prediction is the use of a model to

predict future states based on the past states. In this section, MLR and ARIMAX, as

two mainstream statistical methods, are employed to solve the time-series predication

problem, which are regarded as benchmark models to compare with the advanced

algorithms.

3.2.1 MLR model

In time series domain, the most obvious form is a time plot in which the data are plot-

ted over time. A time plot reveals various features of the data, such as: level, trend,

seasonality and cyclical behaviour. Therefore, by obtaining time map of historical

solar radiance, features can be discomposed from time series data.

MLR attempts to model the relationship between time-series components with

the forecasting variable by fitting a linear equation to observed data. The local solar

radiance observation data yt and t = 1, 2, ..n sampled at a certain frequency. UV

index, temperature and weather type in the WFS are used as input variables xj,t, j =

1, 2, 3, in the forecasting model. Considering the data update frequency in the WFS,
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the local solar radiance can be predicted every 3 hours accordingly. The mathematical

model regarding solar radiance prediction ŷt is shown as below:

ŷt = α0 +
8∑

i=1

βiDi +
3∑

j=1

γjxj,t +
∑

k=1,2,8

δkyt−k (3.2.1)

where βi, γj, δk are coefficients of different regressors, α0 is an estimation of true level.

Dummy variable Di is introduced to describe 3-hourly seasonality. yt−1, yt−2, yt−8

represent the lag variables (lagged approximately by 3, 6 and 24 hours, respectively)

to analyse the effects of historical data on forecast value ŷt.

3.2.2 ARIMAX model

The autoregressive moving average (ARMA) model is one of the most popular time

series forecasting methods. It is composed of autoregressive (AR) part and moving

average (MA) parts. AR explains that the forecast variable is regressed on its own lag

values. MA term indicates the regression error is a linear combination of error terms

whose value occurs at various times in the past. ARMA models are very flexible due

to their benefits in representing different types of times series with different orders.

Note that ARMA model is only available for stationary series. ARIMA technique

is proposed to address this problem by using I (integration) part to differentiate the

data at appropriate time, so that it is suitable for non-stationary series. The model

is indicated as ARIMA(p, σ, q), where the non-negative parameters p,σ and q are the

order of AR, I and MA models, respectively. Because the input variables are combined

in the ARIMA model, ARIMA with exogenous variable (ARIMAX) model transforms

ARIMA into a multiple regression model. It is suitable to analyse additional variables
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that have direct effects on the predicted values. The mathematical model can be

written as [102]:

(1−
p∑

i=1

φiL
i)(1− L)σyt =

n∑
j=1

γ′jxj,t + (1 +

q∑
i=1

ψiL
i)et (3.2.2)

where L is the lag operator, for example, Liyt = yt−i and Liet = et−i. φi and ψi

are parameters of AR and MA of model, respectively and et is error terms. γ′i is the

coefficients of exogenous variables. Generally, ARIMAX model can be estimated with

Box-Jenkins approach, where a range of candidate models can be evaluated by akaike

information criterion (AIC), in order to investigate the optimal order and parameters

in the model.

3.2.3 MAPA model

The model selection and parameter identification are the keys of forecasting, as they

are tried to achieve accurate and reliable prediction. Multiple aggregation predic-

tion algorithm (MAPA) is proposed to mitigate the importance of model selection,

while improving forecasting accuracy. It plays a vital role in strengthening different

characteristics in a time series by transforming the original data to different time

frequencies. A time series can be aggregated into multiple low frequency series, i.e.,

a daily time series become weekly, monthly, quarterly and so on. Different features

of time series at each aggregation level are highlighted or attenuated. As for high fre-

quency time series(low aggregation level), periodic components (i.e. seasonality) will

be strengthened. With the increase of aggregation level, the high frequency feature

such as seasonality and outlier components can be filtered out, while the low frequency
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Figure 3.2.1: Flowchart of the multiple aggregation prediction algorithm (MAPA) [4]

component such as level and trend of time series will be prominent. Intuitively, it is

expected to capture the seasonal elements of a time series better at low aggregation

levels. Conversely, the level and trend are highlighted at high aggregation levels.

Intuitively, the framework of MAPA algorithm consists of three steps: tempo-

ral aggregation, forecasting and combination, as shown in Figure 3.2.1 [8]. In the

temporal aggregation stage, Let Y be time series with the observation units yt and

t = 1, 2, ..., n sampled at a certain frequency. This time series is aggregated into multi-

ple reconstructed series by means of length k and the temporal aggregated time series

is defined as Y [k] with the observation units yki and i = 1, 2, ..., n/k, k = 1, 2, ..., K,

such that:

y
[k]
i = k−1

ik∑
t=1+(i−1)k

yt (3.2.3)

Clearly, for k = 1, y[1]i = yt. The aggregated time series y[k] has n/k observations. If

the reminder of n/k is not zero for a specific aggregation level k, n−[n/k] observations
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from the beginning or end of original time series can be removed, in order to form a

complete temporal aggregation group. Practically, the number of observation units

should satisfy n >> k in order to leave adequate samples for temporal aggregation.

Although, theoretically, MAPA can use any forecasting methods at each aggrega-

tion level, exponential smoothing (ETS) model is appropriate, as it splits a time series

into level (li), trend (tri) and seasonal (si) components during modelling [4]. These

components are smoothed and the level of smoothing is controlled by the smoothing

parameters of ETS. The smoothed components are combined to give a forecast. With

the consideration of the nature for each time series, these may interact in an additive

or multiplicative way. Note that the trend can be linear or damped by parameter

ϕ. Furthermore, the error correction form of ETS model cannot be neglected, where

the additive/multiplicative error correction form for ETS model can be referred to

[5]. To identify a proper form of ETS for each time series and temporal aggregation

level, AIC is used for ETS modelling. It is worthwhile to mention that MAPA is

interested in the last state of ETS, in order to produce forecasts for desired hori-

zon. However, the additive and multiplicative components are not comparable in the

same scale. For example, an additive ETS can fit one of the aggregation levels and

multiplicative fit another one. To overcome these difficulties, Table 3.2.1 is given to

transform multiplicative components into additive components and give components

prediction for h step ahead forecasting. The following notations are used: N for none,

Md for multiplicative damped, M for multiplicative, Ad for additive damped and A

for additive. In the last step, a combination methods is proposed to combine time

series components across all aggregation levels. Two combination scheme, namely
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unweighted mean and median, are identified to perform similarly. Each component

is calculated as [4, 5]:

lt+h = K−1

K∑
k=1

l
[k]
t+h (3.2.4)

trt+h = K−1

K∑
k=1

tr
[k]
t+h (3.2.5)

st+h = K ′−1

K′∑
k=1

s
[k]
t+h, if m

k
∈ Z and k < m (3.2.6)

where K is the maximum aggregation level. Normally, the maximum aggregation

level is equal to the period of original time series. K ′ specifies the number of ag-

gregation levels where seasonality is identified. A example is given to illustrate this:

suppose that a monthly sampled time series, then K ′ = 1, 3, 6, 12, which indicate the

seasonality estimated and combined at monthly, quarterly, semi-annual and annual

data.

In order to produce the final forecast for h steps ahead, the time series components

can be added together, as they have been already predicted respectively [4].

ŷ
[1]
t+h = lt+h + trt+h + st−m+h (3.2.7)

3.2.4 MAPAx-PCA model

MAPA algorithm also can be extended to include exogenous variables. The revised

algorithm is named as MAPAx. Let define Xj as jth explanatory variable with the

observations xj,t and j = 1, ..., J . ξj,t is introduced to indicate the effect of each Xj

variable at time t and wj is weighting coefficients, where ξj,t can be defined as [4]:

ξj,t = wjxj,t (3.2.8)
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The effect of each variable is measured separately in ξj,t, allowing to be incorpo-

rated into the MAPA framework. The estimation of wj can be done by least square,

maximum likelihood estimation. At each aggregation level k, ξ[k]j is calculated by mul-

tiplying the estimated w[k]
j and x[k]j . At each temporal aggregation level k, a separate

ξ
[k]
j,t is calculated based on the estimated w[k]

j and temporally aggregated X [k]
j . The re-

sulting vector with coefficients are combined into a single effect across all aggregation

levels for each variable Xj

ξj,t+k = K−1

K∑
k=1

ξ
[k]
j,t+h (3.2.9)

Finally, the equation 3.2.7 used for univariate forecast can be revised to adapt to the

multi exogenous variables and investigate their effect on forecasting accuracy [4].

ŷ
[1]
t+h = lt+h + trt+h + st−m+h +

J∑
j=1

ξj,t+h (3.2.10)

The structure of MAPAx algorithm is demonstrated in Figure 3.2.2.

Input 

Times 

Series Y [k]

Times 

Series X[k]
i

Principal 

Components

Analysis

Exponential 

Smoothing Fit

Additive 

Translation

l[k]
t+h

tr[k]
t+h

 s[k]
t+h

ξ[k]
t+h

Y[1]
t+h

Univariate

Exogenous

Output Forecasting 

Figure 3.2.2: MAPAx algorithm diagram [5]

As the same way treated in the univariate case, the parameters of multivariate
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ETS across each aggregation level can be optimized and the appropriate model will

be selected with AIC. However, temporal aggregation causes additional complexity for

the multivariate models. As Xj are aggregated, they become smoother. This changes

the correlation between exogenous variables and potentially introduce multicollinear-

ity at the higher aggregation levels, if more than one variable is included. As lag

variables are employed as explanatory variables to predict solar radiance, collinearity

phenomenon will appear at some aggregation levels. These variables can be merged

to one vector, whilst the estimating coefficients wj would not always exist. To avoid

this, it is worthwhile to transform the variables into orthogonal variables by means of

PCA method.

Mathematically, PCA is a statistical technique which employs an orthogonal trans-

formation to convert a set of possibly correlated variables into a set of the linearly

uncorrelated variables called principal components [105, 106]. The algorithm has

characteristics that the first principle component has the greatest variance by some

projection of the data and comes to lie on the first coordinate. The succeeding compo-

nent on the second coordinate has second greatest variance under the constraint that

it is orthogonal to the preceding component [107, 108]. In this study, a transformed

set of variables X ′
j is generated by PCA called as principal components, in response

to the original correlated variables Xj, where j = 1, ..., J . The obtained principal

components are orthogonal to each other. Thus, by replacing the original variables

with the orthogonal principal components, the multicollinearity problem caused by

temporal aggregating exogenous variables can be overcome. To produce the final

forecast for h steps ahead, the algorithm implementation is shown in algorithm 1.
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Algorithm 1 MAPAx algorithm for solar radiance forecasting.
Input: Time series of forecast variable yt, forecast step h and exogenous variables

xj,t+h

Output: Forecast result ŷt+h

1: Given a time series forecast variable Y = yt and exogenous variables X = xj,t+h

with t = 1, 2, ..., N , j = 1, 2, ..., J

2: Pre-process multicollinearity variables in exogenous variable with PCA to set a

new exogenous variable set X ′ = x′j,t+h

3: Temporally aggregating original time series (Y , X ′) to obtain aggregated series

at each level Y [k] and X ′[k] with equation 3.2.3 and the effect of X ′[k] is reflected

by ξ[k]t+h with equation 3.2.8.

4: Fit ETS model components (level, trend and seasonality) at each aggregation

level. Make the components prediction for h step by following the Table 3.2.1 to

obtain {l[k]t+h, tr
[k]
t+h, s

[k]
t+h}

5: Combine time series components and effects of exogenous variables at each ag-

gregation level with weights combination scheme (equation 3.2.4-3.2.6 and 3.2.9)

to obtain forecast result ŷt+h, referred to equation 3.2.10
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3.3 Weather forecasting results and comparison

In this section, solar radiance forecasting results and the data acquired from Lancaster

University weather station will be compared and discussed by means of MLR model,

ARIMAX model and MAPAx-PCA model. It is necessary to test the proposed fore-

casting methods with historical dataset and nearby weather forecast data. These two

datasets range from 2017 April to 2017 July obtained from Lancaster Environment

Center and Metoffice website. Due to the different time scales in two datasets, the

sampling time is 10 minutes for Lancaster University weather station data, while the

weather condition data from Metoffice are predicted every 3 hours. The historical

data should be preprocessed with mean value method to adapt to the same time scale

with Metoffice data. More specifically, first two months data (2017.04.01-2017.06.13)

are employed for training the model, while the data from 2017.06.14 to 2017.07.03 are

utilized for evaluating the performance of trained model.

Figure 3.3.1: Forecasting results from the MLR model

Regarding the model evaluation, mean absolute percentage error (MAPE) can be
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a good indicator to describe the prediction accuracy, which is defined as follows:

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ (3.3.1)

where yt is the actual value and ŷt is the forecast value. Additionally, another index

called Coefficient of determination (R2) is introduced to assess how well a model

explain the actual output data and it is defined as:

R2 = 1− SSres

SStotal

(3.3.2)

where SSres is the sum of squared predicted output residuals, SStotal is the total sum

of squares. If R2 converges to unity, it indicates the model provide a good fit to real

case. If R2 approaches to zero, it means the theoretical model fails to fit real model, .

Figure 3.3.1 shows short-term solar radiance forecasting results with the MLR

model. Clearly, the estimated value generally follow the observation data, with MAPE

and R2 being 69.27 and 0.745, respectively. In contrary, Figure 3.3.2 gives the fore-

casting result from the ARIMAX model, with MAPE and coefficient of determination

being 86.67 and 0.78, respectively.

Figure 3.3.2: Forecasting results from ARIMAX model
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The implementation of MAPAx is based on ’mapa’ package in Rstudio. Rstu-

dio is integrated development environment for R and is most commonly-used tool in

statistic field. Figure 3.3.3 shows the identified ETS models at each temporal aggre-

gation level. The components (error, trend, seasonality and exogenous variables) at

different aggregation levels are identified and combined to fit the ETS model. Greyed

cells indicate levels that no seasonality is estimated. N, A, Ad, M and Md indicate

distinguishing combination schemes, as mentioned above. Figure 3.3.4 gives the final

prediction results with the MAPAx-PCA model. Apparently, this hybrid MAPAx-

PCA model best fits the test dataset, with MAPE equalling to 65.0355 and R2 being

0.803, which outperforms the regression model in terms of goodness-of-fit of the pre-

dicted values. In summary, Table 3.3.1 is given to show the forecasting performance

with three methods.

Figure 3.3.3: Identified ETS components for all temporal aggregation level
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Figure 3.3.4: Forecasting results from MAPAx-PCA model

Table 3.3.1: The comparison of forecasting performance

MLR ARIMAX MAPAx-PCA

MAPE (%) 69.27 86.67 65.035

R2 0.745 0.78 0.803

3.4 Solar power system model

Based on the forecasting results generated by MAPAx-PCA model, a 24-hour solar

power can be estimated by taking account of the specification of a solar PV panel

and the size of the PV array. Table 3.4.1 gives a set of parameters for a single PV

module from ISoltech with model No.ISTH-215-P, where Isc, Uoc, Im, Um denote short-

circuit current, open circuit voltage, maximum current and maximum voltage under

standard condition. The standard condition indicates solar radiance reference value

Sref = 1000W/m2 and temperature reference value Tref = 25oC. Figure 3.4.1 gives

output power-voltage (P-V) and current-voltage (I-V) curve for single PV module

under different solar radiance and temperature conditions. Clearly, the P-V curve of
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Table 3.4.1: Specification of PV module

Value

Im(A) 7.35

Um(V) 29

Isc(A) 7.84

Uoc(V) 36.3

Pm(W) 213.15

a PV module shows a single peak under even irradiation environment. Many MPPT

techniques have been proposed to adjust the peak power output and improve the gen-

erating efficiency of PV system. The perturb and observe method and the incremental

conductance algorithm are most commonly applied MPPT algorithms[109].

Instead of utilizing conventional methods, it is straightforward to calculate key

parameters in output curve with a set of mathematical model in reference [111], based

on the change of solar radiance and temperature, which is given as follows:

I ′sc = Isc
S

Sref

(1 + θ1∆T ) (3.4.1)

U ′
oc = Uoc(1− θ3∆T ) ln(1 + θ2∆S) (3.4.2)

I ′m = Im
S

Sref

(1 + θ1∆T ) (3.4.3)

U ′
m = Um(1 + θ3∆T ) ln(1 + θ2∆S) (3.4.4)

where ∆T = T − Tref and ∆S = S/Sref − 1. Assume that the shape of output

characteristic remains unchanged, the parameters θ1, θ2 and θ3 are set as 0.0025/oC,

0.5 and 0.00288/oC respectively [111]. The maximum output current and voltage (I ′m,

U ′
m) are calculated by equation 3.4.3 and 3.4.4 and the total maximum power output
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Figure 3.4.1: Output characteristics of PV module against different conditions

P ′
m of a PV array can be expressed as:

P ′
m = ImUmNssNpp (3.4.5)

where Nss represents the number of modules connected in a string and Npp is the

number of strings in a PV array. Suppose there is a PV array with 4 parallel strings

and 6 series-connected modules per string installed in a house roof. In fact, the

shadow of obstructions and angle of installation are significant influencing factors

that cannot be neglected. In this study, we assume these external factors are under

ideal condition. Assume that the PV inverter always operates in MPPT mode to
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maximize the utilization of energy efficiency, the forecast result on June 19 can be

extracted as marked in Figure 3.3.4 and the daily solar energy curve is obtained in

Figure 3.4.2(a). Since the forecast from Metoffice is updated every 3 hours, the solar

power curve is expected to change every 3 hours correspondingly, as shown in Figure

3.4.2(b). The obtained solar power curve will be integrated into control strategy to

evaluate the dynamics of distributed algorithm. More details will be elaborated in

chapter 4 and chapter 5.
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Figure 3.4.2: A predicted solar power curve in a day

3.5 Summary and discussion

In this charter, the solar radiance can be predicted by multiple regression model, ARI-

MAX model and MAPAx-PCA hybrid model, respectively. These statistical-based

models are trained and tested with historical weather observation dataset and weather

forecast service data provided by Metoffice. The strongly correlated factors including
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time series variable (lag variables, dummy variables) and meteorological indexes (UV

index, temperature and weather type) are considered as exogenous variables.

A novel forecasting algorithm based on the MAPA-PCA model is developed to

explore features in times series by aggregating original data into different temporal

levels. A ETS model is established for each aggregation level and final prediction

results are obtained by combining all ETS models with weighting coefficients. In

comparison with classic models, the proposed hybrid method mitigates model uncer-

tainty by introducing multiple ETS models and therefore improves the forecasting

accuracy. Moreover, the power output of a PV array is modelled and then predicted

with the forecasting solar radiances. The daily solar power forecasting curve will be

provided for follow-up work in the subsequent chapters.



Chapter 4

HVAC-based Cooperative

Algorithm

HVAC system, as a household appliance with high popularity, can be considered as an

effective technology to deal with energy dispatch issue. This chapter presents novel

distributed algorithms to solve supply-demand mismatch problem through the de-

mand response, where the microgrid system with HVAC units is considered as a MAS

framework. The approach helps reduce the quantity and capacity of energy storage

devices potentially to be required. Compared with existing approaches focusing on

the distributed algorithms under a fixed communication network, the proposed algo-

rithm addresses a consensus problem under a switching topology by using Lyapunov

argument and its consensus condition is given, correspondingly.

Section 4.1 describes preliminary knowledge involving graph theory and consensus

algorithm. A mathematical model and physical model of HVAC system are presented

in Section 4.2. Section 4.3 formulates a HVAC-based DSM problem, where distributed

59
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energy management algorithms under the fixed and time-varying interaction topology

are propossed respectively, with algorithm proofs given. Case studies and simulation

results are presented and discussed in Section 4.4. Section 4.5 develops an energy

dispatch scheme for HVAC systems, based on the solar power forecasting results

obtained by MAPAx-PCA model. A summary is outlined in Section 4.6.

4.1 Preliminary

The preliminary knowledge including graph theory and consensus algorithm is given

in this section, which lays a theoretical foundation for the introduction and proof of

cooperative algorithm.

4.1.1 Graph theory

The communication topology among agents in MAS can be represented by an undi-

rected graph G = (V , E), where V = {1, 2, ..., n} is a node set and E = {(i, j)|i, j ∈

V} ⊆ V ×V is a finite edge set. As for an undirected graph, the edge (i, j) represents

the information exchange between vertex j and i. Nodes j and i are neighbouring

nodes. Here, the self-loop edges are not considered in the topology. We only focus on

the undirected graph. Let define Ni = {j|(i, j) ∈ E} as the union of neighbour ver-

texes for vertex i. If each node in an undirected graph has connection with any other

nodes, the graph is called a strongly connected graph. In the microgrid diagram shown

in the operational layer in Figure 2.5.1, each bus line is modelled as a node. The thin

black solid lines signify the information exchange between neighbouring nodes and



CHAPTER 4. HVAC-BASED COOPERATIVE ALGORITHM 61

hence, they form the communication topology. Clearly, the topology under Figure

2.5.1 is a strongly connected undirected graph. Mathematically, the communication

topology can be described as a n×n matrix to indicate the interaction among agents,

which will be demonstrated in the next section.

4.1.2 Consensus algorithm

When the interaction network among the agents allows continuous communication,

the information state update of each agent is modelled by a differential equation. If the

communication data arrives in discrete packets, then the information state is updated

with a difference equation. Therefore, a scalar information state is updated by each

agent using a first-order differential equation or a first-order difference equation.

According to the communication topology introduced above, the most common

continuous consensus algorithm is given by [112]:

ẋi(t) = −
n∑

j=1

aij [xi(t)− xj(t)] , i = 1, 2, ..., n (4.1.1)

where aij indicates the weight for (i, j) ∈ E associated with G at time t and xi is the

information state of agent i. Note that aij = 0 denotes the fact that agent i cannot

receive information from agent j ((i, j) /∈ E). Equation (4.1.1) represents that the

state of agent is driven by the information transfer with its neighbouring agents. The

consensus algorithm (4.1.1) is rewritten as in matrix form:

ẋ(t) = −L(t)x(t) (4.1.2)

where x = [x1, x2, ..., xn]
T is the information state column vector and L = {ℓij} ∈

Rn×n is a non-symmetrical Laplacian matrix associated with communication topology.
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The Laplacian matrix is defined as [112]:

ℓij =


−aij, (j, i) ∈ E∑n

j=1,j ̸=i aij, i = j

0, (j, i) /∈ E

(4.1.3)

For a undirected graph, Laplacian matrix is symmetrical with diagonal entries

positive. It owns the following properties [113].

1. L is symmetric matrix with each row sum is zero. Thus, L exists at least a zero

eigenvalue, with associated eigenvector 1n = [1, 1, .., 1]T , satisfying L1n = 0

2. L is positive semi-definite matrix, with non-zero eigenvalue having non-negative

real part.

If the communication between agents occurs at discrete instants, the information

update of each agent relies on difference equation. Similar to continuous model, the

commonly-used discrete-time consensus algorithm has the form:

xi(k + 1) =
∑
j∈Ni

dijxi(k) (4.1.4)

where xi(k) is the state of agent i at the iteration k. dij is the (i, j) entry of a row

stochastic matrix D = {dij} ∈ Rn×n corresponding to an undirected graph. Equation

(4.1.4) can be rewritten in terms of matrices as below

X(k + 1) = DX(k) (4.1.5)

Different methods have been used to define matrix D such as those used in refer-
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ences [76, 101, 112]. Here, Vicsek model is adopted to define dij as follows [112]

dij =



1
1+|Ni| , j ∈ Ni

1−
∑

i∈Ni

1
1+|Ni| , i = j

0, j /∈ Ni

(4.1.6)

where |Ni| represents the number of elements in set Ni. It can be seen that matrix

D associated with a strongly connected graph is a positive doubly stochastic matrix,

where the sum of entries in rows and columns are both equal to one. Matrix D satisfies

following conditions[112, 113].

1. It satisfies D1n = 1n and 1TnD = 1n. The stochastic matrix D has 1 as an

eigenvalue with an associated eigenvector 1n.

2. The spectral radius of matrix D is 1 and all of rest of eigenvalues are all positive.

3. The average consensus is achievable based on initial conditions of all agents, if

the graph is strongly connected. The consensus state is calculated by lim
k→∞

xi(k) =

1
n

∑n
i=1 xi(0) and xi(0) denotes initial condition for agent i (i = 1, 2, .., n)

The above properties will be utilized for the proof of the distributed algorithm

in Section 4.3. Examples of matrix D are given in Section 4.4.6 when dealing with

switching topology test.

4.2 HVAC model

A HVAC system is physically composed of a compressor, an evaporator, condenser

and expansion valves, sensors, electrical control parts and a central controller. The
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compressors of air conditioner have evolved from fixed speed to variable speed units.

The constant speed air conditioner only works in ON/OFF mode with a constant

power consumption, based on the triggering temperature, which is not an adjustable

load to participate in system operation. Moreover, there is a transient spike in the

power consumption when it is turned on. After it is turned off, the air conditioner

continues to cool for a few minutes, because of the inertial effect, which results in

over cooling and inefficiency. Conversely, the inverter air conditioner has a variable-

frequency drive to control the motor speed and cooling/heating output. With its

flexibility and popularity, the inverter air conditioner has a promising application

prospect in relieving the tension of supply-demand mismatch, strengthening the grid’s

ability of dealing with power fluctuation, improving energy efficiency and maintaining

the occupant comfortable level. Specifically, the inverter air conditioner can be divided

into AC inverter-based air conditioner and DC inverter-based air conditioner, which

employs AC motor or DC motor to drive the compressor, respectively. In this thesis,

we only discuss AC inverter-based air conditioner.

4.2.1 Electrical model of the HVAC system

The electrical model of inverter air conditioner system describes the relationship

among compressor frequency, cooling capacity and power consumption. The power of

inverter air conditioner system is mostly consumed by the compressor, whose Coeffi-

cient of Performance (CoP) is varied with different frequencies. Figure 4.2.1 shows the

performance curves of a typical HVAC, demonstrating the relationship of compressor

frequency against the cooling load, CoP and power consumption, respectively [114].
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The relationship between operating frequency fi and power consumption PAC,i with

respect to ith HVAC system is expressed approximately as [115].

PAC,i = uifi + vi (PAC,i 6 PAC,i 6 PAC,i) (4.2.1)

where ui and vi are a pair of model coefficients. Physically, ui and vi denote load

ramp rates and initial power of the HVAC unit, respectively. PAC,i and PAC,i de-

note the maximum and minimum power consumption of HVAC i, respectively. The

power consumption of each HVAC system subjects to its power constraints. Simi-

larly, the relationship between the cooling capacity QAC,i and the frequency fi also

can be modelled as a first-order function. It can be seen that the operating frequency

Figure 4.2.1: CoP, power consumption and cooling capacity of the HVAC against

compressor frequency

increases with the increment of the cooling load. Then, the expansion valve will open

more to ensure the system can operate at an optimal CoP value. Consequently, the

power consumption increases with the growth of the operating frequency. A number
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of performance tests carried out in [116] indicate that the power consumption of air

conditioner depends on the compressor frequency instead of the temperature.

4.2.2 HVAC physical control

The motor in inverter air conditioner offers a wide operating range, which allows the

unit to work even in extreme weather conditions. It is achieved by inverter technology

and electro motors of the compressors. Figure 4.2.2 shows the schematic of a typical

AC inverter-based air conditioner, demonstrating how the controller algorithms are

integrated into power conversion of the HVAC system. In Figure 4.2.2, the power

conversion circuit aims to achieve AC-DC-AC power conversion, which is composed

of an AC filtering module, a rectifier, a power factor control (PFC) circuitry, a DC fil-

tering module, and an intelligent power module (IPM). Firstly, a single-phase power

supply is given to AC filtering module. Then, a stable DC voltage is obtained by

connecting capacitors along with a PFC in the current path after the rectifier. The

IPM module is utilized to convert DC to AC regulated by the pulse width modula-

tion (PWM) signals as controlled to drive the compressor. There are two controllers

in the HVAC unit. The upper controller implements the distributed algorithm and

generates reference frequency and power signals (f ref
i , P ref

AC,i) in response to the local

power mismatch (PD,i) and collects local agent information, such as: power constraint

(PAC,i, PAC,i) and frequency information (fj) interaction with neighbouring HVAC

units. Provided that the indoor and outdoor temperatures, frequency and power ref-

erence signals are given, the lower controller then generates PWM pulses to drive the

insulated-gate bipolar transistor (IGBT) in the IPM module to secure the compressor
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operates with referred frequency signal and consumes power as desired. Furthermore,

the lower controller adjusts the operation state of the expansion valve and outdoor

machine to assist its operation. Meanwhile, it is worthy highlighting that the control

strategy in the lower controller is not the focus of this work.

4.3 Distributed HVAC systems energy management

In this session, a HVAC-based DSM problem is formulated. A distributed cooperative

algorithm is presented by incorporating the HVAC model to address DSM problem in

a stand-alone microgrid system. The main objective is to obtain a desired frequency

f ∗ and power reference P ∗
AC,i for HVAC, while the consumption of aggregated HVAC

systems can compensate the total power mismatch caused by unstable renewable

energy. The convergence proof for the proposed algorithm under fixed communication

topology and dynamic communication topology are provided.

4.3.1 Problem formulation

Considering an IEEE n-bus system to construct a microgrid system, the active power

balance in an autonomous microgrid system without transmission loss can be repre-

sented as:

Pd =
n∑

i=1

PG,i −
n∑

i=1

PL,i (4.3.1)

where Pd is total supply-demand mismatch for the entire microgrid system, PG,i is

the distributed power generation at ith local bus; PL,i denotes the non-adjustable

load demand at bus i. An appropriate dispatching strategy therefore needs to be
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implemented to share the total power mismatch Pd by regulating power consumption

of the HVAC unit PAC,i (i = 1, 2, ..., n) such that

Pd =
n∑

i=1

PAC,i (4.3.2)

When power consumption constraints for each HVAC are applied, the objective of

coordinating multiple HVAC units is to minimize the cost function

min
n∑

i=1

PG,i −
n∑

i=1

PL,i (4.3.3)

s.t. Pd =
n∑

i=1

PAC,i (4.3.4)

n∑
i=1

PAC,i 6 Pd 6
n∑

i=1

PAC,i (4.3.5)

where PAC,i, PAC,i are lower and upper power constraints for the ith HVAC unit,

respectively.

Assume there are n HVAC units in a microgrid system, according to equation

(4.2.1) and (4.3.4), all frequency signals will eventually converge to an optimal com-

mon value, which is calculated as:

f ∗ =

(
Pd −

n∑
i=1

vi

)
n∑

i=1

1

ui
(4.3.6)

The associated power consumption for each HVAC systems is therefore

P ∗
AC,i = uif

∗ + vi (4.3.7)

Considering power constraints on HVACs, the frequency can be specified as:
f ∗ = (PAC,i − vi)/ui, PAC,i < PAC,i < PAC,i

f ∗ > (PAC,i − vi)/ui, PAC,i = PAC,i

f ∗ < (PAC,i − vi)/ui, PAC,i = PAC,i

(4.3.8)
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Let define ΓAC as a subset of the HVAC units where the power consumption is satu-

rated, in order to achieve the optimal assignment, we have

f ∗ =

PD −
∑

i∈ΓAC

PAC,i −
∑

i/∈ΓAC

vi

 ∑
i/∈ΓAC

1

ui
(4.3.9)

The power consumption for each HVAC can be described as:

P ∗
AC,i =


uif

∗ + vi, i /∈ ΓAC

PAC,i or PAC,i, i ∈ ΓAC

(4.3.10)

The results obtained in equation (4.3.10) are the solution to the DSM problem as for-

mulated in equations (4.3.3)-(4.3.5) with HVAC power constraints being considered.

4.3.2 Algorithm design

Distinguished distributed algorithms are provided in response to the difference in fixed

communication topology and time-varying topology.

Under fixed topology

Let fi(k) and PAC,i(k) be the operating frequency and power consumed for the ith

HVAC at the iteration k, respectively. PD,i denotes the power mismatch estimated

between the local power generation and local load demand at bus i. ϵi is a positive

coefficient affecting the convergence speed. The discrete time distributed algorithm

is described as:

fi(k + 1) =
∑
j∈Ni

dijfj(k) + ϵiPD,i(k) (4.3.11)

PD,i(k + 1) =
∑
j∈Ni

dijPD,i(k)− (PAC,i(k + 1)− PAC,i(k)) (4.3.12)

PAC,i(k + 1) = uifi(k + 1) + vi (4.3.13)
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Remark 4.3.1: The update of fi in the distributed algorithm (4.3.11) is obtained

based on collaborative efforts of all neighbouring agents of ith HVAC and its current

state. The stability of the algorithm mainly relies on consensus term
∑

i∈Ni
dijfj(k),

which is determined by the associated communication topology. The surplus term

ϵiPD,i(k) provides a feedback mechanism to ensure the convergence and ϵi is called

state feedback gain, which dominants the convergence speed of fi when converging to

optimal f ∗.

Consider the initial conditions:
fi(0) =

(PAC,i(0)−vi)

ui

PAC,i(0) ∈
[
PAC,i, PAC,i

]
PD,i(0) = 0

(4.3.14)

Let PAC,i(0) be any value within the power constraint boundary and total initial power

consumed by HVAC devices is PAC(0) =
∑n

i=1 PAC,i(0).

The equations (4.3.11), (4.3.12) and (4.3.13) can be rewritten in a matrix form as

follows:

F (k + 1) = DF (k) + EPD(k) (4.3.15)

PD(k + 1) = DPD(k)− (PAC(k + 1)− PAC(k)) (4.3.16)

PAC(k + 1) = UF (k + 1) + V (4.3.17)

where F , PD, PAC , V are column vectors of fi, PD,i, PAC,i, vi, respectively with

i = 1, 2, ..., n. Define E = diag{ϵ1, ϵ2, ..., ϵn}, U = diag{u1, u2, ..., un}. It can be
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reformatted as a matrix form F (k + 1)

PD(k + 1)

 = W

 F (k)

PD(k)

 , W =

 D E

U(I −D) D − UE

 (4.3.18)

W is called the system matrix. Denote

W0 =

 D 0

U(I −D) D

 , Ξ =

 0 E

0 −UE

 (4.3.19)

Here we introduce a metric for the distance between the spectrum of W and W0;

thus W = W0 + Ξ. The matrix Ξ is dominated by a gain vector [ϵ1(k), ..., ϵn(k)]. By

analysing the optimal matching distance between the spectrum of W and W0, the

boundary of feedback gain can be obtained, which is demonstrated in next session.

Now consider power constraints on HVAC system; equation (4.3.13) is then revised

to

PAC,i(k + 1) =


PAC,i, fi(k + 1) < f

i

uifi(k + 1) + vi, f
i
< fi(k + 1) < f i

PAC,i, fi(k + 1) > f i

(4.3.20)

The f
i

and f i are minimum/maximum compressor frequency for HVAC i, where

f
i
= (PAC,i − vi)/ui, f i = (PAC,i − vi)/ui. With the same initial values as given in

(4.3.14), equation (4.3.18) is then revised to: F (k + 1)

PD(k + 1)

 =

 D E

U ′(I −D) D − U ′E


 F (k)

PD(k)

 (4.3.21)

where U ′ = diag{u′1, u′2, ..., u′n} with

u′i =


0, if PAC,i is saturated

ui, otherwise
(4.3.22)
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Under time-varying topology

The consensus algorithms under a fixed communication topology is modified to ad-

dress the case under time-varying interaction topology. Assume the communication

network in the MAS is time varying, the equations (4.3.11) and (4.3.12) need to be

improved to accommodate the average consensus in a dynamic topology.

fi(k + 1) =
∑
j∈Ni

ci(k)dijfj(k) + ϵiPD,i(k) (4.3.23)

PD,i(k + 1) =
∑
j∈Ni

ci(k)dijPD,i(k)− (PAC,i(k + 1)− PAC,i(k)) (4.3.24)

where the switching parameter ci(k) = 1, if the
∑

j∈Ni
dij ̸= 0, or otherwise ci(k) =

0. Let us define D′(k) = {ci(k)dij(k)} is also a doubly stochastic matrix as D.

This means that the agent updates its current state may only rely on its surplus

term, if there is no direct information from in-neighbours during the time subinterval.

Similarly, a matrix format is expressed as: F (k + 1)

PD(k + 1)

 =

 D′(k) E

U(I −D′(k)) D′(k)− UE


 F (k)

PD(k)

 (4.3.25)

The power information of each HVAC unit is updated with equation (4.3.13) and the

initial conditions satisfy equation (4.3.14).

4.3.3 Convergence analysis for fixed communication topology

With the updating rule of HVAC systems expressed in equations (4.3.11)-(4.3.13), we

have the following theorem to demonstrate the stability proof of distributed algorithm

under fixed topology [101].
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Theorem 4.3.1. Suppose a communication topology G is strongly connected, if the

feedback gain ϵi is properly small, distributed algorithm eqs (4.3.11)-(4.3.13) with the

initial condition eq (4.3.14) solves DSM problem eq (4.3.3). That is, fi and PD,i can

asymptotically converge to the optimal value f ∗ and P ∗
D, respectively.

Proof. Firstly, if the feedback gain ϵ is sufficiently small to be neglected, we prove

that the eigenvalue of W2n×2n satisfy

|λI2n −W | =

∣∣∣∣∣∣∣∣
 λIn −D −ϵIn

U(D − In) λIn −D + ϵInU


2n×2n

∣∣∣∣∣∣∣∣ ≈ |λIn −D|2 (4.3.26)

where W has the repeated eigenvalue sets as D. In is a identity matrix with size of

n × n. Since the matrix D is designed as equation (4.1.6), it is a doubly stochastic

matrix with the property demonstrated in Section 4.1.2. Therefore, the eigenvector

with respect to λ = 1 should be [1n, 0n]
T , which satisfies

W

 1n

0n

 = λ

 1n

0n



⇒

 D ϵIn

U(In −D) D − ϵInU


2n×2n

 1n

0n


2n×1

= λ

 1n

0n


2n×1

⇒

 D1n

U(In −D)1n

 =

 1n

0n


According to the proof in [101, 117], the system converges to region [1n, 0n]

T , as time

goes to infinity  F (∞)

PD(∞)


2n×1

= f ∗

 1n

0n

 (4.3.27)
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Thus, the compressor frequency will converge to a common value f ∗ and the local

power mismatch will converge to 0. On the other hand, the matrix perturbation

theory can also be used to analyse the convergence of the algorithm by discussing the

eigenvalue characteristic of system matrix W .

Note that the selection of gain ϵi depends on the topology structure and number of

agents. Denote λ(W0) = λ1, ..., λ2n and λ(W ) = λ1(ϵ), ..., λ2n(ϵ), where |λ1| ≥ |λ2| ≥

... ≥ |λ2n| and |λ1(ϵ)| ≥ |λ2(ϵ)| ≥ ... ≥ |λ2n|(ϵ). There is a result of the distance

metric d(λ(W0), λ(W ))

Lemma 4.3.2. [118] An upper bound on d(λ(W0), λ(W )) is given by:

d(λ(W0), λ(W )) ≤ 4(∥W0∥∞ + ∥W∥∞)1−
1
2n∥Ξ(t)∥

1
2n∞

Proposition 4.3.3. Suppose a communication topology G is strongly connected, then

there exists a positive ϵ, which has the following form,

ϵ =
1

(8 + 4n)2n
(1− λ3)

2n (4.3.28)

where λ3 is the third largest eigenvalues of W0. When the feedback gain ϵi satisfies

ϵi ∈ (0, ϵ), algorithm (4.3.11)-(4.3.13) converge to the optimal solution of problem eq

(4.3.3).

Proof. From the definition of D, we conclude that ∥D∥∞ = 1, and it is easy to obtain

that ∥W0∥∞ = 1. Lets define ϵ = maxi∈n ϵi. In general, ϵ < n. Given by [101], we

obtain ∥Ξ(ϵ)∥∞ = ϵ thus

∥W∥∞ ≤ ∥W0∥∞ + ∥Ξ∥∞ = 1 + ∥Ξ(ϵ)∥∞ < 1 + n (4.3.29)



CHAPTER 4. HVAC-BASED COOPERATIVE ALGORITHM 76

From eq 4.3.28 and 4.3.29, we can obtain

d(λ(W0), λ(W )) ≤ 4(∥W0∥∞ + ∥W∥∞)1−
1
2n∥Ξ(ϵ)∥

1
2n∞

≤ 4(2∥W0∥∞ + ∥Ξ∥∞)1−
1
2n∥Ξ(ϵ)∥

1
2n∞

≤ 4(2 + n)∥Ξ(ϵ)∥
1
2n∞

≤ 1− |λ3|.

(4.3.30)

From the proof of Lemma 11 in [117], the unperturbed eigenvalues λ3, ..., λ2n of W0 lie

strictly inside the unit circle. Therefore, perturbing the eigenvalues λ3(ϵ), ..., λ2n(ϵ)

by a value less than ϵ will remain in the unit circle. Furthermore, λ2(ϵ) is also lie

in the unit circle and λ1(ϵ) = 1 for ϵi ∈ (0, ϵ). Therefore, an upper bound of ϵi can

guarantee that algorithm (4.3.11)-(4.3.13) converge to the optimal solution of problem

(4.3.3).

Meanwhile, the summation of PAC,i and PD,i is preserved during the consensus

iterations k, which can be verified by multiplying 1Tn on both side of equation (4.3.16)

1Tn (PD(k + 1) + PAC(k + 1)) = 1Tn (DPD(k) + PAC(k))

= 1Tn (PD(k) + PAC(k))

⇒ 1Tn (PD(k) + PAC(k)) = 1Tn (PD(0) + PAC(0))

(4.3.31)

With the initial condition that PD(0) = 0, we have
∑n

i=1 PD,i(k) =
∑n

i=1(PAC,i(0) −

PAC,i(k)). If PD,i(k) → 0 when k → ∞ for i = 1, 2, ..., n, power imbalance problem is

solved for each bus.
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4.3.4 Stability proof for switching communication topology

To verify the convergence condition for the distributed algorithm under switching

topology, we derive the following theorem

Theorem 4.3.4. The revised equation 4.3.23 and 4.3.24 can solve the average con-

sensus under a dynamically changing interaction topology if the union of the directed

graph across each interval is strongly connected.

Because the state matrix in equation (4.3.25) fails to be divided into a determinis-

tic matrix and parameter matrix due to the appearance of D′, the matrix perturbation

theory is thus not applicable to prove a dynamic topology. The convergence proof

of equation (4.3.25) is now conducted based on the Lyapunov-type argument. In ref-

erence [118], the gain parameter is given within (0, 1), which specifies the amount of

power mismatch used for compressor frequency update. Due to the model diversity,

the trend of ϵ against the convergence speed is obtained to fit our case, through a

number of simulation experiments. As shown in Figure 4.3.1, the algorithm perfor-

mance is optimized when ϵ ∈ (1, 3). The system convergence become weak if out of

this range. When ϵ is over 8, the system become divergence.

In order to design a Lyapunov candidate function, we introduce the maximum and

minimum frequency state m(f) and m(f) with regard to Equation 4.3.23 satisfying

m(f) = max
i∈n

(fi) m(f) = min
i∈n

(fi) (4.3.32)

As demonstrated in reference [118], the minimum value m(f) is a non-decreasing

variable for each iteration. It satisfies m(f) ≤ fa, if fa is the convergence value.
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Figure 4.3.1: Convergence time with varying feedback gain under switching topology

When m(f) = fa, all agents satisfy average consensus condition at which fi(k) = fa

and PD,i(k) = 0. The final equilibrium point will be (fa1n, 0n), where 0n is a column

vector that all elements must be zero.

Similar to the derivation in fixed topology case as equation 4.3.31, we then obtain

1Tn (PD(k) + UF (k)) = ... = 1Tn (PD(0) + UF (0))

This implies that PD(k) + UF (k) is a constant quality for all k. Given the initial

condition (F (0), PD(0)), the steady state value for each agent converges to consensus

point (fa, 0), where the scalar fa =
∑n

i=1 uifi(0)∑n
i=1 ui

. We define a set to describe the change

of states (F, PD) when they approach and converge to the consensus point.

Ω(fa) =

{
(F, PD) ∈ R2n :

1Tn (PD + UF )∑n
i=1 ui

= fa, PD > 0

}
⊂ R2n (4.3.33)

Lemma 4.3.1: [118, 119] Suppose that ∆k(F, PD) and V (F, PD) are positive bounded

functions with respect to the equilibrium point. There exist finite times κ satisfies
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that each state F (k), PD(k) ∈ Ω(fa) meets.

V (F (k + κ), PD(k + κ))− V (F (k), PD(k)) ≤ −∆k(F (k), PD(k))

Then, the network of agents achieves uniform average consensus.

We will construct two functions that satisfy the conditions in Lemma 4.3.1. We

firstly introduce a Lyapunov candidate function V (F, PD) as below:

V (F, PD) =
1Tn (PD + UF )∑n

i=1 ui
−m(f) (4.3.34)

Clearly, V is a continuous and bounded function with respect to (F, PD), because

both 1Tn (PD+UF )∑n
i=1 ui

and m(f) are restricted. With the definition of both terms as men-

tioned above, V (F, PD) is positive definite when (F, PD) ∈ Ω(fa) − (fa1n, 0n), while

V (F, PD) = 0, if the state converges to the consensus point (fa1n, 0n).

Assuming that κ denotes switching times occurring time interval [k, k + 1], we

consider an auxiliary function ∆k(F, PD), where (F, PD) ∈ Ω(fa), which satisfies:

∆k(F, PD) = inf(V (F0, PD0)− V (Fκ, PDκ)) (4.3.35)

where the function experiences all possible sequences (F0, PD0), (F1, PD1), ..., (Fκ, PDκ) ∈

Ω(fa), satisfying Equation (4.3.25). Thus, (Fκ, PDκ) is a pair of reachable state from

(F0, PD0). From Equation 4.3.35, if V (F, PD) = 0, the only solution is (F, PD) =

(fa1n,0) and ∆k(fa1n,0) = 0, thus ∆k(F, PD) = 0, which indicates the system

reaches the average consensus point. Then, we introduce Lemma 4.3.2 as below, in

order to demonstrate the positive definite property of the ∆k(F, PD) when (F, PD) ∈

Ω(fa)− (fa1n, 0n).
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Lemma 4.3.2: If a dynamic digraph is jointly strongly connected during each time

interval, there is a finite switching times κ happens in [k, k + 1], when V (F, PD) and

∆k(F, PD) both satisfy the strictly positive condition.

Since the preconditions of positive definite property of ∆k(F, PD) and V (F, PD)

are based on the non-decreasing property of minimum state, it satisfies m(f(k)) <

m(f(k + κ)). The proof of Lemma 4.3.2 relies on the graphical condition of jointly

strongly connected topology, dynamic state information and surplus updating as de-

scribed in equations (4.3.23) and (4.3.24), which is organized by two steps. Firstly,

suppose that some nodes in a network have positive surplus, all nodes will then have

positive surplus in a finite time, due to a jointly strongly connected graph. Secondly,

by using the positive surplus, the node having a minimum state of the updated graph

will not decrease with the non-negative property of the minimum state. More detailed

proof can be found in [118].

Proof. Assume that G(k) denotes a dynamic communication network under a multi-

agent system, which is jointly strongly connected. We then define a Lyapunov candi-

date function (Equation 4.3.34) and an auxiliary function (Equation 4.3.35) with both

satisfying the condition in Lemma 4.3.2. According to second method of Lyapunov,

the stability of presented algorithm (4.3.23) and (4.3.24) is verified and a uniform

average consensus is achievable.

On the other hand, the consensus problem under the fixed topology can be con-

sidered as special case of switching topology, when switching sequences κ is sufficient

during each iteration and dynamic topology G is jointly strongly connected. There-
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fore, it is potential to apply the proof used in the switching topology to the consensus

problem under fixed topology. Intuitively, let us define another an auxiliary function

∆′ as below:

∆′(F, PD) = inf V (F (k), PD(k))− V (F (k + 1), PD(k + 1)) (4.3.36)

The inequality in Lemma 4.3.1 can be revised as

V (F (k + 1), PD(k + 1))− V (F (k), PD(k)) ≤ −∆′(F (k), PD(k))

Following from Lemmas 4.3.1 and 4.3.2 with the function defined in Equation (4.3.36)

and the function V defined in 4.3.34, it can prove that the average consensus is

achieved.

4.3.5 Algorithm implementation

It is worth emphasizing that the state feedback gain matrix E = {ϵi} is a crucial

parameter that dominates the stability and convergence rate of the distributed algo-

rithm. Suppose that all elements in matrix E are identical, Figure 4.3.2 illustrates the

change of convergence time with feedback gain ϵi under a fixed topology. It can be

clearly seen that the convergence time decreases exponentially when 0.1 < ϵi < 3.6.

Then, the convergence rate is growing slightly when ϵi rises to 9 and the system be-

comes unstable when ϵi > 9. Apparently, the optimal value of ϵi lies at the corner

point of the curve, which is 3.6, resulting in a fastest consensus time and 35 iterations

associated with settling time. Similar trends are also found for the revised algorithm

under the time-varying topology. Essentially, reference [120] concludes that the sec-

ond largest eigenvalue of the system matrix governs the convergence speed. With the
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increase of feedback gain, the second largest eigenvalue decreases in the beginning

and increases and eventually divergence occurs.
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Figure 4.3.2: Convergence time with varying feedback gain

The implementation of distributed algorithm is explained in flow chart 4.3.3.

Based on the communication network under MAS framework, the stochastic ma-

trix is determined with the definition in equation 4.1.6. The initial conditions of state

variables are specified in equation (4.3.14). Let set a certain simulation time Ts, the

duration of each control cycle is Tc, where Tc = 0.01s. During each control cycle,

each agent implements the distributed algorithm to calculate the desired frequency

and the power reference for each HVAC, which is composed of three function blocks,

namely communication block, optimal frequency discovery block and local informa-

tion update block. Communication block exchanges information of frequency and the

estimated power mismatch with neighbouring agents according to the topology. The

optimal frequency discovery block updates its state according to equation (4.3.11).
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Local information update block calculates the HVAC power consumption and local

power mismatch reference signals, as calculated by equation (4.3.13) (4.3.12). After-

wards, the estimated power output of HVAC system should be constrained by the

operating power range for different HVACs, referred to equation (4.3.20). The power

reference signal will be provided to the lower controller of HVAC. The lower con-

troller is responsible for controlling the associated component to track the frequency

and power reference signals, which is specifically described in Section 4.2.2 and Figure

4.2.2. Until the simulation time Ts is over, the algorithm simulation is completed.

4.4 Simulation studies and discussion

The microgrid system under test is a 5-bus system, as shown in Figure 2.5.1. Each bus

connects a distributed generator, HVAC unit and other uncontrollable loads. Circuit

breaker is utilized to realize switching of the microgrid between the island mode and

grid-connected mode. In the Figure 2.5.1, thick solid lines and lines with arrow rep-

resent the local buses and power flow, respectively, while the thin solid lines show the

information exchange between agents. The blue dotted lines with arrow represent the

reference information issued by the centralized controller to each HVAC device. Sup-

pose that the system operates in island mode, which has no power exchange with the

main grid. The interaction topology matrix regarding the communication topology

can be determined with equation (4.1.6). Referring to specifications of typical HVAC

systems with their frequency-power characteristics curves, table 4.4.1 gives the param-

eters of HVAC capacities and power generation of local buses. The feedback gain ϵi
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Table 4.4.1: Parameters of the HVAC in 5-bus system

ui vi PAC,i(kW ) PAC,i(kW ) PG,i(0)(kW )

Bus1 0.057 -0.995 2 0.5 0.943

Bus2 0.07 -1.12 4.8 2 2.64

Bus3 0.04 -0.75 3.5 0.2 3.25

Bus4 0.06 -1.06 4 1.6 1.64

Bus5 0.035 -0.558 4.5 1 3.08

for each bus is assumed identical to simplify the problem. Based on equation (4.3.14)

and HVAC specifications, initial values are selected as F (0) = [34, 57, 28, 45, 67] Hz,

PD(0) = [0, 0, 0, 0, 0] kW, PG(0) = [0.943, 2.64, 3.25, 1.64, 3.08] kW. Referred to the

trend of convergence rate against feedback gain as shown in Figure 4.3.2, E is sup-

posed to be a scalar matrix with all its main diagonal entries ϵ = 3.6 in the case

studies unless otherwise specified. In this section, the feasibility of the proposed algo-

rithms (4.3.18) and (4.3.21) for power constraint and unconstrained cases are firstly

studied in Case 1 and Case 2, respectively. Then, the power unconstrained case is re-

vised to test the time-varying power generation scenarios caused by renewable energy

generators, which is simulated in Case 3. In Case 4, the robustness of the algorithms

is discussed when the HVAC is considered to be broken down or removed from the

microgrid system in order to evaluate the anti-damage capability of the microgrid.

Additionally, a IEEE 30-bus systme is introduced to undertake the scalability test for

cooperative algorithm as shown in Case 5. The performance of the network with time-

varying topology to verify the algorithm (4.3.25) is lastly assessed and demonstrated

in Case 6. All of simulations are performed with MATLAB/SIMULINK.
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4.4.1 Case study 1: with no HVAC constraints
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Figure 4.4.1: Results of HVAC-based consensus algorithm without power constraints:

(a) Frequency; (b) HVAC power consumption; (c) Estimated power mismatch and

(d) Power balance. (The legends in (a) adapts to (b) and (c) in the figure; this also

applies to the subsequent cases)

In this case study, power constraints of HVAC units are not imposed. Figure 4.4.1

shows the update of frequency signal, power consumption, local bus supply-demand

mismatch and total energy consumption (as demanded to be 11.55 kW in total).

After 35 iterations, local power mismatch goes to zero, as shown in Figure 4.4.1(c),

while power consumed matches the power supplied as shown in Figure 4.4.1(d). The

operating frequency of all HVAC units converges to a common value f ∗ = 60.206 Hz,

as seen from Figure 4.4.1(a). The power consumption for each HVAC is PAC,1 = 2.494
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kW, PAC,2 = 3.164 kW, PAC,3 = 1.698 kW, PAC,4 = 2.612 kW, and PAC,5 = 1.584 kW,

respectively, as seen from Figure 4.4.1(b). It is noted that the power output of the

HVAC 1 should be saturated if power constraints are applied.

4.4.2 Case study 2: with HVAC constraints
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Figure 4.4.2: Results of HVAC-based consensus algorithm with power constraints:

(a) Frequency; (b) HVAC power consumption; (c) Estimated power mismatch and

(d) Power balance.

Following results in Case 1, Figure 4.4.2 illustrates results for the case considering

HVAC power constraint. Also after 35th iterations, the units converge to a new

frequency, which in this case f ∗ = 63.6146 Hz. The power consumption for each HVAC

unit is PAC,1 = 2 kW, PAC,2 = 3.333 kW, PAC,3 = 1.795 kW, PAC,4 = 2.757 kW, PAC,5 =
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1.795kW respectively. Note that the power of HVAC 1 becomes saturated now after 5

iterations and the optimal frequency has a slight increase from 60.2061 Hz to 63.6146

Hz. The unsaturated HVAC units share more power with the growing frequency to

compensate the effect of saturated HVAC device. However, the performance of local

power mismatch and power balance for the entire system is not affected, as can be

seen from Figure 4.4.2(c)(d)

4.4.3 Case study 3: Dynamic test
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Figure 4.4.3: Results of HVAC-based consensus algorithm under time-varying power

generation: (a) Frequency; (b) HVAC power consumption; (c) Estimated power mis-

match and (d) Power balance.

This case investigates performance of the proposed algorithms under the time-
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varying power generation, meaning there is a dynamic change for the supply-demand

mismatch due to the presence of intermittent and uncontrollable renewable generators.

We purposely increase 5 kW power generation (∆G) at 1st local bus at the 50th

iteration.

PG,i(50) =


PG,i(50) + ∆G, i = 1

PG,i(50), i = 2, 3, 4, 5

(4.4.1)

As can be seen from Figure 4.4.3, before the 50th iteration, their transient response

is the same as in Case 2. After the 50th iteration, consensus frequency increases

from 63.61 Hz to 94.12 Hz to accommodate this power generation increase. The

consensus power consumed for HVAC devices are now PAC,1 = 2 kW, PAC,2 = 4.8

kW, PAC,3 = 3.014 kW, PAC,4 = 4 kW, PAC,5 = 2.736 kW, respectively. These non-

saturated HVAC units take more power to share the increased power generation due

to power being saturated by those units (HVAC 1 and HVAC 4).

4.4.4 Case study 4: Anti-damage test

In this case, the HVAC fault is emulated to assess the robustness of the algorithm. It

is assumed that at the 50th iteration, HVAC 1 fails, where a zero power is assigned to

HVAC 1 before the next iteration. Thus, we define PAC,1(50) = PAC,1(50) = 0. The

consensus frequency value increases up to 73.37 Hz due to the higher energy share for

the remaining four HVACs (Figure 4.4.4(a)). Note that the simulated frequency is

specified for faulty HVAC unit as a reference value. Practically, the faulty HVAC unit

would not be able to operate at the specified frequency. The power consumed after

the fault is PAC,1 = 0 kW, PAC,2 = 4.016 kW, PAC,3 = 2.185 kW, PAC,4 = 3.342 kW,
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Figure 4.4.4: Results of HVAC-based consensus algorithm under anti-damage test:

(a) Frequency; (b) HVAC power consumption; (c) Estimated power mismatch and

(d) Power balance.

PAC,5 = 2.01 kW (Figure 4.4.4(b)). The performance shows that all power demands

to HVACs are still within their power boundaries. The balance between the total

power generation and load demand can still be achieved after the breakdown fault of

a HVACs appears.

4.4.5 Case study 5: Scalability test

In order to explain the feasibility of the proposed approach for a large scale power

system, the key point is to render the algorithm to converge in a timely manner.

This case is conducted under IEEE 30-bus system (Figure 4.4.5) with 30 HVACs
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Figure 4.4.5: IEEE 30-bus system with multiple HVAC systems

connected to each bus line. The simulation parameters are adopted from [121] and

the total power supply is set as 58 kW.

The designed communication network is strongly connected undirected graph with

30 bi-directional edges, which might be different with a physical power network. Thus,

the associated stochastic matrix is determined by equation 4.1.6.

The simulation results are shown in Figure 4.4.6, the proposed algorithm con-

verges within 600 iterations. The time consumed in a single cycle unit depends on

the hardware and software implementation, such as computer and communication
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Figure 4.4.6: Results of HVAC-based consensus algorithm under scalability test: (a)

Frequency; (b) HVAC power consumption; (c) Estimated power mismatch and (d)

Power balance.

network, the efficiency of coding and compliers. Thus, the proposed approach shows

a good prospect for large scale power system.

4.4.6 Case study 6: Switching topology test

In order to identify the effectiveness of the algorithm under the time-varying topology,

we suppose the communication among HVAC units is a dynamic network in this

case. Let define that the interaction topology is switching randomly within the set

G(V , E) = Ga,Gb,Gc at each iteration, as shown in Figure 4.4.7, where the associated

matrices Da, Db, Dc are given. Apparently, the time-varying topology is a jointly



CHAPTER 4. HVAC-BASED COOPERATIVE ALGORITHM 93

1 2

5 3

1

5 4 4 3

(1) (2) (3)

Figure 4.4.7: Switching topologies

strongly connected network, which satisfies the consensus condition. The results show

that values at steady-state conditions are the same as those in Case Study 1 (Figure

4.4.8(a),(b)). However, the stability is not able to be achieved until the 50th iteration,

due to exchange of the intermittent information. Therefore, the algorithm presented

in equations (4.3.23) and (4.3.24) under a dynamic topology will restrict the efficiency

of information broadcast and thus increase the convergence time.
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4.5 Pre-scheduled energy dispatch scheme for HVAC

systems

Considering the 24-hour solar radiance curve obtained in Figure 3.3.4, the pre-schedule

energy dispatch scheme for each HVAC systems is developed, as shown in Figure 4.5.1.
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Figure 4.4.8: Results of revised cooperative algorithm under switching topology: (a)

Frequency; (b) HVAC power consumption; (c) Estimated power mismatch and (d)

Power balance.

Since the solar power is updated every 3 hours, all of state variables change every

3 hours correspondingly. Figure 4.5.1(a)(b) show the dynamic of the compressor

frequency and power consumption of the HVAC devices in a day. Technically, the

power reference signal will be sent to lower controller of each HVAC system through

the interaction topology and the electrical circuit of HVAC unit is required to generate

associated control signal for the compressor in order to achieve the desired power

output. Figure 4.5.1(c) indicates that power mismatch for each local bus can be

alleviated after each solar power generation update. The negative power appeared

at 15th hour results from the reduction in solar power generation. Figure 4.5.1(d)
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Figure 4.5.1: Results of HVAC-based consensus algorithm under 24-hour solar power

forecasts: (a) Frequency; (b) HVAC power consumption; (c) Estimated power mis-

match and (d) Power balance.

describes the renewable power generation can be dynamically balanced through the

demand response of distributed HVAC systems. The simulation performance indicates

that the proposed algorithm possesses good robustness and dynamics to overcome the

weather uncertainty.

4.6 Summary and discussion

In this chapter, an energy dispatch scheme for HVAC systems is presented by designing

an upper controller based on a MAS-based distributed algorithm, in order to eliminate
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power imbalance due to the intermittent nature of the solar power and system fault.

Algorithms are designed to manage HVAC units in a cooperative manner through the

communication topology, based on the supply-demand mismatch of local bus lines.

Furthermore, it is found that the state feedback gain has a significant influence on

the convergence rate and stability of the control strategy. The stability proof and

consensus condition of the algorithm under fixed topology and switching topology are

presented, respectively.

A microgrid of 5-bus system is built to carry out the simulation studies. The

tests are performed using MATLAB R2017a/Simulink, running on a laptop with a

2.59 GHz Intel Core i7 CPU and 8G RAM memory. The effectiveness of presented

algorithms with or without power constraints are evaluated. The solutions converge to

a common value in finite time duration. It is worthwhile to note that when arbitrary

HVAC units are saturated, the unsaturated HVACs will increase the power consumed

to maintain the power balance in the entire system. The renewable energy uncertainty

and system fault are covered in cases studies to verify the dynamics and robustness

of distributed algorithm. Moreover, a IEEE-30 bus system is introduced to evaluate

the scalability of the proposed algorithm. For the revised algorithm under switching

topology, it is found that the convergence time is longer than the fixed topology, due

to the intermittent information exchange. Finally, an optimal energy dispatch scheme

is developed for each HVAC system with the daily forecasting data of the solar power

generation.



Chapter 5

Price-Comfort Optimization

Algorithm

The utilization of distributed HVAC system to alleviate the power imbalance within

the microgrid may sacrifice the comfortability and increase electricity costs for res-

idential users. In this chapter, a price-comfort optimization model is established to

minimize the discomfort level and electricity payment by introducing a virtual price

variable to adjust the real time-of-use (ToU) price, whilst maintaining the global

supply-demand match. An advanced proportional-integral-derivative (PID)-based

distributed algorithm is developed to address the optimization problem, with the

key parameters being determined. By comparing with ordinary distributed approach,

the advantages of the proposed algorithm capable of reducing the steady-state error

are illustrated. Case studies are carried out at 5-bus and IEEE 57-bus systems to

test the algorithm under time-varying ToU price, variable renewable generation and

the scalability. Section 5.1 introduces cost optimization approach of HVAC system

97
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involving the discomfort model and electricity cost model. A PID-based distributed

model is then presented in Section 5.2, where the solution of the optimization problem

is given. Case studies and results are presented and discussed in Section 5.3, followed

by a summary in Section 5.4.

5.1 Cost function model of HVAC system

As for customers, there is a trade-off between the electricity bill and discomfort level.

A discomfort cost model and electricity payment model are introduced and a cost

optimization model for HVAC system is formulated in this section.

5.1.1 Discomfort cost model

The consumers tend to schedule the power consumption of various loads in response

to time-varying ToU price. Regarding shiftable appliances, such as washing machine,

this type of appliance has flexible start time and operates continuously with constant

power. It is an option to operate at time slots with lower electricity price in order

to reduce the total payment. The appliances that also attract consumers are those

schedulable appliances, such as HVACs in our study, which can make available with

a flexible power demand within their scheduling horizons. Therefore, the use of these

appliances will affect the level of comfort to end users. In this chapter, we only discuss

about the schedulable appliance with controllable power output. Mathematically,

the discomfort cost can be demonstrated according to the operation state of loads.

Invoked by quality loss function in Taguchi’s Quality Engineering Handbook [122],
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the discomfort cost model Ca,i for ith HVAC unit can be denoted as a Taguchi loss

function:

Ca,i(PAC,i(t)) = ωa,i(PAC,i(t)− P̂AC,i)
2 (5.1.1)

where ωa(i) is a constant coefficient for ith HVAC unit, PAC,i(t) is the power output

of the ith HVAC unit at time t and P̂AC,i denotes the normal power consumption at

the comfortable level. It can be observed that quadratic model of the loss function,

as given in eq (5.1.1) can be minimized when PAC,i(t) = P̂AC,i. The cost function will

be increased as PAC,i(t) deviates from P̂AC,i. Taguchi loss function is used to define

the relationship between the comfort loss and the deviation of power consumption

from the normal power consumption. Suppose that the maximum power deviation

is defined as ∆, which indicates the maximum operating power range of HVAC unit

is P̂AC,i ± ∆. Once the system operates at the extreme power either P̂AC,i + ∆ or

P̂AC,i − ∆, there are some actions needing to be taken by the consumers. Assume

that the cost of action is A when PAC,i(t) = P̂AC,i + ∆ or PAC,i(t) = P̂AC,i − ∆, the

parameter ωa(i) can be defined as:

ωa(i) =
A

∆2
(5.1.2)

The above model clarify the discomfort cost model caused by HVAC units regarding

the consumers [123].

5.1.2 Electricity price model

The electricity price in a certain scheduling horizon will be announced to the consumer

one day ahead. The electricity cost Cp,i regarding HVAC system i in unit time can
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be estimated as:

Cp,i(PAC,i(t)) = ρ(t)PAC,i(t) (5.1.3)

where ρ(t) denotes the ToU price at time t. In reality, some consumers may tend

to control the power consumption of schedulable loads to reduce the total electricity

cost, even at the cost of comfortability.

5.1.3 Price-discomfort cost function model

With the aims of maximizing the customer’s benefits in a comfortable and economical

way whilst compensating the power mismatch, we formulate the power scheduling

problem into the following optimization problem:

min ν1
∑

i∈SAC

Ca,i(PAC,i) + ν2
∑

i∈SAC

Cp,i(PAC,i)

s.t. Pd =
∑

i∈SAC

PAC,i

PAC,i 6 PAC,i 6 PAC,i (5.1.4)

The weighting coefficients ν1 and ν2 satisfy ν1 + ν2 = 1, which illustrate the trade-

off between the economic loss and the discomfort level. There are three operation

schemes with different parameter settings, as referred in [123]. Either one or both are

considered in the model. Here, both electricity payment and discomfort are equally

regarded as factors for consumers. Therefore, we define ν1 = ν2 = 1
2

to realize an

equal weighting for the payment and comfortability. As it was defined, PAC,i and

PAC,i are the upper and lower bound of ith HVAC system, respectively. The equality

constraints indicate the power balance between power mismatch of the grid and the
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power consumption of HVAC systems, whereas, the inequality describes the local

power boundary for each HVAC unit to meet. Although the multiple HVAC units

with various capacity have different flexibility and efficiency, we assume that all of

the participants have equal weight in terms of their contribution.

The objective function in eq (5.1.4) can be rewritten as:

min
∑

i∈SAC

Ci(PAC,i) (5.1.5)

s.t. Pd =
∑

i∈SAC

PAC,i (5.1.6)

Hi(PAC,i) = (PAC,i − PAC,i)(PAC,i − PAC,i) 6 0 (5.1.7)

where Ci(PAC,i) =
1
2
ρ(t)PAC,i +

1
2
ωa,i(PAC,i − P̂AC,i)

2.

5.2 PID-based consensus algorithm design

The formulated optimization problem in eq (5.1.5) is a convex function with equality

and inequality constraints. The solution set of the constrained convex optimization

problem is firstly characterized by Karush-Kuhn-Tucker (KKT) optimality condition.

Then, a PID-based distributed cooperative algorithm is proposed for discovering the

optimal solution of energy management problem.

5.2.1 Solution set for distributed energy management

As for problem (5.1.5)-(5.1.7), let define an Lagrangian function L

L =
∑

i∈SAC

1

2
ωa,iP

2
AC,i+

(
1

2
ρ(t)− ωa,iP̂AC,i

)
PAC,i+

1

2
ωa,iP̂

2
AC,i−µi

( ∑
i∈SAC

PAC,i − Pd

)
(5.2.1)
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where µi is the so-called Lagrangian multiplier of problem (5.1.4) and let define µ =

{µ1, µ2, ..., µn}

Note that the inequality constraint (5.1.7) is not considered in augmented function,

due to that these local constraints can be treated as a boundary of the problem domain

[124]. These inequality constraints can be taken into consideration by introducing

additional projection operations. Meanwhile, the convergence analysis would not be

affected by this condition, as demonstrated in [125]. We will not repeat it in this

thesis. The function (5.2.1) can be rewritten as:

L =
∑

i∈SAC

1

2
ωa,iP

2
AC,i +

(
1

2
ρ(t)− ωa,iP̂AC,i − µi

)
PAC,i +

1

2
ωa,iP̂

2
AC,i + µiPd (5.2.2)

It can be noted that the Lagrange multiplier µi can be regarded as a virtual price signal

to regulate the real ToU price ρ(t), therefore the HVAC systems can be coordinated

to achieve a maximum benefit point.

The aim of solving a constrained convex optimization problem is to obtain nec-

essary and sufficient conditions satisfied by an optimum point. Its global optimality

is ensured by using Karush-Kuhn-Tucker (KKT) optimality condition [126, 127], as

shown below

Lemma 5.2.1: Consider an energy management problem (5.1.5)-(5.1.7) with only

one affine equality constraints. Clearly, Ci is a differentiable and convex function on

R. The power point P ∗
AC = {P ∗

AC,1, P
∗
AC,2, ..., P

∗
AC,n} ∈ Rn is the solution of problem

(5.1.5) if there there exist a µ∗ ∈ R, such that

▽Ci(P
∗
AC)− µ∗ = 0 (5.2.3)

P ∗
AC,1 + ...+ P ∗

AC,n = Pd (5.2.4)



CHAPTER 5. PRICE-COMFORT OPTIMIZATION ALGORITHM 103

Thus (µ∗, P ∗
AC) is the KKT point of the Lagrange function (5.2.1) to find the

optimal power operation point to address energy management problem [126]. The

solution set Y∗ is defined as below:

Y∗ = {(µ, PAC) ∈ R2n| ▽ C(PAC)− µ = 0,
n∑

i=1

PAC,i − Pd = 0} (5.2.5)

where µ = [µ1, µ2, ..., µn]
T , ▽C(PAC) = [▽C1(PAC,1),▽C2(PAC,2), ...,▽Cn(PAC,n)]

T .

Since Ci(PAC,i) is a convex function, Y∗ is singleton, i,e. the optimization problem

has the unique solution.

We can show that following the [128], the saddle point dynamics below converge

to the set Y∗

µ̇ =
n∑

i=1

PAC,i − Pd (5.2.6)

ṖAC = −▽ C(PAC) + µ (5.2.7)

That is, for initial state (µ(0), PAC(0)) ∈ R2n, every trajectory (µ(t), PAC(t)) con-

verges to Y∗, and eqs (5.2.6), (5.2.7) are a dynamical solver for the optimization

problem (5.1.5).

5.2.2 PID-based distributed algorithm design

In this subsection, a distributed scheme is presented for energy management of HVAC

system. The power dynamic of HVAC can be written as:

uAC,i = ṖAC,i

where uAC,i ∈ R. Our aim is to design the control input of HVAC, such that uAC,i

only depends on the local information of agent i and transmit data to neighbouring
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HVAC. Then, PAC,i(t) converges asymptotically to the solution set by the optimization

problem (5.1.4)

The solution for problem (5.1.4),is the following continuous-time PID-based dis-

tributed algorithm:

ṖAC,i = −▽ Ci(PAC,i) + µi + upid,i (5.2.8)

upid,i = KP

(
Pd −

∑
i∈SAC

PAC,i

)
+KI

∫ (
Pd −

∑
i∈SAC

PAC,i

)
+KD

d
(
Pd −

∑
i∈SAC

PAC,i

)
dt

(5.2.9)

µ̇i = −Θ1

∑
i∈Ni

aij(µi − µj)−Θ2

∑
i∈Ni

aij(zi − zj) (5.2.10)

żi =
∑
i∈Ni

aij(µi − µj) (5.2.11)

where Θ1 and Θ2 are the positive constants, respectively. KP , KI ,KD denote tuning

parameters for proportional, integral and derivative controller, respectively. aij is

weighted information flow between agent i and j. zi is an auxiliary variable for HVAC

i. upid,i is the control signal calculated by PID controller to alleviate the global power

mismatch.

The proposed algorithm (5.2.8)-(5.2.11) can be rewritten in a matrix form, such

as:

ṖAC = −▽ C(PAC) + µ+ Upid (5.2.12)

Upid = 1n ⊗KP (Pd − 1nPAC) + 1n ⊗KI

∫
(Pd − 1nPAC) + 1n ⊗KD

d(Pd − 1nPAC)

dt

(5.2.13)

µ̇ = −Θ1Lµ−Θ2LZ (5.2.14)

Ż = Lµ (5.2.15)
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where Upid = [upid,1, upid,2, ..., upid,n]
T . 1n = [1, 1, ...]T ∈ Rn and Z = [z1, .., zn]

T ,

respectively. ⊗ denote the kronecker product. L is the Laplacian matrix defined by

eq (4.1.3). The pseudo code of PID-based distributed algorithm is given in algorithm

2.

The design of the presented algorithm is inspired by the multiple time-scale analy-

sis of the singularly perturbed dynamical system in control theory. Firstly, we assume

that (5.2.14) and (5.2.15) run in a faster time scale than the rest of dynamics. We

obtain µ̇ = 0 and µi = µj, as t → ∞. If the PID controller can eliminate the global

power mismatch, from (5.2.12), we obtain ṖAC = −▽ C(PAC) + µ. This along with

µ̇ = 0 becomes a copy of saddle-point dynamic (5.2.6) and (5.2.7) which will converge

to the solution of problem (5.1.5). We introduce a mismatch estimator (Pd − 1T
nPAC)

to observe the global information, where the PID control input upid is used to ad-

just the updated power mismatch. In comparison, the control strategy in [128] is

not sufficiently robust to adapt to the change of different cases and power imbalance

problem in the microgrid fails to be solved. The algorithm (5.2.8)-(5.2.11) solve the

problem with the only required information being the state variable of ith HVAC

system, such as µi, PAC,i and zi. Each HVAC system is required to send/receive µi

and zi to their neighbour HVACs. With addressing the privacy issue of HVACs, the

proposed algorithm does not need HVACs to share the gradient of the cost function

with neighbouring HVACs. Furthermore, the ToU signal ρ(t) can be regulated by µi,

so that multiple HVAC systems are coordinated to discover the optimal point.

Remark 5.2.1: Considering the problem in a practical case, various local constraints
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can be added into the presented algorithm, such as CoP and maximum/minimum

cooling capacity mentioned in Section 4.2. These constraints can be integrated by

adding corresponding projection operation.

Algorithm 2 The Pseudo code of PID-based distributed algorithm
Input: L = {ℓij}: Laplacian matrix; ρ: ToU price; Θ1, Θ2, KP , KI and KD: Param-

eters;

Output: Optimal µi, zi and PAC,i

1: PAC,i(0), µi(0) and zi(0): state initialization;

2: while T < Tset do

3: The derivative of state variable µ̇i, żi update with equation (5.2.10) (5.2.11);

4: Calculate the control signal upid,i by PID controller with equation (5.2.9), based

on the global power mismatch;

5: Update derivative of HVAC power consumption ṖAC,i with (5.2.8)

6: Do integration of µ̇i, żi and ṖAC,i to update µi, zi and PAC,i,respectively;

7: end while

The parameters of proportional controller, integral controller and derivative con-

troller have direct impact on the dynamic response of the HVAC systems. In order

to simplify the problem, these parameters are identical for each agent. The system

performance and convergence time can be set by tuning the proportional parameter

KP . By fixing the value of KI and KD for demonstration purpose, different KP are

applied to the HVACs in the 5-bus system, as shown in Figure 5.2.1. It can be seen

from the power response in HVAC 1 in Figure 5.2.1(a) that the convergence speed

of the system will increase by selecting a higher proportional gain. When the gain is
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relatively small, the system stability will be destroyed. Next, the steady state error

of the system with different PI are analysed, by choosing proper value of KP and KD

for demonstration purpose. As shown in Figure 5.2.1(b), with a small KI , the global

error response of HVAC systems converge to zero in a longer time. Clearly, KI is an

indispensable parameter to control the steady state error. Moreover, the contribution

of KD to reducing overshoot is too limited to be considered.
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Figure 5.2.1: The simulation results of HVAC 1 for different KI , KP

5.3 Simulation studies and discussion

In this section, four case studies are given to demonstrate the effectiveness of presented

algorithm. The microgrid system in Figure 2.5.1 is modified by adding a solar PV con-

nected in Bus 4, as depicted in Figure 5.3.1, which is built in the MATLAB/Simulink.

Initially, KP , KI and KP are selected as 3.1, 4 and 1.3, respectively, for all agents,

whereas they can be altered to accommodate different cases. In case 1, the algorithm
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Table 5.3.1: Parameters of the HVAC in revised 5-bus system

ωa,i P̂AC,i PAC,i(kW ) PAC,i(kW )

HVAC1 0.4 3.4 2.8 5.2

HVAC2 0.7 3.6 2.8 5.2

HVAC3 0.6 3.5 2.8 5.2

HVAC4 0.8 3.2 2.8 5.2

HVAC5 0.5 3.3 2.8 5.2

G HVAC 1 HVAC 2

HVAC 5 HVAC 3

Load 5

Load 1 Load 2

Load 3

Bus 1

Bus 5

Bus 2

Bus 3

HVAC 4

Bus 4

Load 4

Power line

Bus line

Signal line

G 

G G G 

PV

Figure 5.3.1: A modified 5-bus system

is compared with distributed algorithm in [6] to show the outperformance of proposed

algorithm. Case 2 tests the convergence of the proposed algorithm to deal with time-

varying ToU price. Case 3 is carried out under daily solar power forecasting obtained

in Chapter 3. Case 4 investigates the scalability of the algorithm, where an IEEE

57-bus system is tested in MATLAB/Simulink. It is assumed that microgrid system

operates in the islanded mode in all cases. The parameter setting of HVAC systems

is shown in Table 5.3.1.
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Figure 5.3.2: The power mismatch with parameter variation under algorithm in [6]

5.3.1 Case study 1: the feasibility study of the algorithm

In order to reveal the advance of the proposed algorithm, the algorithm is firstly

compared with a continuous distributed algorithm in [6]. In reference [6] a mismatch

estimator is introduced to observe the global information and the ToU price is adjusted

by the state of BESS so that multiple BESSs are coordinated to discover the most

efficient point. Without loss of generality, the ToU price and the supply-demand

mismatch are assumed to be a constant value 14.44cent/kWh and 18 kW, respectively.

The operation condition is supposed to be same for comparison study. From Figure

5.3.2, it is found that the steady-state error of the global power mismatch greatly

depends on the value of γ3 in [6]. Only if γ3 is chosen by 0.402, the supply-demand

power mismatch (18 kW) can be eliminated with the effects of distributed strategy.

Moreover, γ3 have to be adjusted to adapt to any changes in conditions, such as

changes in ToU price or renewable power generations. The performance of proposed

algorithm is facilitated by introducing a PID controller to ensure the global mismatch

always converges to zero in Figure 5.3.3(c). Figure 5.3.3(a), 5.3.3(b), 5.3.3(d) depict
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the incremental cost, output power reference and compressor frequency response of

HVAC systems. Additionally, the proposed algorithm guarantees the efficiency and

optimality without sacrificing the privacy of each participant.
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Figure 5.3.3: Results of PID-based distributed algorithm under constant condition

5.3.2 Case study 2: demand response to ToU price

In this case study, the global supply-demand mismatch in microgrid system is set to

be a constant value as 18 kW. A ToU price curve fluctuating between 6 cent/kWh

and 36 cent/kWh in a day is given in 5.3.4(a) [129, 130], the output power of HVAC
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systems (Figure 5.3.4(b)) are updated corresponding to the price signal during the

simulation. Figure 5.3.4(c) indicates the relationship of total output power of HVAC

systems and supply-demand mismatch. The results show that the power consumption

references converge to optimal value with the change of the ToU price. The supply-

demand balance can be maintained without being affected by ToU price, which is a

promising application in real-time control.
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Figure 5.3.4: Results of PID-based distributed algorithm with time-varying ToU



CHAPTER 5. PRICE-COMFORT OPTIMIZATION ALGORITHM 112

5.3.3 Case study 3: demand response to renewable power

generation
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Figure 5.3.5: Results of PID-based distributed algorithm under solar power forecast

Case 3 focuses on the impact of renewable energy on the performance of distributed

algorithm. Since the power generated by the PV array is a time-varying variable, the

power consumption from HVAC system will be changeable correspondingly. Under

this scenario, a simulation study is carried out based on the power output from the

solar power generation, in order to test the dynamics of new-designed algorithm. As-
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sume that the solar PV connected in Bus 4 is controlled in MPPT mode and the

output power of PV panel is given in Figure 5.3.5(a). During the simulation time,

each HVAC system follows the flow chart of a distributed algorithm implementation

in Figure 4.3.3. By combining the existing power mismatch (18 kW) and solar power

generation in Figure 5.3.5(a), Figure 5.3.5(b) and 5.3.5(c) give the results for the

output power and power balance estimation, respectively. It can be seen that the

power consumption of HVAC systems converges to an optimal value in finite time.

Meanwhile, the power balance is maintained under the time-varying solar power gen-

eration. Based on the results in Case 2 and Case 3, the combined effects of solar

power forecasts and ToU price can be considered. Therefore, Figure 5.3.6 gives the

demand response of HVAC systems and power balance in the microgrid system.
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Figure 5.3.6: Results of PID-based distributed algorithm under the combined effects
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(a) Power consumption reference of HVACs
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Figure 5.3.8: Results of PID-based distributed algorithm under scalability test

5.3.4 Case study 4: scalability of the algorithm

To extend the application of the presented algorithm to a large-scale system, the

algorithm should be verified to converge to an optimal value in finite time. A IEEE 57-

bus system with multiple HVAC systems is built in Matlab/Simulink with the diagram

shown in Figure 5.3.7, where simulation parameters are adopted from [131]. The power

constraints of all HVAC systems are between 2 kW and 5.5 kW. The communication

network is designed to be strongly connected and the supply-demand mismatch is set

as 225 kW. The scalability is demonstrated by observing Figure 5.3.8(a) and Figure

5.3.8(b). It shows that the output power of each HVAC system converges to an

optimal value and power balance can be maintained with the utilization of HVAC

systems.
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5.4 Summary and discussion

In this chapter, both the user’s comfortable level and ToU price are integrated into

the HVAC system modelling framework. An optimization problem is formulated to

reveal a trade-off between comfortability and electricity bill. A PID-based distributed

algorithm is designed to solve the problem while maintaining the supply-demand

balance and facilitating the total profits and energy efficiency. On the basis of MAS

framework, the proposed approach is implemented in a distributed manner without

a central controller. The results indicate that an optimal solution can be achieved

without releasing the private information of each agent. Furthermore, by comparing

with the algorithm proposed in [6], the approach ensures the steady-state error is

within the threshold in any cases, instead of depending on the parameter selection.

The effectiveness and scalability of the proposed strategy are verified on the 5-bus

and IEEE 57-bus systems, respectively.



Chapter 6

Cooperative Control of

HVAC-BESS System

In this chapter, the consensus-based distributed control protocol for HVAC system will

be extended to accommodate hybrid loads. Battery energy storage system (BESS) has

been regarded as the most widely-used energy storage system. A BESS-HVAC hybrid

system would increase the storage capacity, thus providing an ancillary service for

smart grid, including maintaining active power balance to stabilize system frequency

and regulating reactive power to keep the voltage within an allowable range. Home

microgrid or community microgrid with a certain scale of ESSs can improve its self-

regulation ability and flexibility in response to intermittent renewable energy. By

integrating the distributed algorithm into the microgrid system with hybrid loads,

energy scheduling schemes of HVACs and BESS can be achieved. The remaining

parts of this chapter is organized as follows. Section 6.1 introduces cost function

models for BESS and HVAC system, respectively. The cooperative control of hybrid

117
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system is described in Section 6.2, while results and discussions from case studies

based on an IEEE 14-bus system are presented in Section 6.3. Conclusions are given

in Section 6.4.

6.1 BESS model

In smart grid, energy storage devices can be utilized as buffer to absorb excessive

power during peak generation periods and release the insufficient power during peak

load periods. It helps adjust short-term variations in total net load. BESS has a fast

response by the operator to deal with the requests for generation/demand changes.

In an autonomous microgrid system, the employment of the BESSs aims to stabi-

lize the system frequency and voltage by regulating the active power and reactive

power. A number of literatures have conducted the research on control and optimiza-

tion of BESSs [132, 133]. For example, a fast-acting storage technique is proposed

in [132], with the aims of regulating grid frequency and mitigating the impacts of

resource on dynamic performance. Generally, most of studies assume that the charg-

ing/discharging efficiency is a constant value under different charging/discharging

rates. In order to control and manage the distributed BESS in a cost-efficient way,

the charging-discharging efficiency need to be taken into account [104].

Due to the internal resistance in BESS, it will cause power losses when the BESS

is operating in charging/discharging mode. The energy conversion efficiency model is

shown as follows.

P cha
B,i = PB,iηC,i (6.1.1)
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P dis
B,i =

PB,i

ηD,i

(6.1.2)

where PB,i is the power input/output for ith BESS, depending on the changing/discharging

mode. P cha
B,i , P dis

B,i are the power stored in and extracted from ith BESS respectively.

ηC,i and ηD,i are the charging and discharging efficiency. In order to be consistent with

the demand response of controllable loads, this chapter only discusses the charging

mode of BESSs. Let define SB as the BESS group. The total actual power fed into

BESS is calculated as ∑
i∈SB

PB,iηC,i (6.1.3)

In order to make the microgrid is operated in an economical way, the power loss

occurring during BESS charging process should be minimized. It can be achieved by

controlling the charging power references of BESSs to maximize equation 6.1.3.

The factors affecting charging efficiency are charging rate and SoC (State-of-

Charging) of the BESS. The authors in [134, 135] showed in experiments that the

charging efficiency is in a linear relationship with the input power, which is given by

ηC,i = bB,i − aB,iPB,i (6.1.4)

where aB,i and bB,i are constant coefficients for BESS i.

By substituting the equation (6.1.4) into (6.1.1). Then, the total power actually

stored in BESSs is calculated as:

∑
i∈SB

bB,iPB,i − aB,iP
2
B,i (6.1.5)

In order to maximize the energy stored in BESSs whilst minimizing power loss during
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charging process, the objective function for BESSs can be rewritten as:

min
∑
i∈SB

Ci(PB,i) (PB,i ≤ PB,i ≤ PB,i)

Ci(PB,i) = aB,iP
2
B,i − bB,iPB,i

(6.1.6)

where the PB,i should satisfies the power constraint of BESS i. PB,i and PB,i are the

lower and upper bounds of operating power of BESS i, respectively. Ci denotes the

objective function of BESS i

6.2 Distributed hybrid controllable load manage-

ment strategy

As demonstrated in Chapter 5, the cost function model of HVAC system is the com-

bination of discomfort cost model (equation 5.1.1) and energy cost model (equation

5.1.3). It is worthwhile to note that this cost function can be generalized to describe

other dispatchable and schedulable loads. As described in Chapter 5, the cost function

of HVAC system j can be calculated as:

Cj(PAC,j) =
1

2
aAC,j(P

2
AC,j) + bAC,jPAC,j + cAC,j (PAC,j ≤ PAC,j ≤ PAC,j) (6.2.1)

where aAC,j = wa,j, bAC,j = 1
2
ρ − wa,jP̂AC,j, cAC,j = 1

2
wa,jP̂

2
AC,j. The objective of

HVACs is to find a optimum point to achieve the minimization of financial cost and

discomfort level for the residents. Therefore, we have:

min
∑

j∈SAC

Cj(PAC,j) (6.2.2)
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To ensure the total net power balance in an islanded microgrid, an appropriate

dispatching strategy is required to share the global supply-demand power mismatch

Pd among the distributed BESS and HVACs by adjusting their power reference, which

can be indicated as: ∑
i∈SB

PB,i +
∑

j∈SAC

PAC,j = Pd (6.2.3)

Suppose that Pd is always positive.

A control scheme is introduced to coordinate all the participants to minimize

operating cost, whilst maintaining active power balance and power constraints. The

problem is formulated as:

min
∑
i∈SB

Ci(PB,i) +
∑

j∈SAC

Cj(PAC,j) (6.2.4)

s.t.
∑
i∈SB

PB,i +
∑

j∈SAC

PAC,j = Pd (6.2.5)

PAC,j ≤ PAC,j ≤ PAC,j, PB,i ≤ PB,i ≤ PB,i (6.2.6)

For convenience, Pi is introduced to represent the power consumption of BESS

and HVAC at Bus i (Pi = {PB,i, PAC,j}). We further define the incremental cost ri of

participant i as follow:
∂Ci(Pi)

∂Pi

= ri = aiPi + bi (6.2.7)

where ai = {2aB,i, aAC,j} and bi = {−bB,i, bAC,j}. Similarly, let define P i = {PB,i, PAC,j}

and P i = {PB,i, PAC,j}. As it is demonstrated in equation (4.3.8), the optimal solu-

tion of objective function is the equal incremental cost criterion, which is represented
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as: 
r∗ = aiPi + bi, P i < Pi < P i

r∗ > aiPi + bi, Pi = P i

r∗ < aiPi + bi, Pi = P i

(6.2.8)

Conventionally, the optimal solution can be achieved with centralized strategy,

which requires a central controller and bi-directional communication network between

each agent and central controller. The central controller is responsible for collecting

all local information e.g., power bounds of HVAC systems and BESSs, cost function

and generation/demand information, and realizing centralized algorithm to compute

the optimal operation point and broadcast the information to each agents. Due to

the unexpected change in the power generation, high-frequent control update and

high-speed processor is required. Thus, a high-efficiency distributed approach takes

advantage of its flexibility and scalability, which has a promising prospect in the

future.

Invoked by the algorithm in Chapter 4, a fully distributed energy storage man-

agement strategy based on consensus algorithm is presented, where each agent only

utilizes the local information and exchanges with its neighbouring agents via the com-

munication network. The update rules for agent’s network are represented as:

ri(k + 1) =
∑
j∈Ni

dijrj(k) + εiPD,i(k) (6.2.9)

Pi(k + 1) =
ri(k + 1)− bi

ai
(6.2.10)

P ′
D,i(k) = PD,i(k)− (Pi(k + 1)− Pi(k)) (6.2.11)

PD,i(k + 1) =
∑
j∈Ni

dijP
′
D,j(k) (6.2.12)
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where ri(k) is the incremental cost of participant i at kth iteration time. The coeffi-

cient εi is required to be adjusted to control convergence speed. PD,i(k) is the local

power mismatch estimation in bus i. dij is the communication topology matrix as

demonstrated in equation (4.1.6). The overall updating rules can be rewritten as a

matrix form

R(k + 1) = DR(k) + εPD(k) (6.2.13)

PD(k + 1) = DPD(k)−D(P (k + 1)− P (k)) (6.2.14)

P (k + 1) = BR(k + 1) +G (6.2.15)

where R, PD, P , G are column vectors of ri, PD,i, Pi, −bi/ai, respectively. B =

diag{1/ai}. Hence, a state equation with regard to [R,PD]
T can be formulated as: R(k + 1)

PD(k + 1)

 =

 D εIn

DB(D − In) D + εDB


 R(k)

PD(k)

 (6.2.16)

According to the convergence proof in Section 4.3.3, the system converges to span

[1n, 0n]
T as the time goes to infinity. Thus, the incremental cost of each agent con-

verges to a common value r∗ and PD,i alleviates to zero. The optimality is secured.

Therefore,  R(∞)

PD(∞)


2n×1

= r∗

 1n

0n

 (6.2.17)

Since the inequality power constraints is taken into consideration, the power update

rule in equation (6.2.10) can be revised as:

Pi(k + 1) =


P i,

ri(t)−bi
ai

< P i

ri(t)−bi
ai

, P i ≤
ri(t)−bi

ai
≤ P i

P i,
ri(t)−bi

ai
> P i

(6.2.18)
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To investigate the impact of power constraints on the performance of presented algo-

rithm, the revised algorithm is presented as: R(k + 1)

PD(k + 1)

 =

 D εIn

DB̂(D − In) D + εDB̂


 R(k)

PD(k)

 (6.2.19)

where B̂ = diag{b′1, b′2, ..., b′n} with

b′i =


0, Pi is saturated

1
ai
, Otherwise

(6.2.20)

6.3 Simulation studies and discussion

6.3.1 System specifications

The proposed distributed control protocols is conducted in IEEE 14-bus system, which

is a widely used test case in many studies. The standard system is revised to accom-

modate case studies, where it is composed of 14 buses, 1 solar PV, 1 wind turbine,

7 HVACs, 7 batteries and 10 loads, as shown in Figure 6.3.1. The introduction of

wind turbine and solar PV is to evaluate the dynamics of the proposed algorithm.

The parameters of HVACs and BESSs are summarized in Table 6.3.1. Note that the

initial power mismatch for each local bus are set as zero.

The MAS is introduced to describe the information interaction in the system,

where each local bus can be considered as an agent. It is worthwhile to note that the

communication network among agents is independent from the physical connection.
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Figure 6.3.1: A IEEE 14-bus system with multiple HVACs and BESSs

It is assumed that each agent communicate with adjacent agents in a undirected way.

Therefore, the information exchange between neighbouring agents is set as:

X = {(i− 1, i), (i, i+ 1)|2 < i < 13} ∪ {(14, 1), (14, 13), (2, 1), (1, 14)}

where i represents the local bus. X specifies the communication topology in MAS. A

14 × 14 doubly stochastic matrix D can be determined according to equation 4.1.6.

Suppose that microgrid is always operated in islanded mode. In first two cases, the

total supply-demand mismatch is set to be a constant value at 290 kW. The demand

response of HVAC systems and BESSs under different scenarios is investigated through

case studies.
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Table 6.3.1: Parameters of HVACs and BESSs in IEEE 14-bus System

Bus i Agent ai bi P i(kW ) P i(kW ) ri(0) Pi(0)

1 B1 0.094 1.22 30 60 7.8 35
2 B2 0.078 2.53 15 60 5.65 20
3 B3 0.105 4.41 15 35 7.56 15
4 B4 0.082 6.02 10 35 8.84 15
5 B5 0.074 3.17 15 60 6.13 20
6 HVAC1 0.11 4.5 15 35 7.8 15
7 HVAC2 0.095 4.8 18 35 8.6 20
8 HVAC3 0.07 4 21 55 8.2 30
9 HVAC4 0.098 4.5 12 36 7.44 15
10 HVAC5 0.065 5.4 12 46 8 20
11 HVAC6 0.094 5.6 5 20 8.232 14
12 B6 0.103 4.5 12 35 7.79 16
13 B7 0.075 3.3 20 55 7.05 25
14 HVAC7 0.08 2.5 15 60 5.7 30

6.3.2 Case study 1: without power constraints

In the first test, the power generation and load demand are considered as a constant

value over the simulation time. Since is control cycle is set as 0.01s, the local infor-

mation updates and data exchanges occur every 0.01 s. The updates of incremental

cost, power consumption reference of hybrid loads, the supply-demand mismatch es-

timation of 14 local bus are shown in Figure 6.3.2. It can be seen in Figure 6.3.2(a),

the incremental cost of all agents converge to a common value in 1 s. The power con-

sumption reference curves in Figure 6.3.2(c) will be provided to BESSs and HVACs.

The supply-demand mismatch can be alleviated to zero as shown in 6.3.2(b).
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Figure 6.3.2: Results of HVAC-BESS without power constraints

6.3.3 Case study 2: with power constraints

As can be seen in Case 1, the charging power of BESS 3 and BESS 4 exceeds the lower

limit, which is a infeasible solution. By considering revised algorithm equation 6.2.19,

power constraints can be imposed to emulate a practical scenario in the case study.

The simulation results are shown in Figure 6.3.3. Comparing Figure 6.3.2 with Fig-

ure 6.3.3, they both converge to an optimal solution, where r∗ = 7.527. Furthermore,

those unsaturated HVACs and BESSs are required to increase power consumption in

order to alleviate the impact of saturated units, as shown in Figure 6.3.3(c). Mean-
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Figure 6.3.3: Results of HVAC-BESS with power constraints

while, the local power mismatch can be adjusted to zero (Figure 6.3.3(b)).

6.3.4 Case study 3: demand response of dynamic power mis-

match

The proposed control solution is further tested under time-varying supply-demand

mismatch. The generations from renewable energy and load demand are variable and

intermittent. Therefore, the global supply-demand mismatch is also time-varying. In

Figure 6.3.1, there is a wind turbine and a solar PV connected in Bus 5 and Bus 10.
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(a) The power profile of RGs and loads. (b) Incremental cost

(c) Supply-demand mismatch (d) Power reference of BESSs and HVACs

Figure 6.3.4: Results of HVAC-BESS under time-varying power mismatch

The profiles of wind turbine, solar PV and load demand are given in Figure 6.3.4(a),

respectively. As an example, these disturbances are added to the system at 10s and

the information of generation and load is updated every 20s (Td = 20s).

Each agent in the system measures the local supply and demand then calculates

the local power mismatch every 0.01s. During each control cycle (Tc = 0.01), agents

implement the proposed distributed control strategy as explained in equation 6.2.18

and float chart 4.3.3. As shown in Figure 6.3.4(b), the local incremental costs converge

to a common value within each Td, which indicates the objective is achieved for

each information update cycle. Figure 6.3.4(d) and 6.3.4(c) present power reference
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update and local power mismatch estimation for each participant, respectively. The

local estimated mismatch converges to zero within each information update cycle;

consequently the total BESSs and HVACs power consumption equals the measured

global power mismatch.

6.3.5 Case study 4: anti-damage test

(a) Incremental cost (b) Supply-demand mismatch

(c) Power reference of BESSs and HVACs

Figure 6.3.5: Results of HVAC-BESS for anti-damage test

This case evaluates the effectiveness of control strategy when a BESS or HVAC

fault occurs. Before 80s, all participants work properly. It is assumed that BESSs
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at bus 1 and bus 3 are broken down at 80s and 150s respectively and others work

properly. In reality, this change is received by the sensor in bus 1 and 5 and sensors

reset the corresponding limited BESSs and cost parameters before executing next

updating iteration. That is P 1 = P 1 = 0, P 3 = P 3 = 0 and other parameters

remain unchanged. Before 80s, all participants work properly, so the optimal power

consumptions are the same as in Case 2. After the fault occurring in Bus 1 and

Bus 3 at 80s and 150s, the incremental cost increases correspondingly, in order to

maintain supply-demand balance, as described in Figure 6.3.5(a). The new power

output references are shown in Figure 6.3.5(c). The mismatch converges to zero, as

indicated in Figure 6.3.5(b).

6.3.6 Case study 5: Energy dispatch scheme for HVAC-BESS

under short-term solar power forecasts

This case focuses on developing a pre-schedule energy dispatch scheme for HVAC-

BESS systems, shown in Figure 6.3.6. Based on solar radiance forecasts in Figure

3.4.2, Figure 6.3.6(a) gives the 24-hour solar power curve in a solar PV array. The

dynamic of the incremental cost and power consumption of HVACs and BESSs are

shown in Figure 6.3.6(b)(c). Technically, the power reference signal will be broadcast

to local controller of HVACs and BESSs via the communication network and the

control system of these agents is responsible for generating associated control signal

to adjust power consumption to track designed signal.

In order to evaluate the feasibility of control strategy in a short-term solar power
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Figure 6.3.6: Results of HVAC-BESS under 24-hour solar power forecasts

forecast, the results obtained by MAPAx-PCA model in Figure 3.2.2 is employed to

carry out the test. Figure 6.3.7 shows the power consumption reference for HVAC-

BESS system in a month. Clearly, the power signal varies with the change of daily

solar radiance.
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Figure 6.3.7: Results of HVAC-BESS under 1 month solar power forecasts

6.4 Summary and discussion

In this chapter, the MAS-based consensus algorithm is extended to achieve the co-

ordination of hybrid HVAC-BESS systems. The cost function models of BESS and

HVAC units can be generalised as quadratic functions to accommodate the distributed

algorithm model. Case studies are carried out in IEEE 14-bus microgrid model built

in MATLAB/Simulink. The simulation results demonstrate the effectiveness of pro-

posed solution under the representative scenarios. The results demonstrate that a

distributed coordination of heterogeneous controllable loads would be feasible to alle-

viate supply-demand imbalance under with/without power constraints, time-varying

power mismatch, anti-damage test, 24-hour and one-month solar power forecasts,

which can be a promising DSM scheme.



Chapter 7

Conclusions

7.1 Conclusions

This work is motivated by the Entrust Microgrid LLP, who is dedicated to promoting

smart microgrid technology. With high penetration of DC-type loads and DC-based

DERs, the company currently engages in design a home-based hybrid DC&AC net-

works, comprising embedded renewable power generators (solar PV panels), energy

storage, controllable AC&DC loads. HVAC system, as a commonly-used electric ap-

pliance in the home, can be easily embedded into network to involve in DSM program.

This research has aimed to investigate an coordination scheme for multiple HVAC sys-

tems to contribute to the upgrading and improvement of microgrid technology.

The growing capacity of renewable generators with uncertain generation patterns

results in the need for increased system flexibility [136]. A novel concept ”microgrid”

is evolving that can help manage the variability of renewable resources and intelli-

gently regulate power balance between local demand and power supply in a small-scale

134
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electricity network. In addition to traditional energy storage device, i.e., BESSs, it is

worthwhile to note that the introduction of TCL devices (HVAC) can be an alterna-

tive choice to provide a short-term ancillary service, such as balancing and frequency

regulation in the microgrid. Furthermore, the HVAC system has a ”slack” charac-

teristic in nature in terms of temperature, running time and power output, which

represents a promising end-user category to engage in the grid service.

A hierarchical energy management system (Figure 2.5.1) is proposed to provide

a forecasting-management-optimization comprehensive solution. The integration of a

cooperative algorithm into a cluster of HVAC units is an optimal solution to address

issues in DSM, where the local load consumption pattern can be influenced to follow

the change of on-site renewable energy generation. With an accurate estimation of

distributed generation, a pre-scheduled energy dispatch scheme is designed for each

HVAC. The proposed method aims to maximize the on-site power generation, reduce

peak load demand, curtail the storage capacity and decrease the construction cost of

transmission system. This would provide a comprehensive solution to development of

next generation power system, for meeting the global challenge in energy security, af-

fordability and sustainability, and battling climate change and environment pollution.

More importantly, it is a great opportunity for local residents to obtain financial in-

centive, such as feed-in tariff, from the grid operator by providing an ancillary service.

In the future, more and more customers will change inherent behaviour of electricity

usage and be encouraged to participate in DSM activities and energy trade. On the

other hand, with the utilization of HVAC systems in the grid service, the comfortable

level of end users would be affected to some extent. Thus, a price-comfort optimiza-
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tion problem is formulated to reveal the trade-off between electricity payment and

comfortable level for residential users.

Firstly, an accurate forecasting of solar power/irradiance is critical to secure eco-

nomic operation of the microgrid system. A MAPA-PCA hybrid forecasting model is

designed to forecast one-month solar radiance in Lancaster area based on historical

weather data at Hazelrigg meteorological enclosure and nearby weather forecast at

walney island. The results indicate that the hybrid model outperforms the MLR and

ARIMAX, with MAPE being 65.0355 and R-square being 0.803. Correspondingly,

the daily power generation curve of a PV array can be estimated by a set of solar

power calculation models.

Secondly, HVACs need to be properly coordinated through a cooperative control

strategy to compensate the power imbalance and an energy dispatch scheme for a

group of HVACs in a time horizon of 24 hours is developed, based on local solar

power forecast results. Note that the numerical analysis for the convergence speed

against feedback gain is given and fastest performance can be achieved when the gain

is equal to 3.6. Meanwhile, the convergence proof of the algorithm under switching

communication topology is given by using Lyapunov stability theorem. It is verified

that a jointly strongly connected topology is a sufficient condition in order to achieve

average consensus for a time-varying topology. The power constraints, dynamics,

robustness, scalability, topology of the proposed algorithm have been investigated

through case studies.

The financial and discomfort cost affected by DSM activities are also considered

to formulate a optimization problem, where the objective function is designed to
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maximize the total welfare of HVAC systems and maintain the total power balance.

A PID-based distributed algorithm is proposed to maintain comfortability of end

users and active power balance by adjusting a virtual price. The advantages of the

algorithm capable of eliminating the steady-state error are proved by comparing with

the related literature. Case studies are carried out under different conditions on the

changes of ToU price, renewable power generation and different scales of IEEE bus

systems.

Furthermore, the distributed algorithm is expanded to include other controllable

components, i.e., BESSs. It is utilized to coordinate power sharing among hetero-

geneous energy storage devices distributed in IEEE 14-bus system. The sufficient

condition to achieve average consensus is the communication network by ensuring to

provide a spanning tree to access all BESSs and HVACs. The effectiveness of proposed

algorithm and its robustness against unexpected power imbalance, equipment failure

and short-term solar power forecasts are verified through case studies on a microgrid

test-bed built in MATLAB/Simulink.

7.2 Future perspectives

The work presented in this thesis proposes a hierarchical DSM model framework

for controllable household appliances, considering HVACs, BESSs, renewable energy

forecasting technologies, distributed energy management and DSM optimization al-

gorithms. As an industrial-lead PhD project, the final target of the research is to

transfer the key knowledge to the company for business use. Along this direction, the
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following research avenues may be of interest to academia and industry:

• Presently, a few assumptions are made in this research. Firstly, the energy

loss in the microgrid systems is not considered during the problem formulation.

Secondly, the price-comfort model is optimized by minimizing comfort loss and

electricity bills in response to the ToU price. It is valuable to study the indoor

temperature and CO2 level, since the fluctuations in the outdoor temperature

may also cause dissatisfaction. Furthermore, the dynamics of the BESSs includ-

ing charging/discharging cycles, SoC state, degradation and ageing problem are

not considered in the models. Nevertheless, the proposed HVAC-based energy

management system has demonstrated its operational feasibility as well as the

interests from the company. Further work will continue to investigate the re-

quirement for practical use in consultation with the company.

• The work will be to develop a real-time online distributed control system to

accommodate multiple end users with controllable loads that can be jointly

managed through communication network. The distributed controller can be

implemented and integrated into the microgrid operator. This distributed con-

troller can be composed of three modules. The data acquisition block is a data

centre to extract real-time weather forecast information from the Met-office web-

site. The power forecasting module is utilized to implement time-series forecast

algorithm and produce a daily solar power curve. DSM block is responsible

for the hardware implementation of the distributed algorithm and providing a

power consumption signal to each HVAC based on the overall power available.
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After receiving the signal, the local controller in each HVAC unit will generate

associated control signal to control and regulate its power output.

• The HVAC applied in this study is a popular household appliance with small

capacity and large quantity. Similarly, the immersion heater can be another

back-up energy storage system. It can preheat the cold water and reduce the

workload of water boiler. The immersion heaters at different houses can be

cooperated to consume the excessive power during peak generation of the elec-

trical grid. The thermal resistance voltage in the heater can be adjusted to

track the desired power consumption assigned by a distributed controller. It

helps mitigate the negative impact of renewable power generation on the main

grid, such as voltage fluctuation and maximize the on-site power generation.

• The heterogeneity of BESS should be taken into account. The employment of

the consensus-based method would achieves energy level balancing, active/reactive

power sharing and voltage/frequency synchronization of energy storage devices

by using inter-BESS communications.

• With the population of electrical vehicles (EV), the battery pack as the core

part of EV can be considered to participant in DSM activities. The proposed

coordination strategy can be used to deal with large-scale EV charging coordina-

tion, such as minimizing the charging power loss and maximizing the available

EV power for vehicle-to-grid (V2G) services. The corresponding incremental

cost functions can be formulated for these objectives. The consensus algorithm

can be applied to realize the local information updating and external informa-



CHAPTER 7. CONCLUSIONS 140

tion exchanging among neighbouring EVs, whilst satisfying the EV charging

requirements specified by the vehicle drivers [137].
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Figure A.0.1: Forecast information from Met Office Data Point.
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