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ABSTRACT

We present BOFFIN TTS (Bayesian Optimization For FIne-
tuning Neural Text To Speech), a novel approach for few-shot
speaker adaptation. Here, the task is to fine-tune a pre-trained
TTS model to mimic a new speaker using a small corpus of
target utterances. We demonstrate that there does not exist
a one-size-fits-all adaptation strategy, with convincing syn-
thesis requiring a corpus-specific configuration of the hyper-
parameters that control fine-tuning. By using Bayesian opti-
mization to efficiently optimize these hyper-parameter values
for a target speaker, we are able to perform adaptation with
an average 30% improvement in speaker similarity over stan-
dard techniques. Results indicate, across multiple corpora,
that BOFFIN TTS can learn to synthesize new speakers using
less than ten minutes of audio, achieving the same naturalness
as produced for the speakers used to train the base model.

Index Terms— text-to-speech, speaker adaptation,
Bayesian optimization, transfer learning

1. INTRODUCTION

Given enough data, text to speech (TTS) systems can learn to
convincingly mimic speakers across a wide range of acous-
tic and phonetic styles. However, training systems from
scratch requires tens of hours of high-quality audio and re-
liable transcriptions, either from a single speaker to create
speaker-specific models or spread across several speakers
when training multi-speaker models [1, 2, 3, 4]. Training
models on less data sacrifices quality and reliability [5].

To scale TTS catalogues across speakers for whom we
have limited data, we adapt existing multi-speaker systems to
generate new speakers - a well-studied form of transfer learn-
ing known as speaker adaptation[6]. Adaptation is possible
in scenarios where we have just minutes of target audio and
partial phoneme coverage, as the robust representation of text
and subsequent mappings to coherent speech are shared be-
tween the speakers [1]. Only a small proportion of our net-
work’s capacity encodes speaker-specific information. We,
therefore, need only enough utterances to learn speaker iden-
tity (the characteristics defining a target speaker’s voice).

∗This research was completed during an internship at Amazon Research.
Correspondence to h.moss@lancaster.ac.uk and agvatsal@amazon.com.

Existing strategies for speaker adaptation fall into two
broad categories. Many approaches use pre-trained auxiliary
encoding networks to extract speaker characteristics to be
combined with linguistic features as inputs to a TTS model
[7, 8, 9, 10]. In contrast, alternative approaches fine-tune the
weights of existing multi-speaker models to synthesize new
speakers [11, 12]. As fine-tuning provides the most natural
adaptation across multiple TTS models [11, 12], and is ap-
plicable to any existing system (without the need for training
additional encoding networks), it is the focus of this report.

Our primary contribution is to demonstrate that successful
speaker adaptation requires fine-tuning of adaptation hyper-
parameters (henceforth referred to as the adaptation strat-
egy) for each target speaker. We carefully tune the hyper-
parameters governing adaptation and introduce two additional
parameters not previously used for speaker adaption, demon-
strating that the optimal hyper-parameter configuration de-
pends subtly on the acoustic and phonetic properties of the
target speaker alongside attributes of the target corpus (like
audio-quality and size). For example, the amount of regu-
larization required to prevent over-fitting (of which few-shot
speaker adaptation is particularly susceptible [12]), depends
on the quality and quantity of adaptation utterances.

In this work, we formulate few-shot speaker-adaptation
as an optimization problem - the task of finding appropriate
hyper-parameter values for any given speaker. Our proposed
BOFFIN1 TTS system automatically and efficiently solves
this optimization problem through the hyper-parameter tuning
framework of Bayesian optimization (BO), providing a fully
automatic speaker-adaptation system suitable for general tar-
get speakers. BO has been shown to find high-performing
hyper-parameters in competitively few model fits for many
machine learning tasks [13], surpassing the performance of
human tuners for problems in computer vision [14], natu-
ral language processing [15], and recently for reinforcement
learning in AlphaGo [16]. However, BO has yet to see wide-
spread use in TTS, where grid-based and random searches
are still commonplace for hyper-parameter optimization. We
hope that our successes with BO for speaker adaptation will
encourage its more wide-spread use across TTS.

We evaluate BOFFIN TTS across three distinct scenarios,
varying both the number of speakers in the base multi-speaker
model and corpora audio-quality.

1Boffin: British slang for a scientific expert.
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2. SYSTEM DESCRIPTION
2.1. Base Multi-Speaker Model
Our base model (the model we adapt to target speakers) is
a Tacotron2 [17] style multi-speaker system explained in de-
tail by [1, 18], consisting of an acoustic context-generation
model and neural vocoder. Our acoustic model relies on an
attention-based sequence-to-sequence network to generate
context sequences (represented as mel-spectrograms) from
input texts (see Figure 1). Unlike Tacotron2 which models
raw graphemes, we pre-process input text with a grapheme-
to-phoneme module. To condition on individual speakers,
we learn a speaker-embedding from a one-hot-encoding of
speaker IDs (following [2]). This dense representation of
speaker characteristics is presented to the attention module
alongside encoded input text, to be decoded as a speaker-
specific mel-spectrogram. Model weights are tuned with an
ADAM optimizer to minimize the teacher-forced L1 loss
between predicted and extracted mel-spectrograms. To com-
plete the TTS pipeline, we convert mel-spectograms to wave-
forms using the multi-speaker neural vocoder of [19]. This
vocoder is trained across 74 speakers and suitable for generat-
ing natural speech for our wide-range of adaptation speakers.

Fig. 1: Multi-speaker acoustic model architecture.

2.2. Base-line Speaker Adaptation System
Existing approaches for speaker adaptation by fine-tuning, al-
though targeting different TTS architectures [11, 12], all share
the same approach which we apply to our chosen model to
form a base-line adaptation system. To synthesize speak-
ers not present in the training corpus, we continue the same
learning process used to train the base model, but replace
the training data with utterances of only the target speaker
to allow the fine-tuning of weights and the learning of a new
speaker embedding with respect to this new data. To avoid
over-fitting to small collections of target utterances, we hold-
out 20% of adaptation data to form a validation set for early-
stopping. From extensive human tuning, we know that the
hyper-parameter configuration chosen for our base-model is
capable of producing high-quality synthesis (achieving higher
than four MOS naturalness scores for several speakers). We,
therefore, expect this hyper-parameter configuration to form
a competitive base-line for adaptation. Nevertheless, we later

demonstrate that we can achieve a substantial improvement in
adaptation quality using BOFFIN TTS.

3. BOFFIN TTS

There are two key difference between BOFFIN TTS and the
base-line adaptation system. We allow the hyper-parameters
controlling our adaptation to change to suit the target-speaker
and, crucially, propose a framework for finding their optimal
configuration in an efficient and automatic manner.

3.1. How Does BOFFIN TTS Control Adaptation?
The key to effective adaptation is to learn characteristics of
the target speaker without losing the generalizability of the
base model (a phenomenon known as catastrophic forgetting).
To this end, we believe there are nine key hyper-parameters
that determine the success of adaptation. These include seven
parameters already widely used in machine learning to con-
trol learning dynamics (learning rate, batch size, decay-factor
and gradient-clipping threshold) and to perform regulariza-
tion (dropout and two zoneout parameters[20]), alongside two
parameters unique to BOFFIN TTS.

Although, tuning these seven standard hyper-parameters
allowed us to learn the identity of the target speaker, the
resulting models often show poor generalization capabili-
ties. Therefore, we propose two additional hyper-parameters.
Firstly, we supplement our adaptation corpus, forming a tune-
able ratio of target speakers to speakers already seen by the
model (a simple approach to mitigate catastrophic forgetting
known as a rehearsal method). Finally, we also tune which
epoch of our trained base-model from which we begin adap-
tation. A base model before full convergence to the base
speakers can provide a model more amenable for adaptation.

In addition to hyper-parameter tuning, we also exploit
the specific architecture of our chosen base-model. Rather
than allowing our fine-tuning to update all model weights
(as in [12]), we only allow fine-tuning of the weights in our
speaker embedding and decoder modules (i.e those contain-
ing speaker-specific information, see Figure 1). We know
that our encoder and attention modules are already able to fa-
cilitate synthesis across multiple speakers and we found that
freezing their weights during adaptation led to more robust
synthesis.

3.2. How Does BOFFIN TTS Optimize Adaptation?
Learning an optimal adaptation strategy for a target speaker
is a difficult high-dimensional hyper-parameter optimization
(HPO) problem. As is common in HPO, this optimization
task is characterized by expensive evaluations (requiring a
full adaptation to evaluate each single hyper-parameter con-
figuration), a mixture of discrete and continuous variables,
and a lack of analytical gradients for our objective function
(the performance of adaptation) with respect to all our hyper-
parameters. Consequently, we cannot apply gradient-based
optimizers and the high-dimension of our turning task makes



(a) INTERNAL speaker A. (b) VCTK speaker p362. (c) LibriTTS speaker 114. (d) Tuned hyper-parameter values.

Fig. 2: (a, b, c): Loss of the current best hyper-parameter configuration found by each system as we adapt to three randomly
selected speakers from each corpora. We plot means and standard error for BOFFIN TTS and RS based on 5 runs with different
random seeds, alongside the loss achieved by the base-line adaptation system. (d): Hyper-parameter values chosen by BOFFIN
TTS for multiple target speakers across three different data-sets. Each point represents a single speaker. We plot the six
hyper-parameters whose optimal values show the largest variation across speakers.

a simple grid-search computationally infeasible (and likely
ineffective [21]). We, therefore, use Bayesian optimization.

In a nutshell, BO is able to provide highly efficient HPO
by using information from already evaluated hyper-parameter
configurations to predict which untested configurations are
‘likely’ to perform well and therefore should be next eval-
uated. In particular, to choose the t + 1th hyper-parameter
for evaluation, we fit a Gaussian process model [22] to our t
collected configuration-evaluation pairs Dt = {xi, yi}i=1,..,t
across the hyper-parameter space X , producing Gaussian
predictions of performance at each configuration x ∈ X of
y(x)∣Dt. We then evaluate the configuration that we ex-
pect (according to our model) will provide the largest im-
provement over the best current best evaluation (with score
y′t =mini=1,..,t yi), i.e we next evaluate configuration

xt+1 =argmax
x∈X

Ey(x)∣Dt
[max(y′t − y(x),0)∣Dt] . (1)

For Gaussian processes, the inner expression of (1) and its
gradients have convenient analytical forms (see [23] for a
comprehensive review of BO). Therefore, xt+1 can be effi-
ciently found using a standard gradient-based optimizer.

We consider the performance of BOFFIN TTS when
seeking to minimize L1 mel-spectogram loss across a held-
out validation set of target speaker utterances. Although L1
loss does not necessarily correlate exactly with the percep-
tual quality of synthesized samples (as is the case for all
objective TTS metrics), we found it informative enough to
find hyper-parameters with high perceptual scores (Section
4). Adaptation to speakers from three different corpora is
presented in Figure 2 (experimental details are discussed in
Section 4). Our plots start after an initialization stage of
10 random hyper-parameters, as this is required to provide
a meaningful initial model across X . Note that replacing
BOFFIN TTS’s BO component with random search (RS)
fails to substantially improve upon our baseline (not speaker-
specific) adaptation system. We need a sophisticated tuner

System INTERNAL VCTK LibriTTS
base-synth 3.45 ± 0.08 3.76 ± 0.10 3.10 ± 0.10
base-truth 3.84 ± 0.08 4.05 ± 0.08 4.10 ± 0.08
adapt-synth 3.43 ± 0.10 3.6 ± 0.10 2.90 ± 0.10
adapt-truth 4.05 ± 0.08 4.09 ± 0.08 3.97 ± 0.08

Table 1: Comparing the mean naturalness scores achieved by
BOFFIN TTS on target speakers (adapt-synth), by the base
multi-speaker model on base speakers(base-synth), and by
true audio for both target (adapt-truth) and base-model speak-
ers (base-truth). We present each listener with samples across
multiple base and adapted speakers and ask for a 5 point score
from ‘completely unnatural’ to ‘completely natural’. We print
mean responses alongside 95% confidence bounds.

like BO to find speaker-specific adaptation strategies. In
addition, Figure 2d shows that not only does the optimal
hyper-parameter configuration vary between data-sets, but
also across each individual speaker within each corpora. For
example, our proposed Mixing Ratio hyper-parameter re-
quires larger values in general across the VCTK corpus than
for our other corpora, however, the optimal Mixing Ratio still
varies substantially across just the VCTK speakers.

4. RESULTS
We have demonstrated that BOFFIN outperforms the base-
line speaker adaptation system with respect to L1 loss. How-
ever, to investigate whether this lower score corresponds to
an improvement in perceptual quality at inference time, we
collected the perceptual evaluations of human listeners.
4.1. Experimental Protocol
To thoroughly test the performance of BOFFIN TTS, we
consider three distinct corpora: (i) multi-speaker corpus with
studio-quality recordings (referred to as INTERNAL2), (ii)
the open-source VCTK corpus [24], and (iii) the LibriTTS
audio-book corpus [25]. By considering a range of recording

2The internal corpus contains no customer voice recordings.



qualities and base-models with differing numbers of base
speakers, we can understand the limitations of using BOFFIN
TTS in a variety of practical settings. The architecture of our
base-model remains fixed except for the more challenging
LibriTTS task, where we double the size of our speaker em-
bedding to accommodate a larger collection of base speakers.
BO is performed with the Python library Emukit 3.

For each experiment, we adapt to 4 unseen speakers
(from the same corpora used to train the base-model) using
a random sample of 100 utterances (representing between
5 and 10 minutes of audio depending on the corpus), with
20% retained as a validation set. To evaluate each system,
we compare naturalness and achieved similarity to the target
speaker using a MUltiple Stimuli with Hidden Reference and
Anchor (MUSHRA) test [26]. We also compare the natu-
ralness achieved by BOFFIN TTS on target speakers with
that achieved by the base multi-speaker model on its original
speakers using a Mean Objective Score (MOS) test for natu-
ralness. Each evaluation is presented to 25 native US listeners
using Amazon Mechanical Turk. Statistical significance tests
are performed at the p=0.01 level with Bonferroni-Holm cor-
rections, using paired t and Mann-Whitney U tests for the
MUSHRA and MOS evaluations respectively.

4.2. Adaptation from a base-model with few speakers
For our first experiment, we train a base-model on 4 male
and 4 female proprietary speakers (each with 2.5k utterances)
and adapt to 2 female and 2 child held-out speakers. Fig-
ure 3a show that BOFFIN TTS is able to achieve significant
improvements in speaker similarity, with an improvement of
28% over the base-line and 39% over RS. Crucially, Fig-
ure 3b shows BOFFIN TTS’ improvement in similarity does
not sacrifice perceptual quality, achieving a small but statis-
tically significant improvement in naturalness over the base-
line speaker adaptation system. Moreover, Table 1 demon-
strates that BOFFIN TTS is able to adapt to target speakers
without a significant drop in perceptual quality from the base-
model’s speakers (learnt with 250 times more data).

4.3. Adaptation from a moderately rich base-model
We now consider a harder adaptation task; adapting to
VCTK speakers with much higher variation in expressive-
ness, prosody and audio-quality than those in INTERNAL.
Our base-model is trained on 22 speakers: 14 from VCTK
(with 400 utterances each) supplemented with the 8 already
considered in our first experiment (added to provide a more
robust base-model). We adapt to 4 unseen VCTK speak-
ers. This challenging adaptation scenario necessitates target
speaker-specific adaptation strategies, with BOFFIN TTS
providing significant improvements of 57% in similarity and
13% in naturalness over the base-line (Figures 3c and 3d).
Moreover, Table 1 shows that BOFFIN TTS is once again
able synthesize target speakers without a significant drop in

3https://github.com/amzn/emukit

(a) Similarity INTERNAL. (b) Naturalness INTERNAL.

(c) Similarity VCTK. (d) Naturalness VCTK.

(e) Similarity LibriTTS. (f) Naturalness LibriTTS.

Fig. 3: MUSHRA tests for speaker similarity and naturalness.
For similarity, we presented the same utterance synthesized
by each system alongside a reference recording of the target
speaker on another utterance and requested a rating of each
system between ‘definitely a different person’ (0) and ‘def-
initely the same person’ (100). For naturalness, we repeat
without a reference recording and instead asked for ratings
between ‘completely unnatural’ and ‘completely natural’

naturalness than achieved for speakers already present in the
base multi-speaker model.

4.4. Adaptation from a rich base-model
To understand the limitations of BOFFIN TTS, our final ex-
periment considers an even larger base-model containing 200
speakers (each with 200 utterances) from LibriTTS. We adapt
to 4 additional unseen libriTTS speakers. LibriTTS is derived
from audio-books and so contain noise, artifacts, and highly
expressive voices. Consequently, although BOFFIN TTS was
able to adapt to target speakers without a statistically signif-
icant drop in naturalness over the speakers used to train the
base-system (Table 1) (as is consistent with our other experi-
ments), our base-model itself was of much lower quality than
our other base-models, making it difficult for our MUSHRA
listeners to make a statistically significant preference in simi-
larity across all three systems (Figures 3e and 3f).

5. CONCLUSION
We propose the few-shot speaker-adaptation framework of
BOFFIN TTS. By learning adaptation strategies custom to
each target speaker, BOFFIN TTS can achieve higher speaker
similarity than using a one-size-fits-all adaptation strategy,
particularly when adapting to challenging target speakers
from high-performance multi-speaker models.
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