
Date of Acceptance Grade

Instructor

Overview and Evaluation of Notifications Systems for Existing M2M
Provisioning API

Linhong Sun

Helsinki November 4th, 2014

UNIVERSITY OF HELSINKI
Department of Computer Science

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta/Osasto–Fakultet/Sektion–Faculty/Section

Faculty of Science
Laitos–Institution–Department

Department of Computer Science
Tekijä–Författare–Author

Linhong Sun
Työn nimi–Arbetets titel–Title

Overview and evaluation of notifications systems for existing M2M provisioning API
Oppiaine–Läroämne–Subject

Computer Science
Työn laji–Arbetets art– Level

M.Sc. Thesis
Aika–Datum–Month and year

November 4th, 2014
Sivumäärä–Sidoantal–Number of pages

87 pages + 71 appendixes
Tiivistelme–Referat–Abstract

Nowadays, the connected devices and services need differentiate tailored connectivity to satisfy diverse

requirements. To simply provision of a large number of connected devices in a time-efficient way, Ericsson

provides a SaaS solution Ericsson Device Connection Platform (DCP). Hence, a notification service is required

to achieve real-time interaction, and a subscribe-notify web-services API is required to define the selected

notification service based on DCP. However, it is difficult to choose a notification system due to lacking

systematic approaches. In the view, I present six comparison points to compare current push notification

products. My aim is to propose proposals to design a subscribe-notify web-services API. In an effort to further

understand how push notification mechanisms work, I (1) explain Event Notification Service (ENS)

technologies; (2) recommend to use the publish/subscribe (pub/sub) paradigm to define the API for DCP; (3)

compare current push notification products by using six comparison points as the systematic approach. Six

comparison points are basic information, functionalities, licenses with usage fees covering usage limits,

security, supporting details and supported platforms/OS in terms of performance. In the case, Pushwoosh and

AeroGear UnifiedPush Server provide appropriate notification systems to satisfy diversified demands for

different scale enterprises.

ACM Computing Classification System (CCS):

Networks Network architecture Programming interface
Information systems and applications Decision support systems
Avainsanat – Nyckelord – Keywords

Device Connection Platform (DCP), Push notification services, Push notification servers, publish/subscribe
(pub/sub), API, Machine-to-Machine (M2M), Notification systems

Säilytyspaikka – Förvaringställe – Where deposited

Table of Contents

1 Introduction...1
2 Background...2

2.1 Networking conditions..3
2.2 Mobility...4
2.3 Scalability... 5
2.4 Fault tolerance ...5
2.5 User needs...6

3 Ericsson Device Connection Platform.. 6
3.1 Use cases in DCP notifications...7

4 Event Notification Service technologies...8
4.1 Web service technologies..9
4.2 Notification paradigms..11

4.2.1) Polling..11
4.2.2) Push notifications.. 12
4.2.3) Pub/sub paradigm..13

4.3 Push notification mechanisms for different mobile platforms.. 15
4.3.1) Apple Push Notification Service.. 17
4.3.2) Android Cloud to Device Messaging... 18
4.3.3) Google Cloud Messaging.. 20
4.3.4) Microsoft Push Notification Service..21

4.4 An ENS prototype based on pub/sub paradigm.. 23
5 Push notification products...25

5.1 Push notification services... 26
5.1.1) Mozilla SimplePush... 26
5.1.2) Pushover.. 27
5.1.3) Pushwoosh...27
5.1.4) Amazon Simple Notification Service ..28
5.1.5) OpenPush...28
5.1.6) Parse.com.. 29
5.1.7) Urban Airship.. 29
5.1.8) Xtify..29
5.1.9) Push IO..29
5.1.10) Awarly..29
5.1.11) OpenMarket... 30
5.1.12) PushBots.. 30
5.1.13) Mass Notification Service..30
5.1.14) mobDB...31
5.1.15) NACapp... 31
5.1.16) OpsGenie... 32
5.1.17) SnapComms... 32
5.3.18) Notificare... 33

5.2 Comparisons of push notification services... 33
5.2.1) Comparisons of basic information.. 34
5.2.2) Comparisons of functionalities..37
5.2.3) Comparisons of usage fees and usage limits...41

5.2.3.1) Usage fees and usage limits of free accounts... 42
5.2.3.2) Usage fees and usage limits of premium accounts....................................... 43

5.2.4) Comparisons of security.. 48
5.2.5) Comparisons of supporting details..50
5.2.6) Comparisons of supported platforms/OS.. 52
5.2.7) Summary of push notification services.. 54

5.3 Push notification servers...57
5.3.1) AeroGear UnifiedPush Server... 58
5.3.2) Pushd... 58
5.3.3) PushSharp..59
5.3.4) Uniqush..59
5.3.5) OpenMobster... 60

5.4 Comparisons of push notification servers...60
5.4.1) Comparisons of basic information.. 61
5.4.2) Comparisons of functionalities..62
5.4.3) Comparisons of licenses.. 63
5.4.4) Comparisons of security.. 65
5.4.5) Comparisons of supporting details..67
5.4.6) Comparisons of supported platforms/OS.. 68
5.4.7) Summary of push notification servers... 69

6 Discussion and summary of push notification products... 71
6.1 Summary of push notification services... 71
6.2 Summary of push notification servers...72
6.3 Discussion of push notification products.. 73

7 Evaluation... 74
7.1 Evaluations from six comparison points...75
7.2 Evaluations from good APIs... 75
7.3 Evaluations from services/servers.. 76

8 Conclusion.. 77
REFERENCES.. 79
APPENDIX..83

1

1 Introduction

The emergence of Machine-to-Machine (M2M) technology enables various devices to be

connected across the world. It is predicted that 50 billion connected devices is a vision of the

future, and more devices are using myriads of new services. Based on various requirements,

these connected devices and services need to differentiate tailored connectivity packages. For

example, some devices need constant connectivity and others may occasionally transfer data. In

such a way, the differentiated connectivity brings benefits to all participants. Concisely,

application users pay reasonable charges based on their usages, in the meanwhile, service

providers utilize usage per bit distribution of network. However, provisioning a large number of

connected devices is time consuming and complicated. To tackle such a task, Ericsson provides a

SaaS solution called Device Connection Platform (DCP) to support the provisioning task real-

timely. An API is playing a significant role in supporting diversified services and responding to

competitive pressure. The core service platform of DCP is required to be exposed through APIs

to both external parties and their customers. Hence, a subscribe-notify web-services API, which

is able to work with third party services, should define selected notification services based on

DCP to achieve real-time interactions. To design such an API, a systematic approach is required

to compare current push notification products based on existing third party push notification

products. Besides, proposals of such an API are required to be given.

To analyze current push notification products, four characteristics of M2M communications,

including networking conditions, mobility, scalability and fault tolerance are considered. In an

effort to further understand how push notification mechanisms work, this paper is conducted to

explain Event Notification Service (ENS) technologies. Then, the publish/subscribe (pub/sub)

paradigm is chosen to define the subscribe-notify web-services API of notification system for

DCP. Based on the characteristics of M2M communications and ENS technologies, this paper

presents six comparison points to analyze existing push notification products in a systematic way,

and then gives proposals to meet diversified demands. Particularly, six comparison points are

basic information, functionality, licenses and usage fees with usage limits, security, supporting

details and supported platforms/OS. The objective of the systematic approach covers both

2

performance and practical cases.

The rest of the paper is organized as follows. Section I is an introduction to this paper. Section II

is background which is M2M environment and user needs for M2M devices. Section III

introduces DCP from the aspects of definition, user scenarios and key characteristics. Section IV

overviews ENS technologies based on web service technologies and a good API definition. Then

this paper gives an investigation of available notification paradigms, existing push notification

services and an ENS prototype based on pub/sub paradigm. The investigation concentrates

prevalent android, iOS and Windows Phone mobile platforms for different use cases. Section V

categorizes existing push notification products into push notification services and push

notification servers. Then, it shows comparisons of the existing push products from six

comparison points. Section VI discusses and evaluates preferred options of designing the

subscribe-notify API. Section VII gets a conclusion and propose a final proposal to design the

subscribe-notify web-services API.

2 Background

In this section, I will introduce four key factors of M2M environment in order to see what are

required from an M2M provisioning API used in a DCP notification system. Throughout this

paper, service providers or application developers refer to publishers, while application users

refer to subscribers.

There are billions of devices in the world, ranging from home appliances and business computers

to complex utility equipment, industrial machines and transport systems. The emergence of

M2M technology now allows businesses to talk to their machines over wired or wireless

networks. M2M is a broad label that can be used to describe any technology which enables

networked devices to exchange information without human operations. With M2M, unexpected

occurred problems can be monitored, identified by issuing automatic alerts remotely. Thus, for a

machine builder or a machine owner, and whatever industry, M2M communications will bring

value to prosperous business. Enterprise representatives like Google, Ericsson, etc., have

followed the fast development in cloud, virtual and software defined structures. In the future,

M2M will bring prosperities to IT springing up, and M2M tends to be predominant in the

following years.

3

This section will present four general characteristics and requirements of M2M environment,

including networking conditions, mobility, scalability and fault tolerance. These characteristics

should be considered when designing a notification system and customizing native applications

for mobile devices.

2.1 Networking conditions

When machines talk, they communicate in the same language which is known as telemetry. The

concept of telemetry refers to remote machines with sensors which collect and transfer data to a

central point for analysis, and it can be done either by humans or computers. M2M

communications are realized by wireless sensors and Internet in M2M environment, so M2M

environment is affected by networking conditions.

The fundamental reasons why M2M environment is affected by networking conditions can be

analyzed from lower layers of network. In order to support global software development,

networks spanning across several sites are necessary. However, transitions in these networks are

often slow and unreliable, because network packages are lost in the transport. The problem of

lost packages results in unreliability, the low bandwidth, the low throughout and even

underutilized or overload of Internet. Network Address Translation (NAT) [Smi02] devices

modify the IP address information of the traffic when going through the NAT devices, which is

another case of package lost problem for notification systems. NATs allow Internet connectivity

between a public network with the same public IPv4 address and several devices. The original

prototype of IP end-to-end connectivity is changed and causes more disruptions for traffic.

The problem of lost packages is solved by firewalls. Network packages can also be intercepted

by network security systems, either software-based or hardware-based. A firewall takes

responsibility of network packages analysis and receiving and sending packages control based on

given rules. Hence, a firewall succeeds in creating protection for a secure trusted internal

network from an unknown network.

To get better control of M2M technologies, M2M communications can be used more efficiently

to monitor the condition of critical infrastructure, such as water treatment facilities or bridges,

and helps businesses maintain inventory. As networking conditions rely on common technologies,

4

networking conditions can help a homeowner maintain a perfect lawn or create a shopping list at

a button's touch as well.

2.2 Mobility

Wireless communication is ubiquitous nowadays, and service providers are making a

breakthrough to support increasingly global supply chains. Real-time communication which is a

form of wireless communication helps to narrow gaps in information, so that both application

users and service providers like manufacturers are able to track and monitor their supply chains

remotely.

Some automotive companies have increased their demands for wireless technology on alert

emergency services towards accidents. This M2M evolution to alert emergency service is needed

to be created based on a comprehensive architecture. IoMANET is such an architecture, which

supports indirections and solves mobility issues for M2M communications [Att11]. Mobility is

also required to overcome the difficulty in physical distances, so that remote counterpart

components in M2M environment can be located and recognized inaccuracy in time [Bel96].

Informal communication are avoided, because informal and ad-hoc communication are dominate

in detecting exceptions, correctness and recovery [Des02a]. Hence, mobility is essential factor of

M2M communications especially in the large scale software development environment. Besides,

mobile service providers have a challenge to provide mobility for distributed mobile applications.

Because distributed mobile applications usually interact with other mobile groups which aren't in

the same administrative domain in most cases. These mobility issues are argued in the edge

Internet with corresponding solutions [Zha09].

Mobility is driving M2M adoption among service providers who are exploring better ways to

manage supply chains. Distributed mobile service providers can support alert emergency services

with mobility to connect remote counterpart components in M2M environment. Because of

flexibility and ease of use, M2M is becoming one of the fastest growing manufacturing trends.

Furthermore, the demand for M2M is still rising, because M2M involves mobile application

users, and the demands of mobile application users drive M2M adoption especially for

automotive companies.

5

2.3 Scalability

Ericsson predicts 50 billion users in the future [Eri11]. However, according to research from

Cisco1, the amount of Internet-enabled devices in the world will surpass 150 billion by the year

of 2025. In the meanwhile, Samuel Ropert in his report [Rop13] said that there would be 80

billion connected devices by 2020, where 85 percent would include anything that connects to the

Internet, even if it lacks the required electronics and relies upon intermediate devices.

The Internet-scale event notification is a trend [Des02a], and currently is implemented by the

majority of notification servers. Siena [Car01] is taken as an example, Siena supports Internet-

scale distributed applications. Herald [Cab01] is another example, which supports scalability and

brings flexibility.

Furthermore, scalability brings benefits to the integrations, and enhances the communications of

information or events exchanging between different distributed sites.

2.4 Fault tolerance

Fault tolerance reflects the ability of handling communication failures, so that reliability and

stability of application users’ networks and M2M communications are guaranteed. Failures can

be caused by various reasons, such as power surges, static discharge, communication failures and

brownouts, like lost communications, high maintenance costs, and truck roll outs, longer down

times, loss of remote control and automation. Hence, it is practically useful to keep M2M

communications to continuously interconnect between nodes when failures happen.

IoMANET is designed based on Chord protocol [Att11], whose robust scalable topology is

implemented based on the Chord distributed hash table. Chord is able to automatically change

the internal tables with existing nodes, including failure nodes. IoMANET not only solves the

mobility issues of M2M communications with indirections, but allows message delivered

independently from a dedicated home agent in order to support fault tolerance.

As M2M applications are deployed across critical infrastructures [Mer11], it is significantly

1 http://newsroom.cisco.com/dlls/2010/ekits/Evolving_Internet_GBN_Cisco_2010_Aug_rev2.pdf

http://newsroom.cisco.com/dlls/2010/ekits/Evolving_Internet_GBN_Cisco_2010_Aug_rev2.pdf

6

useful for M2M communications to support fault tolerance. M2M evolution management

requires a comprehensive architecture and innovative technology solutions. Hence, it is

significant that preferred solutions should eliminate single points of failures to perform in a

distributed and robust way.

2.5 User needs

Application developers intend to apply an event notification system as a framework to support

global software development. Both application developers and application users prefer well-

known applications, such as instant messenger systems and application gauges [Des02b] and

workflow systems [Cug01] to integrate notification systems. They want to use these applications

for informal communication as collaborative tools. To make full use of event notification

systems, application users should know the details of the events, so that the events can be

captured and passed to the notification server in time.

3 Ericsson Device Connection Platform

With the emergence of new resolved opportunities, an increasing number of devices are

communicating over the global networks. Ericsson proposes DCP which introduces a simple way

to reducing revenues on device average and gaining profits.

DCP serves as a service. DCP is designed to allow service providers to address M2M or M2M

connectivity opportunities, which accelerates expansions of revenues with minimum risks. DCP

realizes functionalities of subscription management, rating with billing & policy controls,

provisioning with order management, IP controls with policy enforcement, connectivity

monitoring, device management and device access enablement regardless of access points and

virtual private networks.

DCP uses an existing M2M provisioning API, so that DCP can be integrated with the existing

operational supporting systems and business supporting systems for complete end-to-end

functions. DCP enables service models to reduce delivery time to market and give a quick glance

at locations on new elements. The automation of this business processes bring high operational

efficiency and keeps overall costs down.

7

As dedicated to M2M connectivity, DCP enables service providers to focus on their enterprise

customers rather than an uncomplicated technology. The portal brands DCP and it is preferred

the functionality can be made available via APIs. Using the self-service portal, enterprises can

manage their entire device fleet and can get easy access to reports and statistics. The devices

access enablement helps smaller businesses to guarantee individual devices accessible over the

Internet. Accessibility is provided in the secure application protocol acknowledgment without

opinions of access points and virtual private networks.

In addition to DCP, Ericsson also provides other products in the form of services which are the

key parts of M2M solutions. This includes system integration, network performance with

scalability, M2M business consulting and industry specific solutions. By providing an

opportunity of a low risk-development and highly-tailored M2M solutions, DCP creates values

and opportunities for service providers in a long term.

3.1 Use cases in DCP notifications

Notifications are triggered by events like various provisioning requests. Even though, initial

orders of subscriptions and related SIMs are left out-of-scope currently.

Notifications are user-definable, which means application users are able to choose the events.

The events interest application users and become parts of notifications. Publishers publish

notifications to subscribers, and subscribers receive notifications from publishers. The pub/sub

process can be referred to anything from SMS text messages or e-mails to anything more

synchronous. Practically, subscribers do not have to be recipients, and even have one or more

recipients with one or more devices can be notified by the same notification.

In DCP, use cases are summarized in four situations. In general, application users will be notified

in when operations, including changing subscription status, changing subscription package,

doing batch processing and triggering alarms, are finished or have errors in DCP. In details,

application users are able to choose multiple events are notified when subscription status changes

in the server, when enterprises issue subscription status changed. The difference between before

subscription status changed and after subscription status changed lies in how much service

providers pay for bills. Because invoices depend on subscription status, and subscription status is

8

different among alive, deactivated, paused or terminated. Application users are also able to

choose multiple events are notified when a subscription changes from a subscription package to

another subscription package in server side. Again, application users can choose multiple events

are notified when many subscriptions change from a subscription package to another

subscription package in server side. Moreover, application users are able to choose when

multiple events are notified for triggered alarms. Alarms are triggered when application users

receive too many SMS text messages or too few SMS text messages. Application users receive

too many SMS text messages, data will be above timeframe, and network can be overload. If

application users receive too few SMS text messages, data will be under timeframe. This can be

caused by some network problem or have not been used efficiently. One more user case of

trigger alarms is devices connect/disconnect from networks, so that PDP context is active or

deactivated.

4 Event Notification Service technologies

Event notification service uses web service technologies to transfer and manage event

notifications. Subscribers initiate requests with subscription information in a specified format,

and subscribers send requests to web service providers to register their interests. When

interesting events happen, registered subscribers will receive notifications in a specified format.

Notifications are delivered with diversified transportation mechanisms via intermediary. To get

better interoperability among different service providers, service providers claim specifications

or rules to illustrate notification formats and web service rules for notification delivery. The

benefits of specifications and rules will bring convenience to subscription creation and event

notification service management [Hua06].

The most widely used web services are RESTful web services which are also used by event

notification services. RESTful web services use technologies like protocols, architecture and

formats to design and implement. The following subsection gives a rough introduction to the

concepts of API, Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol Secure

(HTTPS), Extensible Markup Language (XML), JavaScript Object Notation (JSON), SOAP and

REST. All these web service technologies are used to realize the communications of RESTful

web services which will be mentioned in Section 5.

9

4.1 Web service technologies

A web service is a software ecosystem to support interoperable M2M interactions over networks

[Moj12]. From the whole view, a web service gives an interface in a sequential machine style

like Web Service Definition Language (WSDL). Communications between systems and web

service are prescribed in a manner by using SOAP messages, and typically delivered via HTTP

in an XML serialization under other web standards. The most used web services are Remote

Procedure Calls (RPC) which is based on a distributed function call interface, Service-oriented

Architecture (SOA) and REST. SOA is the basic unit of communication, which is a message

rather that operations as RPC. The architecture of REST combines HTTP with web services to

constrain interfaces via a set of standard HTTP operations.

API is the abbreviation of application program interface, which goes through all the web service

technologies. API is a set of routines, protocols and tools to build software applications. API

specifies how software components interact and APIs are used to programme graphical user

interface components. A good API is significant for both service providers and application

developers. For service providers, a good API could become the most precious property for

enterprises. The API would gain engagement in purchase. For application developers, modular

and good code should be developed based on the API. A good API makes it easier to develop a

program by providing all the building blocks. A programmer then puts the blocks together.

Useful blocks even can be designed to be reused later on.

Based on Joshua Bloch's talk [Blo12], a good API has six general characteristics, including easy

to learn and easy to use even without any documentation, difficult to misuse, easy to read and

maintain code, appropriate enough to satisfy the requirements, easy to extend and appropriate to

almost all the application developers. A good API should be learned and used easily even without

any documentation, namely, a good API is simple and plain to be understandable. So that it can

be memorized easily. Moreover, a good API should be more difficult or impossible to misuse.

Such a good API should simply force you to do the right. A good API should be easy to read and

to maintain code written to the API. Besides, a good API should be adequate to satisfy the

requirements of application developers. Such a good API doesn’t have to be the most powerful

API, but should be a sufficient appropriate one. A good API should evolve overtime, because

10

new requirements will be added later on so that application developers are able to do what they

want to write. Hence, a good API should satisfy both current and future requirements of

application developers. Moreover, a good API has to be appropriate to almost all the application

developers, which means a good API should have a common terminology accepted by almost all

the application developers.

When used in the context of web development, an API is typically defined as a set of HTTP

request messages. An API is usually in an XML or JSON format along with a definition of the

structure of response messages. While web API historically has been virtually synonymous for

web service, the recent trend so-called Web 2.0 has been moving away from SOAP based web

services and SOA towards more direct REST style web resources and resource-oriented

architecture (ROA). The mentioned concepts, including HTTP, HTTPS, XML, JSON, SOAP and

REST which are relevant to API, will be introduced as follows.

HTTP is an application protocol for collaborative and distributed hypermedia information

systems [Fie99]. HTTP is the foundation of data communication for the World Wide Web with

hypertext structured by logical links. HTTP works as a protocol to exchange or transfer hypertext.

While, HTTPS is a communications protocol for secure communication over a computer

network, with especially wide deployment on the Internet [Res00]. Technically, it is not a

protocol in and of itself, but is the result of simply layering HTTP on top of the SSL/TLS

protocol. Thus, HTTPS succeeds in adding security capabilities of SSL/TLS to standard HTTP

communications. Besides, data formats of request messages over HTTP and HTTPS are XML or

JSON. XML is a markup language that defines a set of rules for encoding documents in a format

that is both human-readable and machine-readable [Bra09] produced by W3C. While, JSON is

an open standard format, and JSON uses easy readable texts to transfer messages which consist

of attribute-value pairs [Ecm13]. JSON is used to transmit data between servers and web

applications primarily, which is an alternative to XML.

Service-oriented architecture paradigms SOAP and REST combine all the concepts of web

service technologies in a coherent way. SOAP, a W3C standard which is backed by all dominant

vendors, including BEA Systems, IBM, Microsoft, and SUN. SOAP allows exchanges of

information between peers in a decentralized, distributed environment [Gud07]. Moreover, a

huge and growing number of protocols enhance SOAP with advanced features such as reliability,

11

security, and transaction support, or standardize application-oriented procedures for complex

interactions among businesses [Shi06].

In contrast, REST is neither a standard nor promoted by any vendor [Ric07]. REST stands for

Representational State Transfer, and REST has been first described in Roy Fielding’s PhD thesis

[Fie00] as an architectural style for distributed hypermedia systems. Fielding, co-founder of the

Apache HTTP Server project and one principal author of the Hypertext Transfer Protocol,

attributes abilities of Web to sustain its exponential growth. Principles of the REST architectural

style are simple interfaces, visible communication, portable components when program code

changes with data, reliability for failure resistance, scalable deployment, overall performance.

Hence, it is enticing to use the same principles to building web services [Shi06].

4.2 Notification paradigms

Application users of mobile devices may have applications installed that depend on remote

services. Notification messages typically represent events of interests defined by applications.

For the notification paradigms, the following subsection distinguishes between polling and

pushes notifications, and then goes further for push notification as pub/sub technology.

4.2.1) Polling

Polling [Mar99] is a pull-based invocation pattern of notification for application users’ side

(client). New information is received from an external source or service and buffered at a central

server. The pull-based invocation pattern is based on the request/response paradigm, where the

client sends a request to the server and the server answers either synchronously or

asynchronously. The client periodically establishes a connection to application developers in

server side to ask for information updates as shown in Figure 1.

Polling is functionally equivalent to the client pulling the data off the server. In the polling, the

data transfer is always initiated by the client like a manager. Polling is commonly used in

Input/output (I/O) processes. Polling is the simplest way to ask, and it is currently used by DCP.

12

Figure 1: Overview of polling data flow.

4.2.2) Push notifications

Push notifications [Bur13] is a push-based invocation pattern based on push technology as

opposed to polling. Push is a style of communication, the requests of push for a given transaction

are initiated by application developers, where application users first establish a connection to its

central server. A common technique for push notifications is to use a modified TCP connection

and open a socket with longer timeouts. This connection is kept alive continuously, and

independent from notification messages. Routers drop connection entries after a timeout if no

new packets are transmitted. Application users must regularly send keep-alive messages to the

server. Once the server obtains updated information for application users, it can be transmitted

immediately as depicted in Figure 2.

Figure 2: Overview of push notifications data flow.

In details, push notification [Guo13] is a technology based on some certain technical standard or

regulation to reduce information overloaded by transmitting users' information on the Internet

regularly. The key is that push notifications can transmit latest information to corresponding

13

application users' devices automatically according to the application users' demands, which will

certainly change the way of obtaining information effectively. Push notifications are SMS-like

messages [Moj12]. Unlike their GSM counterparts, push notifications are addressed to an

application not to a device or a phone number. They also typically provide richer set of meta data

and travel over data networks.

Depending on whether the information is customized by application users and whether it's

finished by the client or server side, push technology can be realized in three different

approaches [Guo13], blanket push, filtered push and pub/sub push. Blanket push sends push

notifications to users without the help of filter or user selection. Most client software of blanket

push is free of charge. Blanket push has multiple ways provided for information, which is

another advantage. However, high frequency access to the Internet causes great consume of the

broadband, advertisement appears along with Web pages, application users can't send internal

data by push structure and data cannot be customized by application users. Only information of a

certain channel customized by application users can be pushed in a filtered push. Filtered push

allows internal application users to customize external information. However, the internal server

also needs more management and auxiliary tools for the object in urgent requirements. Pub/sub

push is a push technology used when a enterprise combines the internal data with the external

data from information suppliers to form classifications. The form classifications are subscribed

by internal application users, which are achieved by customized information in the server side

and are real push notifications.

The advent of push notifications provides possibilities for the public to achieve information from

Internet efficiently [Guo13], and this is why it has attracted general attention of the public.

Compared with the polling in traditional Client/Server (C/S) system, Push technology possesses

characteristics such as initiative, individuation, customized service of application user's contents,

high intelligence and great efficiency.

4.2.3) Pub/sub paradigm

Pub/sub paradigm [Eug03] is a notification service pattern which allows publisher and

subscribers to communicate with a single entity. Pub/sub paradigm is a logical intermediary

propagation mechanism. Publishers are the components who sent notification messages, while

14

subscribers are the components who show their interests. The notification messages are the

communication medium or subscriptions in the notification service pattern. All the subscriptions

associated with the respective subscribers are stored in the notification service. All the

notifications will be sent from publishers and will be dispatched to the correct subscribers. Then,

the published notifications will be received by subscribers. In the pub/sub paradigm, publishers

and subscribers deliver notification messages to each other without directly knowing each other.

Practically, a pub/sub paradigm makes publishers to publish events and subscribers to subscribe

subscriptions about their interested events. The major objective of a pub/sub system is to

propagate messages from publishers to interested subscribers in an anonymous decoupled

fashion. Receivers are not directly oriented to publisher but indirectly targets to the content of

notifications. Subscribers address their interests by publishing subscriptions, which is

independently from the other components and processes.

Besides, the method of notification delivery or message filtering between publishers and

subscribers is another feature of the pub/sub system. Concisely, the pub/sub system has three

ways, topic-based, content-based and hybrid of them two.

For the topic-based pub/sub system, messages are published to topics or named logical channels.

For the content-based pub/sub system, messages are only delivered to a subscriber if the

attributes or contents of those messages match constraints defined by the subscriber. For the

hybrid pub/sub system, publishers post messages to a topic while subscribers register content-

based subscriptions to one or more topics.

The pub/sub system has several features of loosely coupling, scalability and security. Publishers

and subscribers are loosely coupled, in other words, publishers and subscribers don’t have to

know each other. When the topic of pub/sub systems is emphasized, publishers and subscribers

can be allowed to ignore the topology of pub/sub systems. Both publishers and subscribers work

independently from each other. In the traditional and tightly coupled C/S systems, the client can’t

post messages to the server. While the server process is not running, nor can the server receive

messages unless the client is running. Many pub/sub systems decouple not only the locations of

the publishers and subscribers, but also decouple them temporally. A common strategy used by

middleware specialists with such pub/sub systems is to take down a publisher to allow the

subscriber to work through the backlog in a form of bandwidth throttling.

15

Pub/sub has better scalability than traditional C/S, using network-based and tree-based routing

protocols, message caching, parallel operation and so on. However, in certain types of tightly

coupled and high-volume enterprise environments, current vendor systems often lose the benefit

that systems scale up to become data centers with thousands of servers sharing the pub/sub

infrastructure. Hence, scalability of pub/sub systems under high load is a research challenge

currently.

Outside of the enterprise environment, on the other hand, the pub/sub paradigm has proven its

scalability to volumes far beyond those of a single data center, providing Internet-wide

distributed messaging through web syndication protocols such as RSS and Atom [Ori11]. These

syndication protocols accept higher latency and lack of delivery guarantees in exchange for the

ability for even a low-end web server to syndicate messages to potentially millions of separate

subscriber nodes.

The pub/sub system supports security and privacy. However, a subscriber might be able to

receive data which is not authorized to receive. An unauthorized publisher may be able to

introduce incorrect or damaged messages into the pub/sub system. This is especially true when

systems broadcast or multicast their messages. Encryption, like SSL/TLS, can avoid

unauthorized access but cannot prevent damaged messages from being introduced by authorized

publishers. Architectures other than pub/sub, such as C/S systems are also vulnerable to

authorized message senders who behave maliciously.

4.3 Push notification mechanisms for different mobile platforms

All the push notification mechanisms of different platforms are combined together in Event

Notification Service (ENS) as depicted in Figure 3. The rough idea of such an ENS is that ENS

works as a notification hub and uses the basic device registration with subscription information

to trigger events. ENS realizes sending notifications to APNS, GCM, MPNS, web portals and

even other receivers. However, devices need to be registered first, then can get channel URLs

and send channel URLs to ENS, so that payloads can be sent to subscribers via ENS to realize

push notification service.

16

Figure 3: ENS working mechanisms.

According to the pocket guide to good push of Urban Airship [Urb13], a good push with ENS

mechanism is delivering pushing messages with properiate privileges. In details, good pushing

messaging should have a high privilege to deliver useful notifications, but should not interrupt

application users' life anytime and anywhere.

The followings are the seven practical rules of good push from application users’ point of view.

The first rule is a good push should fit into application users' changing schedules. For example,

an application should have an easily accessible control panel. The second rule is a good push

should engage application users with relevant pushing messages. The third rule is a good push

allows application users to personalize their experiences about customized contents. The fourth

rule is that service providers should have hands-on visual tools like voice or tone or appearance

for consistent communications to push message content and preview the messages across devices.

So that a good push can stay consistent with their brands. The fifth rule is that a good push

delivers entertaining and engaging experiences. The sixth rule is that a good push should

continuously serve application users better and better, which means each push message works

effectively. The last rule is a good push adapts to fit application users' current situations to adapt

to current situation of application users, including their changing locations.

17

This section introduces four push notification services of different mobile platforms, including

APNS, Android Cloud to Device Messaging (C2DM), GCM and the Microsoft Push Notification

Service (MPNS). The information of the four prevalent platforms is from their official websites.

4.3.1) Apple Push Notification Service

Apple Push Notification Service describes the process that is design to deliver notifications to

devices and computers with a push [App13]. APNS is a push design which differs from a pull

design which receives the notification immediately, as the operating system passively listens for

updates rather than actively polling for them. A push design makes it possible when a pull design

experiences some scalability problems and timely dissemination of information.

APNS is the central part of the iOS push notification feature. It receives notifications from third

party providers and routes them to target devices over a persistent long-lived connection. APNS

is the gateway of pushing notifications, transmitting notifications or information to the user

applications which has registered. Each application establishes an encrypted and persistent IP

connection for the notification service and can receive notifications from the connection. Thus,

service providers can be linked to APNS in a persistent and safe channel, and monitor the

delivered information for their users’ applications as well. When service providers have updated

information to publish, the service providers create and deliver a notification via the channel to

APNS to push notifications to the targeted application users.

APNS uses a persistent IP connection to implement push notifications. The flow of a notification

is one way as depicted in Figure 4. If the user has already registered, the application user will

receive a device token as an identify. When useful information generated by service providers,

service providers send information to APNS server via web requests based on the registered

device token. Then APNS server would judge whether certain mobile application user has

registered or not. If registered, APNS server would send notifications through service providers'

server to application users' devices. When service providers authenticate themselves to APNS,

they sends their notifications with SSL certificates and private keys.

http://support.apple.com/kb/HT3576

18

Figure 4: APNS push notification data flow.

APNS also a store-and-forward feature that saves recent notifications sent to an application. If

the application is not working, APNS delivers the notification when the application is online next

time. With time pass, the notification of simple format would turn into outdated messages. In

other words, if a user was offline in the past three days and when he is online again, he would

receive messages sent three days ago, which means little value to the user by then. The enhanced

format solves this problem effectively by set an expiry time about how a device is alerted.

Another advantage of the enhanced format notification is when there are mistakes. It would

receive wrong notifications and provide the reason for refusing the notification, such as wrong

message, etc. There is no such function in simple format notifications. Besides, the enhanced

format has common with the simple format in many aspects. Hence, enhanced format

notification is recommended, when mistakes occur, we can find out the mistake in the system.

4.3.2) Android Cloud to Device Messaging

C2DM is a push notification service that enables application developers to deliver notification

from servers to their Android applications and launched together with Android 2.2 by Google

[Goo13]. C2DM is deprecated now, but is presented here as it is still supported in most push

http://en.wikipedia.org/wiki/Push_technology
http://en.wikipedia.org/wiki/Android_version_history
http://en.wikipedia.org/wiki/Google

19

notification products. The service gives a lightweight and simple mechanism for servers to make

mobile applications to communicate with the server and update notifications directly. The C2DM

service can manage all the queuing messages and transmission to the targeted applications.

Android applications don’t have to be working to receive messages, because the applications can

be triggered by Internet broadcasts when the messages arrive with correct permissions and

broadcast receivers. C2DM doesn’t support built-in user interface, instead, it directly delivers the

received raw message to the applications. Each notification message size is limited to 1024 bytes,

but Google supports messages delivered in a group without the aggregate messages limitation.

The workflow of C2DM is depicted in Figure 5. When the mobile application is first launched in

a mobile device, it will perform as the following steps. First, the mobile application registers

itself to one of the C2DM servers using the C2DM username, which was provided by the

application developer, as well as the device ID, which uniquely identifies the Android device that

hosts the application. Then the C2DM server provides a unique registration ID to the mobile

application. The registration ID is a byte string that enables the C2DM server to identify the

application running on a specific Android device. Thus the mobile application sends this

registration ID, together with its C2DM username, to the application server, which will then

record this registration ID in its database. When the application server needs to send data to a

mobile device, it sends the C2DM username and password to the C2DM server, and gets an

authorization token if the username and password are valid. The authorization token will be used

to notify a set of mobile devices in the database. The application server then sends a C2DM

request, which contains the notification message, the registration ID of a mobile application, and

the authorization token to the C2DM server. The message is sent on a per device basis. Thus, if

there are k devices that need the notification, then the application server will send k messages to

the C2DM server. Upon receiving the message, the C2DM server looks for the specific Android

device based on the registration ID. If the C2DM connection of that device is alive, then the

C2DM server will send the notification message to the mobile application on that device. If the

mobile device is disconnected, then the C2DM server will store the notification message, and

send the message to the application on the mobile device when the device reestablishes its

connection with the C2DM server. There is a persistent C2DM connection between the C2DM

server and the Android device that subscribes to the C2DM service.

20

Figure 5: C2DM push notification flow.

4.3.3) Google Cloud Messaging

GCM [Goo14] is a service which enables application developers to deliver messages from servers

to their Android applications or from servers to their Chrome applications and extensions. GCM

replaces the depreciated Android C2DM. The free service allows application developers to

deliver lightweight messages, informing the Android application users of updated messages to be

fetched. Larger messages can be sent with up to 4 KB of payload data.

GCM sends notification from server side to Android applications by a sample and lightweight

proxy mechanism as depicted in Figure 6. Both a server and Android applications that are

registered for the GCM service required, because registration ID is required. GCM servers

handle message queuing and delivering as the proxy server, guaranteeing cloud scalable

communication. During the process of updating data, application server first sends notifications

to the GCM servers, and then the GCM servers push the notifications to all Android applications.

Then the Android applications receive the notifications, and can connect to the server and

synchronize data for the future.

http://en.wikipedia.org/wiki/Payload_(computing)

21

Figure 6: GCM push notification flow.

4.3.4) Microsoft Push Notification Service

MPNS [Pus13] is an asynchronous service which enables third-party application developers to

deliver messages to Windows Phone applications from cloud.

MPNS has three forms of push notifications for Windows Phone, toast notifications, tile

notifications and raw notifications as follows. Toast notifications which consist of two strings of

texts are text-based short messages for transient data. Toast notifications are displayed on the

home screen with the highest priority, clicking a toast notification will be linked to the associated

applications. Then, tile notifications are to polish the appearance of application. Tile notifications

can specify both local and remote resources. Tile notifications in the Quick Launch area react

immediately no matter applications are running or not, and the application to be notified cannot

be intercepted by tile notifications. The last is raw notifications, which are similar to tiles and

toast notifications, but raw notifications do not have any special display style or predefined

payload format. The contents of raw notifications are decided by the sender and handled by the

applications, because raw notifications are not handled by basic operating systems. Hence, a raw

notification can be received when the application is running properly.

22

MPNS combines unauthenticated and authenticated modes together. In unauthenticated mode,

both quantity and frequency of notifications are limited by 500 per channel in a single day. For

push notifications in authenticated mode, application developers should register a certificate in

Push Notification Service which is authorized as a trusted Microsoft certificate. Then the

certificate can be used to set up a Secure Sockets Layer (SSL) connection for web services and

the Push Notification Service. MPNS doesn't limit any restriction for authenticated push

notifications.

Figure 7: MPNS push notification flow.

Figure 7 illustrates how a push notification is delivered in MPNS [Pus13]. The user's application

initials a request composed of a push notification URI from the push service provider and the

service provider interacts with MPNS to get a notification URI. Then the application delivers the

notification URI to the cloud service. The cloud service can deliver a push notification to MPNS

via the notification URI when the cloud service has data to deliver to the user's application.

Finally, MPNS can route the push notification to the user's application.

The types of the delivered data depend on the format of the payload attached and the push

notifications. Finally, MPNS responds to the cloud service after delivery with codes, which

means that notifications are received and prepare to deliver subsequently. MPNS doesn’t have

23

end-to-end confirmation mechanisms for reliable delivery, but MPNS can respond error codes to

the cloud service instead.

4.4 An ENS prototype based on pub/sub paradigm

Applications have to develop custom notification mechanisms, because there doesn't exist a

general notification mechanism for all. Based on the paradigms in the previous Subsection 4.2, a

widely used approach by ENS is that each application user periodically polls the application

developer's server for updates. Considering simple and easy implementation conceptually,

polling creates an unfortunate tension between timeliness and resource consumption. Frequent

polling allows application users to learn of updates quickly, but imposes significant loads in

server side. Furthermore, most requests simply indicate that no change has occurred in practice.

An alternative is pushing notifications to application users. However, ensuring reliability in a

push system is difficult, because of diversified storages, network, even server failures for the

Internet scale. Further, application users may be disconnected while updating, or even keep

offline for several days. Buffering messages indefinitely is infeasible. The application

developers’ server storage requirements must be bounded, and application users should not be

overwhelmed by a flood of messages upon wakeup.

It is obvious that push paradigm is more suitable than polling paradigm for a large scale

distribution. It will be better if application users show their interests first. Then, application

developers or service providers provide application users' requirements as feedback. Thus, the

ecosystem can work efficiently. As a result of these challenges, pub/sub paradigm to realize push

paradigm is the best effort.

The following subsection will present Thialfi [Ady11], a highly scalable notification service

prototype developed at Google, which means Thialfi is a client notification service for Internet-

scale applications. Thialfi is presented here in details. Most of the push notification products in

Section 5 are implemented based on the ENS prototype Thialfi. The notification delivery of

Thialfi is depicted in Figure 8.

24

Figure 8: Notification delivery of Thialfi.

Thialfi consists of bridge servers, matchers and registrars, which is shown [Ady11] in Figure 8.

Bridge servers foster or feed triggered events which are going to trigger notifications. The

triggered events come from publisher library and specific update messages from Google’s

infrastructure pub/sub service. Bridge servers translate the triggered events into a standard

notification format, and also process them into batches for transferring to matchers in a stateless

and randomly load balanced way. Then, the matcher propagators of matchers compare the events

with the registered applications which are subscribers, and forward the triggered events

notifications to registrars as a relay agency. Matchers can maintain an overview of the state index

with an event ID while disseminate triggered events. Finally, registrars track subscribers with

their process registrations, and deliver reliable notifications with a user application ID.

The notification delivery is illustrated in sequential steps in Figure 8 [Ady11]. When the

application server updates an authoritative copy of user data, Thialfi will be informed of the new

version number. Publishers publish triggered events through the publisher's library to guarantee

all the triggered events will be received by all backend servers running Thialfi. The pub/sub

paradigm acknowledges the publisher's library with a reliable handoff to guarantee successful

partitions to backend servers. If unsuccessful partitions, the pub/sub notifications will be

buffered in a persistent log. Then, the bridge fosters the triggered events in all backend servers

25

and assembles them in small batches, while forwarding the notifications to the corresponding

matcher. Afterwards, the matcher updates records for the new coming triggered events. The

matcher propagator works to match the registered events to corresponding registrar servers by

RPC operations. Subsequently, the registrar receives a notification and keeps it in a temporary

record for a user application to its RPC. After all registrars have responded, the records will be

removed. Moreover, the retransmission mechanism is used by registrars to deal with

unacknowledged notifications of online triggered events. This mechanism realizes the reliable

notification delivery of Thialfi.

Thialfi provides fundamental notification delivery for the common case and clear semantics

despite failures even for entire data centers. Thialfi supports applications written in a variety of

languages like C++, Java, and JavaScript, and running on diverse sets of platforms such as web

browsers, mobile phones and desktops. To achieve reliability, Thialfi relies on clients to drive

recovery operations to avoid the requirements for hard states in server side. Besides, the API is

structured so that error handling is incorporated into the normal operations of the applications

[Ady11].

5 Push notification products

In practice, push notification products are in a mass use. In order to select push notification

products, subsequent comparison subsections keep the importance of general application users in

mind. This means listed push notification products are not aimed for specific application users,

but for general application users. Push notification products have two categories, namely push

notification services and push notification servers. A push notification service is a process

provided by an IT service provider to one or more application users, while a push notification

server is a piece of hardware or a virtual machine which gives a specified push notification

service.

This paper focuses on simple and unified push notification products across prevalent platforms,

including iOS, Android, Windows Phone and Web. Besides, this section gives an outline of each

push notification product based on online information which supports both APNS and GCM in

the subsequent Subsection 5.1 and Subsection 5.3 with detailed information in the appendixes.

26

5.1 Push notification services

A push notification service is a process that provides services across diversified networks, and it

runs on other service provider's server. Usually, push notification services are used remotely by

small and medium scale enterprises that are limited by budgets. The following subsection

introduces current push notification services with corresponding appendixes in details.

5.1.1) Mozilla SimplePush

Mozilla SimplePush2 is a low cost service which gives a way to transmit messages from

application developers to corresponding web applications. Mozilla SimplePush Server plays an

important role, which is a server for SimplePush Notification alert system with Mozilla

SimplePush protocol specifications in server side. Mozilla SimplePush protocol illustrates a

JavaScript client API to enable backend applications to send notifications. The detailed

information is in Appendix 1.

Application developers can make full use of Mozilla SimplePush API to implement notification

alert systems, avoiding applications continuously polling application developers’ servers for

updated information. Mozilla SimplePush is used as the basis of other push notification services

through an interface of Mozilla SimplePush API. In practice, Mozilla SimplePush is usually

integrated in a unified push notification service or server like AeroGear UnifiedPush Server in

Subsection 5.3.1, as source codes can be downloaded from websites easily. Hence, Mozilla

SimplePush reduces the required number of sockets and ensures application users’ privacy and

ability of control, as a URL endpoint is used to wake the applications on the devices. Mozilla

SimplePush reduces high costs of devices and alive-open sockets in server side, and makes it less

complex to find a server for a device or to find a device for a server.

5.1.2) Pushover

Pushover3 is a simple push notification service. Pushover can send real-time notifications to

Android and iOS mobile devices easily. The basic idea of Pushover is pushing messages straight

to application users' devices. Pushover provides a RESTful API based on Mozilla SimplePush

API to deliver queuing messages to devices in server side, in the meanwhile, iOS and Android

2 https://wiki.mozilla.org/WebAPI/SimplePush
3 https://pushover.net/

27

application users receive those push notifications on device. Pushover is released under

OpenBSD license. More detailed information is in Appendix 2.

Besides, Pushover provides users with unlimited messages for free, which means Pushover does

not charge monthly fees for application developers like monthly subscription fees. Hence, most

applications with Pushover notification service can send notification messages for free within the

month limits. Month limits include messages like titles currently limited to 512 characters, and

applications which are currently limited to sending 7,500 messages per month.

5.1.3) Pushwoosh

Pushwoosh4 is a free push notification service supporting multiple platforms. Pushwoosh has a

remote API similar to Mozilla SimplePush API, which supports multiple programming languages

and platforms. Notification delivery mechanism of Pushwoosh is similar to Thialfi depicted in

Figure 8. The detailed information is in Appendix 3.

Pushwoosh introduces geo zones, which is an important feature to trigger push notifications.

Conceptually, geo zones are pins on the map. Geo zones allow automatically sending triggered

push notifications exact at the moment that a user enters a specified area on the map. The range

of geo zones varies from 10 to 100 meters within an operational cool down period. Geo zones

bring convenience for service providers like retail owners who would like to get attention from

pass-by-application users. In addition to, Pushwoosh has advanced statistics feature for service

providers to keep track of their push notifications, provides developers to send a rich HTML

page like rich images, formatted text and links, and enables application groups feature to deliver

one push notification to several applications within a single operation as well.

5.1.4) Amazon Simple Notification Service

Amazon Simple Notification Service (SNS)5 is a web service which gives an easy way to deliver

notifications from cloud service. Amazon SNS is designed to make web-scale computing easier

and cost effective to disseminate notifications for application developers’ flexibly.

Amazon SNS follows the pub/sub paradigm similarly to Thialfi depicted in Figure 8.

4 http://www.pushwoosh.com/
5 http://aws.amazon.com/

http://aws.amazon.com/about-aws/events/2013/08/29/new-mobile-push-notifications-from-amazon-sns/
http://aws.amazon.com/about-aws/events/2013/08/29/new-mobile-push-notifications-from-amazon-sns/
http://www.pushwoosh.com/programming-push-notification/features-guides/geozones/
http://aws.amazon.com/

28

Notifications of Amazon SNS are delivered from application developers or service providers to

application users via simple APIs in the same with Mozilla SimplePush API to Apple, Google,

and Kindle Fire devices. The detailed information is in Appendix 4.

5.1.5) OpenPush

OpenPush6 is a service which enables real-time push notifications directly to its application

users. OpenPush serves as an aggregator of real-time push notifications based on Thialfi depicted

in Figure 8, where OpenPush uses a central dispatcher for its matcher in a contextualized view.

So that application developers do not need to care about which desktop or media device or

mobile platform receives the push notifications. OpenPush is open and free-of-charge with easy

to share with IT community, and it realizes global development and standard push ecosystem.

The detailed information is in Appendix 5.

5.1.6) Parse.com

Parse.com7 is a push notification service which supports multiple platforms and handles device

registrations easily. Parse Push makes creation, schedule and segment of push notifications as a

whole based on Thialfi, where push composer of matcher and push console play important roles.

Push composer helps to aggregate millions of push notifications and allows application users to

preview real-time push notifications, while push console enables service provider freely to reach

users by delivering notifications with advanced targeting controls without writing codes anytime.

Parse.com also introduces multiple channel concepts to deliver notification for Parse Push. The

detailed information is in Appendix 6.

5.1.7) Urban Airship

Urban Airship8 is a mobile push notification service, which primarily enables application

developers to add features easily like creation and delivery of enhanced push notifications with a

digital wallet of feedback. Urban Airship makes application developers keep track with

application user segmentation based on individual preferences, like browsing history and

location with back-end data, so that personalized experiences are summarized individually.

6 http://openpush.im/
7 https://parse.com/
8 http://urbanairship.com/

http://openpush.im/
http://openpush.im/
http://notifica.re/
http://urbanairship.com/good-push-index

29

Urban Airship offers these services9 on android, iOS, Windows Phone 8, and BlackBerry based

on Thialfi prototype as illustrated in Subsection 4.4. Urban Airship push notifications have been

tested with proven results across all industries. The detailed information is in Appendix 7.

5.1.8) Xtify

Xtify10 is called a notification platform designed for application developers, because Xtify is

easily combined with mobile strategies for application developers to deliver relevantly actionable

push notifications with robust notification creations and analytics. The notification delivery

mechanism of Xtify is similar with Thialfi as depicted in Figure 8, but Xtify only supports

Android and iOS notifications data flows. Besides, Xtify gives complete solutions for service

providers to satisfy diversified demands and offers custom solutions for application developers

with innovate quickly plans for mobile investment. The detailed information is in Appendix 8.

5.1.9) Push IO

Push IO11 is a cloud based push notification service for mobile platforms. Push IO was built to

satisfy demands of global leading service providers. Push IO is a unique provider who uses

AutoPush to monitor application users’ feeds and push personalized notifications automatically.

Push IO allows service providers to push any contents as much as they want with its web

dashboard and composer of matcher which are similar with the ones of Parse.com introduced in

Subsection 5.1.6. Push IO also provides special Live Tiles for Windows Phone by uniquely

combining images and data to maximize users’ presence. The detailed information is in

Appendix 9.

5.1.10) Awarly

Awarly12 is a push notification service for mobile applications like iOS, Android or Blackberry.

Awarly gives a way for application developers to send location aware notifications to their

applications via RESTful APIs based on Thialfi in Subsection 4.4. Awarly uses features of

advanced geo notifications&alerts, push composer and powerful analytics realize sending

9 http://www.oregonlive.com/silicon-forest/index.ssf/2011/11/urban_airship_raises_151_milli.html
10 http://www.xtify.com/
11 http://push.io/
12 https://awarly.com/

http://www.oregonlive.com/silicon-forest/index.ssf/2011/11/urban_airship_raises_151_milli.html
http://www.xtify.com/
http://push.io/

30

advanced and scalable push notifications, where features are similar to other push notification

services like Parse.com in Subsection 5.1.6. The detailed information is in Appendix 10.

5.1.11) OpenMarket

OpenMarket13 is an alert push notifications service to push short messages to applications’

inboxes on Apple, Android, and BlackBerry based on Thialfi. OpenMarket supports three ways

for mobile messaging, including SMS text messages, Multimedia Messaging Service (MMS) and

push notifications. SMS is the fastest way to broadest consumer reach and interact directly with

mobile subscribers. MMS allows longer content text, images, video, or audio to be inserted into

SMS text messages as the next generation of mobile messaging. Push notifications are alerts for

smart phone applications providers to engage their consumers. The detailed information is in

Appendix 11.

5.1.12) PushBots

PushBots14 is a push notifications service which can send instant notifications to Apple and

Android mobile devices based on Thialfi. PushBots provides a three-minute drag-and-drop

solution to fast deployment of push messages, which can be accessible from its RESTful API.

PushBots helps mobile developers to minimize required time and resources to keep their

application users engaged with their applications by pushing highly personalized relevant

contents according to their interests. The most practical use of PushBots is to push notifications

service linked with an application user’s Twitter account on his application to receive Tweets

pushed notifications. The detailed information is in Appendix 12.

5.1.13) Mass Notification Service

Mass Notification Service (MNS)15 is a service to handle mass notifications like information and

instructions to alert and inform the most critical asset for persons within an area site. MNS

combined with emergency solutions is especially useful in an emergency, because MNS keeps

everyone informed before, during and after any event. MNS has event processors of bridge and

notification task dispatcher of matcher with the same significant roles like Thialfi. The detailed

13 http://www.openmarket.com/
14 https://pushbots.com/
15 http://www.everbridge.com/

http://www.openmarket.com/messaging/push-notifications/

31

information is in Appendix 13.

Cooper Notification’s MNS16 is taken as example to show MNS. Cooper Notification’s MNS

uses concise, timely and event-specific voice and visual messages to provide real-time

information for persons in a geographic area to communicate what to do in response to threats.

From a single web page, these reliable and effective MNS solutions allow its application users to

send alerts and potentially life-saving instructions to unlimited communication devices,

including voice sirens, indoor and outdoor speakers, digital display signage, text messaging,

voice calls, desktop alerts and email notifications. It’s the same with Everbridge Mass

Notification17 which can push notifications to individuals or groups based on locations, lists or

visual intelligence.

5.1.14) mobDB

mobDB18 is a free push notification service for mobile development, which provides backend

service, push notifications and analytics based on Thialfi mechanism. mobDB provides both

XML-based APIs and JSON-based APIs to satisfy different requirements. mobDB also gives a

backend solution whose platform is independent, in the meanwhile, application developers can

create feature-rich mobile applications.

mobDB is security. Because all communications between applications and mobDB are encrypted,

and data is fully secured in the data store with the 256-bit encrypted SSL for application login or

signing-up or sensitive data. However, servers of mobDB present an expired certificate currently,

and there doesn't exist any available information to indicate whether the certificate has been

compromised since its expiration. The detailed information is in Appendix 14.

5.1.15) NACapp

NACapp19 is a mobile notification service used by iOS, Android, Blackberry and Windows

Phone devices. NACapp not only pushes notifications, but sends chat messages and alerts to

mobile applications. NACapp creates push notifications in three ways, HTTP to push, SOAP to

push and e-mail to push. NACapp also gives application uses to set priorities for different

16 http://www.cooperindustries.com/content/public/en/safety/notification.html
17 http://www.everbridge.com/solutions/mass-notification/
18 https://www.mobdb.net/
19 http://www.nacapp.com/

http://www.cooperindustries.com/content/public/en/safety/notification.html

32

notifications, so application users can give an urgent notification with a higher priority. NACapp

uses either SOAP or REST, but only supports XML as its data formats. Because NACapp is in

the transition from SOAP to REST, and currently both are available. The unstable reason brings

disadvantages for application developers, so NACapp is not a good choice. The detailed

information is in Appendix 15.

5.1.16) OpsGenie

OpsGenie20 is a reliable IT notification service which delivers the most relevant alerts to

application users. OpsGenie has several channels to deliver notifications in the forms of e-mails,

SMSs, phone calls and mobile pushes of iOS, Android and BlackBerry devices. OpsGenie uses

push notifications as mobile pushes. OpsGenie is reliable, because OpsGenie has a distributed

and redundant architecture across diversified data centers with an end-to-end monitor system to

guarantee availability, and a monitor system uses a detailed track mechanism. The detailed

information is in Appendix 16.

5.1.17) SnapComms

SnapComms21 is a push notification solution to efficient communication for staff within a

company. SnapComms has four types of notifications, pop-up desktop alerts, pop-up staff

quizzes, corporate screensaver messages and mobile employee communications for desktop and

mobile devices. Pop-up desktop alerts are to broadcast emergent news and significant

information. Pop-up desktop alerts keep staying on the desktop for targeted staff. Pop-up staff

quizzes are to broaden knowledge and enhance skills for special staff. Corporate screensaver

messages are to drive employees to share useful information with others in a rich style.

Corporate screensaver messages help to release working burdens and enhance internal

communications. Mobile employee communications are to send notifications to mobile staff.

However, public documentations are not available at the moment. The detailed information is in

Appendix 17.

20 http://www.opsgenie.com/
21 http://www.snapcomms.com/

33

5.1.18) Notificare

Notificare22 is a notification platform, was originally born with Web 2.0. The Notificare team

insists Web and future notification service would depend on how data is fetched. Currently,

Notificare team are focusing on developing Notificare platform, and Notificare gives SDKs for

smart notifications to replace Notificare applications which were used before February 15th of

2014. The detailed information is in Appendix 18.

Working mechanism of Notificare relies on a simple push method based on Thialfi in Figure 8.

Notificare serves as a flexible service through API, which is system-agnostic. This means one

system can function in diverse environments. Besides, Notificare supports platform development

neither in native ways nor with frameworks such as Xamarin, Appcelerator Titanium and Apache

Cordova to minimize development cycle and give better users' experience.

5.2 Comparisons of push notification services

In order to choose a preferred push notification service, I use six comparison points as a

systematic approach to compare current push notification services. The objective of the

systematic approach is to propose proposals for API design. Six comparison points are basic

information, functionalities, licenses with usage fees covering usage limits, security, supporting

details and supported platforms/OS in terms of performance. Basic information covers service-

oriented architecture paradigms, notification transport protocols and data formats. Functionalities

include batch processing, mobility, scalability and fault tolerance. Usage fees and usage limits

discuss details of both free accounts and premium accounts, including the number of registered

applications, the number of delivered notifications, the number of devices used by application

users and prices of different push notification services per month. Security illustrates

authentication model of services and SSL-supported. Supporting details show whether

notifications can be delivered in the forms of e-mail, SMS and push cloud notification.

Supported platforms/OS part covers GCM, C2DM, APNS, Microsoft, Firefox OS, Blackberry

and ADM. This subsection uses these comparison points to compare push notification services,

and these comparison points show availability in the market and popularity of push notification

22 http://notifica.re/

http://notifica.re/

34

services with optimality.

5.2.1) Comparisons of basic information

Table 1 summarizes basic information from three aspects, including service-oriented architecture

paradigms for services, notification transport protocols for communications and data formats.

Services Basic Information
Service-oriented

Architecture Paradigms
Notification Transport

Protocols
Data Formats

Mozilla SimplePush REST HTTP, HTTPS, XMPP JSON
Pushover REST HTTP, HTTPS, SMTP XML, JSON
Pushwoosh REST HTTP, HTTPS, SMTP JSON
Amazon SNS SOAP HTTP, HTTPS, SMTP XML
OpenPush REST HTTP, HTTPS, SMTP, XMPP JSON
Parse.com REST HTTP, HTTPS, SMTP JSON
Urban Airship REST HTTP, HTTPS, SMTP JSON
Xtify REST HTTP, HTTPS, SMTP, XMPP XML
Push IO REST HTTP, HTTPS, SMTP JSON
Awarly REST HTTP, HTTPS, SMTP JSON
OpenMarket REST HTTP, HTTPS, SMTP XML
PushBots REST HTTP, HTTPS, SMTP JSON
Everbridge Mass
Notification System

REST HTTP, HTTPS, SMTP JSON

mobDB REST HTTP, HTTPS, SMTP XML, JSON
NACapp SOAP, REST HTTP, HTTPS, SMTP XML
OpsGenie REST HTTP, HTTPS, SMTP JSON
SnapComms REST HTTP, HTTPS, SMTP JSON
Notificare REST HTTP, HTTPS, SMTP JSON

Table 1: Basic information comparisons of push notification services

From comparisons of basic information in Table 1, it can be seen that most push notification

services use either SOAP or REST as their service-oriented architecture paradigms, HTTP(S)

and SMPT protocol as notification transport protocols, XML and JSON as data formats. NACapp

is the only push notification service which supports both SOAP and REST service-oriented

architecture paradigms. This subsection compares SOAP-based implementations with REST-

based implementations to show differences between SOAP and REST.

Fundamentally, SOAP service-oriented architecture paradigm implements transmissions of

XML-encoded notifications over HTTP, similarly to RPC model. SOAP service sets are written

in WSDL files which are essentially XML files complied with W3C-specified grammars. SOAP

service-oriented architecture paradigm uses WSDL files to define a series of XML schema types

http://www.programmableweb.com/apis/directory/1?protocol=REST
http://www.programmableweb.com/apis/directory/1?format=JSON

35

which mirrors data models in server side. Thus, XML schema types are able to generate service

requests/responses and even language-specific bindings for diversified platforms by mapping

corresponding structural parameters subsequently. However, XML has three disadvantages

[Shi09]. XML is difficult to parse and read; XML has data models which are incompatible with

most programming languages; XML has a poor output representation in serialization. As the

order of output is usually irrelevant in databases, it is hard to specify sets of sub elements in

disorder due to the document type definition of XML.

Compared with SOAP service-oriented architecture paradigm, REST service-oriented

architecture paradigm emphasizes available resources via HTTP connections. REST service-

oriented architecture paradigm identifies each available resource with a unique URL which is

access by HTTP Get/Post/Put/Delete methods. REST service-oriented architecture paradigm is

able to use any HTTP client library to communicate with backend REST servers without

specified SOAP clients. HTTP is easy to use in practice, because new contemporary languages

always come with built-in HTTP libraries [Mul09]. In addition to, service interpretation and

service discovery are not required for Internet communications in most cases.

All the push notification services use data transmission of web services via HTTP(S) in either

SOAP or REST service-oriented architecture paradigms. On the one hand, network-related

performance is taken as the metrics to compare SOAP and REST service-oriented architecture

paradigms. For example, the end-to-end response time of individual web service transactions is

such a metric. Because any change of delivery latency directly will impact QoS of the whole

network. In the meanwhile, the change also influences user engagement. On the other hand,

average packet size of each push notification service request is another metric, which can be

combined with average latency.

Currently, most push notification services adopt REST service-oriented architecture paradigm as

depicted in Table 1. REST service-oriented architecture paradigm of data transmissions has been

observed [Mul09]. REST service-oriented architecture paradigm is more efficient for both high

network bandwidth utilization and low round-trip latency reduction. In contrast to SOAP, REST

service-oriented architecture paradigm has a lower latency, a smaller average packet size and

smaller message payloads [Mul09]. From discussions of performance of high-throughput and

fast transmission traffic for push notification services purchases, Parse.com, PushBots and

36

Pushwoosh are preferred choices.

Although SOAP messages are larger with a higher average round-trip latency [Mul09], it is still

easier to integrate an SOAP-based push notification service than REST equivalents for

enterprises whose backend servers are implemented based on SOAP. SOAP service-oriented

architecture paradigm is used by Amazon SNS and NACapp. However, NACapp uses either

SOAP or REST, but only supports XML as its data formats. Both SOAP-based and REST-based

APIs are available in NACapp official website. If a service provider wants to use NACapp, he

needs to update and maintain both SOAP-based and REST-based APIs. This is a challenge for

service providers, so NACapp is not a good choice. Hence, Amazon SNS is a primary choice for

these enterprises that have SOAP-based backend servers.

Apart from HTTP and HTTPS, notification transport protocols SMTP and XMPP are used by

some push notification services. If a push notification service supports e-mail, the push

notification service will support SMTP. However, Mozilla SimplePush is the only one that

doesn’t support e-mail, so it doesn’t support SMTP. Communications protocol XMPP works for

message-oriented middleware based on XML. Distinguished from other instant messaging

protocols, XMPP is defined under an open standard. XMPP also uses an open systematic

approach to implement its development. Hence, any application developer is able to implement

an XMPP service and interoperate with other organizations' implementations.

To exploit the differences more deeply, SOAP-based notifications have payloads containing an

additional SOAP envelope, a set of XML tags, and several alternative SOAP-related headers to

outbound HTTP data packets for each REST-based notification. However, REST-based

notifications only use standard HTML headers to deliver the data packets across Internet without

any overhead for transitions. For available information on the website, only Pushover explicitly

limits its usage that notifications are currently restricted within 512 characters including titles.

Results of basic information in Table 1 indicate that the preferred push notification service

should be chosen from OpenPush, Parse.com, PushBots and Pushwoosh, or Amazon SNS and

NACapp. OpenPush, Parse.com, PushBots and Pushwoosh use REST service-oriented

architecture paradigm, while Amazon SNS and NACapp use SOAP service-oriented architecture

paradigm.

37

5.2.2) Comparisons of functionalities

Table 2 summarizes four functionalities, including batch processing, scalability, mobility and

fault tolerance. Batch processing refers to the ability to handle a series of processes within one

request without personal intervention. Batch processing is aimed to share resources, which is

distinguished from interactive systems. Push technology always supports unicast, however,

current push notification services also need to support batch, multicast and broadcast to satisfy

increasing demands. Hence, batch processing is useful for selective notifications delivered to a

group based on a category or a broadcast, as broadcasting the same update to a group of

application users is always required. Batch processing can bring benefits to share resources

among multiple processes and enable push notification services to make full use of computer

resources.

Mobility means the ability of a service to deal with individuals or groups on the move. So that

push notification services which support mobility are able to support all the services on the move

seamlessly. This means push notification services keep track of application users' locations for

the application users who are transferring from one access point to another, even when mobile

phones are not working. Mobility brings benefits to both service providers and application

developers, such that they can keep deep insight into their application users and maintain

application user engagement closely with their brands. Because mobility helps service providers

and application developers to keep updated with their application users, e.g. they will be

informed when an application user uninstalls the application or have interested in an

advertisement around him. Service providers provide such a service to gain the application user

engagement and keep closely with their brands.

Scalability is the ability to handle a growing quantity of work or the ability to be enlarged to

handle the expanding growth. Large scale services should be able to satisfy increasing demands,

but also brings potential problems like faults.

Fault tolerance is a property that enables a service to continue operating properly in the event of

some of its components have unexpected faults. Fault tolerance is significant particularly for

notification on a large scale reliable delivery.

38

Services Functionalities
Batch processing Mobility Scalability Fault tolerance

Mozilla SimplePush × √ √ √
Pushover √ √ √ √
Pushwoosh √ √ √ √
Amazon SNS √ √ √ √
OpenPush √ √ √ √
Parse.com √ √ √ √
Urban Airship √ √ √ √
Xtify √ √ √ √
Push IO √ √ √ √
Awarly √ √ √ √
OpenMarket √ √ √ √
PushBots √ √ √ √
Everbridge Mass
Notification System

√ √ √ √

mobDB √ √ √ √
NACapp √ √ √ √
OpsGenie √ √ √ √
SnapComms √ √ √ √
Notificare √ √ √ √

*) √ means the push notification service supports the specified functionality, while × means the push notification
service doesn’t support the specified functionality.

Table 2: Functionalities comparisons of push notification services

From comparisons of functionalities in Table 2, it can be seen that most of the current push

notification services realize four functionalities including batch processing, mobility, scalability

and fault tolerance.

From comparisons of functionalities in Table 2, it can be seen that most push notification

services support batch operations. Push notification services use batch processing to deliver a

unique payload or push scheduled notifications to a set of devices. So that push notification

services can deliver a single HTTP PUT notification instead of delivering a number of individual

HTTP PUT notifications to the same group. Push notification services are able to create, delete

and update a batch of requests with a batch endpoint, which also reduces the time spent on

network round trips.

The functionality of batch processing is packaged in the feature of group management. This

means the functionality of batch processing is an important part of group management. Hence,

push notification services which support batch processing have a feature of group management.

39

So that audience can be segmented by defining for targeted or broadcast messaging groups. For

example, Pushover has a feature of group delivery to manage a list of application users, so that

Pushover can deal with notifications in a single API request. Thus, most of push notification

services realize batch processing in a similar way.

In addition to, some push notification services even limit the quantities of requests within one

batch. For instance, PushBots allows multiple devices registrations up to 500 devices with one

batch, subsequently the array of devices tokens will be added to database. However, Mozilla

SimplePush doesn't support batch processing. Although it is recommended that UserAgent

should try to batch all pending acknowledgements into fewer notifications. In practice, Mozilla

SimplePush keeps notifications separate and individual in use scenarios, which are claimed in the

specifications23.

Push notification services use a feature of smart segments for service providers to handle

mobility related to mobile push notifications as depicted in Table 2. Because the feature of smart

segments gives a way for push notification services to deliver relevant and tailored push

notifications based on application users’ preferences or their real time locations. With smart

segments, push notification services are able to collect information based on application users’

real time locations. The feature of smart segments is implemented and integrated by APIs where

APIs help to create audience segments. Hence, push notifications can update service provides'

scheduled reminders and offer important product news for application users on the move.

Besides, application developers are able to push notifications to notify their application users

with mobility even when the applications are not working. For example, OpenPush enables

service providers to segment their audience, and they can also provide relevant real time

notifications to targeted audience.

From comparisons in Table 2, it also can be seen that push notification services support

scalability. Push notification services implement scalability by APIs and cloud services. Virtual

cloud service provides an option for enterprises to transfer workload to the cloud, which brings

benefits to cloud deployment. Virtual cloud services are used for data replication management.

So that the data can be replicated into an unlimited number of virtual copies in space, and

management for replicated data are required. Thus, push notification services are able to set up

23 https://wiki.mozilla.org/WebAPI/SimplePush/Protocol

40

application development, including composition and delivery of notifications through their own

APIs. Push notification services also have cloud solutions, like data center, cloud

communications, cloud storage and data center to support scalability. For instance, OpenPush

uses XMPP servers, ejabberd with MongoDB infrastructure to support scalability. Similarly,

Parse.com operates a number of high-throughput I/O intensive clusters with MongoDB

infrastructure via cloud service to improve scalability and speed.

Push notification services support fault tolerance as shown in Table 2. Because push notification

services provide replicated data to guarantee reliable notification delivery, and use real-time

report mechanisms for management of redundant information and statistics. Service providers

and application developers are able to track demographics, entitlements, preferences, frequency

and duration of application usage, and even other attributes which can be used to build out user

properties with smart segments. Besides, Apple also provides the unlimited Sandbox

environment to detect faults for the whole APNS. Thus, push notification services can add

applications into the unlimited Sandbox environment to test all characteristics, where

applications are easily be used for application management.

For fault tolerance, some concrete examples of push notification services are given. Mozilla

SimplePush realizes synchronization with garbage collections between server side and client side

to achieve reliable notification delivery. Push IO uses the unlimited Sandbox environment to test

all characteristics for the whole APNS to manage applications; OpenMarket has geo-redundant

networks and reporting & message analysis to retrieve status and error information about user

engagement and message deletion; Parse.com handles replicated data and data storage and disk

caching for its application users; Awarly has error messages for robust analyses which use

conventional HTTP response codes to indicate success or failure for an API request, and all

errors will return error message describing the particular problem in JSON.

Based on comparisons of functionalities in Table 2, the recommended push notification services

need to implement all the functionalities of batch processing, scalability, mobility and fault

tolerance. All the push notification services except for Mozilla SimplePush implement all the

four functionalities.

41

5.2.3) Comparisons of usage fees and usage limits

Usage fees and usage limits are summarized in Table 3 and 4, including signing-up requirements,

number of registered applications, number of delivered notifications, number of devices used by

application users and prices based on free accounts of each month. Followed with free accounts,

this subsection also demonstrates premium accounts of the listed push notification services and

gives detailed usage fees with usage limits.

Fields of usage fees and usage limits table are explained in details. Signing-up requirements

means application developers need to register and sign up when they use a push notification

service. Number of registered applications is the number of applications which application

developers are able to register with a specified account. Number of delivered notifications is the

number of push notifications sent and delivered to devices in a month. Number of devices used

by application users refers to the number of devices which receive push notifications per

application user within a specified account. Free accounts indicate that whether a push

notification service has a free account.

Services Usage Fees & Usage Limits based on Free Accounts/month
Signing-up
Requirements

No. of
Registered
Applications

No. of Delivered
Notifications

No. of Devices
Used by

Application Users

Free
Accounts

Mozilla
SimplePush

YES UNLIMITED UNLIMITED UNLIMITED √

Pushover YES UNLIMITED 5 for android and
unlimited for iOS

UNLIMITED √

Pushwoosh YES 5 UNLIMITED 1 million √
Amazon SNS YES UNLIMITED 1 million UNLIMITED √
OpenPush YES UNLIMITED UNLIMITED UNLIMITED √
Parse.com YES 1 million 1 million UNLIMITED √
Urban Airship YES UNLIMITED 1 million UNLIMITED √
Xtify YES N/A N/A N/A ×
Push IO YES N/A N/A N/A √ (30-days-

free trial)
Awarly YES UNLIMITED 1 million 10000 √
OpenMarket YES N/A N/A N/A ×
PushBots YES UNLIMITED 1.5 million UNLIMITED √
Mass Notification
System

YES N/A N/A N/A ×

mobDB YES 1 600000 UNLIMITED √
NACapp YES 3 UNLIMITED 3 √ (90-days-

free trial)
OpsGenie YES UNLIMITED 600 alert

notifications
UNLIMITED √

42

Services Usage Fees & Usage Limits based on Free Accounts/month
Signing-up
Requirements

No. of
Registered
Applications

No. of Delivered
Notifications

No. of Devices
Used by

Application Users

Free
Accounts

SnapComms YES N/A N/A N/A ×
Notificare YES 5000 UNLIMITED UNLIMITED √

*) N/A means that the detailed usage fees and usage limits are not available online, and the information is only
available to purchasers or is needed to contact the corresponding sales departments.
**) √ means the push notification service has a free account for trial, while × means the push notification service
doesn’t have a free account.

Table 3: Usage fees & usage limits comparisons of push notification services’ free accounts

From comparisons of usage fees and usage limits in Table 3, it can be seen that all the push

notification services need to sign up when using them. The usage fees and usage limits of push

notification services like Xtify, Push IO, OpenMarket, Mass Notification System and

SnapComms are not available online. Application developers have to contact with their Service

Centers officially if they want to know fees. While, push notification services like Xtify, Push IO,

OpenMarket, Mass Notification System and SnapComms don't have free accounts, and Push IO

and NACapp limit free and trial days. To get a recommended push notification service,

comparisons are conducted based on usage fees and usage limits based on their free accounts and

premium accounts respectively in the following subsections.

5.2.3.1) Usage fees and usage limits of free accounts

Details of usage fees and usage limits can be seen from Table 3 based on their free accounts.

Mozilla SimplePush and OpenPush push notification services don't have restrictions for usage

limits. Amazon SNS, Parse.com, Urban Airship and PushBots limit their usages in the

calculations of millions. However, millions of usage limits are approximately to unlimited usage

in practice. Hence, Amazon SNS, Parse.com, Urban Airship and PushBots push notification

services are cost efficient with large scale development based on their free accounts.

Number of delivered notifications of free accounts is the most important factor of usage limits.

Different push notification services enable different quantities and types of notifications to

deliver with free accounts. Quantities of delivered notifications are not limited for Pushwoosh,

Awarly, mobDB, NACapp and Notificare in practical scenarios, but Pushwoosh, Awarly, mobDB,

NACapp and Notificare restrict number of registered application and number of devices used. In

43

contrast, types of delivered notifications are limited for Pushover and OpsGenie. For instance,

OpsGenie enables application developers to send alert notifications within free accounts, and pay

for notifications sent as e-mails and SMS text messages with premium accounts.

In details, subsequent paragraphs will illustrate accurate information for free accounts of

Parse.com and Urban Airship as examples. Parse.com enables starters to register 1 million

applications and deliver 1 million push notifications to unlimited devices per month within a free

account. Parse.com charges application developers $0.07 for every 1000 notifications per month

over the free account limits. Within a free account, Parse.com allows maximum 20 notifications

per second for burst limits, and Parse.com has APIs which needs to set priorities for professional

accounts.

Urban Airship enables starters to register unlimited applications and deliver 1 million push

notifications to unlimited devices per month within a free account. Urban Airship charges $0.001

for per push notification over 1 million, and $0.0025 for per rich push notification over 1 million

in one month. User applications can get access to composers and core reports, including sent

pushes and opened applications and utility time. But, application developers for profits only get

access to reports or composers with a 45-day trial. Based on details in this paragraph, it can be

concluded that Urban Airship provides such a small business edition premium account, which

suits for small scale enterprises.

5.2.3.2) Usage fees and usage limits of premium accounts

Apart from free accounts, push notification services also have premium accounts which are used

for production according to detailed information in Appendix 1 through Appendix 19. The

detailed usage fees and usage limits are demonstrated in Table 4.

Services Usage Fees & Usage Limits based on Premium Accounts/month

Packages No. of
Registered
Applications

No. of Delivered
Notifications

No. of Devices
Used by

Application
Users

Usage fees

Mozilla
SimplePush

× × × × ×

Pushover Basic UNLIMITED $150.00/30000
notifications

UNLIMITED $4.99 for
android

44

Services Usage Fees & Usage Limits based on Premium Accounts/month
Packages No. of

Registered
Applications

No. of Delivered
Notifications

No. of Devices
Used by

Application
Users

Usage fees

Pushwoosh Indies 10 UNLIMITED 2 million $39.95
Professionals 50 UNLIMITED 4 million $119.95
Enterprises 100 UNLIMITED UNLIMITED $249.95

Amazon SNS Basic UNLIMITED $1/million notifications UNLIMITED $30.00

OpenPush × × × × ×

Parse.com Professionals 1.5 million 5 million notifications 1
million($0.05/100
0 devices over)

$119.00

Enterprises N/A N/A N/A N/A
Urban
Airship

N/A N/A N/A N/A N/A

Xtify N/A N/A N/A N/A N/A
Push IO N/A N/A N/A N/A N/A
Awarly Professionals UNLIMITED 5 million e-mails

($0.005/notification
over)

50000
($0.015/device

over)

$99.00

Enterprises UNLIMITED 5 million notifications 50000 $199.00
OpenMarket N/A N/A N/A N/A N/A
PushBots Indies UNLIMITED 5 million notifications UNLIMITED $49.00

Professionals UNLIMITED 20 million notifications UNLIMITED $129.00
Enterprises UNLIMITED UNLIMITED UNLIMITED $249.00

Mass
Notification
System

N/A N/A N/A N/A N/A

mobDB Basic UNLIMITED 4 million ($10/1
million notifications

over)

UNLIMITED $15.00

NACapp Indies 20 UNLIMITED 20 $5.00/each
Professionals 100N/A UNLIMITED 100 $3.00/each
Enterprises N/A N/A N/A N/A

OpsGenie Indies UNLIMITED 5 notifications/
application user

UNLIMITED $8.00

Professionals UNLIMITED 5 notifications/
application user, $5

with extra customized
features

UNLIMITED $12.00

Enterprises UNLIMITED UNLIMITED UNLIMITED $16.00
SnapComms N/A N/A N/A N/A N/A
Notificare Indies 10000 UNLIMITED UNLIMITED $199.00

Professionals 50000 UNLIMITED UNLIMITED $399.00
Enterprises 100000 UNLIMITED UNLIMITED $599.00

*) N/A means that the detailed usage fees and usage limits are not available online, and the information is only
available to purchasers or is needed to contact the corresponding sales departments.
**) × means the push notification service doesn’t have a premium account.

45

Table 4: Usage fees & usage limits comparisons of push notification services’ premium accounts

From comparisons of usage fees and usage limits in Table 4, it can be seen that Mozilla

SimplePush and OpenPush do not have premium accounts. This means application developers

don't need to pay when they use Mozilla SimplePush and OpenPush. Besides, all usage fees and

usage limits of push notification services like Xtify, Push IO, OpenMarket, Mass Notification

System and SnapComms are not available online. Large scale service providers need to contact

sales departments if they want to use Parse.com, Urban Airship and NACapp, because the prices

for enterprise premium accounts are only available to purchasers.

To satisfy diversified demands of production, push notification services specify one to three

packages for premium accounts. The three package premium accounts include indies who work

in a small group for low profits, professionals for scale production and enterprises for large scale

production. Most push notification services use three packages for their premium accounts.

Based on Table 4, number of delivered notifications is the most significant factor for certain

usage fees. Different push notification services enable different quantities and types of

notifications to deliver with free accounts. Quantities of delivered notifications are not limited

for Pushwoosh, Amazon SNS, Parse.com, Awarly, PushBots, mobDB, NACapp and Notificare in

practical scenarios. Even though Amazon SNS, Parse.com, Awarly, PushBots and mobDB limit

their usages in the calculations of millions, they are approximately to unlimited usage in practice.

However, other push notification services including Pushover and OpsGenie have limits for

neither quantities nor types of notifications.

In details, subsequent paragraphs will illustrate accurate information for premium accounts. It is

expected to conclude the cheapest and the most expensive ones, after introducing exact details of

key notification services.

Parse.com gives available price for professional premium accounts. Parse.com allows

professionals to register 1.5 million applications to push 5 million notifications to 1 million

devices for $199 per month for scale productions. Parse.com charges $0.05 per 1000 over 1

million devices, and allows maximum 40 notifications per second for burst limits. Additionally,

the following paragraphs introduce the details of Pushwoosh, PushBots and Awarly.

Pushwoosh allows Indies to register ten applications to push unlimited notifications to 2 million

46

devices for $39.95 per month for low profits. Pushwoosh also allows professionals to register 50

applications to push unlimited notifications to 4 million devices for $119.95 per month for scale

productions. In the meanwhile, Pushwoosh allows enterprises to register 100 applications to push

unlimited million notifications to 8 million devices for $249.95 per month, which means large

scale service providers need to pay $249.95 for Pushwoosh. Furthermore, Pushwoosh gives a

20% discount of each premium accounts for annual purchasers.

PushBots has a similar price with Pushwoosh for enterprise premium accounts, as PushBots

allows enterprises to register unlimited applications to push unlimited notifications to unlimited

devices for $249 per month. Besides, PushBots allows professionals to register unlimited

applications to push 20 million notifications to unlimited devices for $129 per month for scale

productions and allows Indies to register unlimited applications to push 5 million notifications to

unlimited devices for $49 per month.

Awarly has two packages for premium accounts, namely, professional and enterprise premium

accounts. Awarly allows professionals to register unlimited applications and 5 million

notifications pushed as e-mails to 50000 devices with 2.5 million API requests for $99 per month.

Awarly charges $0.005 for per API request over 2.5 million, $0.005 for per notification over 5

million and $0.015 for per device over 50000. Moreover, Awarly allows enterprises to

customized notifications sent as e-mails and SMS text messages for $199 per month, which

means large scale service providers need to pay $199 for Awarly.

This paragraph summarizes the highest and lowest usage fees for enterprise premium accounts

with detailed usage limits based on Table 4. mobDB is the cheapest push notification service for

enterprise premium accounts. Basically, mobDB charges $15 per month for the premium account.

mobDB enables application developers to register only five applications and charges $10 per

application over five. mobDB also allows delivering 3.5 million push notifications to unlimited

devices per month and charges $10 per 1 million over 3.5 million push notifications. Moreover,

mobDB allows 4 million requests for API calls and charges $10 per 1 million over 4 million

requests. Besides, mobDB gives 10 GB for data storage and charges $10 per 10 GB over 10 GB.

On the basic level, large scale enterprises need to pay $15 for mobDB. Although mobDB is the

cheapest push notification service, mobDB limits the number of registered and the number of

used applications. Hence, application developers will pay more when using more applications.

47

In contrast to mobDB, Notificare is the most expensive push notification service for enterprise

premium accounts according to Table 4. Notificare also provides three premium accounts for

different scale levels, including Indies, professionals and enterprises. Notificare allows

enterprises to register 100000 applications and push unlimited notifications to unlimited devices

for $599 per month. This means large scale enterprises need to pay $599 for Notificare. In the

meanwhile, Notificare allows professionals to register 50000 applications and push unlimited

notifications to unlimited devices for $399 per month for scale productions. In addition to,

Notificare allows Indies to register 10000 applications and push unlimited notifications to

unlimited devices for $199 per month for low profits.

Nowadays, many developers are restricted by their limited budgets and intend to make the best

of their budget. Hence, most application developers would like to try free products, while,

service providers can utilize the opportunity to get their application users to buy their push

notification services. Because application developers are easy to form a routine in minds after

they try new technologies and services. Application developers are able to compare the free and

trial service with other services. But, service providers need to make investments in time and

money for the free accounts. After trying the free accounts, application developers will be more

confident to buy the proved push notification service. In the meanwhile, application developers

can figure out the real worth after trial and have some good ideas based on their trial experience,

and even discover some potential problems so that to adjust them in time. In a long term,

potential and loyal application developers are exploited; good impressions are established on

products; and reliable relationship between service providers and application developers are

gained. Hence, free and trial accounts bring benefits to both service providers and application

developers. Push notification services with free accounts are better than those have no free

accounts.

Push notification services always have limited bandwidth for free and trial accounts, so

application developers need to pay to access additional bandwidth. The average usage fees are

$39 for Indies premium accounts, $119 for professional premium accounts and $249 for

enterprises premium accounts based on Table 4. If a free account exists, a free account is priority

to premium accounts with expenses. In this view, Xtify is not the best choice, because it doesn’t

support free trials as explained in this subsection. Urban Airship has a small business edition

premium account, which suits for small scale enterprises. Although mobDB is the cheapest,

48

mobDB limits the number of registered and used applications and pay more when using more

applications as detailed information as introduced in this subsection. To satisfy the demands of

large scale enterprise, mobDB and Urban Airship are not good choice, either. Pushwoosh allows

maximum 100 registered applications within enterprise premium accounts, but it is enough for

most enterprises.

Based on usage fees and usage limits discussed in this subsection, the preferred push notification

services should have reasonable prices with their provided services to satisfy the demands of

large scale enterprises. Hence, the preferred push notification services are Pushwoosh, Parse.com

and PushBots.

5.2.4) Comparisons of security

Table 5 summarizes security issues of different push notification services. Security issues include

authentication model of services and SSL-supported which is the most widely deployed security

protocol.

Services Security
Authentication Model SSL-Supported (HTTPS)

Mozilla SimplePush API key √
Pushover API key √
Pushwoosh API key √
Amazon SNS AWSAPI key √
OpenPush API key √
Parse.com API key √
Urban Airship API key √
Xtify API key √
Push IO API key √
Awarly API key √
OpenMarket HTTP Basic Authentication √
PushBots HTTP Basic Authentication √
Everbridge Mass Notification System API key √
mobDB API key √
NACapp API key √
OpsGenie API key √
SnapComms API key √
Notificare API key √

*) √ means the push notification service supports SSL, which means the push notification service uses HTTPS to
deliver push notifications across networks.

Table 5: Security comparisons of push notification services

http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=HTTP+Basic+Authentication
http://www.programmableweb.com/apis/directory/1?auth=HTTP+Basic+Authentication
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key

49

From comparisons of security in Table 5, it can be seen that all the push notification services

need an authentication model with SSL for security. Currently, HTTP Basic authentication,

OAuth and API key are three trends to secure APIs as authentication models. From Table 5, it

can be seen that HTTP Basic authentication and API key are used by most push notification

services.

As is known, HTTP Basic authentication is a method for an HTTP user agent to make a request

of user names and passwords. HTTP Basic authentication implementation is the simplest

technique to enforce access control of web resources. HTTP Basic authentication doesn't require

cookies, session identifier or login pages. HTTP Basic authentication uses a static and standard

HTTP header which doesn't have to use handshakes in anticipation. However, HTTP Basic

authentication mechanism doesn't provide confidentiality protection for credentials in delivery.

HTTP Basic authentication should be combined with SSL/TLS24 for encryption, which is used

to encrypt username and password. So that the server side can keep a long-lived access token,

which is a username-password equivalent for each application user until the token is refreshed.

Especially, it is the easiest way to use HTTP Basic authentication which is used by most websites

recently. HTTP Basic authentication has the advantage of better compliance with different

environment than other authentication models. Nearly all application and backend servers

support HTTP Basic authentication. Because of simplicity, HTTP Basic authentication doesn’t

require a special processing, as long as the caller has reasonable precautions to keep the

password secret. Thus, HTTP Basic authentication greatly decreases the work required for a

service client, and the decreased complexity make the datacenter more scalable for service

providers.

Compared to HTTP Basic authentication, API key is a code to identify the caller who intends to

invoke a targeted API. API key enables both communicators to figure out who sends an API

request and set the restrictions for the number of requests. In the case, identity plays a significant

role in controlling service volume for API key. API key gives application developers a secure

way to establish identity instead of actually authenticating application users with complicated

passwords.

API key is more secure than complicated passwords in terms of interceptions. API keys are

24 http://technet.microsoft.com/en-us/library/cc784450(v=ws.10).aspx

http://technet.microsoft.com/en-us/library/cc784450(v=ws.10).aspx

50

independent from each master credential, so refreshing passwords won’t cause inconsistent

problems. API key never exposes secrets in application users’ interfaces. Because API key is

used by each request and is delivered as a query string parameter or via an HTTP header.

Basically, when application developers complete configurations of API key, application

developers can easily authenticate by adding an apikey parameter to its query string. Because of

never-exposures, API key can be tracked according to the initial download operations. Moreover,

API key also brings benefits to service providers. Because API key can be used to maintain logs;

service providers can establish quotas and tracks analysis. Hence, API key is more secure than

HTTP Basic authentication from the viewpoints of both application developers and service

providers as illustrated in this subsection.

In addition to, both HTTP Basic authentication and API key are able to use both HTTP and

HTTPS. However, transitions on secure tunnels are via HTTPS and unsecure tunnels are via

HTTP. Except for the case that HTTP Basic authentication delivery with HTTP connections is

not secure at all, the other forms of delivery via HTTP are the same with the equivalents via

HTTPS. To establish a secure connection, HTTP Basic authentication are needed to combined

with HTTPS connections, not just uses HTTP connections. When accessing some critical

information, API key need to be combined with other methods. So that API key will be used by

application developers to invoke APIs. Hence, HTTP Basic authentication is slightly less secure

than API key.

Overall, API key is slightly more secure than HTTP Basic authentication for both application

developers and service providers. API key is the preferred authentication model than HTTP

Basic authentication. The secure push notification service should combine API key

authentication method with HTTPS-supported. OpenMarket and PushBots don't suit for the

secure analysis. Hence, push notification services except for OpenMarket and PushBots can be

the preferred push notification services.

5.2.5) Comparisons of supporting details

Push notifications are always sent as either e-mails or SMS text messages. Table 6 summarizes

supporting details to compare the listed push notification services, including whether the push

notification service supports e-mail, SMS and push cloud notification.

51

Services Supporting Details
E-mail supported SMS Text Message

Supported
Pushing Cloud

Notification Supported
Mozilla SimplePush × √ √
Pushover √ × √
Pushwoosh √ √ √
Amazon SNS √ √ √
OpenPush √ √ √
Parse.com √ √ √
Urban Airship √ √ √
Xtify √ √ √
Push IO √ √ √
Awarly √ √ √
OpenMarket × √ √
PushBots √ √ √
Everbridge Mass
Notification System

√ √ √

mobDB √ √ √
NACapp √ √ √
OpsGenie √ √ √
SnapComms √ √ √
Notificare √ √ √

*) √ means the push notification service supports the specified form of push notifications, while × means the push
notification service doesn’t support the specified form of push notifications.

Table 6: Supporting details comparisons of push notification services

For supporting details of push notification services, each push notification service has a blog for

application developers to communicate freely according to appendixes. From the comparisons of

supporting details in Table 6, it can be seen that push notification services enable notifications

sent in e-mail or SMS or both supported, and all the push notification services enable push cloud

notifications.

Push notification services enable notifications sent in e-mail or SMS or both supported. Because

push notification services are designed and realized to process incoming events which are

specified as XML and JSON files, and turn the events into notifications as e-mails or SMSs on

different platform mobile phones. Mobile push notifications sent by e-mail and SMS are two

major forms as shown in Table 6. The push notification services are recommended to support

both e-mail and SMS, as the demands of application users are increasing with the fast developing

mobile platforms. For example, Amazon SNS supports e-mails in JSON formats which are

delivered to registered addresses. E-mails deliver notifications as JSON objects, while e-mails

52

transmit text-based e-mails.

From Table 6, it can be seen that all push notification services support cloud services. The push

notification services are currently realized based on cloud services. Meanwhile, the push

notification services also provide full cloud solutions, so enterprises have no infrastructure costs

or ongoing hardware maintenance costs. Hence, push notification services need to support

pushing cloud notifications, and push notification services enable applications to send

notifications from the cloud for scalability consequently. Cloud services also help push

notification services with the scalability in evolvement. Besides, with cloud services,push

notification services are able to test processes for APNS by simulations of triggering events in a

Sandbox environment. For example, Urban Airship uses cloud services for scalability by adding

servers, and Xtify supports cloud operations for SoftLayer.

From comparisons of supporting details in this subsection, the preferred push notification

services should support notifications sent in the forms of both e-mails and SMS text messages,

and also enable push cloud notifications with the help of cloud services. To satisfy increasing

requirements of current mobile application users, push notification services like Pushwoosh,

Amazon SNS, Parse.com, Urban Airship, Xtify, Push IO, Awarly, PushBots, mobDB, Notificare

are preferred choices.

5.2.6) Comparisons of supported platforms/OS

Table 7 summarizes the comparisons in ubiquitous supported platforms/OS, including GCM for

Android devices such as Samsung Galaxy, C2DM, APNS for iOS devices such as iPhone, iPod

Touch, iPad, iOS 4+, Mac OS X, Microsoft for Windows Phone 7, Windows Phone 8, Windows

8, Firefox OS, RIM Blackberry and Amazon Device Messaging (ADM) for different products.

Services Supported Platforms/OS
APNS C2DM GCM Microsoft Firefox OS RIM

Blackberry
ADM

Mozilla
SimplePush

√ √ √ √ √ √ ×

Pushover √ × √ × × × ×
Pushwoosh √ × √ √ × √ √
Amazon SNS √ × √ × × × √
OpenPush √ × √ √ × √ ×
Parse.com √ × √ √ × × ×

53

Services Supported Platforms/OS
APNS C2DM GCM Microsoft Firefox OS RIM

Blackberry
ADM

Urban Airship √ × √ √ × √ ×
Xtify √ × √ √ × √ ×
Push IO √ × √ √ × × ×
Awarly √ × √ × × √ ×
OpenMarket √ √ √ × × √ ×
PushBots √ × √ × × × ×
Everbridge
Mass
Notification
System

√ √ √ √ × √ √

mobDB √ × √ × × × ×
Services Supported Platforms/OS

APNS C2DM GCM Microsoft Firefox OS RIM
Blackberry

ADM

NACapp √ × √ √ × √ ×
OpsGenie √ × √ × × √ ×
SnapComms √ × √ √ √ × √
Notificare √ × √ × × × ×

*) √ means the push notification service supports the specified platform, while × means the push notification service
doesn’t support the specified platform.

Table 7: Supported notifications/OS platforms comparisons of push notification services

From comparisons of supported notifications platforms/OS in Table 7, it can be seen that almost

all push notification services support Android devices such as Samsung Galaxy, iOS devices with

a little differences in details.

For APNS, Amazon SNS, mobDB, Awarly, PushSharp supports iPhone and iPad; Parse.com

supports iPhone, iPad and Mac OS X; Pushwoosh supports iPhone, iPad, Mac OS X Push

Notification SDK and Safari; Pushover supports iPhone, iPod Touch, iPad and iOS 4+.

For GCM, mobDB supports Android 2.2+ devices; PushSharp supports Chrome, phones and

tablets; Pushover supports Android 2.0+ and optimizes for Android 4.0+.

For Windows Phone, Parse.com supports Windows 8; Pushwoosh supports Windows 8 SDK

Integration and PhoneGap/Cordova SDK for Windows Phone 8; PushSharp supports Windows

Phone 7/7.5/8 including FlipTile, CycleTile, IconicTile Templates and Windows 8. Besides,

Pushwoosh, Amazon SNS, Everbridge Mass Notification System and SnapComms support ADM.

Additionally, some push notification services also support C2DM, Firefox OS, Blackberry and

54

ADM.

As GCM, APNS and Windows Phone are three main platforms, preferred push notification

services should support GCM, APNS and Windows Phone platforms at the same time. Hence,

Mozilla SimplePush, Pushwoosh, OpenPush, Parse.com, Urban Airship, Xtify, Push IO,

Everbridge Mass Notification System, NACapp and SnapComms are options to be chosen as the

preferred push notification service.

5.2.7) Summary of push notification services

Based on comparisons of basic information in Table 1, it can be seen that REST service-oriented

architecture paradigm is widely used and REST service-oriented architecture paradigm has the

advantages of a lower latency and a smaller average packet size with a smaller message payloads

than SOAP-based equivalents. For integration and purchase of push notification services,

Pushwoosh, Parse.com and PushBots claim they support high-throughput and fast transmission

traffic explicitly in their advertisements as Subsection 5.2.1. So Pushwoosh, Parse.com and

PushBots are preferred choices. In the meanwhile, Amazon SNS is an alternative choice, because

Amazon SNS are easy to be integrated for those enterprises that have SOAP-based backend

servers.

As functionalities comparisons depicted in Subsection 5.2.2, it is summarized that the preferred

push notification services should realize all the functionalities of batch processing, scalability,

mobility and fault tolerance. All the push notification services except for Mozilla SimplePush

satisfy the individual demands for functionalities, so they can be the preferred choice.

As usage fees and usage limits discussed in Subsection 5.2.3, it can be shown that the preferred

push notification services are Pushwoosh, Parse.com and PushBots. Because they have

reasonable prices with their provided services, which satisfy the growing requirements of large

scale enterprises.

According to comparisons of security in Subsection 5.2.4, it is known that push notification

services except for OpenMarket and PushBots are preferred choices. Because a secure push

notification service should combine API key authentication method with HTTPS to support

security, but OpenMarket and PushBots don’t.

From supporting details comparisons in Subsection 5.2.5, Pushwoosh, Amazon SNS, Parse.com,

55

Urban Airship, Xtify, Push IO, Awarly, PushBots, mobDB and Notificare are preferred. Because

they are able to satisfy increasing requirements of current mobile users, and requirements include

notifications can be sent in the forms of e-mails and SMS text messages, and push cloud

notifications can work with cloud service.

From Table 7, Mozilla SimplePush, Pushwoosh, OpenPush, Parse.com, Urban Airship, Xtify,

Push IO, Everbridge Mass Notification System, NACapp and SnapComms are all alternatives,

considering GCM, APNS and Windows Phone platforms.

All the comparisons from Subsection 5.2.1 to Subsection 5.2.6 are summarized in Table 8. The

title of the column is listed from the best choice to the last choice, and the priority is ordered

from one to four. The title of the row is the six characteristics of push notification services. The

contents of Table 8 are the names of push notification services. Table 8 summarizes all the

comparisons from Subsection 5.2.1 to Subsection 5.2.6.

Order
of
Choice

Six Chosen Characteristics of Push Notification Services
Basic

Information
Functionalities Usage fees &

Usage limits
Security Supporting

Details
Supporting
Platforms/OS

1 Pushwoosh Any except for
Mozilla

SimplePush

Pushwoosh Any except for
OpenMarket,
PushBots

Any Pushwoosh

2 Parse.com Parse.com Parse.com

3 PushBots PushBots

4 Amazon SNS Push IO

*) * includes Mozilla SimplePush, OpenPush, Urban Airship, Xtify, NACapp, Everbridge Mass Notification System
and SnapComms.

Table 8: Summary of six characteristics for push notification services

From Table 8, Pushwoosh and Parse.com are better than other push notification services, where

Parse.com satisfies the analysis results of the six-comparison-point from Subsection 5.2.1 to

Subsection 5.2.6. Pushwoosh and Parse.com are almost the same, including usage fees of the

equivalent premium accounts. However, Pushwoosh has a slight benefit than Parse.com.

Pushwoosh has three premium accounts for Indies, professionals and enterprises premium

accounts, which are more detailed to satisfy different scale development, while, Parse.com

doesn’t take indies premium accounts into account. Apart from usage fees, Pushwoosh supports

56

two more notification platforms compared with Parse.com. Concisely, Pushwoosh supports

Blackberry and Kindle ADM, but Parse.com doesn’t. Hence, Pushwoosh is more considerable

than Parse.com.

To summary all the comparisons, Pushwoosh is the priority choice among all the listed push

notification services. To summarize the benefits of Pushwoosh, Pushwoosh uses geo zone to

trigger push notifications, statistics to track performance of campaign and application groups to

multicast rich HTML pages through remote JSONAPI.

In addition to, other six alternatives are also given based on the comparisons. In general,

alternatives are Amazon SNS, Parse.com, PushBots, Urban Airship, Xtify and Awarly. The

reasons are summarized as follows.

(1) For those enterprises that have SOAP-based backend servers, Amazon SNS is a preferred

choice for easy integration with their existing servers. (2) Parse.com is an alternative to

Pushwoosh as discussed in this subsection, which satisfies the requirements of REST service-

oriented architecture paradigm, functionality, security, notification forms, widely three widely

used platforms with reasonable usage fees and usage limits. (3) PushBots is a subsequent choice,

which supports all the requirements of Parse.com. But PushBots is less security than Parse.com,

because PushBots uses HTTP Basic Authentication as the authentication model instead of API

keys. (4) Urban Airship and (5) Xtify are alternatives as well. The fact is that the high-throughput

and fast transmission traffic for REST service-oriented architecture paradigm are not explicitly

illustrated by Urban Airship and Xtify. For usage fees, Urban Airship is suitable for small scale

enterprises, as Urban Airship provides the small business edition premium account apart from

free account. Besides, Xtify doesn’t support free trials, and the prices of Xtify premium accounts

are not available to non-purchasers. (6) Awarly is a minor choice, because Awarly doesn’t

support Windows Phone. But, Awarly satisfies security requirement with a medium price for

premium accounts and supports Blackberry.

To summary the six options, the recommended push notification service should be chosen from

Pushwoosh, Parse.com, PushBots, Urban Airship, Xtify and Awarly, and these options are listed

from priority choice to the last choice in Table 8. One more option can be chosen from Amazon

SNS and NACapp, which are used to integrate with SOAP-based backend servers. Amazon SNS

is much easier to be integrated compared with NACapp.

http://www.programmableweb.com/apis/directory/1?auth=HTTP+Basic+Authentication

57

5.3 Push notification servers

A push notification server is a piece of hardware or a virtual machine. A push notification server

is composed of available services for clients in the same network. A push notification server is

able to provide a specified push notification service as software in client side, and it belongs to a

service provider. For example, a computer can act as a server which allows a software program

to run on it. In that way, it is necessary for a service provider to establish a push notification

server themselves. The following subsection introduces current push notification servers with

corresponding appendixes in details.

5.3.1) AeroGear UnifiedPush Server

AeroGear UnifiedPush Server25 is a server that delivers push notifications to multiple push

networks including APNS, GCM and Mozilla Simple Push. AeroGear UnifiedPush Server makes

it possible to combine mobiles and enterprises together. AeroGear UnifiedPush Server provides a

Notification Service API to unify and simplify mobile development for diversified platforms as

depicted in overview Figure 9. AeroGear UnifiedPush Server is released under Apache Version

2.0 license with developers’ support from Red Hat, Inc. The detailed information is in Appendix

19.

25 http://aerogear.org/

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

58

Figure 9: Overview of AeroGear UnifiedPush Server data flow.

The Notification Service API is the core of AeroGear UnifiedPush Server. The Notification

Service API is a signaling mechanism to notify application users of updates in server side. The

Notification Service API is used to transmit notifications to invoke corresponding applications

instead of working as a data carrying system. AeroGear UnifiedPush Server also defines a logical

abstraction for mobile applications to use the API, and the logic abstraction supports different

Push Networks. In this way, AeroGear UnifiedPush Server is able to send notifications to

different mobile clients easily.

AeroGear UnifiedPush Server introduces a concept of variant where a variant means a mobile

platform. AeroGear UnifiedPush Server allows one push application to have several variants. e.g.

one push application can own an iOS variant and an Android variant. Besides, AeroGear

UnifiedPush Server provides a one-time-password and two-factor authentication to ensure

security.

5.3.2) Pushd

Pushd26 is a server which provides a simple unified push notification service for server side, so

26 https://github.com/rs/pushd

59

that server side are able to send notifications to mobile native applications and web applications

based on Thialfi as depicted in Figure 8. Pushd releases all the information in GitHub, including

its RESTful API and MIT license without any fees. Especially for developer support, Pushd is

mainly done by contributer Olivier Poitrey alone who contributes most than other four

contributors. The detailed information is in Appendix 20.

5.3.3) PushSharp

PushSharp27 is a push notification server which sends notifications to multiple platforms.

PushSharp uses API to construct notifications for various platforms based on Thialfi notification

delivery mechanism in Subsection 4.4, and supported platforms include iOS, Android and

Windows Phone mobile platforms. Moreover, PushSharp is able to add notification channels in a

scalable way. PushSharp is open source and released under Apache Version 2.0 license. The

detailed information is in Appendix 21.

5.3.4) Uniqush

Uniqush28 is open source software, which provides server side with a unified push notification

service without fees. The overview figure of Uniqush is similar to AeroGear Overview Figure 9

in Subsection 5.3.1. Uniqush uses Apache Version 2.0 license to distribute Uniqush source codes

and a Creative Commons Attribution 3.0 Unported License to deal with related documents. The

detailed information is in Appendix 22.

Uniqush has several significant details. Uniqush is a standalone server program which is

dedicated to push service. Hence, application developers can run Uniqush on their own servers.

Uniqush has a simple and unified interface provided for application developers in server side,

which is similar to Pushd in Subsection 5.3.2. Uniqush resends notifications for recoverable

errors whenever possible without caring about resend implementation of failure mechanisms in

server side. Uniqush uses native multicasting in APIs to extend more compatibility for GCM of

Android, APNS of iOS and ADM of Kindle tablets.

5.3.5) OpenMobster

27 https://github.com/Redth/PushSharp
28 http://uniqush.org/

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://creativecommons.org/licenses/by/3.0/
http://developer.android.com/guide/google/gcm/index.html
http://developer.apple.com/library/mac/
http://uniqush.org/

60

OpenMobster29 is an open source push notification service for mobile backend applications.

OpenMobster supports multiple mobile platforms, including iPhone, Android, Windows Phone,

Blackberry and Symbian. OpenMobster also supports data synchronization, real-time push

notifications and HTML5 hybrid applications. The features of data synchronization and real-time

push notifications are realized based on Thialfi as depicted in Figure 8, while hybrid applications

are implemented by HTML5, JavaScript and CSS for native application development. The

detailed information is in Appendix 23.

5.4 Comparisons of push notification servers

A push notification servers is the other category of push notification products. Push notification

servers are compared in a similar way as push notification services except for usage fees & usage

limits. Technical characteristics of push notification servers are dominated by six comparison

points from the viewpoint of QoS. The chosen characteristics are basic information,

functionalities, licenses, security, supporting details and supported platforms/OS. Basic

information refers to service-oriented architecture paradigms, notification transport protocols and

data formats. Functionalities include client install requirements, batch processing, mobility,

scalability and fault tolerance. Licenses discuss about signing-up requirements, data licenses,

licenses for server/client and usage fees. Security illustrates authentication model of services and

SSL-supported. A license of a push notification server enables application developers to know

the restrictions of rights to use, modify, publish, merge, sublicense or sell copies within legal

bounds. In this way, application developers are able to make a budget or plan when they need to

buy a push notification server. Supporting details show whether notifications can be delivered in

the forms of e-mails, SMS text messages and push cloud notifications. Supported platforms/OS

part takes GCM, C2DM, APNS, Microsoft, Firefox OS, Blackberry and ADM into

considerations.

Overall, six comparison points not only have great availability in the market, but gain popularity

of the push notification platforms and optimality for the situation of large scale enterprises. This

subsection compares push notification servers from these six chosen characteristics.

29 http://www.openmobster.com/index.html

61

5.4.1) Comparisons of basic information

Table 8 summarizes basic information, including service-oriented architecture paradigms for

servers, notification transport protocols for communication and data formats.

Servers Basic Information
Service-oriented Architecture

Paradigms
Notification Transport

Protocols
Data Formats

AeroGear Push Notifi
cation Server

REST HTTP, HTTPS, SMTP JSON

Pushd REST HTTP, HTTPS, SMTP JSON
PushSharp REST HTTP, HTTPS, SMTP JSON
Uniqush REST HTTP, HTTPS, SMTP JSON
OpenMobster REST HTTP, HTTPS, SMTP JSON

Table 9: Basic information comparisons of push notification servers

From comparisons of basic information in Table 9, it can be seen that all the push notification

servers use REST as service-oriented architecture paradigms, HTTP(S) and SMTP as notification

transport protocols, JSON as data formats. Hence, all push notification servers also have their

RESTful APIs.

In fact, developments should consider integrations with different data formats should be

considered for practical scenarios based on the comparisons in Subsection 5.2.1. REST is a better

service-oriented architecture paradigm compared with SOAP. Because REST suit for both XML

and JSON data formats with HTTP(S) and SMPT as protocols for secure notification delivery.

According to Table 9, all the push notification servers implement REST service-oriented

architecture paradigm in JSON data formats with HTTP(S) and SMPT protocols. Any push

notification server can be the recommended push notification server to be purchased.

5.4.2) Comparisons of functionalities

Table 10 summarizes five functionalities, including client install requirements, batch processing,

mobility, scalability and fault tolerancy. Clients install requirements indicate whether push

notification servers can be used before they are installed. Besides, definitions of batch processing,

mobility, scalability and fault tolerance are the same with the definitions in Subsection 5.2.2.

Batch processing gives the ability of executing a series of processes with one request without

62

personal intervention. Scalability is the ability to handle the amount of burden work caused by an

increasing number of application users in the server side. The server is able to deal with the

increasing loads with scalability. Fault tolerance refers to the property that enables a service to

continue operating properly in the event of some of its components have unexpected faults.

Servers Functionality
Clients Install
Required

Batch
processing

Mobility Scalability Fault tolerance

AeroGear Push Notif
ication Server

√ √ √ √ √

Pushd √ √ √ √ √
PushSharp √ √ √ √ √
Uniqush √ √ √ √ √
OpenMobster √ √ √ √ √

*) √ means the push notification server supports the specified functionality.

Table 10: Functionality comparisons of push notification servers

From comparisons of functionalities in Table 10, it can be seen that all the current push

notification servers realize four functionalities, including batch processing, mobility, scalability

and fault tolerance with client installation required. The listed push notification servers

implement batch processing, mobility, scalability and fault tolerance in a similar way as push

notification services in Subsection 5.2.2.

All the push notification servers support batch operations. Push notification servers use batch

processing to deliver unique payloads or push scheduled notifications to a set of devices.

Application developers are able to get access to databases and SDKs in server side. In the

meanwhile, RESTful APIs help application developers to get access to functionalities for

creation of new applications. The functionality of batch processing is usually integrated in the

feature of group management. This means the functionality of batch processing is an important

function of group management. Hence, push notification servers which support batch processing

have a feature of group management, such that audience are segmented by targeted or broadcast

messaging groups. For example, AeroGear UnifiedPush Server integrates Mozilla SimplePush in

a unified push notification service. In the meanwhile, AeroGear UnifiedPush Server has a feature

of delivery groups to manage lists of application users and push notifications in a single API

request.

63

Push notification servers use a feature of smart segments to handle mobility. Because the feature

of smart segments gives a way for push notification servers to deliver relevant and tailored push

notifications based on application users’ preferences or their real time locations. So that push

notifications can be used to offer important product news, updates of service provides and

scheduled reminders based on current locations to application users on the move. For example,

AeroGear UnifiedPush Server enables service providers to segment their audience. So that

AeroGear UnifiedPush Server can provide relevant real time notifications to target audience.

From Table 10, it also can be seen that push notification servers use scalability to satisfy growing

requirements of pushing notification to various platforms. Virtual cloud services are used for data

replication management. Because virtual cloud services enable enterprises to use cloud

deployment approaches to transfer workloads into the cloud. Besides, push notification servers

have cloud solutions, like data center, cloud communications, cloud storage and data center to

support scalability.

Push notification servers support fault tolerance. Because push notification services use

replicated data to guarantee reliable notification delivery, and use real-time report mechanisms to

manage of redundant information and statistics. Thus, service providers and application

developers are able to track demographics, entitlements, preferences, frequency, duration of

application usage, and even other attributes which can be used to build out user properties with

smart segments. Besides, push notification servers use Apple’s unlimited Sandbox environment

to detect faults for the whole APNS. For example, Pushd has a feature of data synchronization

and a feature of real-time push notifications which are realized based on Thialfi.

Based on the comparisons of functionalities in Table 10, the recommended push notification

server needs to realize all the functionalities of batch processing, scalability, mobility and fault

tolerance with client install requirements. All the push notification servers realize batch

processing, mobility, scalability and fault tolerance functionalities with client install

requirements. Hence, any listed push notification server can be the recommended push

notification server.

5.4.3) Comparisons of licenses

Table 11 summarizes issues related to licenses, including signing-up requirements, data licenses,

64

licenses for server/client and usage fees. In details, signing-up requirements means whether

application developers need to register and sign up when they use push notification servers. Data

licenses refer to licenses to be used when application developers develop projects based on a

given push notification server. Licenses are used either by server side or by client side. Usage

fees mean the price to be paid when application developers use a push notification server.

Servers Licenses
Signing-up
Requirements

Data Licenses Licenses for S/C Usage Fees

AeroGear Push Noti
fication Server

√ Apache License Version 2.0 Server Free and open
source

Pushd √ MIT License Server Free and open
source

PushSharp √ Apache License Version 2.0 Server Free and open
source

Uniqush √ Apache License Version 2.0 Client Free and open
source

OpenMobster √ Eclipse Public License 1.0 Server Free and open
source

*) √ means the push notification server supports the specified functionality.

Table 11: Comparisons of licenses for push notification servers

From comparisons in Table 11, it can be seen that all the push notification servers need signing-

up requirements. Because account and phone number verification are required when application

developers sign up in practice. All the listed push notification servers are free and open source in

terms of usage fees. Thus, differences lie in different open licences used by different push

notification servers.

It is seen from Table 11 that the listed push notification servers use open licenses including

Apache Version 2.0 License, MIT and Eclipse Public License 1.0. Among these licenses, Apache

License Version 2.0 is the friendliest one. Apache License Version 2.0 contains a patent grant. In

this way, projects authors are able to satisfy any required right proposed by application

developers.

It is also seen from Table 11 that Apache License Version 2.0 is used by most push notification

servers, while MIT License is used by Pushd and Eclipse Public License 1.0 is used by

OpenMobster. These licenses are used to limit the rights of server side or client side when

application developers use the push notification server. In practice, most of the listed push

65

notification servers use their licenses to limit the rights of server side. While, AeroGear

UnifiedPush Server and PushSharp use Apache License Version 2.0 for server limits, and

Uniqush uses Apache License Version 2.0 for client limits. Thus, the preferred license for push

notification servers is Apache License Version 2.0 and Apache License Version 2.0 is used for

server limits. Hence, AeroGear UnifiedPush Server and PushSharp are preferred proposes for

server development with Apache License Version 2.0.

5.4.4) Comparisons of security

Table 12 summarizes security issues of different push notification servers. Security issues are

authentication model of servers and SSL-supported, which shows the most widely deployed

security protocols.

Servers Security
Authentication Model SSL Support (HTTPS)

AeroGear Push Notification Server HTTP Basic Authentication &
HTTP Digest

√

Pushd HTTP Basic Authentication √
PushSharp API key √
Uniqush API key √
OpenMobster API key √

*) √ means the push notification server supports the specified security.

Table 12: Security comparisons of push notification servers

From the comparisons of security in Table 12, it can be seen that push notification servers use

authentication models combined with HTTPS. Besides, all the push notification servers support

SSL. AeroGear UnifiedPush Server uses both HTTP Basic authentication and HTTP Digest as

authentication models. Pushd uses HTTP Basic authentication. The other push notification

servers use API key.

Based on the comparisons of HTTP Basic authentication and API key in Subsection 5.2.4, it is

known that HTTP Basic authentication is slightly less secure than API key in theory. However,

HTTP Basic authentication has advantages from three viewpoints. HTTP Basic authentication is

the easiest approach to securing APIs among all the authentication models, and HTTP Basic

authentication is widely used by most websites. In the meanwhile, HTTP Basic authentication is

supported by nearly all application users and backend servers such that HTTP Basic

66

authentication is better compliant with different environment than other authentication models.

Besides, HTTP Basic authentication doesn’t require a special processing. HTTP Basic

authentication greatly decreases the work required for a service client, and the decreased

complexity makes the datacenter more scalable for service providers. Hence, HTTP Basic

authentication with HTTPS-supported is not a bad authentication model.

Additionally, AeroGear UnifiedPush Server uses HTTP authentication of both basic and digest

access authentication together. HTTP Digest authentication uses MD5 security to protect

application users from leaking cleartext password to attackers. In the case, HTTP Digest

authentication makes a supplement for HTTP Basic authentication. HTTP connections protected

by Digest authentication are equally secure with HTTPS connections. Because the only

difference between HTTPS and HTTP connections is the way to securing connections, where

HTTPS connections give a secure way but HTTP don’t. In details, HTTPS connections encrypt

everything with Public Key Encryption, and HTTP connections sent in the cleartext are protected

by Digest authentication. Hence, HTTP Digest authentication makes up for the slight

disadvantage of HTTP connections compared to API key.

HTTP Basic authentication is less secure than API key in theory as discussed in Subsection 5.2.4,

however, HTTP Digest authentication makes up for the slight disadvantage. Moreover,

integration and development issues should be considered in practical cases when service

providers plan to purchase push notification servers or use open source codes for redesign. With

predefined specifications, application developers should implement push notification servers for

different application users to interact with each other easily. From the viewpoint of easy-to-use, it

is better to adopt a basic authentication model which can be in compliance with any environment.

Besides, authentication models should be simple enough to make the push notification server to

serve as a fundamental service easily. For API key cases, API key should be able to solve a

problem of downloadable applications in web 2.0 services when API key values have to be

embedded in distributed applications. However, HTTP Basic authentication doesn’t embed any

value in the distributed applications, so HTTP Basic authentication doesn't have such a problem.

Hence, HTTP Basic authentication is simpler than API key in practice.

It is necessary to integrate available knowledge into practical open source projects. According to

discussions in this subsection, HTTP Basic authentication with HTTP Digest authentication is

67

more suitable than API key for push notification servers in practice. From Table 12,

AeroGear Push Notification Server is the only push notification server which uses HTTP Basic

and Digest access authentication. Hence, AeroGear Push Notification Server is a priority choice

in terms of security.

5.4.5) Comparisons of supporting details

Push notifications are always sent as either e-mails or SMS text messages. Table 13 summarizes

supporting details of listed push notification servers, including whether push notification servers

support e-mail, SMS and push cloud notification.

Servers Supporting Details
E-mail Supported SMS Text Message

Supported
Pushing Cloud

Notification Supported
AeroGear Push Notification
Server

√ √ √

Pushd √ √ √
PushSharp √ √ √
Uniqush √ √ √
OpenMobster √ √ √

*) √ means the push notification server supports the specified detail.

Table 13: Supporting details comparisons of push notification servers

From comparisons of supporting details in Table 13, it can be seen that push notification servers

enable notifications sent in e-mail or SMS or both supported, and all the push notification servers

enable push cloud notifications. Push notification servers enable notifications sent in e-mail or

SMS or both supported. Push notification servers use the same approaches to support e-mail,

SMS and push cloud notifications as push notification services in Subsection 5.2.5. Practically,

AeroGear UnifiedPush Server supports e-mails in JSON formats, and e-mails are delivered to

registered addresses. AeroGear UnifiedPush Server also provides full cloud solutions to support

push cloud notifications to expand scalability.

From comparisons of supporting details in this subsection, the recommended push notification

servers should support notifications sent in the forms of both e-mails and SMS text messages,

and also allow push cloud notifications with cloud service. It is seen from Table 13 that all the

push notification servers realize notifications sent in the forms of both e-mails and SMS text

68

messages, and also support push cloud notifications with cloud service. Hence, any listed push

notification server can be the recommended push notification server.

5.4.6) Comparisons of supported platforms/OS

Table 14 summarizes the comparisons in supported ubiquitous platforms/OS, including GCM

and C2DM for Android devices like Samsung Galaxy, APNS for iOS devices, e.g. iPhone, iPod

Touch, iPad, iOS 4+ and Mac OS X, Microsoft for Windows Phone 7/8 and Windows 8, Firefox

OS, RIM Blackberry and ADM for different products.

Servers Supported Platforms/OS
GCM C2DM APNS Microsoft

(WP 7/8,
Windows

8)

Firefox
OS

RIM
Blackbe
rry

ADM

AeroGear Push No
tification Server

√ × √ × × × ×

Pushd √ √ √ √ √ × ×
PushSharp √ × √ √ √ √ ×
Uniqush √ √ √ × × × √
OpenMobster √ × √ √ × √ ×

*) √ means the push notification server supports the specified functionality, while × means the push notification
server doesn’t support the specified functionality.

Table 14: Supported platforms comparisons of push notification servers

Based on comparisons of supported notifications platforms/OS in Table 14, it can be seen that

almost all push notification servers support Android devices such as Samsung Galaxy, iOS

devices with a little differences in details.

For APNS and GCM, AeroGear Push Notification Server, Pushd, PushSharp, Uniqush,

OpenMobster all support iPhone, iPad and android devices. Besides, PushSharp also supports

Chrome and tablets. For Windows Phone, Pushd, PushSharp and OpenMobster support Windows

Phone; PushSharp supports Windows Phone 7/7.5/8, including FlipTile, CycleTile, IconicTile

Templates and Windows 8. Additionally, some other push notification servers also support

C2DM, Firefox OS, Blackberry and ADM.

As three prevalent platforms are GCM, APNS and Windows Phone, preferred push notification

servers should support the three platforms at the same time. Pushd, PushSharp and OpenMobster

69

support all the three platforms. Another alternative is AeroGear UnifiedPush Server which

supports both GCM and APNS.

5.4.7) Summary of push notification servers

Based on comparisons of basic information in Table 9, all the push notification servers

implement REST service-oriented architecture paradigm in JSON data formats with HTTP(S)

and SMTP. So any listed push notification servers can be taken as an option to be purchased.

As functionalities comparisons depicted in Subsection 5.4.2, it can be seen that the preferred

push notification servers should have client installation requirements and realize all the

functionalities of batch processing, scalability, mobility and fault tolerance. All the push

notification servers satisfy such demands of functionalities. Hence, any listed push notification

servers can be the recommended push notification server.

As licenses discussed in Subsection 5.4.3, it can be shown that the preferred push notification

servers are AeroGear UnifiedPush Server and PushSharp which use Apache License Version 2.0.

According to comparisons of security in Subsection 5.4.4, it is known that AeroGear Push

Notification Server is a priority choice. Because, the combination of HTTP Basic and Digest

access authentication is more suitable than API key to act as an authentication model for push

notification server, particular for integration of available knowledge into practical open source

projects. AeroGear Push Notification Server is a push notification server which use HTTP Basic

and Digest authentication together.

From supporting details comparisons in Subsection 5.4.5, any listed push notification server can

be the preferred push notification server to satisfy increasing. They support notifications sent in

the forms of e-mails and SMS text messages, and also enable push cloud notifications with the

help of cloud service.

From Table 14, it should be taken GCM, APNS and Windows Phone platforms into consideration.

The preferred push notification servers should be Pushd, PushSharp and OpenMobster. Besides,

another alternative is AeroGear UnifiedPush Server which supports both GCM and APNS.

All the comparisons from Subsection 5.4.1 to Subsection 5.4.6 are summarized in the following

table. Titles of columns are listed from the best choice for a specified characteristic, and the

70

priority is ordered from one to two. Titles of rows are six characteristics of push notification

servers. Contents of Table 15 are names of push notification servers. Table 15 demonstrates all

the comparisons from Subsection 5.4.1 to Subsection 5.4.6.

Order of
Choice

Six Chosen Characteristics of Push Notification Servers
Basic

Information
Functionalities Licensing Security Supporting

Details
Supported
Platforms/OS

1 * * AeroGear
UnifiedPush

Server,
PushSharp

AeroGear
UnifiedPush

Server

* Pushd,
PushSharp,
OpenMobster

2 AeroGear
UnifiedPush

Server

*) * means the push notification server supports the specified characteristics.

Table 15: Summary of six characteristics for push notification servers

Based on Table 15, AeroGear UnifiedPush Server is a preferred option in the viewpoints of

Apache License Version 2.0 and security. But, AeroGear UnifiedPush Server only supports both

GCM and APNS without login requirement.

PushSharp could be an option, where PushSharp considers Apache License Version 2.0 and

security with login requirements. However, PushSharp supports complicated API key for security

issues, which is not suitable for practical cases compared to other authentication models. Hence,

PushSharp is not a good option for the preferred push notification server.

Pushd is an alternative, because Pushd considers secure issues and supported platforms. However,

Pushd uses MIT License, which is less friendly than Apache License Version 2.0. Moreover,

Pushd is almost maintained by Contributer Olivier Poitrey individually, while AeroGear

UnifiedPush Server is supported by Red Hat, Inc. Hence, Pushd has less developer supported

than AeroGear UnifiedPush Server.

To summary the six options, the recommended push notification server should be chosen from

AeroGear UnifiedPush Server and Pushd. (1) AeroGear UnifiedPush Server is the priority choice;

(2) Pushd is an alternative.

71

6 Summary and discussion of push notification products

In the Subsection 5.2.7 and Subsection 5.4.7, the recommended push notification services and

push notification servers are given. However, in terms of the two categories for push notification

products, different scale enterprises have distinct requirements for push notification services and

push notification servers during different development periods. This subsection distinguishes

push notification services from push notification servers, and then gives several compromise

proposals.

6.1 Summary of push notification services

A push notification service is a process that supports services to run across diversified networks.

A push notification service can run either on the purchaser's server or on push notification

service owner’s server. This means purchasers can use either their own servers or the push

notification service owner's servers. Because of a limited budget on IT service, small and

medium-sized enterprises usually choose a push notification service to make the best of their

limited IT budgets.

By using push notification services, enterprises don't have to purchase their own servers. When

enterprises use push notification service owner's server, host servers of the chosen push

notification service are adjusted by the owner of the chosen service. The chosen push notification

service provides enterprises with a stable host server and enables enterprises to use high speed

network to get access to the service. The chosen push notification service also supports fixed

broadband and standard maintenance services by combining a data center to like providing free

server surveillance service and 24-hour telephone technical support. Thus, the push notification

service is able to cover the whole world and deliver business to every corner of the globe.

With push notification service, enterprises are able to use the chosen push notification service by

installing system software or application software via an equipped high-performance server

exclusively. The network service functionalities cover available dns, ftp, web and mail with high

costs of leased line in network devices. Hence, the initial input by enterprises is reduced, and

enterprises are able to focus more on business.

72

6.2 Summary of push notification servers

A push notification server, belonging to the enterprise, is a piece of hardware or on a virtual

machine. A push notification server is able to support a specified push notification service as

software in client side. So a push notification server is also software which consists of services

available to clients on the same network. However, it is essential to establish their own host

servers for enterprises to realize push notification servers. A host server enables an enterprise to

centralize and protects automatically file backups from data losses. A host server also allows

remote access to database in a secure and cost-efficient way, as today's servers aren't so much

costly or complex when compared with a standard desktop.

Enterprises can use their existing hardware to work as host servers for their chosen push

notification server. Enterprises need to select an appropriate push notification server to equip

with their existing hardware. Thus, several points need to be taken into considerations as follows

when considering purchasing a push notification server.

First of all, enterprises need to have essential power and Ethernet cables to wherever the servers

are located. When enterprises don't have network across the working environment, a wireless

network and some wireless gateway devices or router devices are also needed to be bought and

installed. With networks, enterprises are able to select data and applications to be shared on their

host server.

Besides, enterprises should estimate how much storage space is required for the chosen push

notification server. It is necessary to evaluate the number of user devices which already enrolled

in business with a prospective increasing number in the near future.

Moreover, backup options and security are important issues as well. Currently, cloud-based

backup services support offsite storage to retrieve data in case of accidental data loss due to user

errors or equipment failures. As most servers centralize most data in one place, the location of

the server is critical and should be considered before purchasing. Hence, enterprises should

consider both physical security and online risks. For physical security, enterprises should have

enough room and computing power to provide adequate ventilation and airflow, including

cooling and humidity controls and I/O management and even space for extensions. For online

risks, enterprises should have firewall software to isolate internal office network from Internet.

As a majority of servers and routers have built-in firewall features, host servers should also

73

support anti-virus software. For example, enterprises need to think about detection of

automatically scan mechanism for host servers’ hard drives and even protection from malicious

software spread by USB thumb drives.

Furthermore, enterprises need to pay for bandwidth when using the chosen push notification

server. In addition to, the maintenance of the server is another cost which should be handled by

either a particular employee or an outsourcing group.

6.3 Discussion of push notification products

Demands vary based on different scales of enterprises. To satisfy diverse requirements of

enterprises, it is necessary to categorize enterprises into two parts, namely small or medium scale

enterprises and large scale enterprises. This subsection illustrates the differences between push

notification services and push notification servers, then matches different categories of push

notification products with different scales of enterprises.

For a small or medium scale enterprise, it is better to select a push notification service rather than

a push notification server. A small or medium scale enterprise is able to use a push notification

service via an equipped high-performance server, and the way of using the push notification

service is as simple as installing a system software or an application software exclusively. Hence,

a push notification service works efficiently within a given budget, and an enterprise is able to

focus more on business research and development by reducing its initial input.

Especially, responsibilities of maintenance can be taken as a part-time job for a small scale

enterprise. A cost efficient solution to maintenance for a small-scale enterprise is that an

employee charges maintenance with other delegates at the same time. In addition to, physical

security is a big issue for small businesses, where a careless employee might damage a host

server easily. Small scale enterprises are hard to manage physical security issues, so small scale

enterprises are better not choose a push notification server.

For a small or medium scale enterprise, options of the preferred push notification service are

discussed in Subsection 5.2.7. Pushwoosh is the priority choice among all the push notification

services. In addition to, alternatives are Amazon SNS, Parse.com, PushBots, Urban Airship,

Xtify and Awarly.

74

For a large scale enterprise, compromise proposals vary with budgets and development

requirements. When a large scale enterprise intends to set up a simple notification service, it is

recommended to choose a push notification service as the same reasons for small and medium

scale enterprises.

A large scale enterprise should use a push notification server when the enterprise intends to

develop further push notification service or provides a large scale service to satisfy increasing

demands. Because push notification service of push notification servers is running on enterprises’

own servers, so that enterprises are able to add server configuration and optimize development

anytime they need. This also means technical employees are able to adjust changes in server side

in time without contacting other organizations. If large scale enterprises intend to use free and

open source push notification servers like AeroGear UnifiedPush Server, large scale enterprises

can download source codes from products' websites and set up host servers without any fees. If

large scale enterprises would like to use existing hardware and enough room, large scale

enterprises can use existing equipment such as electricity-supported, ventilation-supported,

airflow-supported, cooling-supported, humidity-supported and I/O management in their

computer rooms. In this case, large scale enterprises will pay less for an optimal push notification

server option than those who don't have available resources. Hence, it is cost efficient for a large

scale enterprise to purchase a push notification server in a long-term development.

Based on Subsection 5.4.7, AeroGear UnifiedPush Server is the priority choice and Pushd is the

second choice among all the push notification servers for large scale enterprises.

7 Evaluation

In this subsection, it is necessary to figure out the best compromise between Pushwoosh and

AeroGear UnifiedPush Server. In this section, Pushwoosh and AeroGear UnifiedPush Server are

compared from three aspects, including six comparison points based on Subsection 5.2.7 and

5.4.7, characteristics of good APIs introduced in Subsection 4.1 and differences between push

notification services and push notification servers given in Section 6.

75

7.1 Evaluations from six comparison points

First of all, Pushwoosh is the best choice of push notification service and AeroGear UnifiedPush

Server is the priority choice of push notification server from six comparison points. Based on

Subsection 5.2.4 and Subsection 5.3.4, it can be seen that Pushwoosh uses API key as the

authentication model, while AeroGear UnifiedPush Server uses HTTP Basic Authentication.

However, it is shown that API key is slightly more secure than HTTP Basic authentication based

on comparisons between Pushwoosh and AeroGear UnifiedPush Server. Hence, Pushwoosh is a

more secure option compared with AeroGear UnifiedPush Server.

Based on Subsection 5.2.6 and Subsection 5.3.6, it can be seen that Pushwoosh supports API key;

Pushwoosh APNS, GCM, Microsoft, RIM Blackberry and ADM; AeroGear UnifiedPush Server

only supports GCM and APNS. Considering three widely used platforms GCM, APNS and

Microsoft, Pushwoosh supports all the three platforms but Pushwoosh doesn't. Hence,

Pushwoosh supports better platforms than AeroGear UnifiedPush Server. In the view, Pushwoosh

is better AeroGear UnifiedPush Server considering secure issues and widely platforms supported

from six comparison points.

7.2 Evaluations from good APIs

Push notification services and push notification servers both expose services via APIs, APIs of

all the push notification products are compared based on six characteristics of good APIs in

Subsection 4.1. APIs of Pushwoosh and AeroGear UnifiedPush Server are taken as examples.

Both Pushwoosh and AeroGear UnifiedPush Server provide well-documented and easily used

RESTful APIs. They both enable service providers to establish their own servers to customize

push notifications via their APIs. In general, both Pushwoosh and AeroGear UnifiedPush Server

support six characteristics of a good API, but details of six characteristics vary from each other.

For good APIs, Pushwoosh supports backwards compatibility. Because Pushwoosh has an

onPushAccepted:withNotification:onStart: method to inform delegates of the fact whether the

application user has pressed OK of their received notifications. Besides, Pushwoosh depreciated

a function of automatic push notifications registration for its SDKs. Pushwoosh allows

application users to force old behaviors to add Pushwoosh_AUTO keys to Info.plist with a value

76

YES, where Pushwoosh adds -ObjC flag to Linker Flags in the projects. While, AeroGear

UnifiedPush Server keeps compatibility for APIs only by AeroGear Security updates, and

AeroGear UnifiedPush Server doesn't support backwards compatibility. Hence, Pushwoosh has a

more appropriate RESTful APIs for current expected and potential functionalities compared with

AeroGear UnifiedPush Server. In this way, the RESTful API of Pushwoosh is able to debug and

implement future requirements.

Basically, Pushwoosh and AeroGear UnifiedPush Server define their semantics for RESTful

APIs in a clear and simple way. But, AeroGear Unified Server introduces definitions of

UnifiedPush and installation, where a variant consists of several push applications and an

installation is an identity for an application user who has multiple devices. The two definitions

are new for application developers who intend to use AeroGear UnifiedPush Server. Pushwoosh

define its RESTful APIs in a more easily accepted semantics than AeroGear UnifiedPush Server.

From the viewpoints of a good API, Pushwoosh supports a better API than AeroGear

UnifiedPush Server. Because Pushwoosh gives easily accepted semantics RESTful APIs in an

appropriate way, while, AeroGear UnifiedPush Server has novel semantics definitions and

doesn't support backwards compatibility. Hence, Pushwoosh supports a more suitable RESTful

APIs than AeroGear UnifiedPush Server.

7.3 Evaluations from services/servers

The last point is based on differences between push notification services and push notification

servers given in Section 6. Large scale enterprises can use Pushwoosh when they start to set up a

notification system, and they will pay less when they use Pushwoosh than AeroGear UnifiedPush

Server which is an optimal push notification server option. Hence, it is cost efficient for a large

scale enterprise to purchase a push notification server in a long-term development.

To summary the preferred push notification product, Pushwoosh is better than AeroGear

UnifiedPush Server for start-up, while, AeroGear UnifiedPush Server is preferred than

Pushwoosh for long terms.

77

8 Conclusion

Nowadays, M2M devices are used to connect people according to their diverse requirements

across all over the world. DCP is proposed by Ericsson to provide a time-efficient way of simply

provisioning M2M devices. As the core service platform of DCP is exposed through APIs to

external parties and their customers, a subscribe-notify web-services API is needed to define the

selected notification service based on DCP to achieve real-time interactions.

This paper proposes Pushwoosh is the best option for push notification services and AeroGear

UnifiedPush Server is the best choice for push notification servers. As discussed in Section 6,

Pushwoosh and AeroGear UnifiedPush Server both support six comparison points in a systematic

way, including basic information, functionality, licenses & usage fees with usage limits, security,

supporting details and supported platforms/OS. In an effort to further analysis, options of

Pushwoosh and AeroGear UnifiedPush Server are evaluated from two aspects of service/server

and a good API respectively. Based on evaluations, Pushwoosh is the final proposal for a small

or medium scale enterprise to buy, and even for a large scale enterprise to get started. Moreover,

AeroGear UnifiedPush Server is the optimal proposal for a large scale enterprise to buy in a long

term.

REFERENCES

Ady11 Adya, A., Cooper, G., Myers, D. and Piatek, M., “Thialfi: a Client

Notification Service for Internet-scale Applications”, ACM, New York, USA,

2011, pp. 129 - 142.

App13 Apple Inc., “Apple Push Notification Service”, iOS Developer Library, Local

and Push Notification Programming Guide, February 11
th

, 2014, retrieval

from

https://developer.apple.com/library/ios/documentation/NetworkingInternet/C

onceptual/RemoteNotificationsPG/Chapters/ApplePushService.html at

November 7
th

, 2013.

Att11 Attwood, A. , Merabti, M. and Abuelmaatti, O., "IoMANETs: Mobility

architecture for wireless M2M networks", GLOBECOM Workshops (GC

Wkshps), 2011 IEEE, December 2011, Houston, US, pp. 399 - 404.

Bel96 Bellotti, V. and Bly, S., “Walking Away from the Desktop Computer:

Distributed Collaboration and Mobility in a Product Design Team”,

Proceedings of the ACM Conference in Computer Supported Cooperative

Work, Cambridge, MA, ACM Press, 1996, pp. 209-218.

Blo12 Bloch, J., “How to Design a Good API and Why it Matters”, Google Inc.,

August 22
nd

, 2012, retrieval from

http://lcsd05.cs.tamu.edu/slides/keynote.pdf at May 11
th

, 2014.

Bra09 Bray, T., Paoli, J. and Sperberg-McQueen C.-M., “XML Extensible Markup

Language 1.0”, W3C Recommendation, http://www.w3.org/TR/1998/REC-

xml-19980210.html at 25
th

 November 2013.

Bur13 Burgstahler, D., Lampe, U., Richerzhagen, N. And Steinmetz, R., “Push vs.

Pull: An Energy Perspective”, The 6
th

 IEEE International Conference on

Service-Oriented Computing and Applications (SOCA), IEEE, Koloa, USA,

December 2013.

Cab01 Cabrera, L.-F., Jones M.-B. and Theimer, M., “Herald: Achieving a Global

Event Notification Service”, Proceedings of the Eighth Workshop on Hot

Topics in Operating Systems (HotOS-VIII), Elmau, Germany. IEEE

Computer Society, May 2001.

Cug01 Cugola, G., Di Nitto, E. and Fuggetta, A., “The JEDI Event Based

Infrastructure and Its Application to the Development of the OPSS WFMS”,

IEEE Transactions on Software Engineering, 27(9), September 2001, pp. 827

- 850.

Car01 Carzaniga, A., Rosenblum, D. and Wolf, A., “ Design and Evaluation of a

Wide Area Notification Service”, ACM, Transactions on Computer Systems,

19(3), 2001, pp. 332 - 383.

Des02b De Souza, C.-R.-B., Basaveswara, S.-D. and Redmiles, D.-F., “Lessons

Learned Using with Notification Servers To Support Application Awareness”,

Human Computer Interaction Consortium Workshop 2002, January, 2002.

Des02a De Souza ,C.-R.-B., Basaveswara, S.-D., Redmiles, D.-F., “Supporting

Global Software Development with Event Notification Servers”,

International Workshop on Global Software Development ICSE 2002,

Orlando, Florida, USA, May 21
st
, 2002.

Ecm13 Ecma International, “ECMA-404 The JSON Data Interchange Standard”,

October 2013, retrieved from http://json.org/ at November 25
th

, 2013.

Eri11 Ericsson, “More than 50 Billion Connected Devices - Taking Connected

Devices to Mass Market and Profitability”, White Papers, February 2011,

284 23-3149 Uen, retrieval from

http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf at

November 7
th

, 2013.

Eug03 Eugster, P.-Th, Felber, P.-A., Guerraoui, R. and Kermarrec, A., “The Many

Faces of Publish/Subscribe”, ACM, Computing Surveys, vol. 35, issue 2,

New York, USA, June 2003, pp. 114 - 131.

Fie00 Fielding, R., “Architectural Styles and the Design of Network-based

Software Architectures”, PhD thesis, University of California, Irvine, USA,

2000.

Fie99 Fielding, R., Getty, J., Mogul, J., Frystyk, H., Masinter, L., Leach P. And

Berners-Lee, T., “Hypertext Transfer Protocol - HTTP/1.1”, RFC 2616, June

1999, http://www.w3.org/Protocols/rfc2616/rfc2616.html at November 25
th

,

2013.

Goo13 Google Inc. “Android Cloud to Device Messaging Framework”, Google

Developers, retrieved from

https://developers.google.com/android/c2dm/?csw=1 at November 25
th

,

2013.

Goo14 Google Inc., “Google Cloud Messaging”, April 18
th

, 2014, retrieved from

http://developer.android.com/reference/com/google/android/gms/gcm/Google

CloudMessaging.html at November 25
th

, 2013.

Guo13 Guo, W. and Liu, H., “ The Analysis of Push Technology Based on iphone

Operating System”, Measurement, Information and Control (ICMIC), 2013

International Conference, vol. 1, Harbin, China, August 2013.

Gud07 Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H.-F.,

Karmarkar, A. and Lafon, Y., “SOAP Version 1.2 Part 1: Messaging

Framework (Second Edition)”, W3C Recommendation 27
th

 April 2007,

retrieved from http://www.w3.org/TR/soap12-part1/ at November 25
th

, 2013.

http://json.org/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/soap12-part1/

Hua06 Huang, Y. and Gannon, D., “A Comparative Study of Web Services-based

Event Notification Specifications”, Parallel Processing Workshops,

International Conference on Columbus, OH, 2006, pp. 8 - 14.

Mar99 Martin-Flatin, J.P., “Push vs. Pull in Web-Based Network Management”,

Proceedings of the 6
th

 IFIP/IEEE International Symposium on Integrated

Network Management, 1999, Distributed Management for the Networked

Millennium, Boston, US, May 1999, pp. 3 - 18.

Mer11 Merabti, M., Kennedy, M. and Hurst, W., "Critical Infrastructure Protection:

 A 21
st
 Century Challenge", International Conference on Communications and

 Information Technology (ICCIT), March 2011, Aqaba, Aqaba Governorate,

 pp. 1 - 6.

Moj12 Mojzisova, A. and Mojzis, M., “Unified Platform for the Delivery of

Notifications to Smartphones Notificatio”n, 13
th

 International Carpathian

Control Conference (ICCC), Slovak Republic, May 2012.

Mul09 Mulligan, G. and Gracanin, D. “A Comparison of SOAP and REST

Implementations of a Service Based Interaction Independence Middleware

Framework”, Proceedings of the 2009 Winter on Simulation Conference

(WSC), Austin, TX, December 2009, pp. 1423 - 1432.

Ori11 O'Riordan, A., O'Mahoney, O., "Engineering an Open Web Syndication

 Interchange with Discovery and Recommender Capabilities", Journal of

 Digital Information 12 (1), 2011.

Pus13 Microsoft Inc., “Push notifications for Windows Phone”, Windows Phone

Dev Center, retrieved from http://msdn.microsoft.com/en-

us/library/windowsphone/develop/ff402558(v=vs.105).aspx at November

25
th

, 2013.

Res00 Rescorla, E., “HTTP Over TLS”, RFC 2616, Internet Engineering Task Force

(IETF), May 2000, https://tools.ietf.org/html/rfc2818 at November 25
th

,

2013.

Ric07 Richardson, L. and Ruby, S., “RESTful Web Services”, O'Reilly Media, May

2007, ISBN 10:0-596-52926-0.

Rop13 Ropert, S., Bonneau, V., Ramahandry, T., “Internet of Things - Outlook for

the Top 8 Vertical Markets”, Market Report, IDATE, M13112MR, August

26
th

, 2013, pp. 123, ISBN 978-2-84822-340-7, retrieved from

http://www.idate.org/en/Research-store/Internet-of-Things_785.html at

December 19
th

, 2013.

Shi06 Shi, X., “Sharing Service Semantics using SOAP-Based and REST Web

Services”, IEEE Educational Activities Department Piscataway, vol. 8, issue

2, NJ, USA, March 2006, pp. 18-24.

Shi09 Shi, S. and Zhang, R., “SXML, an Enhancement of XML Documents in

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402558(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402558(v=vs.105).aspx
https://tools.ietf.org/html/rfc2818

Mobile Learning”, International Conference on Computational Intelligence

and Software Engineering (CiSE), December 2009, pp. 11 - 13.

Sim10 Simpson, K., “Defining Safer JSON-P”, 2010, retrieved from http://json-

p.org/ at November 25
th

, 2013.

Smi02 Smith, M. and Hunt, R., “Network Security using NAT and NAPT”, The 10
th

IEEE International Conference (ICON) on Networks, 2002, pp. 355 - 360.

Urb13 UrbanAirship, “The Pocket Guide to Good Push, Push is a Permission-based

Mobile Customer Communication Channel”, retrieved from

http://www.urbanairship.com/talesofgoodpush at 25
th

 December 2013.

Zha09 Zhang, P., Durresi, A. and Barolli, L., “A Survey of Internet Mobility”,

 International Conference on Network-Based Information Systems (NBIS),

 August 2009, Indianapolis, IN, pp. 147 - 154.

http://json-p.org/
http://json-p.org/

Appendix 1

Mozilla SimplePush

Server/Service(System) A push notification service to web applications

Protocols REST

Notification Transport Protocol HTTP, HTTPS, XMPP

Data Formats JSON

API home Web APIs

https://wiki.mozilla.org/WebAPI

Functionality

Client Install Required

YES

Service Endpoint Android, desktop, open OS for mobile

platforms

WSDL \

Batch processing NO, Mozilla SimplePush doesn't support batch

processing, because SimplePush keeps

notifications separate and individual in most use

scenarios in the specifications despite of the

recommendation that the UserAgent should try

to batch all pending acknowledgements into

fewer notifications.

Scalability YES, Based on the implementation of the

SimplePush protocol, SimplePush Server

supports scalability with the help of the Client

side engineers. In details, SimplePush Server

doesn't store user data, nor limited utility for the

hacking or grieving vector. Meanwhile, Mozilla

SimplePush deals the client connection between

the web socket and the proxy server by

identifying a GUID4 UserAgentID which is

unique to each device. The client sends a

request of a new Entry point for a third party

server which is combined with the GUID4

channel id. The connection between the client

and the server will be established to receive

notifications after the server accepts the

connection and responds with any GUID4

channels. Thus, Mozilla SimplePush realizes

the Internet-scale scalability across various

networks.

Mobility YES, Mozilla SimplePush notification service

uses Mozilla cloud services to support mobility.

The virtual cloud services are used in

management and seamless application users'

experience. Mozilla SimplePush can reach their

online application users through Mozilla

presence after the applications register in

Mozilla Cloud Services.

Fault tolerance YES, If network failures or database failures or

anything else makes PushServer in an

inconsistent situation, Mozilla SimplePush may

drop all states, and disconnect all active

applications to force to reconnect and begin a

handshake to get synchronized. In such a way,

Mozilla SimplePush realizes the

synchronization with garbage collections

between the server and client of fault tolerance

to achieve reliable notification delivery.

Backward compatibility YES

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider https://wiki.mozilla.org/

Managed By Mozilla

Non-Commercial Lic.

Data Licensing

Mozilla Public License Version 2.0

License for server(service)/client Service

Usage Fees Free. It's the Web, based on Open standards,

where everyone can participate. No need to ask

permission nor pay a fee to use a proprietary

technology.

Program Fees

Certification Program

Usage Limits

NO

Terms of Service

Security

Authentication Model API key

SSL Support HTTPS

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API YES

Community API Kits

API Blog

API Forum http://www.mozilla.org/about/forums/

Site Blog https://wiki.mozilla.org/Talk:WebAPI/SimpleP

ush/Protocol

Developer Support

Console URL

Support E-mails NO

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM YES

Apple Push Notification Systems (APNS YES

Microsoft (Windows Phone 7, WP 8, Windows

8)

YES

Firefox OS YES

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

Appendix 2

Pushover

Server/Service(System) A mobile push notification service

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON, XML

API home https://pushover.net/api

Functionality

Client Install Required

YES

Service Endpoint Android, iOS devices and desktop

https://api.pushover.net/1/

WSDL /

Batch processing Delivery Groups of Pushover makes it possible

to manage lists of application users and push

notifications to them in a single API request.

With Pushover, batch jobs can be stored when

power off and execute after recharged

automatically. Even the plugin Zapier enables

the integration of Batchbook to support

management.

Scalability Pushover uses cloud service to scale by adding

servers and to support scalability.

Mobility When a mobile device has an active connection,

a notification will be pushed to the application

based on the subscription to push services

agreed between the application user and

Pushover.

Fault tolerance Pushover supports reliability in each Pushover

application users releases. From Device Client

Changelog, the features which support

reliability and compatibility are added, such as

Pushover can fix crashes after synchronizing

notifications of Android 2.0.1 release, and

Pushover can fix crashes if saving alerts of a

specific length of iOS 2.0.2 release.

Backward compatibility YES

Sign up and Licensing

https://pushover.net/

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

YES

Provider superblock.net/ Red Rat

Managed By Superblock, LLC

Non-Commercial Lic. NO

Data Licensing

OpenBSD

License for server(service)/client Service

Usage Fees Pushover has both free and premium accounts.

Pushover has no monthly fees for iOS devices

within the free accounts. But Pushover allows

only five notifications for android devices per

day for free, and charges $4.99 for android

devices to get unlimited notifications.

Program Fees

Certification Program

Usage Limits

Pushover limits the usage of free accounts as

follows, notifications are currently restricted

within 512 characters, including titles, and

applications are currently restricted to push

7500 notifications per month. If intends to use

Pushover on both iOS and Android devices,

application users must pay $4.99 for it twice,

once from the App Store and once from Google

Play. Besides, when the publishers want to push

more than 7,500 notifications per month or need

additional capacity, they should purchase from

Purchase Additional Message Capacity of

Pushover with 10000 additional notifications

cost for $50.00. Moreover, high traffic public

applications like IFTTT allows unlimited

notifications.

Terms of Service

https://pushover.net/terms

http://superblock.net/
https://pushover.net/terms

Security

Authentication Model API key, By setting up a Pushover account, you

will be provided with a user key. You may also

set up one or more applications, each of which

receives its own application key. All Pushover

messages require, at a minimum, a user key, an

application key and a message. You may send

additional information such as a custom title,

sound effect and priority as well. By default,

Pushover will display the application name as

the title (based on the application key

specified), but you can override this by passing

a custom title.

SSL Support YES, HTTP library's SSL verification

Read-only Without Login YES

Support

Vendor API Kits/Support the third party API Perl, PHP, Ruby support the third party API

Community API Kits

API Blog

API Forum

Site Blog http://www.reddit.com/r/pushover/

Developer Support

Console URL

Support E-mails E-mail gateway allows clients to send e-mails to

Your-Pushover-User-Key@api.pushover.net

then convert them into Pushover notifications

Support SMS Text Messages YES, Instant Messages (IM)

Support Pushing Cloud Notifications YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android devices

C2DM NO

Apple Push Notification Systems (APNS iPhone, iPod Touch, iPad

http://www.reddit.com/r/pushover/

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) NO

Appendix 3

Pushwoosh

Server/Service(System) A push notification service

Protocols REST

Notification Transport Protocol HTTP, HTTPS, SMTP for e-mails

Data Formats JSON

API home Latest JSON API version 1.3

http://www.pushwoosh.com/programming-push-

notification/pushwoosh-push-notification-remote-

api/

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, Blackberry, Windows Phone,

Mac OS X, Windows 8, Amazon 8, Safari,

others with Wordpress plugin

WSDL \

Batch processing Pushwoosh enables service providers to

segment their audience based on their marketing

strategies, then they can provide relevant

facilities and contents to target push

notifications. Service providers also schedule

push notifications in batches to support group

multicast with reports.

Scalability Pushwoosh is highly scalable with the help of

cloud service and is able to send millions of

notifications very fast but the traffic is

prioritized for Premium accounts.

Mobility Pushwoosh pushes notifications based on real

time location. The application developers and

service providers are able to reach application

users located in a particular location

immediately, and application users can precisely

select targeted zones by setting the distance in

meters in longitude and latitude of geo zones.

Fault tolerance Advanced Statistics feature allows publishers to

keep track of their push notifications.

Pushwoosh has report mechanism to track

campaigns and devise corrections in case of

potential faults or errors.

http://www.pushwoosh.com/programming-push-notification/pushwoosh-push-notification-remote-api/
http://www.pushwoosh.com/programming-push-notification/pushwoosh-push-notification-remote-api/
http://www.pushwoosh.com/programming-push-notification/pushwoosh-push-notification-remote-api/

Backward compatibility Push notifications plugin for WordPress helps to

send push notifications when publish or update

a post or a page.

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider www.pushwoosh.com

Managed By Pushwoosh

Non-Commercial Lic.

Data Licensing

MIT

License for server(service)/client Service

Usage Fees Fees depend on functions.

http://www.pushwoosh.com/pricing/

Program Fees

Certification Program

Usage Limits

Unlimited push notifications

Terms of Service

http://www.pushwoosh.com/terms-of-use/

Security

Authentication Model API key

SSL Support YES, HTTP library's SSL verification

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API Any reference to any third party on the Website

is provided to you for informational purposes

only.

Community API Kits

http://www.amazon.com/
http://www.pushwoosh.com/pricing/
http://www.pushwoosh.com/terms-of-use/

API Blog

API Forum https://community.pushwoosh.com/

Site Blog http://www.pushwoosh.com/blog/

Developer Support

Console URL

http://www.pushwoosh.com/another-billion-

pushes-wordpress-plugin-update-and-a-new-

pushwoosh-control-panel-sneak-peek/

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES, Pushwoosh uses cloud service to

synchronize data in a secure way.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android devices such as Samsung Galaxy

C2DM NO

Apple Push Notification Systems (APNS iPhone, iPad, Mac OS X Push Notification

SDK, Safari

Microsoft (Windows Phone 7, WP 8, Windows

8)

Windows 8 SDK Integration,

PhoneGap/Cordova SDK for Windows Phone 8

Firefox OS NO

RIM Blackberry Native Blackberry SDK

Amazon Device Messaging (ADM) Native Amazon SDK

https://community.pushwoosh.com/
http://www.pushwoosh.com/blog/
http://www.pushwoosh.com/another-billion-pushes-wordpress-plugin-update-and-a-new-pushwoosh-control-panel-sneak-peek/
http://www.pushwoosh.com/another-billion-pushes-wordpress-plugin-update-and-a-new-pushwoosh-control-panel-sneak-peek/
http://www.pushwoosh.com/another-billion-pushes-wordpress-plugin-update-and-a-new-pushwoosh-control-panel-sneak-peek/

Appendix 4

Amazon SNS

Server/Service(System) A push notification service for web/application

Protocols SOAP

Notification Transport Protocol Notifications over HTTP, HTTPS, Email-JSON

and SQS transport protocols consists of a

simple JSON object.

Data Formats XML

API home http://aws.amazon.com/sns/

Functionality

Client Install Required

YES

Service Endpoint iPhone, iPad, Android, Kindle Fire, and internet

connected smart devices, as well as pushing to

other distributed services.

WSDL http://sns.us-east-1.amazonaws.com/doc/2010-03-

31/SimpleNotificationService.wsdl

Batch processing Amazon SNS uses batch process to securely

access remote resources. Amazon SNS supports

an unique payload sent to different platforms,

namely, Amazon SNS can publish a single

message for all platforms.

Scalability The cloud delivers mobile push notifications to

targeted applications via APN, GCM etc.

Mobility Amazon SNS can send mobile push

notifications when the applications are not

online.

Fault tolerance All messages published to Amazon SNS are

stored redundantly avoiding lost. e.g. For

notification message by HTTP, an SNS

Delivery Policy can be used to control the retry

pattern (linear, geometric, exponential backoff),

maximum and minimum retry delays, and other

parameters. Application developers should have

notifications delivered to an SQS queue with

other notifications. Amazon SNS also supports

feedbacks and token management for reliable

token delivery to each platform.

Backward compatibility AWS compliance

http://aws.amazon.com/sns/
http://sns.us-east-1.amazonaws.com/doc/2010-03-31/SimpleNotificationService.wsdl
http://sns.us-east-1.amazonaws.com/doc/2010-03-31/SimpleNotificationService.wsdl

Sign up and Licensing

Sign up Requirements AWS account, phone number verification

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider www.amazon.com

Managed By Amazon

Non-Commercial Lic. No

Data Licensing

GNU General Public License (GPL version 2)

License for server(service)/client Client

Usage Fees Amazon SNS allows 1 million notifications

within free account, and $1 for per million

notifications over the free account.

http://aws.amazon.com/sns/pricing

Program Fees Free

Certification Program

Usage Limits

Amazon SQS should have enough connections

or threads to support the number of concurrent

message producers and consumers which will

be sending requests and receiving responses.

For instance, instances of the AWS SDK for

Java AmazonSQSClient class maintain at most

50 connections to Amazon SQS by default.

http://aws.amazon.com/agreement/

Terms of Service

aws.amazon.com/terms/

Security

Authentication Model AWS API key

SSL Support Both publishers and subscribers can use SSL to

help secure the channel to send and receive

messages. Publishers can connect to Amazon

SNS over HTTPS and publish messages over

the SSL channel. Subscribers should register an

SSL-enabled end-point as part of the

http://www.amazon.com/
http://aws.amazon.com/cn/sns/#pricing
http://aws.amazon.com/cn/agreement/

subscription registration, and notifications will

be delivered over a SSL channel to that end-

point.

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API Amazon SNS provides a set of simple APIs to

enable event notifications for topic owners,

subscribers and publishers.

http://aws.amazon.com/code/Amazon%20SNS?_e

ncoding=UTF8&jiveRedirect=1

Community API Kits

API Blog

API Forum https://forums.aws.amazon.com/forum.jspa?forum

ID=72#

Site Blog aws.typepad.com/

Developer Support aws.amazon.com/documentation/sns/

Console URL

http://aws.amazon.com/developertools/Amazon%

20SNS?_encoding=UTF8&jiveRedirect=1

Support E-mails E-mails with Email-JSON transport protocol are

sent to registered addresses as email. Email-

JSON sends notifications as a JSON object,

while Email sends text-based emails.

Support SMS Text Messages YES

Support Pushing Cloud Notifications It enables applications to send notifications

from the cloud.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android devices such as Samsung Galaxy

C2DM NO

Apple Push Notification Systems (APNS) iPhone, iPad

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) Kindle Fire

http://aws.amazon.com/code/Amazon%20SNS?_encoding=UTF8&jiveRedirect=1
http://aws.amazon.com/code/Amazon%20SNS?_encoding=UTF8&jiveRedirect=1
https://forums.aws.amazon.com/forum.jspa?forumID=72
https://forums.aws.amazon.com/forum.jspa?forumID=72
http://aws.amazon.com/documentation/sns/
http://aws.amazon.com/developertools/Amazon%20SNS?_encoding=UTF8&jiveRedirect=1
http://aws.amazon.com/developertools/Amazon%20SNS?_encoding=UTF8&jiveRedirect=1

Appendix 5

OpenPush

Server/Service(System) A push notification service

Protocols REST

Notification Transport Protocol HTTP, HTTPS, SMTP, XMPP

Data Formats JSON

API home

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, Blackberry, Windows Phone,

desktop

WSDL \

Batch processing OpenPush enables service providers to segment

their audience, then they can provide relevant

real time notifications to target audience.

Service providers also schedule push

notifications in batches to support group

multicast with reports.

Scalability OpenPush is highly scalable with the help of

cloud service. OpenPush uses ejabberd and

XMPP servers to support scalability. OpenPush

also uses MongoDB on ejabberd for

management.

Mobility OpenPush supports mobility, because

OpenPush customizes and replace ejabberd

behavior with hooks which can be located on

another node. OpenPush pushes notifications

based on real time location.

Fault tolerance Advanced Statistics feature allows publishers to

keep track of their push notifications.

Backward compatibility

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider www.openpush.im/

Managed By ProcessOne

Non-Commercial Lic.

Data Licensing

MIT

License for server(service)/client Service

Usage Fees Free

Program Fees

Certification Program

Usage Limits

NO, unlimited push notifications

Terms of Service

Security

Authentication Model API key

SSL Support YES, HTTP library's SSL verification

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API Any reference to any third party on the Website

is provided to you for informational purposes

only.

Community API Kits

API Blog

API Forum

Site Blog

Developer Support http://openpush.im/#beta

Console URL

Support E-mails YES

http://www.amazon.com/

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES, OpenPush is offered as a service via

cloud.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM NO

Apple Push Notification Systems (APNS YES

Microsoft (Windows Phone 7, WP 8, Windows

8)

YES

Firefox OS NO

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

Appendix 6

Parse.com

Server/Service(System) A third party push notification service

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON

API home Latest JSON API version 1.3

http://parse.com/docs/api_libraries

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, Blackberry, Windows Phone 8,

Mac OS X

WSDL \

Batch processing Parse.com supports batch operations via Parse

RESTful APIs to reduce the time spent on

network round trips, because Parse.com can

create, delete and update 50 requests with a

batch endpoint.

Scalability Parse.com supports scalability with the help of

cloud cloud and Parse.com operates a number

of high-throughput, I/O intensive MongoDB

clusters and needed to improve scalability and

speed.

Mobility Parse.com supports mobile cloud service,

because Parse.com has enterprise mobility

suites and mobile backend as a service to

support geo queries based on application user's

real time location.

Fault tolerance Parse.com has reliable backends and handles

user account management, data storage and disk

caching for its application users and usage can

fluctuate on a daily basis. Parse.com SDKs

work properly with custom implementation.

Besides, Parse.com can work when applications

are offline, and application developers is able to

get error responses which can be handled later.

Backward compatibility Push notifications plugin for WordPress helps

to send push notifications when publish or

update a post or a page.

http://www.parse.com/docs/api_libraries

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider www.parse.com

Managed By Parse

Non-Commercial Lic.

Data Licensing

BSD

License for server(service)/client Service

Usage Fees Fees depend on functions.

http://www.parse.com/plans/

Program Fees

Certification Program

Usage Limits

Parse.com has maximum notifications limit for

burst limit according to https://parse.com/plans

Terms of Service

http://www.parse.com/about/terms

Security

Authentication Model API key

SSL Support YES, HTTP library's SSL verification

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API Cloud Modules are the easiest way to integrate

your Parse app with third-party services and

libraries

Community API Kits

API Blog

API Forum

http://www.amazon.com/
http://www.pushwoosh.com/pricing/
http://www.pushwoosh.com/terms-of-use/

Site Blog http://blog.parse.com/

Developer Support

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES, Parse.com uses cloud code to support

scalability. Parse.com provides cloud-based

backend services for mobile application

developers.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM NO

Apple Push Notification Systems (APNS iPhone, iPad, Mac OS X

Microsoft (Windows Phone 7, WP 8, Windows

8)

Windows 8

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) NO

http://www.pushwoosh.com/blog/

Appendix 7

Urban Airship

Server/Service(System) A mobile push notification service

Protocols HTTP POST, REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON, JSONP

API home Latest UrbanAirship Library 2.1.0

http://docs.urbanairship.com/

Functionality

Client Install Required

NO

Service Endpoint iOS, Android, Blackberry, Windows Phone 8

WSDL \

Batch processing Urban Airship has batch push which supports

push multiple notifications in one call, and all

options of batch push are available in the

normal push API. The batch push API payload

is a list of JSON objects, where each object is a

valid push API request. Beside, Urban Airship

also supports multicast.

Scalability Urban Airship allows to scale by adding servers

with the help of cloud service.

Mobility Urban Airship has mobile relationship

management solutions for better contextual

aware of mobility.

Fault tolerance Urban Airship has near real time report

mechanisms, notifications are sent and received

in diversified time slices with time-in-

application, uniques and conversions analyses

to guarantee accurate and reliable delivery.

Backward compatibility Urban Airship provided the first end-to-end

cloud push notification service in the market,

via a service we called Helium for C2DM.

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

http://docs.urbanairship.com/

Account Required

YES

Commercial Licensing

Provider www.urbanairship.com

Managed By Urban Airship

Non-Commercial Lic.

Data Licensing

Apache license 2.0

License for server(service)/client Client

Usage Fees Fees depend on how to use it.

https://support.urbanairship.com/customer/porta

l/articles/1061364-pricing-billing-and-invoice-

questions

Program Fees

Certification Program

Usage Limits

User applications can get access to the

composers or core reports including pushes

sent, application opens and time in application,

but applications for profits only have access to

the reports or composers with a 45 day trial.

Terms of Service

http://urbanairship.com/images/uploads/docume

nts/URBAN_AIRSHIP_TERM_OF_SUBSCPR

ITION_SERVICE_17_JAN_2014.pdf

Security

Authentication Model API key (Urban Airship API uses a key and

secret combination to authenticate for Urban

Airship app setup)

SSL Support YES

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API A third party providing a web based or offline

software application or platform can’t be

integrated by API. No third party beneficiaries

under its agreement.

Community API Kits

http://www.amazon.com/
https://support.urbanairship.com/customer/portal/articles/1061364-pricing-billing-and-invoice-questions
https://support.urbanairship.com/customer/portal/articles/1061364-pricing-billing-and-invoice-questions
https://support.urbanairship.com/customer/portal/articles/1061364-pricing-billing-and-invoice-questions
http://urbanairship.com/images/uploads/documents/URBAN_AIRSHIP_TERM_OF_SUBSCPRITION_SERVICE_17_JAN_2014.pdf
http://urbanairship.com/images/uploads/documents/URBAN_AIRSHIP_TERM_OF_SUBSCPRITION_SERVICE_17_JAN_2014.pdf
http://urbanairship.com/images/uploads/documents/URBAN_AIRSHIP_TERM_OF_SUBSCPRITION_SERVICE_17_JAN_2014.pdf

API Blog

API Forum

Site Blog http://urbanairship.com/blog

Developer Support http://urbanairship.com/images/uploads/docume

nts/URBAN_AIRSHIP_SUPPORT_SERVICE

S_DESCRIPTION_17_JAN_2014.pdf

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES, Urban Airship allows scaling by adding

servers with the help of cloud service.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android devices

C2DM Depreciated

Apple Push Notification Systems (APNS iPhone, iPad

Microsoft (Windows Phone 7, WP 8, Windows

8)

WP 8, PhoneGap/Cordova SDK for WP 8

Firefox OS NO

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

http://urbanairship.com/blog
http://urbanairship.com/images/uploads/documents/URBAN_AIRSHIP_SUPPORT_SERVICES_DESCRIPTION_17_JAN_2014.pdf
http://urbanairship.com/images/uploads/documents/URBAN_AIRSHIP_SUPPORT_SERVICES_DESCRIPTION_17_JAN_2014.pdf
http://urbanairship.com/images/uploads/documents/URBAN_AIRSHIP_SUPPORT_SERVICES_DESCRIPTION_17_JAN_2014.pdf

Appendix 8

Xtify

Server/Service(System) A push notifications service

Protocols REST

Notification Transport Protocol HTTP, HTTPS, XMPP, Xtify opens an XMPP

connection between the server and device with

an SDK to extracting locatin from the device.

Data Formats XML, RSS

API home http://developer.xtify.com/dashboard.action

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, Blackberry

WSDL \

Batch processing Xtify can send to a group of devices in a batch

by segmenting with tags.

Scalability Xtify allows services to get data centers from

SoftLayer for scalability.

Mobility Xtify enables application developers to deliver

push and location-triggered messages directly

to users devices using SDK and messaging

engine even when the application is closed.

Xtify uses the geo-indexes property of

MongoDB to realize location data store.

Because when location enabled devices send

updates back to Xtify, Xtify turns to

MongoDB's location datastore to track

application users movement from time and

space. Xtify also allows service providers to

schedule application users as based on time

zones to create geo-fences with a CRM-defined

segmentation for better precision.

Fault tolerance Xtify uses the geo-indexes property of

MongoDB to realize location data store,

because MongoDB's location datastore can

track application users movement from time

and space. Thus, Xtify has message-level tracks

and analytics, which can be integrated with

fulfillment management systems and CRM via

http://developer.xtify.com/dashboard.action

API.

Backward compatibility YES

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

YES

Provider developer.xtify.com

Managed By IBM

Non-Commercial Lic. YES

Data Licensing

BSD

License for server(service)/client Service

Usage Fees Varies based on number of application users

and notifications.

http://www.xtify.com/pricing.html#tab=tab-A

Program Fees

Certification Program

Usage Limits

The limits depend on different packages.

http://www.xtify.com/pricing.html#tab=tab-A

Terms of Service

http://developer.xtify.com/terms-of-use/

Security

Authentication Model API key

SSL Support YES, HTTP library's SSL verification

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API YES

Community API Kits

API Blog http://developer.xtify.com/display/APIs/Push+A

http://www.amazon.com/
http://www.pushwoosh.com/terms-of-use/
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://developer.xtify.com/display/APIs/Push+API+2.0

PI+2.0

API Forum

Site Blog http://blog.xtify.com/

Developer Support support@xtify.com

Console URL

https://console.xtify.com/login

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications Xtify supports cloud operations to SoftLayer.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android devices

C2DM NO

Apple Push Notification Systems (APNS iPhone, iPad

Microsoft (Windows Phone 7, WP 8, Windows

8)

Windows Phone 8

Firefox OS NO

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

http://blog.xtify.com/
https://console.xtify.com/login

Appendix 9

Push IO

Server/Service(System) A cloud based push notification alert or service

for mobile and mobile data delivery

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON

API home https://docs.push.io/API_&_cURL_Information

/Overview

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, Blackberry, Windows Phone,

Mac OS X, Windows 8,

WSDL /

Batch processing Push IO supports auto push in dashboard which

automates both building and delivering

notifications. Auto push includes batch

processes and broadcasts, so application groups

can be used to send one push notification to

several applications within one group with one

click.

Scalability Push IO can add applications easily to use

application management, because Push IO can

add applications to the unlimited Sandbox

environment to test all characteristics for the

whole system.

Mobility Push IO allows application developers to use

smarted tailored feature to segment audience

and trigger push notifications to application

users, so the notifications of Push IO can reach

globally.

Fault tolerance Push IO has Sandbox environment to test all

characteristics for the whole system, the

sandbox gives fault detections.

Backward compatibility YES

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider push.io/

Managed By Oracle

Non-Commercial Lic. YES

Data Licensing

BSD

License for server(service)/client Service

Usage Fees A free 30-day trial to the service preferred by

professionals

Program Fees

Certification Program

Usage Limits

Push IO gives a free 30 days trial for push

notification service in the Push IO's homepage.

Terms of Service

http://push.io/legal/tos/

Security

Authentication Model API key

SSL Support YES, HTTP library's SSL verification

Read-only Without Login YES

Support

Vendor API Kits/Support the third party API API Key

Community API Kits

API Blog

API Forum

Site Blog http://push.io/blog/

Developer Support

Console URL

http://push.io/
http://push.io/legal/tos/
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://push.io/blog/

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM NO

Apple Push Notification Systems (APNS) iPhone, iPad, Mac OS X Push Notification

SDK, Safari

Microsoft (WP 7, WP 8, Windows 8) Windows Phone, Windows 8

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) NO

Appendix 10

Awarly

Server/Service(System) A push notification service for application

Protocols REST

Notification Transport Protocol Notifications over HTTP, HTTPS

Data Formats JSON, all data is sent and received as JSON.

API home https://awarly.com/docs/rest-api

Functionality

Client Install Required

YES

Service Endpoint iPhone, iPad, Android,Blackberry

WSDL /

Batch processing Awarly supports batch processing, which

means Awarly can push a unique notification to

a variety of devices, although it is inconvenient

to send multiple requests. So application

developers could group several notifications in

one call, then send the POST body as a JSON

array.

Scalability Awarly offers push notification management

and mobile SDKs for quickly deployment,

which supports scalability.

Mobility Awarly has advanced geo-notification features

to send automatically triggered push

notifications right at the moment to application

users when they enter the specified area on the

map.

Fault tolerance Awarly has error messages which use

conventional HTTP response codes to indicate

success or failure of an API request. The all

errors will return error message describing the

particular problem in JSON.

Backward compatibility

Sign up and Licensing

Sign up Requirements To authenticate users’ applications with

Awarly’s API must use OAuth. Awarly

supports App Login using the OAuth 2.0 Client

http://www.programmableweb.com/apis/directory/1?protocol=REST
http://www.programmableweb.com/apis/directory/1?format=JSON
https://awarly.com/docs/rest-api

Credential flow.

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider https://awarly.com/

Managed By

Non-Commercial Lic. No

Data Licensing

BSD

License for server(service)/client Service

Usage Fees https://awarly.com/pricing

Program Fees

Certification Program

Usage Limits

Awarly enables starters to register unlimited

applications, and also allows to deliver 1

million push notifications as e-mails sent to

10000 devices per month with the free account

in one month.

Terms of Service

https://awarly.com/terms

Security

Authentication Model API key

SSL Support YES

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API The underlying REST API is simple, but there

are also lots of pre-built libraries for interacting

with Awarly.

Community API Kits

API Blog

API Forum

https://awarly.com/docs/rest-api
https://awarly.com/pricing
https://awarly.com/terms
http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key

Site Blog http://blog.awarly.com/

Developer Support

Console URL

Push Composer

https://awarly.com/products/notifications/

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications Awarly uses cloud service to send notifications.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android devices such as Samsung Galaxy

C2DM NO

Apple Push Notification Systems (APNS) iPhone, iPad

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

http://blog.awarly.com/
https://awarly.com/products/notifications/

Appendix 11

OpenMarket

Server/Service(System) A push notification alerting service for mobile

device

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats XML

API home http://www.openmarket.com/openmarket-push-

notifications/

Functionality

Client Install Required

No

Service Endpoint Apple, Android, BlackBerry

WSDL /

Batch processing OpenMarket can broadcast important news or

emergency information to application users,

and the batch processing is implemented with

smart segments feature of OpenMarket.

Scalability OpenMarket uses a unified API to satisfy the

growing needs of pushing notification to

various platforms, and the unified API is easy

to realize global scalability. Beside,

OpenMarket has its self-service tools to set up

application development, create audience

segments, compose and send push notifications

via the unified API.

Mobility OpenMarket has its self-service tools to set up

application development, create audience

segments, compose and send push notifications

via the unified API.

Fault tolerance OpenMarket uses geo-redundant network and

reporting & message analysis to retrieve status

and error information about user engagement

and message deletion, thus OpenMarket can

learn how users are responding to your

messages.

Backward compatibility NO

http://www.openmarket.com/openmarket-push-notifications/
http://www.openmarket.com/openmarket-push-notifications/

Sign up and Licensing

Sign up Requirements Yes, need registered account

Developer Key Required

No

Account Required

Yes

Commercial Licensing

Provider www.openmarket.com/

Managed By OpenMarket

Non-Commercial Lic. YES

Data Licensing GNU GPL

License for server(service)/client Service

Usage Fees Application developers need to pay when they

use OpenMarket to send push notifications, but

the fees supported by sales department are not

transparent.

http://www.openmarket.com/payments/mobile-

payments-overview/

Program Fees

Certification Program

Usage Limits

Terms of Service

http://www.openmarket.com/terms-of-service/

Security

Authentication Model HTTP Basic Authentication

SSL Support YES

Read-only Without Login No

Support

Vendor API Kits/Support the third party API YES

Community API Kits

API Blog

http://www.openmarket.com/
http://www.openmarket.com/payments/mobile-payments-overview/
http://www.openmarket.com/payments/mobile-payments-overview/
http://www.openmarket.com/terms-of-service/
http://www.programmableweb.com/apis/directory/1?auth=HTTP+Basic+Authentication

API Forum

Site Blog

Developer Support http://www.openmarket.com/wp-content/upload

s/2011/12/PushNotifications_IntegrationGuide.

pdf

Console URL

Support E-mails NO

Support SMS Text Messages YES

Support Pushing Cloud Notifications OpenMarket supports to push notifications via

APIs or through a customizable cloud-based

mobile engagement platform.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM YES

Apple Push Notification Systems (APNS YES

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

Appendix 12

PushBots

Server/Service(System) A push notification service for mobile device

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON

API home https://pushbots.com/developer/rest

Functionality

Client Install Required

YES

Service Endpoint Apple, Android

WSDL /

Batch processing PushBots allows to register multiple devices up

to 500 devices within per batch request, then

the array of devices tokens can be added to

database.

Scalability PushBots support scalability via flexible APIs

by cloud service which support custom

integration.

Mobility PushBots has geo targeting feature to send

automatically triggered push notifications right

at the moment to application users when they

enter the specified area on the map.

Fault tolerance PushBots provides reliable delivery via flexible

APIs and real-time analytics for redundant

statistics management, which also makes

custom integration.

Backward compatibility

Sign up and Licensing

Sign up Requirements YES

Developer Key Required YES

Account Required YES

Commercial Licensing

Provider https://pushbots.com/

https://pushbots.com/developer/rest

Managed By PushBots, Inc.

Non-Commercial Lic.

Data Licensing Apache 2.0

License for server(service)/client Service

Usage Fees https://pushbots.com/pricing

Program Fees

Certification Program

Usage Limits

Terms of Service https://pushbots.com/home/policy

Security

Authentication Model HTTP Basic Authentication

SSL Support YES

Read-only Without Login YES

Support

Vendor API Kits/Support the third party API YES

Community API Kits

API Blog

API Forum

Site Blog https://blog.pushbots.com/

Developer Support

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications PushBots support scalability via flexible APIs

by cloud service which support custom

integration.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

https://pushbots.com/pricing
https://pushbots.com/home/policy
http://www.programmableweb.com/apis/directory/1?auth=HTTP+Basic+Authentication
https://blog.pushbots.com/

C2DM NO

Apple Push Notification Systems (APNS) YES

Microsoft (WP 7, WP 8, Windows 8) NO

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) NO

Appendix 13

Everbridge Mass Notification System (MNS)

Server/Service(System) An emergency mass notification or

communication service

Protocols REST

Notification Transport Protocol HTTP, HTTPS, SMTP for e-mails

Data Formats JSON

API home http://www.everbridge.com/

Functionality

Client Install Required

YES

Service Endpoint Smart phones, tablets

WSDL \

Batch processing YES

Scalability Remote API

Mobility Allow for localized global communications

Fault tolerance Powerful reports and robust analytics

Backward compatibility YES

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider http://www.everbridge.com/

Managed By Everbridge

Non-Commercial Lic.

Data Licensing

Proprietary

License for server(service)/client

http://www.everbridge.com/
http://www.everbridge.com/

Usage Fees

Program Fees

Certification Program

Usage Limits

Terms of Service

Security

Authentication Model API key

SSL Support YES, HTTP library's SSL verification

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API

Community API Kits

API Blog

API Forum

Site Blog www.everbridge.com/category/our-company/bl

og/

Developer Support

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM YES

Apple Push Notification Systems (APNS YES

Microsoft (Windows Phone 7, WP 8, Windows

8)

YES

Firefox OS NO

http://www.programmableweb.com/apis/directory/1?auth=AWS+API+key
http://www.everbridge.com/category/our-company/blog/
http://www.everbridge.com/category/our-company/blog/

RIM Blackberry YES

Amazon Device Messaging (ADM) YES

Appendix 14

mobDB

Server/Service(System) A push notification service for mobile

development

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats XML, JSON

API home https://www.mobdb.net

Functionality

Client Install Required NO

Service Endpoint iOS, Android (2.2 +)

WSDL \

Batch processing mobDB is able to push scheduled notifications

to a set of devices via SDKs and RESTful APIs,

which means mobDB supports batch operations

via SDKs and RESTful APIs. Because mobDB

can create, delete and update a batch of requests

with a batch endpoint to reduce the time spent

on network round trips.

Scalability mobDB runs the push notification service on

Amazon web services and is able to

automatically scale with the demands of

applications.

Mobility mobDB enables application developers to push

notifications to notify their offline application

users.

Fault tolerance Advanced statistics feature of mobDB allows

you to keep track of push notifications.

Backward compatibility YES

Sign up and Licensing

Sign up Requirements YES

Developer Key Required YES

Account Required

YES

Commercial Licensing Yes with service

Provider https://www.mobdb.net

Managed By Amazon Web Services

Non-Commercial Lic. YES

Data Licensing GNU GPL

License for server(service)/client Service

Usage Fees https://www.mobdb.net/pricing

Program Fees Free to $4.99/month

Certification Program

Usage Limits

Terms of Service http://www.mobdb.net/tandch.jsp

Security

Authentication Model API key

SSL Support YES, HTTP library's SSL verification

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API iOS, Android, Java

Community API Kits

API Blog

API Forum

Site Blog

Developer Support support@mobdb.net

Console URL

Support E-mails YES

Support SMS Text Message YES

Support Pushing Cloud Notification YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android (2.2 +) devices

https://www.mobdb.net/pricing
http://www.mobdb.net/tandch.jsp

C2DM NO

Apple Push Notification Systems (APNS) iPhone, iPad

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) NO

Appendix 15

NACapp

Server/Service(System) A push notification service for mobile devices.

Protocols SOAP, REST

Notification Transport Protocol HTTP, HTTPS, SMTP

Data Formats XML

API home http://www.nacapp.com/Support/Resources/

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, Blackberry, Windows Phone,

iPad

WSDL \

Batch processing NACapp can push notifications to a group of

devices. Because NACapp has CollaChat to

allow group chatting among staff, and

CollaChat is available on Android, iPhone and

iPad devices currently.

Scalability NACapp uses cloud service for scalability.

Mobility NACapp is able to deliver critical alert

notifications to mobile applications in a unique

way based on the urgency, no matter where they

are.

Fault tolerance NACapp makes duplicated and redundant data

to a server, which brings backup, reliability and

speed notification delivery.

Backward compatibility Cisco NAC appliance has been tested with

stand alone CAS and NM Module

CAS(Swiffer).

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Provider www.nacapp.com

Managed By TNZ Group Limited

Non-Commercial Lic.

Data Licensing

Apache Version 2

License for server(service)/client Service

Usage Fees Fees vary on different situations.

http://www.nacapp.com/Pricing/

Program Fees

Certification Program

Usage Limits

Terms of Service

http://www.nacapp.com/AboutUs/Terms/

Security

Authentication Model API key, NACapp can integrate other services

such as Two Factor Authentication.

SSL Support YES

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API NACapp can integrate other services such as

Two Factor Authentication.

Community API Kits

API Blog

API Forum http://www.nacapp.com/JoinUs/

Site Blog

Developer Support developers@nacapp.com

Console URL

Support E-mails YES

Support SMS Text Message YES

Support Pushing Cloud Notification NACapp is a full cloud solution.

http://www.amazon.com/

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM NO

Apple Push Notification Systems (APNS) YES, iPhone, iPad

Microsoft (Windows Phone 7, WP 8, Windows

8)

YES

Firefox OS NO

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

Appendix 16

OpsGenie

Server/Service(System) A multichannel IT alert notification service

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON

API home http://support.opsgenie.com/customer/portal/top

ics/495390-web-api/articles

Functionality

Client Install Required

YES

Service Endpoint iOS, Android and Blackberry

WSDL \

Batch processing OpsGenie allows to send 10 alert notification in

a batch via the group API.

Scalability OpsGenie integrates MongoDB to realize

scalability and high-performance.

Mobility OpsGenie is able to push relevant notifications

to the right people even when applications are

offline, because OpsGenie uses incident

management to implement the offline triggers.

Fault tolerance OpsGenie is reliable, because OpsGenie has a

distributed and redundant architecture across

diversified data centers with an end-to-end

monitor system to guarantee the availability,

and the monitor system uses a detailed track

mechanism.

Backward compatibility Integration plugins

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider http://www.opsgenie.com

Managed By iFountain LLC

Non-Commercial Lic.

Data Licensing

Apache Version 2

License for server(service)/client Service

Usage Fees Fees depend on functions.

http://www.opsgenie.com/pricing

Program Fees

Certification Program

Usage Limits

OpsGenie does not limit alert messages to a few

simple characters. Alerts can contain free form

text, tags, additional fields, and even files.

Terms of Service

http://www.opsgenie.com/tos

Security

Authentication Model API key

SSL Support YES

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API Supporting multiple integration plugins

http://support.opsgenie.com/customer/portal/top

ics/255609-integration-plugins/articles

Community API Kits

API Blog

API Forum

Site Blog http://blog.opsgenie.com/

Developer Support

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications OpsGenie is cloud based notification

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM NO

Apple Push Notification Systems (APNS YES

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

Appendix 17

SnapComms

Server/Service(System) A push notification service

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON

API home http://www.snapcomms.com/products/desktop-

alert.aspx

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, Windows Phone, desktops

WSDL \

Batch processing SnapComms can deliver notifications in

batches.

Scalability SnapComms supports scalability with cloud

solutions including data center, cloud

communications, cloud storage and data center.

Mobility The SnapComms messaging platform allows

message administrators to target messages by

role or (in some instances) location.

Fault tolerance The SnapComms platform provides full

reporting on message readership as well as

collects and collates.

Backward compatibility NO

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Provider http://www.snapcomms.com/

Managed By SnapComms

Non-Commercial Lic.

Data Licensing

BSD

License for server(service)/client Service

Usage Fees Fees depend on channels.

http://www.snapcomms.com/learning-

center/pricing-and-savings.aspx

Program Fees

Certification Program

Usage Limits

The polling frequency default is a minimum of

120 seconds, but this can be adjusted to any

interval required.

Terms of Service

http://www.snapcomms.com/terms-of-use.aspx

Security

Authentication Model API key

SSL Support YES

Read-only Without Login YES

Support

Vendor API Kits/Support the third party API SnapComms API makes it possible to integrate

with other solutions or platforms.(for example,

intranet and contact center solutions)

Community API Kits

API Blog

API Forum

Site Blog

Developer Support

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications SnapComms is an employee communications

software company, which gives cloud solutions

including data center, cloud communications,

cloud storage and data center.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM NO

Apple Push Notification Systems (APNS YES

Microsoft (Windows Phone 7, WP 8, Windows

8)

YES

Firefox OS YES

RIM Blackberry NO

Amazon Device Messaging (ADM) YES

Appendix 18

Notificare

Server/Service(System) A mobile push notification platform

Protocols The API uses RESTful protocol.

Notification Transport Protocol HTTP, HTTPS

Data Formats Responses are formatted in JSON.

API home http://notifica.re/features/api/

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, web

WSDL \

Batch processing Notificare has free SDK inside smart push

notifications across all channels. Notificare also

has user segmentation to categorize users based

on users' geo locations, providing a powerful

search query and easily targeting different

groups of users with batches of notifications.

Scalability Notificare has smarter push notifications SDK

which helps to set up a scalable messaging

service.

Mobility Notificare has location services which can

transform a location into a relevant push and

gather enormous amounts of data in just 24

hours.

Fault tolerance Upload certificates for APNS to validate them

and manage the services and keep track of

expiration.

Backward compatibility

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing Yes with service

http://notifica.re/features/api/

Provider www.notifica.re

Managed By Notificare

Non-Commercial Lic.

Data Licensing

BSD

License for server(service)/client Client

Usage Fees http://notifica.re/pricing/

Program Fees

Certification Program

Usage Limits

Free push provides unlimited notifications to

unlimited devices up to 5,000 users.

Terms of Service

http://notifica.re/terms/

Security

Authentication Model API key

SSL Support YES

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API PHP, Python, .NET, ColdFusion, Ruby. Support

integration requests to existing APIs. Provide

libraries for several back-end technologies.

Community API Kits

API Blog

API Forum

Site Blog http://notifica.re/blog/

Developer Support

Console URL

Support E-mails YES

Support SMS Text Messages YES

http://www.amazon.com/
http://notifica.re/pricing/
http://notifica.re/terms/
http://notifica.re/blog/

Support Pushing Cloud Notifications YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android devices

C2DM NO

Apple Push Notification Systems (APNS iPhone, iPad

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) NO

Appendix 19

AeroGear UnifiedPush Server

Server/Service(System) A push notification server for web/application

Protocols REST

Notification Transport Protocol Notifications over HTTP, HTTPS

Data Formats JSON

API home http://aerogear.org/docs/specs/aerogear-rest-api/

Functionality

Client Install Required

YES

Service Endpoint iOS, Android,Web,Hybrid

WSDL /

Batch processing AeroGear UnifiedPush Server allows a push

application to add multiple variants, and a

variant to add multiple installations/devices.

Scalability AeroGear UnifiedPush Server provides a cloud

infrastructure to support scalability.

Mobility AeroGear UnifiedPush Server is able to

integrate with existing enterprise environment

to support scalability with cloud service.

Fault tolerance AeroGear UnifiedPush Server supports

password recovery which is a bare minimum set

of cryptographic primitives with Two-Factor

Authentication and One-Time-Password

features to improve security, where Objective-C

One Time Password API is an iOS library for

generating one time passwords according to

RFC 6238.

Backward compatibility API compatibility

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing Yes with service

http://aerogear.org/docs/specs/aerogear-rest-api/

Provider http://aerogear.org/

Managed By AeroGear

Non-Commercial Lic. No

Data Licensing Apache License Version 2.0

License for server(service)/client Server

Usage Fees Free

Program Fees Free and open source

Certification Program

Usage Limits NO

Terms of Service http://www.waonlinestore.com/downloads/aeroge

ar_gift_card_terms_12013.pdf

Security

Authentication Model HTTP Basic Authentication

SSL Support YES

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API YES

Community API Kits

API Blog

API Forum

Site Blog http://aerogear.org/community/

Developer Support aerogear-dev@lists.jboss.org

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES, AeroGear provides a cloud infrastructure.

http://aerogear.org/
http://www.waonlinestore.com/downloads/aerogear_gift_card_terms_12013.pdf
http://www.waonlinestore.com/downloads/aerogear_gift_card_terms_12013.pdf
http://aerogear.org/community/

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM NO

Apple Push Notification Systems (APNS) YES

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) NO

Appendix 20

Pushd

Server/Service(System) A push notification server

Protocols REST

Notification Transport Protocol Notifications over HTTP, HTTPS

Data Formats JSON

API home https://github.com/rs/pushd/blob/master/settings-

sample.coffee/

Functionality

Client Install Required

YES

Service Endpoint iOS, Android,Windows Phone, Web

WSDL /

Batch processing Pushd enables broadcast and multicast.

Scalability Pushd provides a cloud infrastructure to support

scalability. Pushd not only disseminates push

notifications to support web applications, mobile

platforms and even HTTP server from a single

unified entry point, but has the ability to extend to

other platforms in a appropriate way

Mobility Pushd is able to integrate with existing enterprise

environment to support scalability with cloud

service.

Fault tolerance YES

Backward compatibility API compatibility

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider Olivier Poitrey cooperated with Juho Vähä-

Herttua, Antti Ajanki, Andrew Naylor,

http://aerogear.org/docs/specs/aerogear-rest-api/
http://aerogear.org/docs/specs/aerogear-rest-api/

yanncoupin.

Managed By Olivier Poitrey cooperated with Juho Vähä-

Herttua, Antti Ajanki, Andrew Naylor,

yanncoupin.

Non-Commercial Lic. No

Data Licensing The MIT license

License for server(service)/client Server

Usage Fees Free

Program Fees Free and open source

Certification Program

Usage Limits NO

Terms of Service

Security

Authentication Model HTTP Basic Authentication

SSL Support YES

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API YES

Community API Kits

API Blog

API Forum

Site Blog http://aerogear.org/community/

Developer Support rs@dailymotion.com

Console URL

Support E-mails YES

Support SMS Text Messages YES

http://aerogear.org/community/
mailto:rs@dailymotion.com

Support Pushing Cloud Notifications YES, Pushd provides a cloud infrastructure.

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM YES

Apple Push Notification Systems (APNS) YES

Microsoft (Windows Phone 7, WP 8, Windows 8) YES

Firefox OS YES

RIM Blackberry NO

Amazon Device Messaging (ADM) NO

Appendix 21

PushSharp

Server/Service(System) A third party push notification server

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON

API home

Functionality

Client Install Required

YES

Service Endpoint iOS (iPhone/iPad APNS), OSX (APNS 10.8+)

Android (C2DM and GCM), Chrome, Windows

Phone, Windows 8, Blackberry (PAP), Amazon

(ADM)

WSDL \

Batch processing YES

Scalability PushSharp uses cloud services via flexible APIs

to support scalability.

Mobility PushSharp provides push notification service to

mobile devices.

Fault tolerance PushSharp provides a reliable service

Backward compatibility YES

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing Yes with service

Provider http://xamarin.com/evolve/2013#keynote

Managed By Xamarin EVOLVE 2013

Non-Commercial Lic.

Data Licensing Apache License Version 2.0

http://xamarin.com/evolve/2013#keynote

License for server(service)/client Server

Usage Fees Free and open source

Program Fees

Certification Program

Usage Limits Unlimited push notifications

Terms of Service

Security

Authentication Model API key

SSL Support YES, HTTP library's SSL verification

Read-only Without Login YES

Support

Vendor API Kits/Support the third party API A third party push notification service

Community API Kits

API Blog

API Forum

Site Blog

Developer Support

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES, Chrome, Phones,Tablets

C2DM NO

Apple Push Notification Systems (APNS) iPhone, iPad

Microsoft (Windows Phone 7, WP 8, Windows

8)

WP 7 / 7.5 / 8 (e.g. FlipTile, CycleTile, and

IconicTile Templates), Windows 8

Firefox OS NO, but coming soon

RIM Blackberry YES, BIS and BES via PAP

Amazon Device Messaging (ADM) YES

Appendix 22

Uniqush

Server/Service(System) A mobile push notification server

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats Responses are formatted in JSON.

API home http://notifica.re/features/api/

Functionality

Client Install Required

YES

Service Endpoint iOS, Android, ADM

WSDL \

Batch processing Uniqush supports wildcard multicast and native

multicast, so that you multicast notifications

can be sent to the specific group.

Scalability Uniqush-front handles scale-out growth with

cloud service.

Mobility YES

Fault tolerance Uniqush provides a reliable unified push

service, because Uniqush will send the

notification again as a recoverable error

whenever possible.

Backward compatibility

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider www.uniqush.org

Managed By Uniqush

Non-Commercial Lic.

http://notifica.re/features/api/
http://www.amazon.com/

Data Licensing Apache License Version 2.0

License for server(service)/client Client

Usage Fees

Program Fees Free and open source

Certification Program

Usage Limits

Terms of Service

http://uniqush.org/terms/

Security

Authentication Model API key

SSL Support YES

Read-only Without Login NO

Support

Vendor API Kits/Support the third party API YES

Community API Kits

API Blog

API Forum

Site Blog http://uniqush.org/documentation/index.html

Developer Support https://groups.google.com/forum/#!forum/uniqu

sh

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) Android devices

C2DM YES

Apple Push Notification Systems (APNS) iPhone, iPad

http://notifica.re/terms/
http://notifica.re/blog/

Microsoft (Windows Phone 7, WP 8, Windows

8)

NO

Firefox OS NO

RIM Blackberry NO

Amazon Device Messaging (ADM) YES

Appendix 23

OpenMobster

Server/Service(System) A push notification server

Protocols REST

Notification Transport Protocol HTTP, HTTPS

Data Formats JSON

API home http://openmobster.googlecode.com/svn/wiki/co

ntent/app-developer-guide/html/index.html

Functionality

Client Install Required

YES

Service Endpoint iPhone, Android, Windows Phone, Blackberry

and Symbian

WSDL \

Batch processing YES

Scalability PhoneGap enables application developers to

authorize native applications.

Mobility Geozones are pins on the map that allow

sending automatically triggered push

notifications right at the moment a user enters

the specified area on the map.

Fault tolerance OpenMobster has synchronized data which is

replicated across devices and platforms for fault

tolerance. If something unexpected happens,

application users can get access through the

cloud server.

Backward compatibility NO

Sign up and Licensing

Sign up Requirements YES

Developer Key Required

YES

Account Required

YES

Commercial Licensing

Yes with service

Provider http://www.openmobster.com/index.html

Managed By OpenMobster

Non-Commercial Lic.

Data Licensing

Eclipse Public License 1.0

License for server(service)/client Server

Usage Fees Free

Program Fees

Certification Program

Usage Limits No limits

Terms of Service http://www.openmobster.com/service.html

Security

Authentication Model API keys

SSL Support YES, HTTPS

Read-only Without Login YES

Support

Vendor API Kits/Support the third party API Any reference to any third party on the Website

is provided to you for informational purposes

only.

Community API Kits

API Blog

API Forum

Site Blog https://groups.google.com/forum/#!forum/open

mobster-users

Developer Support

Console URL

Support E-mails YES

Support SMS Text Messages YES

Support Pushing Cloud Notifications YES

Support Notifications Platforms/OS

Google Cloud Messaging (GCM) YES

C2DM NO

Apple Push Notification Systems (APNS) YES

Microsoft (Windows Phone 7, WP 8, Windows

8)

YES

Firefox OS NO

RIM Blackberry YES

Amazon Device Messaging (ADM) NO

	Version8.pdf
	References_Version 6.pdf
	Appendix.pdf
	Service.pdf
	1 Table for Mozilla SimplePush.pdf
	2 Table for Pushover.pdf
	3 Table for Pushwoosh.pdf
	4 Table for Amazon SNS.pdf
	5 Table for OpenPush.pdf
	6 Table for Parse.com.pdf
	7 Table for Urban Airship.pdf
	8 Table for Xtify.pdf
	9 Table for Push IO.pdf
	10 Table for Awarly.pdf
	11 Table for OpenMarket.pdf
	12 Table for PushBots.pdf
	13 Table for Mass Notification System (MNS).pdf
	14 Table for mobDB.pdf
	15 Table for NACapp.pdf
	16 Table for OpsGenie.pdf
	17 Table for SnapComms.pdf
	18 Table for Notificare.pdf

	Server.pdf
	19 Table for AeroGear.pdf
	20 Table for Pushd.pdf
	21 Table for PushSharp.pdf
	22 Table for Uniqush.pdf
	23 Table for OpenMobster.pdf

