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Abbreviations 

2D-DSA Two-dimensional intra-arterial digital subtraction angiography 
3D-DSA Three-dimensional intra-arterial digital subtraction angi-

ography 
3D-FLASH Three-dimensional fast low-angle shot sequence 
3D-MRA Three dimensional magnetic resonance angiography 
AA abdominal aorta 
AAA Abdominal aortic aneurysms 
ACA Anterior cerebral artery 
AChA Anterior choroidal artery 
ACOM Anterior communicating artery 

-SMA -smooth muscle actin 
ATENA Analysis of treatment by endovascular approach of non-rup-

tured aneurysms 
BA Basilar artery 
BAC Balloon assisted coiling  
BAPN Beta-aminopropionitrile  
BMI Body mass index 
BRAT Barrow rupture aneurysm trial 
CAMEO Cerebral aneurysm multicentre european onix 
CAP Cellulose acetate polymer 
CARAT Cerebral aneurysm rerupture after treatment 
CCA Common carotid artery 
CDKN Cyclin-dependent kinase inhibitor 
CE Contrast enhanced 
CFD Computational fluid dynamics 
CI Confidence interval 
CLARITY Clinical and anatomical results in the treatment of ruptured in-

tracranial aneurysms 
CM-Dil 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine per-

chlorate with a thiol-reactive chloromethyl group 
CONSCIOUS Clazosentan to overcome neurological ischemia and infarct 

occurring after subarachnoid hemorrhage 
CSF Cerebrospinal fluid 
CT Computed tomography 
CTA Computed tomography angiography 
DACA Distal anterior cerebral artery 
DAPI 4',6-diamindino-2-phenylindole 
DCI Delayed cerebral ischemia  
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Abbreviations 

DCVS Delayed cerebral vasospasm  
DMEM Dulbeco’s modified Eagle’s medium 
DSA Digital subtraction angiography 
ECM Extracellular matrix 
EJV External jugular vein 
eNOS Endothelial nitric oxide synthase 
EDNRA Endothelin type A receptor gene 
EVG Elastica van Gieson 
EVT Endovascular treatment 
FBS Fetal bovine serum  
FDA United states food and drug administration 
FE2+ Ferrous 
FG Fibrin glue biopolymer 
FITC-lectin Fluorescein isothiocyanate conjugated lycopersicon esculen-

tum (tomato) lectin 
FLASH-MRI Fast low angle shot MRI 
FRED Flow re-direction endoluminal device 
GCS Glasgow coma scale 
GDC Guglielmi detachable coil 
GFP Green fluorescent protein  
GWAS Genome-wide association studies 
HE Hematoxylin & eosin 
IA Saccular intracranial aneurysm 
ICA Internal carotid artery 
IEL Internal elastic lamina 
IL-1  Interleukin 1beta  
IMASH Intravenous magnesium sulfate for aneurysmal subarachnoid 
ISAT International subarachnoid aneurysm trial 
ISUA International study of unruptured intracranial aneurysms 
LCCA Left common carotid artery 
LOX Lysine oxidase 
MCA Middle cerebral artery 
MCP Monocyte chemotactic protein 
MMP Matrix metalloproteinases 
MRI Magnetic resonance imaging 
MT Masson’s trichrome staining  
NF-   Nuclear factor-kappa beta 
nNOS Neuronal nitric oxide synthase 
NO Nitric oxide 
OA Ophthalmic artery 
OPT Optical projection tomography 
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OSI Oscillatory shear index 
PComA Posterior communicating artery 
PBS Phosphate buffered saline 
PFA Paraformaldehyde 
PMN Polymorphonuclear leukocytes 
RA Renal artery 
RCCA Right common carotid artery 
ROI Regions of interest  
ROS Reactive oxygen species 
RT Room temperature  
SAC Stent assisted coiling 
SAH Subarachnoid hemorrhage 
SD Standard deviation  
SDS Sodium dodecyl sulfate 
SMC Smooth muscle cell 
SNPs Single-nucleotide polymorphisms 
STASH Simvastatin in aneurysmal subarachnoid hemorrhage 
TdT Terminal transferase 
TLR Toll-like receptor 
TNF-  Tumor necrosis factor-alpha 
TOF-MRI Time-of-flight MRI 
TUNEL TdT-mediated dUTP biotin nick end labeling technique 
TXR Standard Texas Red 
UCAS Unruptured cerebral aneurysm study of Japan 
WEB Woven EndoBridge 
WFNS World Federation of Neurological Surgeons 
WL White light 
WSS Wall shear stress 
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Abstract 

Abstract 

Background and Purpose: Subarachnoid hemorrhage attributable to saccular in-
tracranial aneurysm (IA) rupture is a devastating disease leading to stroke, perma-
nent neurological damage and death. Despite rapid advances in the development 
of endovascular treatment (EVT), complete and long lasting IA occlusion remains 
a challenge, especially in complexly shaped and large-sized aneurysms. Intralu-
minal thrombus induced by EVT may recanalize. The biological mechanisms pre-
disposing IA to recanalize and grow are not yet fully understood, and the role of 
mural cell loss in these processes remains unclear. To elucidate these processes, 
animal models featuring complex aneurysm architecture and aneurysm models 
with different wall conditions (such as mural cell loss) are needed. 
 
Materials and Methods: Complex bilobular, bisaccular and broad-neck venous 
pouch aneurysms were microsurgically formed at artificially created bifurcations 
of both common carotid arteries in New Zealand rabbits. Sidewall aneurysms were 
microsurgically created on the abdominal aorta in Wistar rats. Some sidewall an-
eurysms were decellularized with sodium dodecyl sulfate. Thrombosis was in-
duced using direct injection of a fibrin polymer into the aneurysm. CM-Dil-la-
beled syngeneic smooth muscle cells were injected into fibrin embolized aneu-
rysms. The procedures were followed up with two-dimensional intra-arterial digi-
tal subtraction angiography, contrast-enhanced serial magnetic resonance angio-
graphies, endoscopy, optical projection tomography, histology and immunohisto-
chemistry. 
 
Results: Aneurysm and parent vessel patency of large aneurysms with complex 
angioarchitecture was 90% at one month and 86% at one year follow-up in the bi-
furcation rabbit model. Perioperative and one month postoperative mortality and 
morbidity were 0% and 9%. Mean operation time in the rat model was less than 
one hour and aneurysm dimensions proved to be highly standardized. Significant 
growth, dilatation or rupture of the experimental aneurysms was not observed, 
with a high overall patency rate of 86% at three week follow-up. Combined sur-
gery-related mortality and morbidity was 9%. Decellularized aneurysms demon-
strated a heterogeneous pattern of thrombosis, thrombus recanalization and 
growth, with ruptures in the sidewall rat model. Aneurysms with intraluminal local 
cell replacement at the time of thrombosis developed better neointima, showed 
less recurrence or growth and no ruptures. Growing and ruptured aneurysms 
demonstrated marked adventitial fibrosis and inflammation, complete wall disrup-
tion and increased neutrophil accumulation in unorganized luminal thrombus.  
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Conclusions: Creation of complex venous pouch bifurcation aneurysms in the 
rabbit is feasible, with low morbidity, mortality and high short-term and long-term 
aneurysm patency. They represent a promising approach for in vivo animal testing 
of novel endovascular therapies. The sidewall aneurysm rat model is a quick and 
consistent method to create standardized aneurysms. Aneurysms missing mural 
cells are incapable of organizing a luminal thrombus, leading to aneurysm re-
canalization and increased inflammatory reactions. These, in turn, result in severe 
wall degeneration, aneurysm growth and eventual rupture. The results of the pre-
sented studies suggest that the biologically active luminal thrombus drives the 
healing process towards destructive wall remodeling and aneurysm rupture. Local 
smooth muscle cell transplantation compensates for mural cell loss and reduces re-
currence, growth and rupture rate in a sidewall aneurysm rat model.
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Introduction 

1 Introduction 

Rupture of an intracranial aneurysm (IA) causes subarachnoid hemorrhage (SAH), 
a life-threatening condition leading to stroke, permanent neurological damage and 
death. In Finland and Switzerland, an estimated 170, 000 Finns and 250, 000 
Swiss are harboring IAs and about 1000 Finnish and 700 Swiss patients suffer 
from SAH every year.1, 2 The disease has significant socioeconomic impact as 
SAH often affects relatively young patients. The number of years of potential life 
lost is comparable with that of ischemic stroke and intracranial hemorrhage.3 
Thanks to major improvements in surgical techniques, diagnosis and interven-
tional treatment, the average case fatality rates for SAH have decreased by 17% 
over the last three decades.4, 5 The overall case fatality rate shows regional differ-
ences and remains around 40-50%.5, 6 

Due to the increased use of computed tomography (CT) and magnetic reso-
nance imaging (MRI), an increasing number of incidental unruptured IAs are be-
ing diagnosed. Many of these IAs never rupture during the person’s lifetime, and 
specific indicators to identify aneurysms that could rupture are lacking. Since 
prophylactic treatment to prevent rupture is associated with significant risks7, 8 the 
decision to treat represents a dilemma for the surgeon: do the risks of preventive 
treatment outweigh the risk of death or severe disability through spontaneous IA 
rupture. Size and location of the IA, patient’s age and gender, environmental and 
genetic factors, hemodynamics and morphological parameters of the IA are in-
cluded in an educated guess about the risk of rupture. 

The rupture of an IA and subsequent SAH can be prevented with either micro-
surgical clipping of the IA neck or endovascular occlusion of the IA lumen. The 
less invasive endovascular treatment (coiling) of small narrow-necked cerebral an-
eurysms has been shown to be associated with slightly lower morbidity than neu-
rosurgical clipping, especially in the posterior circulation.9, 10 However, disap-
pointing long-term results with persisting neck remnants, unacceptably high rates 
of aneurysm recanalization and late aneurysm rerupture have been observed fol-
lowing endovascular treatment in large clinical trials.11, 12 Aneurysm recurrence is 
a significant clinical problem that occurs in approximately 20-35% of patients and 
necessitates retreatment in half of reopened IA.10, 12-17 The mechanisms underlying 
reopening are poorly understood. Most of the proposed concepts for IA reopening 
and elaborate EVT approaches are focused on the visible IA lumen. 

Far too little attention has been paid to the condition of the IA wall or the bio-
logical mechanisms involved in IA wall remodeling, intraluminal thrombus for-
mation and tissue response to EVT materials. This is not least attributable to the 
lack of animal models that allow both assessment of biological responses induced 
by embolization devices and evaluation of mechanisms of IA growth and rupture. 
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Today’s animal models can only be used to evaluate either induction, growth, and 
rupture of IA, or to test the technical proficiency of endovascular devices. Stand-
ardized aneurysm models for multicenter preclinical trials are needed. Most of the 
current EVT modalities focus on the visible IA lumen. 

There is a growing body of evidence suggesting that the IA wall itself holds 
the balance between “rupture prone” and “stable” IA conditions. A key event be-
lieved to lead to wall degeneration and eventual rupture of the IA wall is the loss 
of mural cells, which reduces the capacity of the IA wall for maintenance and re-
pair of the wall matrix.18 Extensive studies are needed to unravel the underlying 
mechanisms leading to particular IA wall conditions and the chronological se-
quences from “repair and maintenance” to ‘‘degradation and destruction’’. In-
sights into these mechanisms may then lead to the development of highly specific 
imaging modalities that could identify the aneurysm wall condition, enable the es-
timation of individual IA’s rupture risk, predict long-term success of EVT and 
help establish new therapeutic approaches.  
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2 Review of the literature 

2.1 Intracranial aneurysm 

2.1.1 Epidemiology 
The prevalence of saccular intracranial aneurysms (IA) is estimated to be 2.3% in 
adults without risk factors for aneurysms.19 When adjusted for sex (50% men) and 
age (50 years), the overall prevalence is estimated to be 3.2% in a population with-
out comorbidity.20 Based on this data, an estimated 170, 000 Finns and 250, 000 
Swiss are living with IAs. In retrospective and prospective postmortem, angio-
graphic and magnetic resonance studies, prevalence ranges between 0.1% and 
8.4%19, 21-25, with the highest rate found in imaging studies using improved detec-
tion modalities (3-Tesla magnetic resonance angiography [MRA]).24 

The percentage of IA, which are acquired lesions, is lower in men and in-
creases steadily after the third decade of life.19, 20 Most intracranial aneurysms are 
saccular in shape (>95%) and located in the anterior circulation (>80%), predomi-
nantly on the circle of Willis.26-29 Multiple intracranial aneurysms (most often two 
or three; in one rare case, 13 aneurysms were found arising from one main   
branch30) are frequently (30%) found in adult patients harboring IA.31-34  

2.1.2 Formation and rupture 
The exact pathogenesis of IA formation and rupture is unknown. There is a large 
body of evidence suggesting that both genetic and acquired factors play an im-
portant role in IA formation and rupture. Most ruptured aneurysms are attributed 
to modifiable risk factors.35, 36 However, many of these IAs never rupture during 
the person’s lifetime and specific indicators to identify aneurysms that will rupture 
are lacking. In some ways, risk factors for aneurysm formation differ from risk 
factors for rupture. 

2.1.2.1 Size and location 
IA size is an independent predictor for rupture. In the prospective arm of the Inter-
national study of unruptured intracranial aneurysms (ISUA), a five-year cumula-
tive rupture rate of 0% for patients without prior subarachnoid hemorrhage in an-
terior circulation aneurysms of less than 7 mm in size was demonstrated. The risk 
of rupture for aneurysms smaller than 5 mm presented in the Unruptured cerebral 
aneurysm study of Japan (UCAS) was 0.36% per year37, which was in line with 
another Japanese prospective study on Small unruptured intracranial aneurysms 
(SUAVe study; 0.34% per year). Based on these figures, preventive treatment is 
rarely justified. However, the ISUA and UCAS data stands in contrast with other 
series34, 38-41 as well as clinical experience that shows many aneurysms do rupture 
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more frequently below this threshold. The incidence of de-novo IA found in rou-
tine follow up screening is low (4.4%), but the rupture risk (14.5% over five years) 
is much higher than the risk of small-sized IA reported in ISUA.39, 42 A proposed 
future multicenter clinical trial may provide evidence in favor of, or against the 
preventive treatment of unruptured aneurysms.43 

Location seems to be an independent risk factor for aneurysm rupture. Signifi-
cant association with the risk of rupture was found in aneurysms in the anterior 37 
or posterior37, 42 circulation and seems to be linked to aneurysm size (anterior cir-
culation IA tend to rupture at a smaller size).37, 38 

2.1.2.2 Morphological parameters 
The study of IA morphology may allow conclusion on inner wall remodeling pro-
cesses and has been linked to aneurysm rupture. Higher IA fundus/neck aspect ra-
tio (with positive correlation of high ratios44), shape37, and secondary pouches45 

were found to be associated with rupture. Multiloculated aneurysms are common, 
with 57% ruptured and 27% unruptured aneurysms found in an autopsy study.34 
Factors such as the development of unbalanced contact constraints between the IA 
and its periadventitial environment have been proposed as additional predictors of 
IA rupture risk.46 Based on retrospective data, it has been postulated that shape is 
more indicative of increased risk than size.47, 48 

Hemodynamic parameters49-51 and the configuration of the aneurysm in rela-
tion to its parent arteries52 are other known factors that may influence IA rupture 
risk assessment. In a retrospective and prospective study, the IA size-ratio (IA size 
divided by parent artery diameter) correlated strongly with IA rupture status.53 
Evaluation of six morphological and seven hemodynamic parameters for signifi-
cance with respect to rupture, revealed that hemodynamics is as important as mor-
phology.51 It has been reported that ruptured aneurysms have a lower wall shear 
stress (WSS) and higher oscillatory shear index (OSI)50, and that in vivo thin-
walled regions of unruptured cerebral aneurysms colocalize with low WSS.49 Uni-
variate analyses in middle cerebral artery IA showed that the aspect ratio, WSS, 
normalized WSS, OSI and WSS gradient are significant parameters. In multivari-
ate analyses, however, only lower WSS was significantly associated with rupture 
status.51 Computational fluid dynamics (CFD) may have great future potential for 
individual IA rupture risk assessment. However, the assumptions of boundary con-
ditions for computational simulations might make results questionable, and data 
derived from CFD studies must be interpreted with extreme caution.54 

In light of this nonambiguous relationship between morphological factors and 
risk of IA rupture, these parameters should be considered in addition to aneurysm 
size in IA rupture risk assessment. Patients with documented growth55, prior his-
tory of SAH56, and multiple IA34, 57 (with the largest and more proximal IA most 
often rupturing first), have a higher risk for IA rupture, but only when confound-
ing factors are not taken into account.42, 57 Growth of IAs of all sizes are associated 
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with a higher risk of rupture.40 Multiple small aneurysms have a higher risk of 
growth when compared to single aneurysms, but single IAs demonstrated higher 
growth rates.58 

2.1.2.3 Age, gender, and environmental factors 
Female sex, patient’s age, cigarette smoking, history of hypertension and alcohol 
consumption are robust risk factors associated with IA rupture. Together, the mod-
ifiable influences of smoking, hypertension and heavy alcohol consumption ac-
count for > 80% of all IA ruptures.35, 36 These three variables may change through-
out the life span, and represent potential confounding factors for less common risk 
factors59. The proposed protective effects of hormone replacement therapy, oral 
contraceptives, white ethnicity, lean body mass index (BMI), hypercholesterole-
mia and diabetes remain uncertain.35, 36, 60 

Estrogen play a central role in vascular biology. Studies have long indicated 
that hormone replacement therapies are associated with reduced risk of IA rup-
ture61, that prevalence of IA is higher in older women20, and that earlier age at 
menopause tends to be associated with the presence of IA.62 Furthermore, estrogen 
deficiency increased the susceptibility of rats to IA formation.63, 64 Estrogen has 
therefore been implicated in aneurysm formation and rupture but the exact role of 
female hormone levels in the pathogenesis remains unclear. Pregnancy and deliv-
ery do not seem to increase the risk of IA rupture.65 
In case-control (but not in longitudinal) studies, hypercholesterolemia was demon-
strated to lower the risk of IA rupture.60, 66, 67This data is in line with findings for 
intracerebral hemorrhage68, but contradict studies that demonstrated increased 
risk69, and studies demonstrating no effect on risk of IA rupture.37 Whether the ef-
fect of hypercholesterolemia is influenced by associated use of statins remains un-
known.66, 70 Data for IA rupture in association with lean BMI and rigorous physi-
cal activity is inconsistent.60 Regular physical exercise seems to decrease the risk 
of harboring an IA.71 

Several case-control studies demonstrated a significant risk reduction of IA 
rupture for patients with diabetes mellitus.60, 67, 69, 70 The biological basis for these 
findings is unknown. It has been hypothesized that patients with diabetes may die 
of other reasons before developing SAH or that altered lifestyle factors and contin-
uous medical care reduce the risk of SAH.60, 70 

2.1.2.4 Family history of ruptured IA 
Familial predisposition is an important nonmodifiable risk factor. Approximately 
10% of patients suffering from ruptured IA have a positive family history.72 The 
prevalence of IA in individuals with a first-degree relative73 (4%) is just above that 
of the general population, but is doubled for patients with two or more affected 
family members74. Patients with familial predisposition are more likely to have 
multiple aneurysms; most likely in the middle cerebral artery territory.42, 75 The 
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proportion of larger aneurysms (>10mm), younger age at the time of rupture and 
female gender tends to be higher than in sporadic IA rupture.73, 76 

2.1.2.5 Associated conditions and genetics 
IA associated disorders including autosomal dominant polycystic kidney disease, 
fibromuscular dysplasia, Ehlers–Danlos syndrome type IV, and arteriovenous mal-
formations are rare risk factors for IA rupture. Whether Marfan’s syndrome is as-
sociate with increased prevalence of IA is highly controversial.77, 78 The most 
common disease associated with IA (0.3% of all IA patients) is autosomal domi-
nant polycystic kidney disease, with an estimated 4% to 40% harboring intracra-
nial aneurysm (10% to 30% multiple aneurysms).29 

Low estimates of SAH heritability (41%) in an extensive twin study led to the 
conclusion that SAH is mainly of nongenetic origin, and familial SAHs can be at-
tributed largely to environmental risk factors.79 The significant role of environ-
mental influences on IA rupture can be partly explained by confounding risk fac-
tors such as smoking, high blood pressure, and heavy alcohol consumption. Famil-
ial clustering of these circumstances may contribute to the high percentages of 
SAH risk reported in patients with one affected first-degree relative. Environmen-
tal factors, however, are possibly related to lifestyle practices such as alcohol con-
sumption or smoking.59 Screening of patients with two first-degree relatives is still 
recommended.20 

Despite the finding that familial SAH is more strongly determined by modifia-
ble risk factors than genetic background79 there is a large body of evidence for sig-
nificant genetic contribution to IA pathogenesis. There is no single specific gene 
but rather several genetic loci associated with IA formation. Candidate gene asso-
ciation studies (linkage studies of familial cases or candidate genes examination in 
case-control studies) and more recently Genome-wide association studies 
(GWAS) revealed genetic loci with multiple pathophysiological mechanisms 
mainly involved in vascular endothelial and smooth muscle cell (SMC) homeosta-
sis and extracellular matrix (ECM) maintenance.80-82 Linkage studies in families 
and sib pairs with IA revealed several loci with association to IA formation but 
only few have been replicated in different populations and thus far have not pro-
duced robustly replicable loci.80, 83 GWAS is a most promising approach that al-
lows to focus on genetic single-nuecleotide polymorphisms (SNPs) in a large pop-
ulation cohort from different populations to find variants associated with IA for-
mation. To date the strongest association with IA are found for SNPs on chromo-
some 9 within the cyclin-dependent kinase gene, chromosome 8 near the SOX17 
transcriptor gene, and chromosome 4 near the endothelin type A receptor gene 
(EDNRA).82 

The first GWAS of IA found common associated SNPs on chromosome 2q, 
8q, and 9p.84 In this GWAS of Finnish, Dutch and Japanese cohorts, the authors 
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found that the genes on 9p with the strongest association encode for cyclin-de-
pendent kinase inhibitors that regulate SMC proliferation and apoptosis.85, 86 The 
locus 9p21.3 has a strong association to both IA and abdominal aoartic aneurysm 
(AAA) formation.85 The Associated SNPs on 8q most likely act via SOX17, a box 
transcription factor family, which is required for both endothelial formation and 
maintenance.87, 88 A second GWAS, with nearly three times as many subjects (Eu-
ropean and Japanese cohorts) as the initial study, confirmed the two loci on 8q and 
9p and identified three new risk loci on chromosome 10q, 13q, and 18q89.  The 
strongest of the newly identified loci was found on 18q and the gene identified 
within the region is involved the in cell cycle progression. Further analysis using 
the two Japanese replication cohorts from the second GWAS revealed SNPs on 
chromosome 4q coding for the EDNRA.90 SNPs near the EDNRA gene, which is 
involve in endothelin signalling and is activated at the site of vascular injury and 
modulates vasoconstriction and vasodilatation, was confirmed in another GWAS 
in a Japanese population.91 Despite the importance of genetic association with IA 
for future clinical risk profiling, identification of new biological pathways, and 
drug development one need to keep in mind that all identified loci explain only a 
few percentages of the overall risk of IA formation.89 

 

2.1.3 Pathobiology of IA rupture 

2.1.3.1 Aneurysm wall 
Normal cerebral arteries are composed of three distinct layers, the intima, media 
and adventitia. The intima consists of a small amount of collagenous connective 
tissue and is covered by a layer of endothelial cells. An internal elastic lamina 
(IEL) composed of tropoelastin molecules cross-linked by lysyl oxidase92 provides 
mechanical strength93 and separates the intima from the media. The media is com-
prised of closely packed layers of SMC, embedded in collagenous bundles and a 
few elastic fibers.94 In comparison with extracranial arteries, the external elastic 
lamina is absent and the adventitia much thinner. The wall thickness of intracra-
nial arteries of the Circle of Willis is 0.5 to 0.6 mm95 and endothelial lined chan-
nels (vaso vasorum) are present in proximal segments of cerebral arteries.96 The 
so-called “medial defects of Forbs” or medial gaps97 (lacking the tunica media and 
frequently found at the lateral angle or the apex of arterial bifurcation), were 
thought to be congenital defects and sites of locus minoris resistentiae and there-
fore predisposed to aneurysm formation. However, it soon became obvious that 
these defects cannot be the major etiologic factor for saccular IA. Animal and au-
topsy studies revealed that IA develop close to, rather than in the medial defects.98 
The collagen fibers at the medial defects are believed to act as an anchor for the 
adjacent smooth muscle of the media93 and actually provide more stability to the 
vessel wall than causing weakness.99 
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In contrast to the normal cerebral artery wall, the IA lacks clearly defined his-
tological layers. The endothelial cell layer is often disrupted with smaller intercel-
lular gaps or is complete absent, leaving the inner surface of the aneurysm covered 
with blood cells and fibrin clot.100 The IEL disappears at the level of the neck101 
and SMC migrate into the intima, proliferate and cause intimal thickening (myo-
intimal hyperplasia). The muscular layer is either composed of a thick myointima 
hyperplasia-like layer with many disorganized SMC or an almost decellularized, 
very thin and hyalinized wall.100, 102 The muscular layer demonstrates various de-
grees of connective tissue deposits, intramural bleeding, hemosiderin deposits and 
inflammatory cell infiltration.100, 102, 103 The adventitia mostly remains unaltered.101 

Comparison of ruptured and unruptured aneurysms harvested during aneurysm 
surgery revealed that disruption of the endothelial cell layer, inflammatory cell in-
filtration, degeneration of the wall matrix (breakdown of collagen), partial hyalini-
zation of the wall and loss of mural cells are characteristics associated with rup-
ture.100, 102 However, degeneration and inflammation of the IA wall are also pre-
sent in unruptured IA suggesting that the aneurysm wall is in a constant process of 
remodeling (maintenance and repair). 

Frösen et al. identified four different wall types (type A to D) that most likely 
reflect consecutive stages of wall remodeling or wall degeneration that eventually 
lead to aneurysm rupture.102 Type A aneurysms occur more frequently in younger 
patients and consist of an organized endothelialized wall with linearly arranged 
layers of SMC. Type B aneurysms are composed of a thickened wall with disor-
ganized SMC. Aneurysms with a hypocellular wall with either myointimal hyper-
plasia or organizing thrombus (Type C) has a higher likelihood of rupture than 
Type A or B. Type D aneurysms demonstrate extremely thin thrombosis-lined hy-
pocellular walls and reveal a 100% positive rupture status. Noninvasive identifica-
tion of the aneurysm wall type would not only allow a precise prediction of rup-
ture risk, but also aid in tailoring (based on the stage of wall degeneration) future 
therapeutic interventions. 

2.1.3.2 Mural cell loss and the role of oxidative stress 
Injury to the arterial wall induces SMC to proliferate, migrate to the intima and to 
synthesize new matrix.104 This “repair process” of damaged artery walls also 
seems to play an important role in the IA wall homeostatic balance.105 SMC un-
dergo phenotypic modulation, from differentiated spindle-like cells expressing 
mainly contractile proteins (smooth muscle -actin) to proliferative pro-matrix-re-
modeling cells that dissociate from each other (spiderlike cells) and express in-
flammatory factors and matrix metalloproteinases (MMP).106, 107 This phenotypic 
modulation from contractile to proliferative phenotype is an early event in IA for-
mation and appears to be strongly related to the wall remodeling process.105, 107 
The exact mechanisms that eventually trigger morphological wall changes      pro-
ducing a rupture-prone wall condition remain unknown. A key event believed to 
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lead to wall degeneration and eventual rupture of the IA wall is the loss of mural 
cells, which is synonymous with loss of repair processes.18 In support of the theory 
that SMC loss leads to decreased capacity for IA wall adaption and repair, gene 
expression analysis studies demonstrated ruptured IA to be associated with dis-
turbance in cell homeostasis108 and pathways involved in wounding and defense 
response (intima formation mediated by SMC104). 

Inflammation plays a pivotal role in aneurysm formation, growth and rupture. 
Loss of mural cell is a histological hallmark of ruptured IA but the cause of cell 
death remains unexplained.100, 102 Proinflammatory mediators109, 110, humoral im-
mune responses111-114, proteolytic enzymes, oxidative stress115-117 and local hy-
poxia118 are all contribute to the loss of SMCs. Both programmed (apoptosis), and 
uncontrolled cell death (necrosis) have been proposed as potential mechanisms of 
cell death.102, 115, 118-121 Three smaller series reported apoptotic cell death by means 
of terminal transferase (TdT)-mediated dUTP biotin nick end labeling technique 
(TUNEL) that was associated with IA wall rupture.115, 119, 120 These series stand in 
contrast with two larger series showing an insignificant difference in the number 
of TUNEL-positive IA wall cells in ruptured and unruptured IA.102, 112 TUNEL 
staining is not a method designed specifically for apoptosis, but it detects DNA 
fragmentation resulting from apoptotic cascade and may also label cells that have 
suffered severe DNA damage (cells undergoing necrosis). Cysteine-dependent as-
partate-directed proteases (caspases) are a family of cysteine proteases that play an 
essential role in apoptosis and are considered important in detecting programmed 
cell death. Caspases are found in the IA wall in addition to TUNEL staining.115, 121 
Given the large amount of cell loss in comparison with the amount of cells with 
positive staining for apoptosis, it seems likely that uncontrolled cell death also 
plays an important role in mural cell loss. Notably, areas resembling fibrinoid ne-
crosis are often seen in IA wall regions with few remaining cells.18 

The apoptotic pathways can be divided into “extrinsic” (death-receptor path-
way, activation of caspase-8) and “intrinsic” (Cytochrome c pathway, activation of 
caspase-9). Both pathways lead to activation of caspase-3 which initiates cell 
apoptosis. Laaksamo et al. found that cell death in IA walls is mainly activated via 
the intrinsic pathway.115 Furthermore, they demonstrated that expression of heme-
oxygenase-1 (detoxification enzyme and marker for oxidative stress) is associated 
with IA wall degeneration and rupture, suggesting that high oxidative stress is 
most likely responsible for activation of the intrinsic apoptotic pathway. In the 
later study hemeoxygenase-1 expression was associated with inflammatory cells. 
However, the source of oxidative stress is not only from inflammatory cells but is 
believed to be multifactorial, including luminal thrombus122, remnants of apoptotic 
and necrotic cells123, inducible nitric oxide synthase (produces reactive oxygen 
species)116, 117, oxidized low-density protein (can additionally trigger both apopto-
sis and necrosis)124 and local hypoxia (occlusion of vasa vasorum).118 
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Activated gene expression profiles of the intima and media of cerebral arterial 
walls in rats using laser-microdissection techniques revealed close relation of in-
flammation, oxidative stress and apotosis with aneurysm formation and progres-
sion.125 Apoptotic changes of SMC were found in pre and early stages of IA for-
mation indicating an association between apoptosis of medial SMC and formation 
of IA.126 Inflammatory cytokines have been shown to induce SMC death during 
IA formation.127 However, at a later stage of IA degeneration and rupture inflam-
matory cell-derived cytokines do not seem to play a significant role in pro-
grammed cell death.115 

Study of cultured SMC from human IA walls revealed great variability in 
growth capacity among different patients.128 This may indicate genotype differ-
ences in SMC growth, apoptosis, and survival characteristics. Loci with genetic 
polymorphism that associates with IA formation or IA rupture has been investi-
gated using large genome-wide association studies (GWAS).80-82, 85, 89, 91 Among 
the identified loci there is one with a strong association signal originating from tu-
mor suppressor genes (encode for cyclin-dependent kinase inhibitor [CDKN]) reg-
ulating SMC proliferation and apoptosis.85, 86 In a vascular injury model CDKN2B 
knock-out mice demonstrated reduced neointimal lesions and larger aortic aneu-
rysms due to increased SMC apoptosis.86 These findings corroborate the hypothe-
sis that genetic polymorphisms affect survival and function of SMCs and may pre-
dispose to sIA formation. 

2.1.3.3 The role of inflammation 
Inflammatory cells including macrophages, T-cells, polymorphonuclear leuko-
cytes (PMN), natural killer cells, and mast cells have been detected in the IA wall. 
Macrophages are a major source of MMP and are believed to play a key role in 
vascular remodeling.129, 130 In mice models of intracranial aneurysm, it has been 
shown that the majority of leukocytes are macrophages, and mice with clodronate 
liposome-induced macrophage depletion or mice lacking monocyte chemotactic 
protein-1 (MCP-1; chemotactic factor for macrophages) have significantly fewer 
aneurysms.129, 130 Transcription factors Ets-1 and nuclear factor-kappa beta (NF-

) were found to modulate expression of MMP and MCP-1 (among many oth-
ers), and experimental aneurysm formation can be reduced by inhibiting these fac-
tors.131 The largest genome-wide gene expression study comparing the transcrip-
tome of ruptured and unruptured IAs in the same anatomical location found that 
NF-  and Ets transcription factor binding sites were significantly enriched among 
the upregulated genes in ruptured IA walls.108 Simultaneous inhibition of Ets and 
NF- , with the use of chimeric decoy oligodeoxynucleotides, reduced expression 
of MCP-1 and macrophage infiltration, decreased IA size, thickened IA wall and 
restored decreased collagen biosynthesis of pre-existing IAs.132 The majority of 
macrophages in human IA walls are CD163-positive.102 CD163 is a hemoglobin 
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scavenger receptor that is expressed in macrophages involved in anti-oxidative de-
fense which dampens and resolves inflammation. Recently, mast cells have been 
implicated in the pathogenesis of IA wall inflammation. Inhibition of mast cell 
degranulation reduced the inflammatory response and inhibited the size and me-
dial thinning of experimental IA walls.133 

Antibodies and complement are found in most human IA wall matrix and are 
bound to mural cells.111-114 Tulamo et al. demonstrated that complement activation 
(studied by immunostaining for the membrane attack complex) is associated with 
IA wall degeneration and rupture.112 Furthermore, the complement system was 
found to be activated via the classical pathway with an alternative pathway ampli-
fication.113, 114 Based on the elucidated profile of complement components and the 
association of C5b-9 with lipids in the extracellular matrix, they hypothesized that 
the inflammatory process is a chronic rather than an acute targeted inflammatory 
reaction.114 Complement activation was found mainly in the outer media-repre-
senting regions (mostly in the matrix and cellular debris in decellularized areas), 
which suggests that complement activation may be a reaction and not a mediator 
of mural cell loss processes. 

Interleukin 1beta (IL-1 ), interleukin 6 and tumor necrosis factor-alpha (TNF-
) are important cytokines involved in aneurysm wall inflammation.110, 134 Mori-

waki et al. demonstrated that IL-1  deficient mice exhibit delayed aneurysm pro-
gression compared with wild-type mice.110 The data further indicates that IL-1  
promotes SMC apoptosis which may further enhance aneurysm formation. TNF-  
has both proapoptotic and proinflammatory action in IA wall. It has been reported 
that higher levels of TNF-  correlate with the expression of intracellular calcium 
release channels, Toll-like receptors and reduction of tissue inhibitor of metallo-
proteinase-1 result in higher MMP activity in the IA wall.109 Frösen et al. demon-
strated that the expression of receptors for transforming growth factor beta (medi-
ates matrix synthesis135), vascular endothelial growth factor (mediates SMC mi-
gration136), and basic fibroblast growth factor (stimulates myointimal hyper-
plasia137) are involved in IA wall remodeling.138 It has been hypothesized that en-
dothelial nitric oxide synthase (eNOS) protects arterial walls from inflammation 
through reduction of hemodynamic stress. Aoki et al. demonstrated that deficiency 
of eNOS can be compensated by neuronal nitric oxide synthase (nNOS).139 Hence, 
IA formation was similar in eNOS and wild-type mice. However, eNOS and 
nNOS-deficient mice exhibited increased incidence of IA formation with in-
creased macrophage infiltration.139 

2.1.3.4 The role of luminal thrombosis 
Luminal thrombosis is frequently seen in histopathological series of IA walls.100, 

102, 103 Endothelial injury is believed to be one of the earliest events in aneurysm 
formation and increased damage of the endothelial layer is associated with      rup-
ture.100, 102 The endothelial cells provide a nonthrombogenic surface. There is an 
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increase in reactive oxygen species (ROS) in dysfunctional endothelial cells, 
which (among other mechanisms) impair synthesis of nitric oxide (NO) and is 
where pathologic quantities of von Willebrand factor are expressed. Extensive 
damage leads to loss of endothelial cells and exposition of the underlying throm-
bogenic surface. 

Ideally, the intraluminal thrombus is organized by SMC, myofibroblasts or fi-
broblasts that synthesize collagen and finally transform the thrombus into stable 
fibrotic scar tissue. In an experimental aneurysm model it has been shown that the 
cells organizing the thrombus mainly originate from the aneurysm wall.140 Alt-
hough luminal thrombus can serve as a scaffold for SMC migration, proliferation, 
and growth of intimal hyperplasia, the thrombus may also affect the aneurysm 
wall detrimentally which can shift the balance from “healing” towards “destruc-
tion”. 

It has been shown in aortic aneurysms that leukocytes, platelets and erythro-
cytes get trapped in the fibrin network of a fresh thrombus. Breakdown of red 
blood cells releases free oxidant hemoglobin and heme-iron which increases the 
toxicity of ROS derived from platelets and leukocytes.122 Red blood cell hemag-
glutination is further responsible for tissue-plasminogen activator and plasmino-
gen retention involved in the postponed progressive fibrinolysis.141 The cytotoxic 
compounds (including iron) released from the thrombus can diffuse in the nearby 
IA wall. Accumulation of heme deposits and iron might induce inflammatory cell 
infiltration into the IA wall.18 In AAA, release of matrix-degrading proteases 
(MMP-8 and MMP-9) and highly active peroxidases by neutrophils leads to in-
creased oxidative stress and chronic proteolytic injury that degrades the wall.141, 142 
Furthermore, PMNs store and release leukocyte elastase which impairs anchorage 
of mesenchymal cells to the fibrin matrix and therefore prevents cellular re-coloni-
zation142. Similar to these findings in AAA, it seems likely that neutrophils cause 
chronic proteolytic injury and damage to mural cells due to increased oxidative 
stress, as outlined above (2.1.4.2 Mural cell loss and the role of oxidative stress). 
Degranulation of thrombocytes leads to release of thrombocyte-derived growth 
factor that modulates mural cells (cell survival, proliferation and matrix synthe-
sis).138 In addition, angiogenic growth factors increase permeability of the endo-
thelium and subsequent transendothelial diffusion of lipids, immunoglobulin and 
other plasma proteins to the IA wall. These processes are likely to enhance dam-
age to mural cells and increase inflammation.18 In addition, the luminal thrombus 
may induce local hypoxia and reduce diffusion of nutrients to the IA wall.118 

Acute thrombus induction has been linked to mural destabilization not only in 
experimental aneurysms143, 144 but also in clinical settings after application of flow 
diverters for IA occlusion.145, 146 These studies consistently found large numbers of 
inflammatory cells and loss of mural cells in destabilized aneurysm wall segments 
after rapid thrombosis.143, 144, 146 In a swine sidewall aneurysm model it has been 

25



Review of the literature 

 

shown that 50% of small-neck aneurysm undergo fast thrombosis and aneurysm 
rupture (n = 4), while wide-neck aneurysm undergo stepwise thrombosis which re-
sults in stable aneurysms (n = 6).144 

In flow-diverter treatment, 100% of the aneurysm volume is filled with throm-
bus. In a Guglielmi detachable coil embolization, approximately 70% of the aneu-
rysm volume is filled with thrombus.147-149 A recent meta-analysis found IA recur-
rence rates of 21% after coil embolization.150 The risk of growth and rupture of re-
current aneurysms after coil embolization makes retreatment necessary in approxi-
mately 10% of cases. Recanalization has been linked to a packing volume with 
higher recurrence rates in aneurysms, with over 80% of intraluminal thrombus.147, 

151-153 In large and giant aneurysms, coil packing density is particularly poor, re-
sulting in >95% of intraluminal thrombus and recurrence rates of >50%.154-160 Par-
tial coil occlusion of the aneurysm lumen not only contributes to a higher rate of 
aneurysm recurrence, but also re-rupture.158 Presence of intraluminal thrombosis 
itself is a possible risk factor for reopening of a coiled IA.160, 161 

Taken together, it seems likely that the thrombolytic processes and failed 
thrombus organization are responsible for IA recurrence after endovascular treat-
ment. We hypothesize that the effect of the luminal thrombus on the IA wall and 
the IA wall condition at the time of thrombosis are the determining points for 
thrombus organization into scar tissue (neointima formation by infiltration of 
SMC or myofibroblasts) or continuous remodeling (driven by inflammatory pro-
cesses) of the wall which is primarily destructive.  

2.1.4 Subarachnoid hemorrhage 
Subarachnoid hemorrhage (SAH) due to intracranial aneurysm rupture is a life-
threatening condition leading to stroke, permanent neurological damage and death. 
SAH accounts for 5% to 10% of all strokes, with an incidence of 6-11 per 100,000 
(range 2 in China to 22.5 in Finland)2, 162, 163 in most populations. Incidence in-
creases with age and for the female sex (1.2 times162). Blacks and Hispanics also 
seem to have a higher proportion (2.1 times) than men and Whites.164-166 For un-
known reasons, (and not explained by a higher prevalence of unruptured IA), the 
incidence in Finland, Northern Sweden and Japan is as high as 16 to 22.5 per 
100,000, indicating a higher risk for rupture.1, 163, 167 In Finland approximately 
1000, and in Switzerland approximately 700 patients suffer from SAH every 
year.1, 2 The disease has a significant socioeconomic impact. SAH often affects 
relatively young patients (mean age 55 years165), and the number of years of po-
tential life lost is comparable with ischemic stroke and intracranial hemorrhage.3 
Every second patient suffers permanent disability and the estimated lifetime cost is 
more than double that of an ischemic stroke.168 The minimal decreases in SAH in-
cidence (virtually no change in high income countries between 1970 and 2008169) 
between 1950 and 2005, and stable prevalence of IA might be explained by 
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changes in lifestyle and/or increased preventive treatment.20, 162 The proportional 
frequency in low to middle-income countries (7 per 100,000) is almost twice that 
of high-income countries (4 per 100,000).169 

2.1.4.1 Presentation, diagnosis, and grading 
Characteristically, patients report “the worst headache of their life” and may syn-
cope during SAH. Other frequent presenting signs include neck pain (meningis-
mus), drowsiness, coma, cranial nerve and other focal neurological deficits, vomit-
ing, increased blood pressure, seizure, ocular hemorrhage and history of sentinel 
headache. Patients presenting with sentinel headaches have a high risk of early re-
bleeding and must be treated with particular care.170  

The common practice for diagnostic evaluation of SAH including IA visuali-
zation is thin-cut non contrast enhanced CT scan (with potential subsequent com-
puted tomography angiography CT angiography [CTA]) and conventional digital 
subtraction angiography (DSA). A new-generation CT scan will reveal SAH in 
100% and 93% of cases within 12 and 24 hours after onset of symptoms.171 How-
ever, due to fast clearance of cerebrospinal fluid (CSF), sensitivity drops to 50% 
within one week.  MRI is not sensitive in the first two days but may accurately 
identify the rupture site in case of multiple IA.172 Patients with clinical suspicion 
and negative CT scan require lumbar puncture for cerebrospinal fluid analysis. 
Xanthochromia occurs twelve hours after SAH and persists up to two weeks.173 
Recent studies suggest that a lumbar puncture is not needed if the CT scan is per-
formed within six hours after onset of acute headache without atypical presenta-
tion.174, 175 Misdiagnosed patients may feel less ill at the time of presentation but 
are at higher risk of death and disability.173 

In patients with a negative CT scan but positive lumbar puncture, the chance 
of harboring IAs is high (>40%).176 In cryptogenic SAH (initial DSA negative but 
lumbar puncture positive SAH; 10-20% of all SAH177), perimesencephalic SAH 
may need no additional imaging. It is recommended to follow-up non-perimesen-
cephalic SAH more aggressively (DSA one and six week after index SAH).177 

Several grading systems are used to assess the patient’s clinical condition at the 
time of SAH and to predict outcome. The most widely used Hunt and Hess 
scale178 (based on the Botterell classification179) was originally meant to support 
decision-making regarding the timing of aneurysm treatment after SAH. An expert 
committee proposed the World Federation of Neurological Surgeons (WFNS) 
scale180 which is currently preferred as it is based on the Glasgow Coma Score 
(GCS) and the presence of focal neurological deficits.181 However, the Hunt and 
Hess scale has strong predictive power for outcome (compared to GCS and 
WFNS); and scores on the day of surgery have better prognostic values than those 
at admission.182  
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In 1980, Fisher et al. proposed a SAH bleeding scale based on CT characteris-
tics to predict the patient’s risk of developing delayed cerebral vasospasm. A sim-
ple alternative scale was proposed and has demonstrated superior inter- and in-
traobserver agreement in predicting symptomatic vasospasm.183 

2.1.4.2 Complications and outcome 
The most feared complication of SAH is rebleeding. The frequency of rebleeding 
is about 10%170 (range 1.7%184 to 17.3%185), and a clear association with poor 
prognosis has been documented.186 Risk factors are advanced age, larger aneurysm 
(>10 mm), premorbid hypertension, poor clinical grade at the time of admission 
and active bleeding demonstrated in CTA.187 The risk of rebleeding is highest 
within the first six hours.170, 185 This time frame provides a window for beneficial 
short-course antifibrinolytic therapy.188 The estimated risk of rebleeding of rup-
tured aneurysms is 4% in the first day, decreasing to 1% to 2% in the following 
weeks, and increasing up to 30% to 50% for the first three months.170 

Delayed cerebral vasospasm (DCVS) is another devastating complication as-
sociated with high mortality and morbidity. Cerebral artery vasoconstriction oc-
curs in 50% to 70% of patients between three and 12 days after SAH.189-191 De-
spite half a century of research, no effective treatment for DCVS has been found. 
Promising results from single center Phase 2a192 and multicenter dose-finding 
Phase 2b studies191 with Clazosentan (a selective endothlin A receptor antagonist) 
demonstrated significant reduction of angiographic vasospasm. However, they 
failed to demonstrate an effect on vasospasm-related morbidity, mortality or func-
tional outcome.190 The paradigm asserting that attenuation of vasospasm improves 
patient outcome was not supported, leading to increased attention for the early 
pathophysiological consequences of aneurysmal SAH. Although lower incidence 
of angiographic vasospasm does not correspond with better functional outcomes, 
angiographic vasospasm is not an epiphenomenon that does not contribute to poor 
outcome. Exploratory post-hoc analysis of the Phase 2b data revealed a strong as-
sociation between angiographic vasospasm and cerebral infarction.193 Efforts at re-
ducing vasospasm are still warranted and substances reducing vasospasm with 
fewer drug-related adverse events may lead to improved patient outcome in the fu-
ture. 

Other frequently encountered complications include seizures, acute or chronic 
hydrocephalus, intraparenchymal or subdural hematoma and non-vasospasm re-
lated early and delayed cerebral infarction. Most patients experience additional 
medical complications (40% severe complications resulting in increased morbidity 
and mortalityand prolonged hospital stay) as follows: fever, hyperglycemia, hyper-
tension, anemia, cardiac dysfunction, pulmonary edema (cardiogenic or neuro-
genic), pneumonia, sepsis, renal and hepatic dysfunction, gastrointestinal bleeding, 
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cardiac dysfunction, thrombocytopenia, deep venous thrombosis and electrolyte 
disturbances.194 

Average case fatality rates for SAH have been declining slightly4, 5 and out-
comes have improved during the past few decades, but overall case fatality is still 
almost 50%.5, 6 Early (21 days to one month) fatality due to SAH is higher in low 
to middle-income countries as compared to high-income countries169, presumably 
due to differences in patient management. Initial SAH contributes in most part to 
overall mortality (10% to 15% die before reaching the hospital and 25% within the 
first 24 hours after onset of SAH195) and partly explains the slow decrease despite 
improve management strategies. One third of survivors require lifelong care.6 One 
third of “good outcome” patients also suffer from cognitive deficits.196 

Aneurysmal SAH patients have a shortened life expectancy even if they re-
cover well from the initial SAH and IA occlusion.197 The increased risk of death 
(especially in younger age groups) that remains after the first three months is ex-
plained by increased risk for vascular diseases198 and cerebrovascular events.197 
Interestingly, patients with untreated unruptured IA have also above-average long-
term mortality (50%) compared with the general population. Men with treated un-
ruptured IA enjoy normal life expectancy while women show higher mortality 
(28% after clipping and 23% after coiling) as compared to a matched general pop-
ulation.199 After SAH, patients need long-term care not only to screen for de-novo 
aneurysms and to prevent further cardiovascular events, but also to provide sup-
port for physical and neuropsychological impairment. 

2.1.4.3 Treatment options 
The ultimate goal of treatment is to prevent rebleeding and to prevent and treat 
secondary complications caused by the initial SAH. Most recent updates on the 
management of aneurysmal subarachnoid hemorrhage can be found in the Ameri-
can Heart Association and European Stroke Organization guidelines for the man-
agement of Intracranial Aneurysms and Subarachnoid Haemorrhage.200-202 

Teaching status, larger hospital size and higher SAH caseload were associated 
with better outcomes and lower mortality rates in patients (especially those being 
clipped) with acute SAH. Therefore, low-volume hospitals (<10 aneurysmal SAH 
cases per year) may consider early transfer of patients to high-volume centers (>30 
aneurysmal SAH cases per year).203 IA obliteration should be performed as early 
as possible to reduce the rate of rebleeding. The international cooperative study on 
the timing of aneurysm surgery suggested that poor grade and elderly patients 
should not be operated on before day ten and good grade patients have improved 
outcome if treated within the first three days after SAH.26, 204 Outcome was worse 
if surgery was performed in the 7 to 10-day post-bleed interval. A randomized trial 
confirmed that patients undergoing early surgery have the best chances, and    pa-
tients with surgery on day four to seven, the worst.205 However, the best timing of 
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IA repair remains controversial. Today’s coil era makes timing of IA repair less of 
an issue (timing of endovascular occlusion seems not to affect procedural compli-
cations or 6-month outcomes).206 Current practices still support early treatment but 
also include IA occlusion (for patients eligible for treatment) between day four to 
ten after initial ictus. 

Determining whether clipping or coiling is performed should be a multidisci-
plinary decision. The multicenter International subarachnoid aneurysm trial 
(ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients 
demonstrated better one-year clinical outcomes; defined as survival without de-
pendency (absolute risk reduction of 7.4%).184 The survival benefit continued for 
at least seven years. It is important to acknowledge that only patients suitable for 
both endovascular and surgical management (22.4% of all study patients) were en-
rolled in ISAT and most of them were good grade patients (Hunt and Hess grade 1 
and 3; >90%) with mostly small (95%) aneurysms of the anterior circulation 
(93.7%).  ISAT results have often been extrapolated to other patients not included 
in the study. The barrow ruptured aneurysm prospective mono-center “intend to 
treat” trial (BRAT) compared the two treatment modalities and found that at one 
year after treatment, coil embolization (62.3% of randomized patients actually re-
ceived endovascular coil embolization) resulted in fewer poor outcomes than clip 
occlusion.207 At three years, patients assigned to coiling still showed a 5.8% favor-
able difference, although it was not significant.208 Both the BRAT and ISAT study 
demonstrated significantly lower rates of recurrence and retreatment after neuro-
surgical clipping and more common late rebleeding after endovascular coiling. 
ISAT demonstrated that the risk of epilepsy and significant cognitive decline was 
reduced in the endovascular group.10 With the exception of verbal memory (signif-
icant decrease after clipping), the outcomes in terms of quality of life and cogni-
tive deficits seem similar in the two treatment modalities.209 A systematic review 
of endovascular versus surgical IA repair confirmed better clinical outcome but 
greater risk of rebleeding after coiling. The risk of vasospasm is higher after clip-
ping, whereas the ischemic infarct, shunt-dependent hydrocephalus and procedural 
complication rate of the two treatments is without significant difference.210 

There is a growing body of evidence that patient subgroups may benefit from 
one of the two treatment modalities. Middle cerebral artery aneurysms (often su-
perficially located at the bi/trifurcation [>80%], and with unfavorable neck diame-
ter and dome size ratio for coiling211), and patients presenting with a significant in-
traparenchymal hematoma212 (>50 mL) or acute subdural hematoma213, are be-
lieved to be ideal candidates for surgery.214 On the other hand, older individuals215, 

216, poor grade patients and those with confirmed DCVS217, and posterior circula-
tion aneurysms (especially basilar apex218) seem to be better candidates for coil-
ing. Numerous publications and editorials regarding ISAT and BRAT point to the 
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ongoing controversy concerning the best aneurysm treatment. Hopefully ISAT II 
will provide robust evidence and shed more light on the issue.219 

Immediate imaging is recommended after IA occlusion to identify remnants or 
recurrence that may require treatment (in the Cerebral aneurysm rerupture after 
treatment [CARAT] study, rerupture occurred at a median of 3 days following IA 
repair220). Acute hydrocephalus must be treated by placing an external ventricular 
or lumbar drainage. Lumbar drainage placement seems to reduce shunt-dependent 
chronic hydrocephalus221, but rapid or gradually weaning seems not to influence 
the course of hydrocephalus.222 Oral nimodipine is the only calcium antagonist 
showing strong evidence of reducing cerebral infarction and improving outcome 
after SAH, and should be administered to all patients.223, 224 Reduction of DCVS 
and delayed cerebral ischemia (DCI) by lumbar drainage and intrathecal thrombo-
lytic infusion remains controversial. Trials using phosphodiesterase 3 inhibitor 
(Cilostazol)225 and statins226 (Simvastatin in aneurysmal subarachnoid hemorrhage 
[STASH])227 are still in progress, while large trials of endothelin-1 antagonists228 
(Clazosentan to overcome neurological ischemia and infarct occurring after sub-
arachnoid hemorrhage [CONSCIOUS 1-3])190, 229, 230 and magnesium sulfate (in-
travenous magnesium sulfate for aneurysmal subarachnoid hemorrhage 
[IMASH])231 have not demonstrated any clinical benefit. Euvolemia and normal 
circulating blood volume is recommended to prevent DCI. Hypopvolemia and hy-
potension in the acute phase of SAH is associated with an increased risk of DCI. 
Prophylactic hypertension and hypervolemia do not influence the clinical course 
but are, in turn, associated with significant complications (pulmonary edema, my-
ocardial infarction, electrolyte abnormalities).232, 233 Noninvasive monitoring of 
DCVS development is performed using transcranial Doppler ultrasound recording 
of flow velocities in basal cerebral arteries.234 CT and MRI perfusion imaging may 
be useful to determine specific regions at risk for DCI. 

Historically, treatment of ischemic deficits was performed using volume ex-
pansion and induced arterial hypertension. The primary current treatment is aug-
mentation of hemodynamics to improve cerebral perfusion by maintenance of eu-
volemia and induced hypertension.235 Rescue therapies include cerebral angio-
plasty for large basal arteries and/or intraarterial vasodilator infusion for more dis-
tal arteries. Important critical care strategies include maintaining normothermia, 
normoglycemia and prevention of anemia, as these measures are associated with 
improved outcome. After discharge, it is reasonable to refer patients for neuropsy-
chological evaluation. 
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2.2 Endovascular treatment of IA 

2.2.1 Evolution of endovascular treatment 

2.2.1.1 Pre balloon, balloon, and coil era 
Early IA treatment was performed by ligation of the common carotid artery. In 
1885, Sir Victor Horsley ligated the right common carotid artery after finding a 
pulsating mass in the middle cranial fossa.236 Direct treatment of an IA was first 
described in 1931 by wrapping it with a piece of autologous muscle.237 It was 
Walter E. Dandy who clipped the first aneurysm in 1937238, using a silver clip de-
veloped by Harvey Cushing.239 Although this rational and safe treatment option 
for IA was established the invasiveness of the extravascular approach (craniotomy 
and brain retraction) led to the desire to find more gentle physiological procedures 
for IA occlusion. Technological advances at that time facilitated the search for less 
invasive alternatives using the intravascular space as natural route to approach 
IAs. 

The development of cerebral angiography eventually paved the road for less 
invasive extravascular-intravascular and endovascular approaches. Neurologist 
Antonio E. Moniz, who won the Nobel Prize in Physiology and Medicine in 1949, 
found a contrast agent tolerable to humans and introduced cerebral angiography in 
1927.240 In 1941, neurosurgeon Sidney C. Werner inserted a silver wire into a par-
aclinoid giant aneurysm via transorbital approach and heated the wire to 80°C for 
one minute.241 Neurosurgeon Sean F. Mullan introduced sharp electrodes through 
a burr hole under biplane radiographic control into the aneurysm. He applied 200 
to 2,000 milliamps for 1 to 2 hours, and arteriograms every 30 minutes docu-
mented the thrombus formation within the fundus. 61 patients were treated, with 
adequate occlusion of the IA in 49 patients.242 Yasargil believed that aneurysm oc-
clusion could be achieved using magnetic particles directed into the IA, causing 
thrombosis.243 Yasargil was unable to test the hypothesis himself but shared his 
ideas with Robert Rand.244 John Alksne, a fellow of Rand, started clinical experi-
mentation and successfully induced thrombosis using magnetic embolization ma-
terial.245, 246 They reported stereotactic occlusion of 22 anterior communicating ar-
tery aneurysms after placement of a magnet on the aneurysm wall and injection of 
an iron and methyl methacrylate suspension.247 At that time, thrombus induction 
had also been attempted through the use of highly experimental pilojections.248  

Neurosurgeon Alfred J. Luessenhop and Velasquez facilitated a shift from the 
extravascular approach to a more physiological endovascular approach. For the 
first time in 1964, these pioneers reported the catheterization of an intracranial ar-
tery and an attempt to treat IA by advancing a silicon balloon into a supraclinoid 
carotid lesion. This was carried out by connecting a glass chamber to a stump of 
the external carotid artery and introducing a tube into the internal carotid artery.249 
More selective catheterization was achieved by attachment of a micromagnet to 
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the tip of the catheter and guiding it via external magnetic field.250 Already in 
1963, T.J. Fogarty et al. developed a balloon-tipped microcatheter tor extraction of 
arterial emboli and thrombi.251 It was a Russian neurosurgeon who demonstrated 
endovascular IA occlusion for the first time while preserving the parent artery, us-
ing detachable and non-detachable inflatable balloons. Fedor A. Serbinenko was 
inspired by watching children manipulating helium-filled balloons through the 
tether lines at a May Day celebration in Moscow`s Red Square.252 He treated more 
than 300 patients with his handmade manufactured silicone and latex balloons, 
with and without scarifying the parent artery.253 Many neuroendovascular centers 
around the world started to apply Serbinenko’s concept and published mortality 
rates of approximately 20%.254 The high incidence of immediate complications 
(uncontrolled delivery of the balloon), delayed rupture and recanalization proved 
that balloon embolization was not safe. 

In 1988 and 1989, Hilal et al. ushered in the age of coils by reporting the use 
of short nonretrievable (and hence noncontrollable) stiff pliable pushable coils for 
endosacular treatment of IA.255 These coils were able to achieve more complete 
occlusion also in irregularly shaped aneurysms. In 1991, the Italian neurosurgeon 
Guido Guglielmi presented the clinical application of electrolytically detachable 
platinum coils and solved most of the problems associated with pushable coils or 
balloons: The coils presented were soft (gently adopted to the shape of the aneu-
rysm, causing less deforming pressure on the fragile wall), retrievable (less migra-
tion in parent arteries), variable in length, controllable, circular helical in shape 
(memory allows for denser packing) and most importantly, detachable at will. Alt-
hough the idea of catheterizing an aneurysm via the endovascular route by a stain-
less steel wire electrode and applying electronic current was not new and had al-
ready been tested in the early 1980’s (with marginal success).256 The mechanism 
of detachment was discovered almost a decade later. In January 1989, Guglielmi 
continued his research efforts, not with electrothrombosis, but with small magnets 
and metallic particles at the University of California in Los Angeles. The magnet 
was mounted on the tip of a stainless steel wire and introduced “endovascularly” 
into the aneurysm followed by iron microsphere injection into the circulation. 
Frustrated by the incomplete occlusion with the ferromagnetic technique, he 
thought of adding electrothrombosis. The electrical current did not increase throm-
bosis but induced erosion of the wire at the site of the magnet. The magnet fell off 
the wire (by electrolysis) and the detachment mechanism was born. As the magnet 
failed to induce enough thrombosis, radiopaque and biocompatible platinum coils 
were soldered to the tip of the stainless steel delivery wire. The Guglielmi detach-
able coil (GDC) had been developed. Since the United States Food and Drug Ad-
ministration (FDA) approved GDCs to treat IA, endovascular technology has 
evolved rapidly. A timeline with most important key events in the evolution of 
endovascular treatment is given in Figure 1. 
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2.2.1.2 Guglielmi detachable coil 
The controlled deployment of coils using the GDC system paved the way for 
widespread use of endovascular approaches as therapy for IA occlusion. The high 
rate of morbidity and mortality associated with detachable balloons and pushable 
coils was reduced to an acceptable level of mortality (1.4% and 1.7% in ruptured 
and unruptured IA) and morbidity (8.6% and 7.7% in ruptured and unruptured 
IA).257, 258 Although parent artery occlusion is hardly seen with controlled GDC 
placement, complications such as thromboembolism and intraoperative rupture 
have remained and are more common in ruptured than unruptured aneurysm.259 
Despite the promising results of >90% of adequately occluded IA at the time of in-
itial treatment, several drawbacks soon became evident. First, persisting neck rem-
nants and high rates of aneurysm recanalization place the patient at risk for retreat-
ment and aneurysm re-rupture. A review of >8,000 coiled IA revealed that reopen-
ing occurs in 21%, necessitating retreatment in 11%.13 Second, not all IA can be 
treated with an endovascular approach using GDC alone. 

In order to improve incomplete IA occlusion and IA recanalization, two main 
concepts were developed: increase in device filling volume, and increase in device 
bioactivity and thrombogenicity. It became evident that even in aneurysms with 
highly packing density of coil loops, approximately 70% to 80% of the aneurysm 
volume is filled with thrombus which, may remain unorganized long-term, espe-
cially in large aneurysms.147-149, 260 Hydrogel coils to enhance aneurysm volume 
filling and reduce clefts of unorganized thrombus between the coil loops were 
therefore developed.261 These coils consist of synthetic polymeric hydrogel at-
tached to the surface of a platinum coil. After submersion in blood, the hydrogel 
hydrates and swells to its maximum volume in approximately 20 minutes, the hy-
brid device increases the radial thickness of the coil by a factor of three and ex-
pands to nine-fold its volume.262 Although greater aneurysm volume filling, re-
duced amounts of unorganized thrombus and high rates of delayed, progressive 
aneurysm occlusion were observed, hydrogel coils failed to improve IA recurrence 
and retreatment in large clinical series262 and were suspected of inducing increased 
perianeurysmal edema and hydrocephalus. Modification of coil shape and softness 
allow increases in packing density of coils. Spherical coils that deploy into a three 
dimensional configuration (3D-coils) were developed to improve coil and volume 
density even in aneurysms with wider necks and unfavorable sac-to-neck ratio.263 
After early clinical experience with first264 and second generation the 3D-coils ap-
pear to be safe and may improve initial angiographic IA occlusion. Fibered coils 
were proposed to be more thrombogenic and to lead to significantly improved oc-
clusion rates compared to bare platinum coils.265 

The other concept to improve long-term durability of aneurysm occlusion was 
aimed at accelerating thrombus remodeling and enhancing fibrosis and scar for-
mation. Biologically inert bare platinum coils were covered with bioabsorbable 
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material. In experimental settings, polyglycolic/polylactic acid-coated (Matrix) 
and bioabsorbable polymeric coils successfully showed enhanced thrombus organ-
ization, accelerated aneurysm fibrosis, reduced angiographic recurrence rate and 
improved neointima formation260, 266, 267 However, large long-term clinical trials 
failed to demonstrate decreased rates of recurrences when compared to standard 
GDC embolization, even after controlling for factors influencing recanalization.268 
Next generation Matrix-2 coils demonstrated improved mechanical performance 
and anatomic outcome as compared to Matrix-1 coils but one-year outcomes were 
similar to those of bare platinum coils.269 Cerecyte coils consist of a regular bare 
platinum coil with polyglycolic acid running through the lumen of the primary 
platinum wind and therefore does not differ in terms of stiffness or handling from 
bare platinum coils.270 Despite promising preliminary experiences using Cerecyte 
coils, twelve-month follow up data on angiographic results did not differ signifi-
cantly when compared to bare platinum coils. The Cerecyte coil trial with 23 par-
ticipating centers revealed that there was no significant difference in the angio-
graphic outcomes between Cerecyte coils and bare platinum coils at 6 months.271 

A systemic review of initial occlusion, and reopening and retreatment rates re-
vealed that studies with IA treated with modified coils demonstrated worse initial 
occlusion rates when compared with studies using standard platinum coils.13 It has 
been hypothesized that the less favorable initial occlusion rate may be due to infe-
rior handling of the devices or potential bias of using modified coils in more com-
plex IA configurations. At follow-up, reopening and retreatment rates were com-
parable to standard platinum coils. However, this data also needs to be interpreted 
with caution because the review grouped the different kind of coils and therefore 
might have missed a certain subtype with a positive effect. Lack of firm conclu-
sion is further compounded by the scarcity of studies on different coiling materials 
containing high quality evidence.272 In a systematic review of 82 studies using 
bare platinum, hydrogel, Matrix and Cerecyte coils, the rate of unfavorable angio-
graphic outcome at follow-up (defined as either recanalization, <90% occlusion or 
incomplete occlusion) did not differ significantly between coil types.273 In this re-
view, however, the quality of the evidence remains low due to high heterogeneity, 
small sample size and potential publication bias. 

The exact reason for the high rate of recanalization after IA coil occlusion, in-
dependent of coil type, remains obscure. It is interesting to note that IA size is not 
only a significant risk factor for IA rupture, but also for the reopening of coiled 
IA.12, 13, 274, 275 The risk is particularly high (>50%) in large (>10mm) and giant an-
eurysms (>25mm).154-158 In these aneurysms (most of them are already partially 
thrombosed at the time of initial coiling), the packing density is extremely poor 
and large amounts of thrombus is generated.14, 158 Another significant predictor of 
IA recurrence after coiling is IA rupture status.12, 275, 276 The difference in recur-
rence rate between unruptured and ruptured lesions was found not to be associated 
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with aneurysm size, neck width or initial angiographic success of occlusion, which 
lead to the assumption that some biological difference between the two entities ex-
ist.12 Size and rupture status are probably interrelated risk factors; as soon as an IA 
increases in size, the aneurysm may change its biological behavior and may be-
come more prone to rupture. 

Low coil packing density, large neck-dome ratio and initial incomplete IA oc-
clusion all result in increased proportion of intra aneurysmal thrombus formation 
and represent a risk factor for aneurysm reopening. IA location in posterior circu-
lation has been proposed as an important risk factor for IA recurrence after endo-
vascular treatment.16, 277 A comparison of studies between exclusively posterior 
circulation IA studies and studies representing predominantly anterior circulation 
IA confirmed the higher risk of coiled IA reopening in the posterior circulation.13 
A possible explanation may be the selection bias between favored surgical treat-
ments of anterior circulation in comparison with posterior circulation IAs. 

2.2.1.3 Stents, flow diverters and liquid embolic agents 
In order to overcome the limitation of the GDC system in terms of recurrence, and 
to extend the indication of EVT to IA presenting with more complex angioarchi-
tecture, various approaches and devices have been developed. Balloon assisted 
coiling (BAC) was introduced to remodel the anatomy of the aneurysm orifice, es-
pecially in wide-neck aneurysm.278 Single or double lumen non detachable bal-
loons are temporarily inflated to bridge the aneurysm neck and to provide counter 
bearing for an increased number of coils that are deployed into the aneurysm lu-
men. The balloons are deflated and removed at the completion of IA coiling. BAC 
was reported to be associated with increased procedural complications.279 How-
ever, large multicenter prospective studies (Analysis of treatment by endovascular 
approach of nonruptured aneurysms [ATENA]280 and Clinical and anatomical re-
sults in the treatment of ruptured intracranial aneurysms [CLARITY]281) and more 
recent single-center studies282, 283 did not confirm these concerns. The immediate 
and long term anatomical outcome (adequate IA occlusion) seems to be favorable 
following balloon-assisted coil remodeling. In addition, the deflated balloon across 
the neck serves as a precautionary measure ready to be inflated in case of in-
traoperative rupture. According to these results, the wide use of the balloon-as-
sisted remodeling technique has been proposed, especially for the treatment of 
wide-necked aneurysms. 

Intracranial stents serve as scaffold to prevent coil herniation, to protect the 
parent artery, to serve as scaffold for neo-endothelization, and to improve intralu-
minal IA thrombosis caused by reduction of blood inflow. The first stenting of an 
IA was reported in 1997 by Higashida using a ballon expandable coronary stent in 
combination of a GDC.284 In 2002 the first stent specifically designed for wide-
necked IA received FDA approval. The Neuroform stent had an open-cell design 
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and its application was initially associated with technical problems while the per-
formance and handling of the latest (fourth) version of the Neuroform stent has 
significantly improved. In 2007 the FDA approved the Enterprise stent. This stent 
was self-expanding, had a closed-cell design that can be recaptured if it is only 
partially deployed. The Solitaire AB was the first fully deployable and retrievable 
stent that allowed temporary stenting during IA remodeling. 

Stent assisted coiling (SAC) is particularly useful in cases of wide-necked IA 
or unfavorable anatomy to bridge the IA neck if the neck is not fully respected by 
the coil mass or to protect against coil migration. SAC refers to several different 
techniques such as “crossing stent” (stent deployment first, then coiling via micro-
catheter trough the stent struts which is more difficult if a closed-cell device is 
used), “jailing” (the microcatheter for coil deployment is placed in the IA sac first, 
then stent deployment), “semi-jailing” (partial deployment of the stent, coiling fol-
lowed by retrieval of the stent), and “temporary stenting” (full stent deployment, 
coiling followed by retrieval of the stent). A stent may also be used as a “finishing 
stent” (coiling first without sent, then stent deployment for example to push pro-
truding coil loops back into the IA sac). 

Despite the potential benefits SAC has repeatedly shown higher rates of com-
plications as compared to coiling; with and without remodeling. A large retrospec-
tive single center series revealed higher permanent neurological complications 
(7.4% vs 3.8%) and significant higher mortality (4.6% vs 1.2%) after SAC when 
compared to nonstented EVT.285 However, angiographic recurrence was signifi-
cantly reduced in IA with stented (14.9) versus nonstented (33.5%) EVT.285 A re-
view of 39 articles confirmed a high overall complication incidence associated 
with SAC of 19%, with periprocedural mortality of 2.1%.286 These finding are 
consistent with a recently published larger series287, 288. Comparison of the two pi-
oneer stents, approved by the FDA (Neuroform stent in 2002 and Enterprise stent 
in 2007) for EVT of wide-necked IA, did not show a difference in complication 
rates or patient outcome.289 However, the Neuroform stent was found to be an in-
dependent predictor of recanalization. This is in line with increased retreatment 
rates in series using the Neuroform stent290, 291 when compared with a multicenter 
study using closed-cell Enterprise stents.292 One direct comparison revealed that 
the Enterprise stent offers better handling than the Neuroform stent, but both de-
vices result in similar immediate and mid-term angiographic results.293 Although 
the rate of recanalization and retreatment seems lower after SAC as compared to 
nonstent EVT, the higher periprocedural risk (especially in ruptured aneu-
rysms)289, led to the assumption that wide use of stents is not recommended.294 
This issue remains controversial. A most recent series comparing SAC and BAC 
found that SAC may yield lower rates of retreatment and higher rates of aneurysm 
obliteration than BAC, with a similar morbidity rate.295 In addition, one need to 
keep in mind that the rapid technical development of stents and delivery catheters 
makes it difficult, if not impossible, to compare in large patient series various 
types of stents and SAC procedures. 
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 All available flow diverters on the market (Pipeline, Silk, Surpass and Flow 
re-direction endoluminal device [FRED]) are designed with a mesh that redirects 
the blood from the aneurysm and allows tissue ingrowth to seal the IA orifice.296 
Although indications are not clearly established, flow diverters are mainly applied 
to large and giant aneurysms, wide-neck and complex IA morphologies, locations 
untreatable with standard coiling techniques, segmental diseased arteries with ei-
ther multiple or fusiform aneurysms and IA with history of failed EVT. A meta-
analysis has confirmed that flow-diverter devices are feasible and effective with a 
high rate of complete IA occlusion.297 However, associated morbidity and mortal-
ity is significant and potential complications not observed with other EVT, have 
become evident. In a meta-analysis of 29 studies, Brinjikji et al. reported a 5% 
morbidity rate, 4% mortality rate, 3% risk of delayed IA rupture, 3% intraparen-
chymal hemorrhage, and a delayed perforator infarction of 3% (with significantly 
lower odds among patients with anterior circulation aneurysm).297   

Postprocedural SAH is a devastating complication that is more frequently ob-
served in symptomatic aneurysms, aneurysms with large aspect ratio and aneu-
rysms of large and giant size.146, 298 The mechanisms of delayed rupture are un-
clear but a growing body of evidence points towards reverse/destructive remodel-
ing of the IA wall due to thrombus formation. Although the phenomenon of post-
procedural SAH is more frequent after abrupt induction of thrombus by flow di-
version, it has also been documented after complete IA occlusion using GDC. Not 
only experimental studiesIII, IV, 143, 144, but also clinical studies have indicated the 
important role of sudden large thrombus formation in the pathological mechanism 
of disease.145, 146, 299, 300 This hypothesis supports the fact that increased aneurysm 
size leads to larger amounts of thrombus. Furthermore, delayed rupture is fre-
quently seen in symptomatic aneurysm showing intramural enhancement (suggest-
ing hemorrhage or inflammation), indicating another link to the aneurysm wall301. 
Microscopic pathology demonstrates aneurysm walls consisting of collagen infil-
trated with neutrophils but with an almost absent aneurysm wall.146, 302 IA become 
symptomatic if they grow or expand through intramural thrombosis. Both mecha-
nisms indicate disturbance in aneurysm wall homeostasis. The wall probably loses 
its mechanisms to counterbalance inflammatory stress induced by abrupt stagna-
tion of blood flow, formation of an instable thrombus, full lytic enzymes generated 
by the captured leucocytes and breakdown of blood products. In addition, intralu-
minal thrombus formation increases oxidative stress and prevents diffusion of ox-
ygen and nutrients to the IA wall. The large thrombus induces inflammatory reac-
tions that overwhelm the IA wall defense mechanism (depending on the IA wall 
condition). This leads to wall destruction and eventual rupture, prior to thrombus 
stabilization/organization and scar formation through cell ingrowth. 

 Perianeurysmal changes through inflammation caused by EVT-induced in-
traaneurysmal thrombosis has been described many times.300, 301, 303, 304 It is not 
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known whether the proposed measures of adding coils in combination with flow 
diverters or use of steroids results in reduced incidence of delayed rupture in large 
and giant aneurysms after flow diverter placement.297, 300, 301, 304 Different degrees 
of inflammation may exist depending on both the volume of induced thrombus 
and the IA wall condition. The importance of intraluminal thrombosis as an im-
portant factor for inflammation is indicated by reports of aneurysm wall and peri-
aneurysmal inflammation in partially thrombosed aneurysms.300, 305  Aneurysm 
wall enhancement can be found in almost 20% after EVT using GDC and may not 
be pathological, rather  part of a normal healing response.300 Bearing in mind the 
existing association between postprocedural SAH and increased aneurysm size, it 
is of great interest that larger aneurysm size is an independent predictor of wall en-
hancement.303 Other proposed mechanisms that flow-diversion devices can cause 
intra-aneurysmal pressure increase, possibly leading to aneurysm rupture, are 
highly speculative.306 

Another potentially severe complication associated with the use of flow di-
verters is delayed ipsilateral parenchymal hemorrhage. Although the number of re-
ported cases are small, it seems unrelated to the size or morphology of the treated 
lesion307. Putative mechanisms include dual antiplatelet therapy, transformation of 
ischemic stroke, loss of autoregulation of distal arteries, and the “Windkessel ef-
fect”, with increased blood pressure waveform to the distal vessel territories.296, 297, 

307 In one meta-analysis, occlusion of perforators and subsequent ischemic stroke 
was 6%, with higher rates in posterior circulation (likely because of lack of collat-
erals) and large/giant aneurysms.297, 308, 309 Potential mechanisms are stent wall 
thrombosis, distal thromboembolism or parent artery occlusion. Finally, late 
thrombosis and in-construct stenosis has been reported.310-312 

Intravascular flow disrupters were designed in order to overcome limitations 
associated with flow diverters (perforator occlusion, in-construct stenosis, ipsilat-
eral parenchymal hemorrhage and need for antiplatelet therapy). After successful 
preclinical testing, the feasibility of woven EndoBridge (WEB) devices, especially 
for wide-neck bifurcation aneurysms, has been confirmed in preliminary clinical 
series.313, 314 

Results of a prospective observational study in 20 European centers using the 
liquid embolique agent onyx revealed good preliminary results in selected patients 
with aneurysms that were considered unsuitable for coil treatment, or in whom 
previous treatment had failed.315 Despite the promising results from the Cerebral 
aneurysm multicentre european onix (CAMEO) trial, complications including 
mass effect and parent vessel stenosis emerged following further clinical experi-
ence and have damped enthusiasm for its widespread use.316 

The use of covered stents (endovascular grafting, complete covering of IA 
neck) emerged as promising treatment option for complicated IA.317, 318 However, 
only limited data about this technique has been reported up to now. A prospective, 
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multicenter-based study examined 45 aneurysms in 41 patients treated with Willis 
stent-grafts revealed its feasibility and an acceptable long-term (mean 43.5 
months) occlusion rate of 87%.319 Despite their restricted application in intracra-
nial vascular segments without critical side-branches, stent-grafts may add a useful 
option in selected cases. 
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Figure 1. Evolution of endovascular treatment. 
 

 
 
The timeline presents key events in the evolution of EVT. The techniques and devices still used today 
are printed in bold, highlighted and framed. 
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2.2.2 Aneurysm recurrence after EVT 

2.2.2.1 The role of the aneurysm wall 
Aneurysm recurrence is a distressing and significant clinical problem that occurs 
in approximately 20-30% of patients and necessitates retreatment in half of reo-
pened IA.12-15 The mechanisms underlying reopening are poorly understood. Most 
of the hypothesized concepts are based on subjective interpretation of morphologi-
cal IA changes. These volume-oriented mechanisms include coil compaction, coil 
migration into intraluminal thrombus and resorption of pre-existing intraluminal 
thrombus.161, 320, 321 Under the presumption that the aneurysm is a simple expan-
sion of the parent artery lumen, it seems compelling to suspect coil compaction af-
ter total occlusion as the likely cause of aneurysm neck recanalization. 

Histological studies after plain platinum coil embolization revealed that the un-
organized intraluminal thrombus organizes by growing granulation tissue, first at 
the aneurysm wall, and finally by the expansion of  endothelial cell lining over the 
granulation tissue at the aneurysm neck.322 Drawing upon these findings and con-
firmation of these healing processes in experimental settings, deficient fibrosis, in-
sufficient neointima and lack of endothelization after GDC embolization tenta-
tively seem to be mechanisms of IA recurrence.321, 323, 324 However, based on ex-
tensive experience with canine carotid bifurcation aneurysm models, Raymond et 
al. found thrombus organization, endothelialization and neointima formation occur 
concurrently with IA recurrence following plain platinum coil occlusion.325 Based 
on these findings, they suggested an alternative concept and proposed that contrac-
tion of connective tissue leads to shrinkage of the fibrosed cavity resulting in a 
displacement towards the fundus, opening of recurring space, progressive enlarge-
ment and coil compaction.325 The same group emphasized the role of the endothe-
lial lining in residual lesions, recurrences and growth of recurrences after EVT of 
canine sidewall venous pouch aneurysms.326, 327  

Cognard et al. found regrowth after subtotal occlusion to be more frequent than 
true recurrences and emphasized that aneurysm growth might be an important fac-
tor for IA recurrence.275 They hypothesized that IA growth is interrelated with coil 
compaction in that regrowth may produce changes in the coil mesh, or conversely, 
that round coil compaction could lead to recanalization of the neck and restart the 
process of IA growth. Rigorous 3D image processing of IA reopening revealed 
that not coil compaction, but also aneurysm growth is an important mechanism for 
recurrence of initially complete or near-complete obliteration.328 However, the 
study population of this single center evaluation was rather small (eight major IA 
recurrences out of 175; three unruptured and five ruptured cases) with a limited 
follow-up period of seven months and use of different coil types (bare platinum 
coils and hydrocoils). It also remains unclear whether different mechanisms of re-
currence may be present in ruptured and unruptured aneurysms. A most recent 
publication confirms that true IA growth plays a major role in IA recurrence after 
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EVT.329 Comparison of the areas of the coil mass and aneurysm sac in 29 patient 
with significant IA recurrence revealed IA growth as leading cause of recurrence 
in more than half of the cases (18 patients). 

Ruptured and unruptured aneurysms represent a different biological entity. 
Histopathological series clearly demonstrate underlying differences in aneurysm 
morphology between ruptured and unruptured aneurysms. Ruptured aneurysms are 
associated with wall degeneration, and exhibit extremely thin thrombosis-lined 
hypo to acellular walls with degenerated extracellular matrix and loss of endothe-
lial cells.100, 102 Although risk factors for IA recurrence have been identified, it re-
mains difficult to determine which aneurysm will reopen and which will not. 

A growing body of evidence emphasizes the paramount importance of the an-
eurysm wall in IA growth and IA recurrence after EVT. The triggers of IA wall re-
modeling after EVT are associated with inflammation which is regularly seen after 
embolization.300, 301, 303, 304 Intraluminal thrombus induction (which is the ultimate 
goal of all endovascular approaches) causes inflammation in the IA wall (2.1.4.4). 
The role of luminal thrombosis). It is likely that “healthy” IA walls can better 
withstand stress caused by sudden thrombosis than degenerated IA walls. Rup-
tured IA, partially thrombosed, large and giant IA often demonstrate more pro-
nounced wall degeneration and seem to be more susceptible to inflammatory reac-
tions. This leads to destructive remodeling that causes IA wall growth, recurrence 
and eventually rupture. Multiple retreatments after EVT using coil embolization 
are more likely in ruptured than unruptured IA330 and aneurysm with previous re-
currence are associated with almost 50% of major recurrences12 which also points 
to mechanisms other than lumen-oriented causes of IA recurrence. Further evi-
dence comes from studies demonstrating that factors (smoking) suspected to in-
crease inflammation in the IA increase IA recurrence after EVT331, whereas fac-
tors (acetylsalicylic acid) assumed to reduce mural IA inflammation seem to pre-
vent from IA recurrence or re-intervention.332 The finding that recurrences in pa-
tients with multiple aneurysm is higher when compared to the subpopulation of 
patients with single IA corroborate the notion of biological causes for IA recur-
rence after EVT using standard coils.333  

It has been shown in experimental aneurysms that the major source of throm-
bus organizing neointima cells are derived from the aneurysm wall, with perhaps a 
negligible contribution from circulating bone marrow cells.140 The finding that in-
traluminal unorganized thrombus is mainly organized by IA wall cells is in line 
with human histological studies after plain platinum coil embolization. Bavinski et 
al. found that granulation tissue response starts at the periphery of the luminal clot 
adjacent to the aneurysm wall within the first two weeks after coil embolization.322 
Degenerated IA walls cannot recruit SMC to ingrow and organize the thrombus 
which leads to blood clot lysis, recanalization and new thrombus formation. This 
continues in a disastrous cycle of ongoing IA wall inflammation and destruction. 
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The presumably better wall condition in unruptured IA could serve to explain why 
unruptured IA demonstrate lower rebleeding rates334, necessitate less retreat-
ment330, and present more stably after coil embolization than ruptured IA with a 
more degenerated wall type.12, 275, 276, 329, 333, 335-337 EVT of IA with an almost de-
cellularized thin wall seems not be able to organize the thrombus, and intraluminal 
scar formation is likely to fail. Raymond et al. could not explain the change in re-
currence after treatment of unruptured and ruptured IA based on factors, such as 
aneurysm size, neck width, or quality of initial angiographic result.12 They there-
fore made the assumption that some biological difference must exist. A systemic 
review (January 1999 – September 2008) on recurrence rates after EVT found 
lower IA recurrence rates in studies with exclusively rupture IA.13 This differ from 
previous studies directly comparing recurrence rates of ruptured and unruptured 
IA.12, 275, 276, 329, 333, 337 The authors hypothesized that this contradictory finding is 
likely due to higher proportions of large and posterior localization in unruptured 
aneurysms which is explains the relatively higher rate of reopening in unruptured 
aneurysms.13 Analysis of a matched (aneurysm location, diameter, and neck size) 
cohort of ruptured and unruptured IA demonstrated that not only increased risk of 
recanalization in ruptured IA but also more significant degrees of recanalization 
and a higher percentage of ruptured IA requiring retreatment337. Furthermore, time 
to recanalization is significantly shorter in ruptured IA compared to unruptured 
IA.337 IA recurrence rates after EVT using standard coils in relation to rupture sta-
tus, size, and location are given in Table 1. 

The capacity of the IA wall to organize an intraluminal thrombus must be 
viewed in relation to the amount of thrombus. The quantity in relation to recur-
rence rate is reflected in the percentage associated with IA size increase. Overall 
recurrence rates for small aneurysms (4-10 mm) are reported to be 5%-20%, de-
pending on neck size.14 This increases to 35%-50% in large (10-25 mm), and 
60%-90% in giant aneurysms.12, 14, 338, 339 These findings correspond with clinical 
series reporting that low packing density is linked to higher recurrence rates in an-
eurysms with over 80% of intraluminal thrombus.147, 151-153, 161, 340 Poor packing re-
sults in many empty spaces (clefts) filled with thrombus needing to be organized 
and even in “highly/tightly packed” aneurysms 75% of the aneurysm sac is filled 
with thrombus.340 Presence of acute intra-aneurysmal and/or perianeurysmal soft 
thrombus was suspected to be responsible for the finding that aneurysms treated 
within 14 days of SAH demonstrate lower rate of resolution of contrast filling be-
tween coil interstices, higher recanalization rates and reduced stability of small 
neck remnants when compared to delayed EVT after SAH (>14 days).341 

In stable non-progressing IA remnants after EVT (on 6 month follow-up angi-
ography) re-rupture rate is low (0.4%)320 and single endovascular retreatment 
likely to be successful if retreatment is needed.15 On the other hand in unstable IA 
with documented regrowth after EVT rupture rate is higher (7.9%)320 and neces-
sity of multiple endovascular retreatments rather the rule than the exception.15 
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These findings are in line with the observation that stable IA (during 12 month in-
terval) show a low risk for future morphological loss (4.8%) compared with unsta-
ble IA which show a high risk for additional late loss of morphology (38.3%; 
P<0.001, odds ratio=12.4).330 
In general the reopening rate is lower in clipped than in coiled IA9, 10, 208 which 
also indicates that recurrence originates from the IA wall. In a large series long-
term angiographic follow-up (mean of 4.4 years) of clipped IA without residua re-
currence was found to be 1.5% (2/135).342 The factors underlying regrowth of per-
fectly clipped aneurysms remains controversial and include break or slippage of 
the clip, fragility of the wall along the clip edge, small rests of IA neck not de-
tected by 2D-DSA, or inappropriate clip application.342, 343 Recurrence in IA with 
known “dog-ear” and “broad-based” residua recurrence is as high as 25% (2/8) 
and 75% (3/4).342 Multiple clips are often necessary for surgical treatment of 
broad-based IA with the result that portions of the aneurysm wall are included in 
the reconstructed vessel segment. 

The notable difference between IA clip ligation and IA coiling is the fact that 
clipping removes the diseased vessel segment and realigns healthy arterial walls. 
Conventional histological and electron microscopy findings following experi-
mental clipping confirm that the normal vessel wall is completely reconstructed 
directly underneath the blades of the clip.321 If the parent artery segment is not dis-
eased (fusiform enlarge, dysplastic or arteriosclerotic, broad necked aneurysm) the 
clip blades pull the opposing healthy vessel walls towards each other, excluding 
the diseased vessel segment. Luminal coil placement does not exclude the pathol-
ogy from the blood circulation but increases thrombus-induced stress to the IA 
wall. Failed healing, exposure to hemodynamic stress or continuous wall remodel-
ing/growth may all contribute to IA reopening after coil embolization. IA devices 
such as stents and flow diverters exclude the aneurysm from the blood circulation 
by bridging the pathological wall segment. As long as the lumen is not recanalized 
and remains excluded from the circulation, healing is more likely than after coil 
embolization. Consequently, there is a better chance for long-lasting occlusion, as 
confirmed by higher rates of complete occlusion.297 

One must keep in mind that angiographic healing is not biological healing.322, 

325, 344 Histopathological studies revealed  that 50% (n = 6/12) of IA (two small, 
three large and one giant) that had been deemed 100% occluded on angiography, 
showed tiny open spaces between the coils at the neck on gross examination.322 
Animal studies confirmed the discrepancy between angiographic and histological 
findings with overrated radiologic occlusion after coil treated bifurcation aneu-
rysms in rabbits.344 Molyneux et al. reported histological findings in two patients 2 
and 6 months after GDC embolization of giant partially thrombosed IA.157 They 
found the coils embedded in unorganized thrombus with no sign of endothelializa-
tion of the luminal surface. It must be noted that not only thrombus in large or gi-
ant aneurysm remain largely unorganized157 but also small ruptured IA (<6mm) 
demonstrate remnants of unorganized thrombus, fresh blood clot, and void spaces 
three years after plain platinum coil embolization.260 

True understanding of IA reopening after EVT requires comprehensive 
knowledge of the biological mechanisms involved in aneurysm wall remodeling, 
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intraluminal thrombosis formation and resorption, tissue response to EVT materi-
als and the effects that these factors have on each other. Insights into pathological 
processes might help address the root cause of the problem; namely the diseased 
arterial vessel segment (or aneurysm wall), rather than the arterial outpouch conse-
quence of the disease. One must remember that an angiographic complete IA oc-
clusion cannot be equated with clinical cure of the diseased vessel segment.  

Follow-up of initially adequate coiled IA <10mm is recommended at six 
months post coiling. Later follow-up, within the first 5-10 years, does not seem 
beneficial in detecting reopened IA. However, in case of IA growth, extended fol-
low-up imaging may be considered for size >10 mm, location at the basilar tip, 
partial thrombosis, recurrent IA after EVT, presence of multiple IA or familiar 
predisposition.274 Routine angiographic surveillance after endovascular treatment 
of aneurysms has a very low complication rate of 0.43% (0.04% permanent major 
morbidity, 0.07% temporary major morbidities, and 0.32% temporary minor mor-
bidities – including two third of these representing access site complications).345 
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Table 1. Aneurysm recurrence after EVT using mainly standard coils. 

 
1. Rupture status 

 
Authors  
(year) 

Follow-up 
(months) 

Unruptured  
% of recurrence 
(n/n) 
 

Ruptured 
% of recurrence 
(n/n) 

Cognard et al.275 (1999) 3-48 7 (4/54) 17 (16/94) 
Raymond et al.12 (2003) 12 (mean) 27 (52/190) 40 (76/191) 
Ngyen et al.276 (2007) 20 (mean) 22 (16/72) 52 (23/44) 
Tan et al.337 (2011) 20-25 (mean) 20 (10/49) 40 (19/47) 
Vanzin et al.333 (2012) 21 (mean) 22 (42/194) 31 (80/261) 
Abdihalim et al.329 (2014) 9 (mean) 5 (5/92) 20 (24/120) 

  
2. Size  
 

Authors  
(year) 

Follow-up 
(months) 

Small 
<10mm  
% of recurrence 
(n/n) 

Large 
>10 to 25mm  
% of recurrence 
(n/n) 
 

Giant 
>25mm 
% of recurrence 
(n/n) 

Byrne et al.320 (1999) 6-12 14 (24/176) 15 (12/81) 100 (2/2) 
Tateshima et al.159 (2000) 19 (mean) 8 (2/24) 40 (4/10) 50 (4/8) 
Raymond et al.12 (2003) 12 (mean) 21 (47/221) 51 (81/160) - 
Murayama et al14 (2003) 6-12 21 (66/579) 35 (70/198) 59 (43/73) 
Standhardt et al.346 (2008) * 35 (mean) 14 (22/163) 25 (5/20) 45 (9/19) 
Plowman et al.347 (2011) 6 26 (88/345) 28 (27/97) 40 (4/10) 
Gao et al.339 (2012) † 38 (mean) - 11 (6/53) 36 (10/28) 
Dorfer et al.15 (2012) 6-18 15 (61/403) 38 (66/173) - 
Chalouhi et al.348 (2014) § 6-60 35 (62/177) 47 (29/62) 52 (11/21) 

 
3. Location 
 

Location  
and authors (year) 

Follow-up 
(months) 

% of recurrence 
(n/n) 
 

BA tip   
Bavinski et al.349 (1999) 2-72 39 (12/31) 
Tateshima et al.159 (2000) 19 (mean) 24 (10/41) 
Raymond et al.12 (2003) 12 (mean) 39 (43/109) 
Henkes et al.277 (2005) 19 (mean) 35 (62/178) 
Peluso et al.350 (2008) 34 (mean) 18 (27/138) 
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Posterior circulation   
Lempert et al.351 (2000) 7 (mean) 22 (17/76) 
Pandey et al.352 (2007) 31 (mean) 25 (55/225) 
   
Carotid-ophtalmic artery   
Raymond et al.12 (2003) 12 (mean) 29 (19/73) 
Yadla et al.353 (2011) 28 (mean) 18 (21/118) 
   
Acom   
Raymond et al.12 (2003) 12 (mean) 25 (11/44) 
Guglielmi et al.354 (2009) - 16 (23/144) 
Finitsis et al.335 (2010) 36 (mean) 22 (51/234) 
Corns et al.355 (2013) 6 19 (18/97) 
   
PComA   
Raymond et al.12 (2003) 12 (mean) 37 (16/43) 
Corns et al.355 (2013) 6 57 (35/61) 
   
Paraclinoid   
Park et al. (2003) 14 (mean) 25 (12/49) 
   
AChA   
Kang et al.336 (2009) 19 (mean) 15 (10/67) 
   
ICA bifurcation   
van Rooij et al.356 (2008) 16 (mean) 18 (7/40) 
Oishi et al.357 (2013) 24 (mean) 14 (3/22) 
   
DACA   
Oishi et al.358 (2013) 9 (mean) 35 (6/17) 
Park et al.359 (2013) 20 (mean) 38 (6/16) 
   
MCA   
Raymond et al.12 (2003) 12 (mean) 32 (9/28) 
Iijima et al.360 (2005) 15 (mean) 20 (21/105) 
Quadros et al.361 (2007) 13 (mean) 15 (8/55) 
Vendrell et al.362 (2009) 50 (mean) 27 (31/114) 
Brinjikji et al.363 (2011) >3 32 (9/28) 
Corns et al.355 (2013) 6 34 (12/35) 
Mortimer et al.364 (2014) 6 19 (42/219) 

 
AChA = anterior choroidal artery; Acom = anterior communicating artery; BA = basilar artery; DACA 
= distal anterior cerebral artery; ICA = internal carotid artery; MCA = middle cerebral artery PComA 
= posterior communicating artery; * = small (<12 mm), large (13-24 mm), angiographic FU was avail-
able for 76% of all aneurysms; † = large (15–25 mm), § = small (10-14 mm), large (15-24 mm). 
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2.2.3 Experimental aneurysm models 
Increased understanding of the complex pathobiology of IA growth, rupture and 
the effects of EVT depends on epidemiological data analysis, clinical findings, 
histopathology of IA samples obtained during surgery, and gene linkage analy-
sis.18, 82, 140, 144, 297 Experimental work using animal models of IA are needed to de-
lineate the biological mechanisms of IA formation and growth, and to establish 
new endovascular and medical therapies to prevent IA rupture. Today’s models 
can be divided in two main groups according to the subject under examination: 
first, models to evaluate induction, growth and rupture of IA and second, aneu-
rysm models as tools for testing novel endovascular devices (biological interaction 
of EVT), evaluation of basic biological concepts and hemodynamics of IA and 
training for neurointerventional radiologists and endovascular neurosurgeons. 

The models developed by Hashimoto et al. are the most physiological IA mod-
els to-date in terms of representing human morphology, histology, hemodynamics 
and IA vessel surroundings.365 In all other models, aneurysms are created by direct 
vessel manipulation on intra- and extracranial arteries. Those working with extra-
cranial models must be aware of differences in hemodynamic characteristics and 
vascular biology between the extra- and intracranial arteries. Furthermore, the per-
ianeurysmal space of the extracranial models differ greatly from that of human IA. 
With the exception of autogenous vein graft aneurysm production on the wall of 
the basilar artery and middle cerebral artery, aneurysms are not created in the sub-
arachnoid space, but in the soft tissue of the neck325, 366, leg, retroperitonal space, 
or within the abdominal cavity using either venous or arterial auto or allografts. 

Smaller animals (mice and rat) are more often used for the study of IA biology 
while larger animals (rabbit, dog, and swine) are mainly used for testing endovas-
cular devices (Figure 2A). The number of studies performed in swine and dogs re-
mains stable, while the number of experiments in mice, rats and rabbits is steadily 
increasing (Figure 2B). Animal models in sheep and monkey have been described 
but have never undergone detailed methodological analysis and are rarely used to-
day. 

2.2.3.1 Aneurysm models for the study of endovascular therapies 
None of the preclinical aneurysm models for testing endovascular devices cur-
rently available combine all the ideal characteristics. The basic requirements in-
clude: 1) stable parent vessel and aneurysm size without growth or shrinkage over 
time; 2) size of aneurysm and parent artery similar to larger cerebral arteries (ena-
bles realistic micro catheter interventions); 3) long-term patency without spontane-
ous thrombosis and no need for anticoagulation or anti-aggregation therapy; 3) 
standardized method with good reproducibility; 4) hemodynamics (high shear 
stress at the neck of the aneurysm), coagulation profiles (clotting and thrombolytic 
system) and tissue and immunologic reactions similar to those of humans IA; 5)           
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aneurysmal environment similar to the subarachnoid space in humans; 6) wide 
availability of the animal and easy handling; 7) low costs. 

Histopathological analysis of microsurgically created swine venous pouch 
sidewall aneurysms revealed robust healing (exuberant thrombosis and thick neo-
intimal formation) beyond that expected in humans. Untreated sidewall swine an-
eurysms have a tendency for spontaneous thrombosis367, 368, making immediate 
EVT necessary. However, embolization performed at the time of creation is unfa-
vorable as tissue reaction to surgery and the embolic device overlap. Unlike in 
swine, the canine sidewall venous pouch aneurysm model exhibits excellent long-
term patency without need for an antithrombotic regimenand shows modest pro-
gressive increases in size during the first month after creation.369 However, exten-
sive healing (less than that in swine), is also seen in the canine model, with com-
plete intra-aneurysmal fibrosis after GDC embolization.370 Microsurgically created 
aneurysms have been criticized due to the unknown biological effect of artery wall 
disruption at the site of anastomosis, suture line healing, trauma induced by the 
surgical procedure itself, and presence of suture material in the aneurysm neck and 
use of venous, rather than arterial walls.  

Comparison of histopathologic and immunohistochemical analysis of human, 
rabbit and swine aneurysms embolized with GDC revealed that the rabbit model 
(elastase-induced) offers superior similarity to human IA tissue reactions when 
compared to tissue reactions in swine.323 In contrast to the fast and complete heal-
ing process in the canine and swine sidewall model, the rabbit elastase model pro-
duced cases with persistence of unorganized thrombus after GDC.371 Thanks to 
these findings and additional potential advantages (aneurysm and parent artery 
size and hemodynamics similar to human IA372, coagulation system similar to hu-
mans373, neck subjected to high shear stress374, easy microsurgical technique, low 
morbidity, low costs, easy handling and excellent long-term patency375), elastase-
induced aneurysms created in the common carotid arteries along the brachioce-
phalic artery of rabbits, became a useful widespread preclinical tool for neuroend-
ovascular device development.366 Technical modification made the model easier to 
perform with improved reproducibility.376 Since more evidence has been collected, 
complications such as stroke, laryngeal hemiplegia and hemorrhagic tracheal ne-
crosis have also been reported.377 

The multiple elastic membranes destructed by the intraluminal elastase perfu-
sion may cause long lasting inflammatory repair processes in the entire aneurysm 
wall which despite the increased neck shear stress, do not represent true bifurca-
tion aneurysm but rather, sidewall aneurysms. It has been shown that true bifurca-
tional hemodynamics are essential to determine the device effectiveness.378 Major 
shortcomings of microsurgical creation of venous pouch arterial bifurcation aneu-
rysms in rabbits (requires very good microsurgical skills, low aneurysm patency 
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rates and high morbidity rates) were overcome by modifying microsurgical tech-
niques, aggressive anticoagulation treatment and anesthesia (resulting in aneurysm 
patency rates and mortality rates comparable with those of the rabbit elastase 
model).379 It remains a matter of debate if the morphologic and histologic charac-
teristics of human cerebral aneurysms is more accurately modeled by elastase-di-
gested arterial sacs or by surgically created vein pouch aneurysms.380, 381 

 The standardization of aneurysm creation is not the only potential advantage 
of surgical models. Others include the opportunity to vary aneurysm angioarchi-
tecture to study the influence of the angle between the aneurysm axis and parent 
artery, to examine various hemodynamic conditions and fundus to neck ratios and 
to test new endovascular devices in complex aneurysm formations.382, 383 To a cer-
tain degree, neck size and aneurysm volume can also be controlled and adjusted in 
elastase-induced aneurysms and modified techniques result in more consistent an-
eurysm diameters.384 

Standardized and reproducible aneurysm creation is of utmost importance to 
improve preclinical assessment of novel endovascular devices and enhance com-
parability of results between laboratories. To date, the most standardized aneu-
rysm model in terms of graft origin, aneurysm shape and dimensions, volume-to-
orifice ratio and parent vessel to aneurysm long axis angle is the rat arterial side-
wall aneurysm model developed by Frösen and colleagues.140 Although standard 
catheter systems cannot be used when embolizing the aneurysms, the relatively 
low costs make the model a suitable tool to test and refine embolization devices 
that will be tested later in other more complicated and expensive models. In a re-
cent review of in vivo experimental IA models, the most appropriate models to 
test for recurrences after endovascular occlusion were found to be surgical bifurca-
tion model in dogs and the elastase-induced aneurysm model in rabbits.382 There 
has been no standardized multicenter preclinical study of any device or model to 
date. 

None of the available aneurysm models that can be embolized represent a hu-
man saccular cerebral artery aneurysm properly. All artificial aneurysm construc-
tions cannot recreate the complex phenomenon involved in human IA pathobiol-
ogy. Nevertheless, taking the potential confounding effects of the chosen model 
and species into consideration, basic biological concepts of novel EVT approaches 
can be tested in the models available today. Investigators must choose the most 
appropriate one from a wide range of different techniques that suits the experi-
mental goals, practical considerations and laboratory environment.

2.2.3.2 Aneurysm models for the study of grow and rupture 
IA models have been developed to systematically investigate the mechanisms of 
IA formation and growth.385 After pioneer work of aneurysm creation by direct 
vessel manipulation on extra- and intracranial arteries by McCune et al.386, Ger-
man and Black387, White et al.388, Troupp and Rinne389, Nishikawa et al.390, and 
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Kerber et al.391, it was Hashimoto and colleagues365 who first reported successful 
indirect induction of saccular cerebral aneurysms using a combination of lathy-
rogen (beta-aminopropionitrile [BAPN]), deoxycorticosterone, salt hypertension 
and ligation of unilateral common carotid artery (CCA).  

Despite the combined vessel wall stress by lathyrogens (decreased collagen 
and elastin cross-linking by inhibiting lysine oxidase [LOX]), and induction of 
systemic hypertension (unilateral nephrectomy, unilateral CCA, increased salt in-
take and doexycorticosterone results), the incidence of spontaneous IA creation 
was low.365 Modifications of the model allowed for increased incidence of IA for-
mation through induction of hypertension caused by renal infarction (ligation of 
the posterior branches of the bilateral renal arteries). Administering deoxycorti-
costerone to animals with renal infarction was not essential, but feeding with a diet 
high in salt containing 8% sodium chloride increased the incidence of lesions.392 
Unilateral CCA ligation facilitates comparison of the arterial bifurcation of the 
non-ligated side (frequent IA formation) with the ligated side (no IA formation). 
Aneurysms develop only in the posterior circulation when both of the CCA are li-
gated.393 Disturbance of collagen synthesis by LOX inhibition with BAPN treat-
ment increases the developmental rate of IA three months after induction. Aneu-
rysms in BAPN-treated rats are larger in size and have a thinner media wall thick-
ness than BAPN-untreated controls undergoing the same blood pressure augmen-
tation.127 It has been shown that the number of induced aneurysms and the number 
of ruptured IA is associated with increases in maximal blood pressure.393  Induc-
tion of IA in female rats necessitates bilateral oophorectomy to compensate for the 
protective effect of estrogen.63, 64 In addition to these important gender differences, 
one should be aware that genetic factors are involved in cerebral aneurysm for-
mation in different rat strains.394 

Cerebral aneurysms without direct vessel manipulation have also been devel-
oped in monkey395, dog396, rabbit397 and mice398 models. Although findings were 
in accordance with spontaneous lesions in humans399, ethical concerns, long IA in-
duction period, and high costs limit the widespread use of monkeys. In dogs, de 
novo bifurcations were surgically created using both native CCA. The canine 
model allows assessment of the extracranial arterial hemodynamic microenviron-
ment and evaluation of triggers of molecular changes associated with aneurysmal 
vascular degradation.400 The arteries are large enough to easily perform 3D-DSA 
and enable CFD characterization. In rabbits, nascent IA formation at the basilar 
terminus is successfully created by increased hemodynamics through bilateral 
CCA ligation without any additional manipulation.397 These findings are in line  
with the original work by Hassler who reported considerable bulging of the artery 
and morphological changes (cushions in the intima, defects of the media and de-
fective intraepithelial leukocytes) in the circle of Willis by CCA ligation in rab-
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bits.401 While unilateral CCA ligation seems insufficient to induce microaneu-
rysms constantly402, bilateral CCA ligation proved to be a reliable tool to evaluate 
molecular mechanisms involved in initial vascular remodeling induced by hemo-
dynamic insult.403, 404 

Induction of IA in mouse models provides an advantage for genetic analysis 
due to the wide availability of genetically modified mice. However, induction of 
IA in mice requires more time and the number of induced IA is lower than in rats, 
caused by resistance to induced hypertension and vascular inflammation.385 The 
first mouse model was established through ligations of left common carotid arter-
ies and posterior branches of bilateral renal arteries with high salt diet.398 In subse-
quent publications, BAPN was added to the feeding regimen.110, 129 In this mouse 
model, IA developed at the right anterior cerebral artery–olfactory artery bifurca-
tions in approximately 80%, four to five months after the induction. Nuki and col-
leagues reported a mouse model which induces large IA formations at 60–80% in-
cidence within three to four weeks by single stereotaxic injection of elastase into 
the CSF at the right basal cistern, and hypertension by continuous angiotensin II 
infusion through an implanted osmotic pump.405, 406 Although a case of spontane-
ous SAH from a large aneurysm 12 days after IA induction was reported in this 
elastase-induced hypertensive mouse model, the precise incidence of IA rupture 
remains unknown.406 Toll-like receptor (TLR)-4 and MMP-9 associated IA for-
mation has been reported in Type 1 diabetes in rat.407 

IA animal models reporting spontaneous rupture are rare. In the hypertension 
and BAPN-induced IA rat model, rupture rate is 3% during the three month period 
of IA maturation, and spontaneous rupture in mice has never been observed.385 
Recently, the elastase-induced hypertensive mouse model has been modified to in-
crease the reproducibility of IA development and rupture.408 Hosaka and col-
leagues induced chronic hypertension by ligation of the right renal artery and left 
CCA. One week later, various concentrations of elastase were injected into the 
right basal cistern (modified stereotactic coordinates with higher success rate of 
infusion into the CSF space of the circle of Willis compared with previous re-
ported coordinates). Further vessel wall stress was induced through continuous an-
giotensin II infusion (1000ng/kg/min), hypertensive diet (8% sodium chloride) and 
feeding of BAPN (0.12%). Unless early neurological symptoms developed, ani-
mals were euthanized three weeks after elastase injection. Based on their elastase 
dose study, they recommended the use of 10 L of 1.0 U/mL elastase to investi-
gate IA formation without rupture and 10 L of 10 U/mL elastase to study IA rup-
ture. In mice given 10 L of 1.0 U/mL elastase solution, 90% developed IA and 
20% had ruptured IA. Intracranial aneurysm models are summarized in    Table 2. 

During aneurysm formation, wall remodeling processes either lead to stabili-
zation of the wall or further degeneration and rupture. IA models of rupture are of 
great interest when exploring the differing pathobiological mechanisms between 
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IAs that never rupture and IAs that most likely will proceed to rupture. In the  fu-
ture, this may allow assessment of biomarkers or imaging modalities to detect rup-
ture prone IAs and to develop therapeutic drugs for IA stabilization (prevention of 
rupture). The delivery route could either be systematic or locally, by EVT. In addi-
tion to the elastase-induced hypertensive mouse model of IA formation and rup-
ture, it will be essential to produce animal models which will also allow the study 
of embolization device healing processes in growing and rupture-prone aneu-
rysms. 

Significant growth and reports of rupture in extracranial artery aneurysm mod-
els are rare. Moderate aneurysm growth within the first weeks after creation has 
been found in the rabbit elastase-induced409, 410, in combined surgical and elas-
tase/type I collagenase411 in the surgical sidewall model412 , and the dog surgical 
bifurcation model.369 Regarding the swine surgical sidewall aneurysm model, mul-
tiple investigators revealed consistent aneurysm rupture in sudden thrombosed or 
only partially occluded aneurysms within four to five days after creation.143, 144, 324, 

413 Details of studies reporting aneurysm growth and rupture of models in extra-
cranial arteries are presented in Table 3. 
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Figure 2. Experimental aneurysm studies.  

 
 
A, the percentage of studies testing endovascular devices decreases proportionally with the size of the 
animal. Inversely, the proportion of number of studies addressing the biology of IA increases in 
smaller species. B, since the early nineties, the number of animal studies performed (five four-year 
periods) has been increasing steadily in rabbit, rat and mice models. The number of publications using 
dog and swine has remained fairly stable over time. An online search of Medline/Pubmed database 
(1993-2012) was performed using the keywords ”swine”, ”dog”, ”rabbit”, ”rat”, and ”mice” in combi-
nation with ”intracranial aneurysm” using the Boolean operator “AND”. 
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Table 2. Intracranial aneurysm models of growth and rupture  

Author 
( year) 

Animal 
(location) 

Methods and 
technique 

Growth and 
time course 

Rupture and 
time course 

Histological 
findings 

White et 
al.388 
(1961) 

Dog / left 
ICA junc-
tion 

Injection of hy-
pertonic saline, 
plasmocid, hy-
aluronidase, 
and nitrogen 
mustard 

Most consistent 
with injection of 
hypertonic saline 
50% (n = 5/10) 
within three 
weeks 
 

No rupture The lesion re-
sembled congen-
ital berry 
aneurysms 

Hash-
imoto et 
al.365, 393 
(1978) 

Rat / Cir-
cle of Wil-
lis bifurca-
tions 
(ACA and 
OA) of  
non-ligated 
side 

Left CCA and 
posterior 
branches right 
RA  ligation, 
one week later 
posterior 
branches left 
RA alone or 
plus 0,2% 
BAPN or/and 
plus 1% NaCl  

12% 
(n = 2/17)  
 
61% (+BAPN)  
(n = 11/18) 
 
61% (+1% NaCl) 
(n = 11/18) 
 
95% (+BAPN 
+1% NaCl) 
(n = 18/19) 
 
All groups within 
three or four 
months 

0% 
(n = 0/17)  
 
22% (+BAPN) 
(n = 4/18) 
 
17% (+1% NaCl) 
(n = 3/18) 
 
32% (+BAPN  
+1% NaCl) 
(n = 6/19) 
 
Time course not 
reported 

Generally in ac-
cordance with le-
sions in man; 
IEL absent; walls 
composed of fi-
brous connective 
tissue/hyaline de-
generation, areas 
cellular com-
posed of SMC or 
fibroblasts; some 
blebs or daughter 
aneurysms; 
larger IA intralu-
minal thrombi, 
organized in 
some cases. 

Hash-
imoto et 
al.395 
(1987) 

Monkey / 
Circle of 
Willis bi-
furcations 
(ACA and 
OA) of  
non-ligated 
side 

Left CCA and 
posterior 
branch right 
RA ligation, 
one week later 
posterior 
branch left RA 
and 1% NaCl 
drinking water, 
two weeks 
later 0,2% 
BAPN diet 

29% (n = 2/7) / 
one year 

No rupture Similar to lesions 
in man; wall of 
first case very 
thin; second an-
eurysm throm-
bosed and orga-
nized, loss of 
IEL and medial 
muscle layer, 
wall composed 
of connective tis-
sue. 

Morimot
o et al.398 
(2002) 

Mouse / 
Circle of 
Willis bi-
furcations 
(ACA and 
OA) of  
non-ligated 
side 

Unilateral left 
CCA and pos-
terior branches 
right RA liga-
tion, one week 
later posterior 
branches left 
RA plus 1% 
NaCl drinking 
water 

78% (n = 14/18) 
within four 
months  

No rupture 
 

Similar to patho- 
logical changes 
in experimentally 
induced IAs in 
rats and mon-
keys, thinning of 
SMC layer and 
loss of IEL in 
early stages 

Nuki et 
al.406 
(2009) 

Mouse / 
major bi-
furcations 
of circle of 
Willis 

Elastase injec-
tion (various 
doses) right ba-
sal cistern and 
hypertension 
by continuous 
angiotensin II 

0% (PBS) 
(n = 0/10)  
 
10% (3.5 mU) 
(n = 1/10) 
 
30% (17.5 mU) 

Rupture reported 
but incidence un-
known 

Thin wall intact 
endothelial and 
SMC layers, 
thick wall dis-
continued endo-
thelial cell layers 
and scattered, 
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infusion 
(1000ng/kg per 
minute) 

(n = 6/20) 
 
77% (35 mU) 
(n = 34/20) 
within two weeks 

faint SMC stain-
ing,  
disorganized 
elastic lamina in 
both thin and 
thick portions, 
inflammatory 
cells throughout 
the wall 

Hosaka 
et al.408 
(2013) 

Mouse / 
major bi-
furcations 
of circle of 
Willis 

Left CCA and 
right RA liga-
tion, one week 
later elastase 
injection (vari-
ous doses mil-
liunits - mU) 
right basal cis-
tern and angio-
tensin II infu-
sion 
(1000ng/kg per 
minute) plus 
0,12% BAPN 
plus 8% NaCl  

90% (10μl 
1U/ml) 
 
100% (5μl 
10U/ml)  
 
100% (10μl 
10U/ml) 
 
100% (20μl 
10U/ml) 
 
within three 
weeks 
(n =10 / group) 

20% (10μl 
1U/ml) 
 
40% (5μl 
10U/ml) 
 
60% (10μl 
10U/ml) 
 
50% (20μl 
10U/ml) 
 
Time course not 
reported 

Destruction of 
the elastic lamina 
within the wall, 
consistent in-
flammatory cells 
infiltrating the 
wall, partial or 
complete ab-
sence of intimal 
endothelial cells, 
capillary for-
mation and thick-
ening of SMC 
layer. 

 
ACA = anterior cerebral artery; BAPN = beta-aminopropionitrile; CCA = common carotid artery; ICA 
= internal chorotid artery; OA = ophthalmic artery; PBS = phosphate buffered saline; RA = renal artery. 

  

57



Review of the literature 

 

Table 3. Extracranial aneurysm models reporting growth and rupture. 

Author 
( year) 

Animal 
(location) 

Methods and 
technique 

Growth and 
time course 

Rupture and 
time course 

Histological 
findings 

Troupp 
and 
Rinne389 
(1964) 

Rabbit 
(CCA) 

Arteriotomy 
glued with Me-
thyl-2-Cy-
anoacrylate 

32% (n = 
16/50) within 
4-21 weeks 

No rupture Not reported 

Byrne et 
al.413 
(1994) 

Swine 
(CCA) 

Surgical sidewall 
(arteriotomy 4 
mm) EJV graft 
(15-20 mm 
length); left un-
treated or embo-
lized using GDC 

Tendency for 
growth in an-
eurysms with 
partial throm-
bosis 

100% (n = 4/4) 
of untreated an-
eurysm after 4 ± 
0.5 days 
 
75% (n = 3/4) of 
partial occlusion 
(<90%) after 4 ± 
1 days 

Marked edema 
and acute in-
flammatory infil-
tration of the 
whole wall, wall 
dissection, and 
necrosis of 
smooth muscle 
fibers. 

Raymond 
et al.324 
(1999) 

Swine 
(CCA) 

Surgical sidewall 
(arteriotomy 5 
mm) EJV graft; 
embolized using 
collagen sponges 
(20 × 15 × 7 
mm) 

Not reported 80% (n = 4/5) of 
residual aneu-
rysm after colla-
gen sponge oc-
clusion after 3-5 
days 

Not reported 

Fujiwara 
et al.410 
(2001) 

Rabbit 
(CCA) 

Elastase induced; 
Baseline stump 
at day three (3.2 
± 0.6 mm width 
and 6 ± 1.3 mm 
height); left un-
treated 

100% (n = 6/6) 
within the first 
month then re-
mains stable (5 
± 0.9 mm 
width and 10 ± 
2.2 mm 
height) 

No rupture Not reported 

Yang et 
al.414 
(2001) 

Dog 
(CCA) 

Surgical sidewall 
(arteriotomy 3–4 
mm) EJV graft 
(approximately 
6–8 mm height); 
embolized using 
CAP 

20% (n = 1/5) 
of partially 
thrombosed 
aneurysm be-
tween 4-8 
weeks 

40% (n = 2/5) of 
one total and 
one subtotal oc-
clusion after 4 
and 5 days 

The wall struc-
ture was so 
badly damaged 
that no clear cell 
structure could 
be seen 

Aassar et 
al.409 
(2003) 

Rabbit 
(CCA) 

Elastase induced; 
Baseline stump 
at day three (3.1 
± 0.6 mm 
width); left un-
treated 

100% (n = 
42/42) during 
the first two 
weeks (4.2 ± 
0.7 mm width) 

No rupture Loss of the IEL 
and near com-
plete loss of me-
dial elastic 
lamellae 

Murayama 
et al.266 
(2003) 

Swine 
(CCA) 

Surgical sidewall 
(arteriotomy 6-8 
mm) EJV graft 
(7 mm width and 
8-12 mm 
height); embo-
lized using GDC 

Not reported  23% (n = 3/10) 
of tight packed 
GDC aneurysm 
after 5 days (n = 
2) and 12 days 
(n = 1)  

Unorganized in-
traluminal clot (5 
day) and large 
neck hematoma 
(day 12), rupture 
point at the 
dome of the ve-
nous pouch 

Becker et 
al.143 
(2007) 

Swine 
(CCA) 

Surgical sidewall 
(arteriotomy 6-8 
mm) EJV graft 
(7-10 mm width 

50% (n = 1/2) 
of partial oc-
clusion 

100% (n = 2/2) 
of partial occlu-
sion (<50%) af-
ter 6 and 8 days 

Inflammatory 
cell infiltration 
in aneurysm sac 
and neutrophil 
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and 8-10 mm 
height); left un-
treated or embo-
lized using cal-
cium alginate 

(<50%) within 
8 days 

infiltration 
within unor-
ganized throm-
bus 

Yang et 
al.411 
(2007) 

Rabbit 
(CCA) 

Combined surgi-
cal and Elastase 
and type I colla-
genase infused; 
Baseline stump 
(2.0 ± 0.1 mm 
width); left un-
treated 

100% (n = 
10/10) during 
the first two 
weeks (3.2 ± 
0.3 mm width) 
 

33% (n = 3/9) 
one after one 
day, one after 
two weeks, and 
one after four 
weeks 

Thinning of the 
wall composed 
of a thin layer of 
acellular fibrous 
tissue and loss of 
elastic lamellae 
and collagen 

Tsumoto 
et al.369 
(2008) 

Dog 
(CCA) 

Surgical bifurca-
tion (neck diam-
eter 6.9 ± 1.5 
mm) EJV graft 
(9.4 ± 1.1 mm 
width and 17.8 ±  
1.1mm height) 
left untreated 

100% (n = 5/5) 
continuous up 
to ten months 
(11.1 ± 1.9 
mm width and 
18.7 ±  1.3mm 
height) 

No rupture Not reported 

Ding et 
al.412 
(2012) 

Rabbit 
(CCA) 

Surgical sidewall 
(arteriotomy 5 
mm) EJV graft 
(4.3 ± 1.2 mm 
width and 4.3 ± 
1.4 mm length); 
left untreated 

100% (n = 6/6) 
within first 
three weeks 
(5.8  ±1.5 mm 
width and 6.1 
± 1.3 mm 
length) 

No rupture  Not reported 

Raymond 
et al.144 
(2012) 

Swine 
(CCA) 

Surgical sidewall 
(arteriotomy 4-6 
mm and 5-7 mm) 
EJV graft (small: 
7-8 mm x 11-17 
mm and giant: 9 
mm x 26mm); 
left untreated, 
lacking endothe-
lium, or com-
pletely clipped 

Not reported 100% (n = 7/7) 
of giant aneu-
rysms  
 
50% (n = 2/4) of 
small aneurysms 
with a small 
neck 
 
Fatal rupture 
day four, nonle-
thal within one 
week 

Intraluminal un-
organized throm-
bus in all 
ruptured aneu-
rysm, many ar-
eas with loss of 
SMC and elastic 
fibers, inflamma-
tory cells infil-
trating the ve-
nous wall, hem-
orrhagic wall 
transformation 

Marbacher 
et al.IV 
(2014) 

Rat 
(AA) 

Surgical sidewall 
(arteriotomy 2-
2.5 mm) arterial 
thoracic graft 
(2.5 mm x 3.5-4 
mm) left un-
treated or decel-
lularized grafts 

33% (n = 4/12) 
within the first 
week. Largest 
growth 
(43×38×24 
mm) 10-fold 
size compared 
to baseline 

25% (n =3/12) 
earliest rupture 
within eleven 
days after crea-
tion 

strong adven- 
titial inflamma-
tion, neutrophil 
infiltration and 
inflammatory 
cells in medial 
matrix, luminal 
thrombus with 
neutrophils 

 
AA = abdominal aorta; CAP = coronary artery perforation; CCA = common carotid artery; EJV = ex-
ternal jugular vein; GDC = Guglielmi detachable coil; IEL = internal elastic lamina; SMC = smooth 
muscle cell.  
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3 Aims of the study 

To develop animal models that more closely mimic human features of intracranial 
aneurysms: 
 
I To demonstrate the feasibility of creating aneurysms with complex angioar-

chitecture by using the venous pouch bifurcation model in rabbits. 
  
II To further evaluate the complex venous pouch bifurcation rabbit aneurysm 

model with regard to long-term patency rate. 
 
III To present step-by-step procedural instructions of the Helsinki rat sidewall 

aneurysm model in order to provide a standardized model for different wall 
conditions. 

 
To evaluate the influence of different aneurysm wall conditions on cicatrization 
and destructive wall remodeling: 
 
IV To investigate the hypothesis that loss of mural cells leads to destructive re-

modeling, aneurysm growth and eventual rupture in a rat model. 
 
V To determine the impact of mural cell loss on wall remodeling of throm-

bosed aneurysms and to assess the potential reversal of this process through 
transplantation of smooth muscle cells to the aneurysm lumen. 
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4 Material and methods 

4.1 Microsurgical aneurysm models 

4.1.1 Study designs, animals and anesthesia 

4.1.1.1 Complex microsurgical aneurysm formation in rabbits 
Adult female New Zealand rabbits were randomly assigned to three experimental 
groups. Complex angioarchitecture bilobular, bisaccular and broad-neck venous 
pouch aneurysms were microsurgically created at an artificially formed bifurcation 
of both CCA. Animals were followed up using 2D-DSA and CE-3D-MRA one 
week, one month and one year postoperative. 

4.1.1.2 Microsurgical aneurysm formation in rats 
After pilot series, three months old male Wistar rats were randomly allocated to 
experimental groups. Saccular aneurysms from syngeneic thoracic aortas were 
transplanted to the abdominal aorta. To study the natural course of sodium dodecyl 
sulfate (SDS) decellularized and non decellularized aneurysms, animals were fol-
lowed up for one month using weekly CE-MRA. Endoscopy and histology of the 
aneurysms were used to assess the role of periadventitial environment, aneurysm 
wall and thrombus remodeling. 

In the experiments aimed at studying the effect of thrombus formation on dif-
ferent wall conditions, animals were randomly assigned to three groups: Non-de-
cellularized aneurysms, decellularized aneurysms, and decellularized but cell 
transplanted aneurysms. Thrombus induction was performed using fibrin glue 
(FG) biopolymer. Animals were followed up at a single time point at day three, 
week one and week three after creation. After interim analysis, a replication of ex-
periments was performed for time point week one. Endoscopy, optical projection 
tomography, histology and immunohistochemistry were used to study the fate of 
transplanted cells, thrombus organization, collagen deposits and neointima for-
mation. 

4.1.2 Complex venous pouch bifurcation aneurysm model in rabbits 

4.1.2.1 Perioperative and postoperative management 
Prior to surgery, a single dose of amoxicillin (25mg/kg) is given intravenously. All 
surgical procedures are performed under sterile conditions and wounds are irri-
gated thoroughly with neomycin sulfate for infection prophylaxis. During micro-
surgical dissection of both CCAs, small arterial branches running medially as well 
as the superior laryngeal nerve are preserved. At the time of CCA clamping, ani-
mals receive 1000 IU heparin intravenously. The right CCA is cut as proximally 
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as possible to obtain a long donor artery for a tensionless anastomosis. Thrombo-
genic adventitia is carefully removed from the anastomosis site. During the anas-
tomosis procedure, the vessels are thoroughly and continuously rinsed with a mix-
ture of heparinized and papaverinized saline. The suture lines at the aneurysm 
neck are covered with small pieces of fat tissue to enhance coagulation. Postopera-
tively, all animals received intravenous acetylsalicylic acid (10 mg/kg), intramus-
cular vitamin B12 and glucose infusion to compensate for dehydration during sur-
gery. Low molecular weight heparin (250 IU/kg) is administered daily for 3 days. 
Oral acetylsalicylic acid is given daily, up to five weeks post-surgery. 

4.1.2.2 Venous graft harvesting 
Animals are fixed in supine position with their neck clipped and skin disinfected. 
A midline incision is made from the manubrium sterni to the angle of the jaw. The 
bifurcation or segments of the left external jugular vein serve as grafts for the cre-
ation of complex angioarchitecture aneurysms. All resected venous grafts are kept 
in a mixture of heparinized and papaverine saline. Before starting the anastomosis 
procedure, all vessels were extensively irrigated with heparinized saline and papa-
verine.  

Venous graft preparation. For the creation of bilobular aneurysms, either the 
internal-external or transverse-external jugular vein bifurcation is ligated and then 
resected five millimeters proximal and distal to the bifurcation with 4-0 silk. For 
bisaccular aneurysms, two one-centimeter venous segments are resected and su-
tured together. Broad-necked aneurysms are formed using a one-centimeter long 
venous segment incised along the longitudinal axis, sutured together at both the 
proximal and distal ends and anatomized to the CCA bifurcation (Figure 3). 

 

4.1.2.3 Surgical techniques of venous pouch aneurysm creation 
CCA preparation. Approximately three to four centimeters of the left CCA is ex-
posed just proximal to the carotid bifurcation. The right common carotid artery 
(RCCA) is isolated and mobilized as far distally and proximally as possible. The 
RCCA is temporarily clipped distally, ligated and cut as far proximally as possi-
ble. The exposed left common carotid artery (LCCA) segment is temporarily 
clipped using atraumatic clamps and elliptical arteriotomy is performed according 
to the size of the prepared complex venous pouch aneurysm.  

Anastomosis procedure. The distal end of the right CCA is sutured to the back 
of the left CCA The venous pouch is then sutured to the back of the right CCA and 
anastomosed to the left CCA on the back side. The same procedures are performed 
on the front side. Before placement of the last frontal stitch, the right clip of the 
RCCA is removed to allow backflow into the aneurysm. After prompt filling and 
washout of trapped air and debris, the last suture is placed. The suture lines at the 
aneurysm neck are covered with small pieces of fat tissue to enhance coagulation 
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(Video 1). During the anastomosis procedure, the vessels were thoroughly and 
continuously rinsed with papaverine. The skin incision was closed with absorbable 
threads. 

4.1.3 Saccular arterial sidewall aneurysm model in rats 

4.1.3.1 Animal preparation and video recordings 
All supplies are sterile and the procedure is performed in aseptic technique198. The 
rats are placed in a supine position with their front and hind paws immobilized 
with surgical tape without stretching or compressing the skin. The back is bent by 
placing a thick marker or cautery pen under the lumber region. It is important to 
obtain as much lumbar spine lordosis as possible in order to improve retroperito-
neal exposure and access to the infrarenal aorta which facilitates microsurgical 
anastomosis. 

A digital video camera attached to the was used to document preoperative an-
eurysm dimensions (width and length), microsurgical anastomosis procedures (to-
tal operating time, aortic clamping time, time for anastomosis creation, time to he-
mostasis, number of extra sutures, graft ischemia time and complications), patency 
and pulsation of the graft, patency of distal abdominal aorta and aneurysm harvest 
procedure including endoscopy at magnifications of 6x to 40x. 

4.1.3.2 Arterial graft harvesting 
The midventral abdominal wall is cut and the diaphragm identified just above the 
liver. The connective tissue is cut at the bottom of the diaphragm to access the rib 
cage. The thoracic cavity is opened by cuts through the ribs one centimeter left 
and right of the rib cage midline. The lungs are mobilized to the right side of the 
heart and the rats sacrificed by overdosing with intracardiac injection of ketamine 
hydrochloride. 

The thoracic aorta is traced back from the dorsal wall of the thorax upwards to 
the aortic arch. A non-absorbable 6-0 silk ligature is placed just above the first in-
tercostal artery leaving the aorta. The descending aorta is then cut just below the 
left subclavian artery and then below the ligature. The graft is trimmed to achieve 
perpendicular standardized aneurysm geometry and its width and length are meas-
ured. Untreated donor arterial grafts are immediately re-implanted to minimize po-
tential ischemic damage to the vessel wall. Grafts to be decellularized are treated 
with SDS and stored at -4° Celsius until re-implantation. 

Although it has been shown that spontaneous thrombosis  in sidewall aneu-
rysms can be significantly reduced using an “oblique cut of the aneurysm 
pouch”415 and a minimized “volume-to-orifice area”416, we decided to perform a 
standardized perpendicular long axis aneurysm creation in relation to the parent 
artery, and standardized aneurysm dimensions to avoid group differences in aneu-
rysm hemodynamics and associated rate of thrombosis. 
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4.1.3.3 Surgical technique of saccular aneurysm formation 
Dissection of the abdominal aorta. The abdominal cavity is opened via midventral 
cut just above the genitals and extended along the linea alba upwards to the xiph-
oid process. Small intestines and the prominent cecum are moved to the right or 
the left. The ligament in between the small intestine and the descending colon is 
cut in cranial direction to allow wider exposure of the dorsal body wall. A self-re-
tractor is placed to hold the bowels apart. The abdominal aorta is dissected from 
adjacent large veins. 

End to side anastomosis. Loose connective tissue and adventitia is removed at 
the level of the planed anastomosis site. The abdominal aorta is clamped to the 
anastomosis first distally, and then proximally. Eliptical arteriotomy, which had 
higher patency rate in both aortic and CCA sidewall aneurysm417, is preferred over 
linear incision. The length of the arteriotomy is standardized to the width of the 
graft. Following arteriotomy, end to side suturing of the saccular graft is per-
formed either with continuous or interrupted sutures. The first two sutures are 
placed at the proximal and distal end of the arteriotomy. If interrupted suturing is 
chosen then the back side nine o’clock suture is placed first. Subsequent sutures 
can be spaced starting adjacent to the very first suture. The same procedures are 
performed on the front side. 

If continuous suturing is performed, dissection and pseudo aneurysm for-
mation of the abdominal artery might be reduced by placing the first and final su-
tures at nine o’clock and three o’clock. Previous research suggested beginning and 
ending sutures along the lateral portion of the incision rather than the apices, 
avoiding having to place the final knots in a potentially weak area.417 

Hemostasis and closure. After the end to side anastomosis, the site is rinsed 
with saline and the distal clamp removed first to allow for backflow. The proximal 
vascular clamp is then removed and patency confirmed by observation of volume 
increase of the aneurysm during peak arterial pulse wave and visual assessment of 
swirling blood within the aneurysm. Distal abdominal artery patency is assessed 
through the direct “milking test”. Suture lines around the anastomosis can be cov-
ered with small pieces of adipose tissue or Spongostan for additional hemostasis if 
minor oozing is still present. A detailed description is provided in Video 2. 
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Figure 3. Complex venous pouch bifurcation aneurysm.  

 
 
Surgical steps (A-C), intraoperative photographs (A1-C1), 2D-DSA (A2-C2), CE-3D-MRA (A3-C3), 
and surface rendered 3D-reconstructions (A4-C4). A, bilobular: vein bifurcation stump; B, bisaccular: 
two venous pouches sutured together (white arrow); C, broad-neck: vein incised longitudinally (1), 
folded along its transverse axis (2), and sutured together proximally and distally (3). 
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4.2 Imaging modalities 

4.2.1 Macroscopic and endoscopic inspection 
After final follow-up MRA, the animals underwent laparotomy and dissection of 
the aneurysm (Video 3). The tissues were perfusion-fixed with 4% paraformalde-
hyde (PFA) in phosphate buffered saline (PBS) and measured in all dimensions. 
The posterior wall of the aorta was opened and evaluated by macro- and endo-
scopic intraluminal aneurysm surface inspection. Neointima formation was graded 
as described previously with slight modification.418 Analysis of neointima for-
mation based on at least one macro- and endoscopic video screenshot was per-
formed blinded, by two observers (Video 4). 

4.2.2 Magnetic resonance imaging 

4.2.2.1 CE-3D-MRA in rabbits 
Animals underwent CE-3D-MRA using a 1.5 T scanner Magnetom Avanto Syngo 
B17 (Siemens Medical Solutions, Erlangen, Germany). T2-weighted fast spin-
echo and 3D time-of-flight MRA (3D-TOF-MRA) gradient-echo sequences were 
performed. After manual bolus injection of Gadovist® (0.1 ml/kg) CE-3D-MRA 
was performed using T1-weighted 3D fast-spoiled gradient-echo. Three-dimen-
sional aneurysm reconstructions were performed using the Philips ViewForum 
Workstation (Video 5).  

4.2.2.2 MRI and CE-MRA in rats 
MRA studies were performed with a 4.7 T scanner. Existing protocols for high 
resolution TOF-MRA419 were combined with contrast enhanced angiography. All 
animals underwent high-resolution imaging postoperatively and at final follow-up 
as defined by the respective group, to evaluate contrast enhancement, flow charac-
teristics, parent vessel integrity, perianeurysmal environment, changes in aneu-
rysm volume, extent of spontaneous thrombosis and recanalization. 

After shimming and scout images, a three-dimensional fast low-angle shot se-
quence (3D-FLASH) was acquired. Afterwards, a 3D-FLASH with short imaging 
time was performed. At that time, the animals received a bolus injection of Gd-
DOTA (1 ml/kg body weight, intravenously, injection time < 3 s) and the 3D-
FLASH with short imaging time (CE-MRA) was repeated twice without delay be-
tween the scans (late CE-MRA). In total, MR imaging took approximately 30 
minutes (Figure 4). 

4.2.3 Digital subtraction angiography 
The rabbit’s left or right femoral artery was microsurgically exposed and cannu-
lated using a straight 5.5 French vascular sheath. The sheath was introduced in ret-
rograde manner and fixed distally. Images were obtained by rapid sequential 2D-
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DSA at two frames per second using a small focal spot at 66 kV and 125 mA. An-
teroposterior and lateral views were obtained. Intra-arterial bolus injection of non-
ionic iopamidol (0.6 ml/kg) as contrast agent was administered at a rate of approx-
imately 3 ml/s. 

4.2.4 Morphometric measurements 

4.2.4.1 Aneurysm volume on 2D-DSA and CE-3D-MRA 
Measurements on 2D-DSA images, including aneurysm dome (length and width) 
and aneurysm neck, were performed using standardized software installed in the 
DSA equipment and referencing an external sizing device. 

The same aneurysm characteristics were measured in CE-3D-MRA’s using the 
best three-dimensional projections which included parent vessel and all dimen-
sions of the created aneurysm. To assess morphologic features, each aneurysm 
was measured three times in a blinded fashion using the automatic measurement 
tool of ImagePro Discovery® analysis software. The volume of the aneurysm was 
calculated approximately using a cylindrical volume formula: aneurysm volume = 
3.14 x (width/2)2 x length420. Three-dimensional visualization of the direction of 
the orifice and aneurysm lobes was performed using the surface rendering mode of 
the Philips View Forum Workstation. 

4.2.4.2 Aneurysm patency, recurrence and growth on CE-MRA 
CE-MRA were analyzed and scored according to a schema previously used to 
evaluate spontaneous thrombosis of experimental sidewall aneurysms in dogs.415 
Aneurysm patency was categorized on contrast filling in the aneurysms axial di-
mension as patent (> 50%), partially thrombosed (< 50%), or completely throm-
bosed (no aneurysm filling). 

Accordingly, aneurysm recurrence was categorized as: 0 = no recurrence (no 
filling); 1 = partial recurrence (< 50%); and 2 = complete recurrence (> 50%). 
Growing aneurysms were further analyzed using 3D active contour segmentation 
software itk-SNAP (Figure 5).421 

4.2.5 Optical projection tomography 

4.2.5.1 In vivo FITC-lectin perfusion and tissue processing 
On day 0, 3, and 7 following cell transplantation, 200ul Fluorescein isothiocyanate 
(FITC)-conjugated Lycopersicon esculentum (tomato) lectin diluted in 200μl PBS 
was injected to the femoral vein and allowed to circulate for 5 min. Rats were kept 
on a warm heating block after injection prior to euthanization through a lethal dose 
of xylazine-ketamine. Intracardiac perfusion-fixation was carried out at room tem-
perature with PBS followed by 4% PFA in PBS. 
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The specimens were removed from the abdominal cavity, immersed in 4% 
paraformaldehyde at 4°C overnight and embedded in 1% low-melt agarose. The 
samples were mounted on rotary stages, dehydrated in 75% methanol, and subse-
quently cleared using a 1:2 mixture of benzyl alcohol and benzyl benzoate over a 
72-hour period. 

4.2.5.2 Data acquisition and visualization 
Optical projection tomography was applied to scan the aneurysms stepwise at 0.9 
degrees, resulting in 400 images of projection data over one complete revolution. 
Images were taken with the following filters: WL (white light; visualization of su-
ture material – assigned color white), green fluorescent protein (GFP)1; visualiza-
tion of fibrin biopolymer – assigned color yellow, GFP+, FITC-lectin; visualiza-
tion of vessel wall – assigned color blue and Standard Texas Red (TXR); CM-Dil; 
visualization of transplanted cells – assigned color red. 

Post-alignment was carried out on a minimum of three levels through the 
specimen and image stacks were reconstructed and three-dimensional volumetric 
representations visualized in a Bioptonics viewer. Automated object detection 
(transplanted cells and vessel wall) and isosurface rendering in maximal intensity 
projections was performed to create 3D animations using Imaris 7 image pro-
cessing software (Videos 6-8). 
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Figure 4. MRI studies in the rat. 

 
 
A, a sagittal scout was used to determine the field of view for subsequent 3D-FLASH images (ana-
tomical overview), TOF-MRA, and CE-MRA. B, no enhancement of the aneurysm wall. Bowels (ar-
row) and the kidney (dashed line) demonstrate enhancement after contrast injection. C, aneurysm wall 
enhancement. D, minor aneurysm recurrence. E, major recurrence and aneurysm wall enhancement. 
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Figure 5. ITK-SNAP 3D active contour segmentation.  

 
 
Screenshots of segmentation volume calculation, axial, sagittal and coronal clipping planes and 3D 
visualization. Anatomical structures of the aneurysm were delineated and extracted using the semi-
automated segmentation tool (snake evolution) provided by ITK-SNAP. In each plane, closed curves 
are placed in regions of interest (ROI; contrast enhanced vessels). In relation to image intensities, the 
closed curve adjusts to take on the shape of the ROI. Single objects were created using the contour 
stack function and isosurface rendering. The volume of objects was calculated by adding up the con-
tour areas. 
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4.3 Tissue processing and cell cultures 

4.3.1 Graft decellularization 

4.3.1.1 Physical decellularization method 
Ex-vivo pilot series using various ischemia periods at four degrees Celsius (4 °C) 
and room temperature (RT) were performed in combination with multiple freeze-
thaw cycles and centrifugation to assess physical decellularization. Detailed de-
scription of blinded counting of numbers of cell nuclei in random vessel walls of 
different decellularization methods at various time points is given in Figure 6. 

4.3.1.2 Chemical decellularization method 
To minimize SDS incubation time and consequent ECM disruption, the original 
description of rat abdominal aorta decellularization by Allaire et al. was adopted 
with slight modifications.422 Donor grafts were harvested and frozen in PBS at -
4 °C. The grafts were thawed the next day, rinsed with Milli-Q® water at room 
temperature and incubated for ten hours at 37 °C in 0.1% SDS in Milli-Q® water. 
The SDS-treated grafts were subsequently washed three times with gentle agita-
tion, refrozen in PBS and kept at -4 °C until use. To assess the adapted decellulari-
zation process, thoracic aorta segments of four rats were harvested and assigned to 
various SDS incubation times (3h, 6h, 10h and 15h). 

4.3.2 Cell culture, labeling, and immunofluorescence 

4.3.2.1 Primary cell culture 
Primary cell culture cells were obtained by the explant and enzymatic digestion 
method. A one-to-two centimeter abdominal aortic segment was excised and 
cleaned of fat tissue with sterile forceps and micro scissors, washed with PBS, 
transferred to warm Dulbeco’s Modified Eagle’s Medium, rinsed and cut into ap-
proximately 1 mm2 squares. The tissue pieces underwent trypsin digestion for 20 
minutes at 37 °C followed by incubation in fetal bovine serum for 15 min. After 
centrifugation, the supernatant was discarded and the tissue evenly distributed in a 
6-well cell culture cluster containing Dulbeco's modified Eagle's medium 
(DMEM), supplemented with 10% fetal bovine serum (FBS) and a Penicillin (500 
U/mL)-Streptomycin (5mg/ml)-L-Glutamine (5mM) solution. The primary cell 
cultures were passaged initially at a ratio of 1:2 when the cells became confluent. 
Cells were maintained in 25 and 75 cm2 tissue culture flasks and underwent 6-10 
passages before transplantation. Cells were labeled using a carbocyanine lipid cell 
membrane tracer and homogenously suspended in thrombin solution in a concen-
tration of 1 x 106 cells/ml which was then mixed with the fibrinogen component to 
form a clot. The switch from the contractile to the synthetic smooth muscle cell 
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phenotype was confirmed by immunostaining to cytoplasmic smooth muscle actin 
and vimentin (Figure 7A). 

4.3.2.2 CM-Dil cell-labeling 
The numbers of live cells obtained after trypsination were counted before labeling. 
In a typical experiment the percentage of dead cells did not exceed 1 - 2%.   The 
cells were labeled by incubation in 1ml of 10μM 1,1-dioctadecyl-3,3,3,3-tetrame-
thylindocarbocyanine perchlorate solution for five minutes at 37 °C and for an-
other 15 minutes at 4 °C. After labeling, the cells were washed in PBS, centrifuged 
and homogenously re-suspended in the thrombin solution at a concentration of 1 x 
106 cells/ml, followed by mixing with the fibrinogen component to form a clot. To 
determine the intensity of the fluorescence labeling ~50,000 cells of each sample 
were Cellspin mounted onto slides and analyzed using an Axiovision fluorescence 
microscope (Carl Zeiss). The nuclei were counterstained with 4',6-diamindino-2-
phenylindole (DAPI) (Figure 7B). 

4.3.2.3 Immunofluorescence in cell culture 
Quantification of differentiation of smooth muscle cells into smooth muscle cells 
of synthetic phenotype was assessed by cell culture staining for smooth muscle ac-
tin and vimentin and viewed with fluorescence microscopy (Axiovision, Carl 
Zeiss) at 20x magnification. For immunocytochemical staining, the cells were cul-
tured on coverslips until confluency, fixed with 4% PFA and permeabilized with 
0.1% Triton X-100. Fixed cells were stained with antibodies against human 
smooth muscle actin and vimentin. Secondary antibodies were Cy3-conjugated 
donkey anti-mouse IgG and FITC-conjugated donkey anti-rabbit IgG. The nuclei 
were counterstained with DAPI. Cells were imaged using fluorescence confocal 
microscopy in multichannel scanning at 10x and 40x magnification. Negative con-
trol for staining was performed with species-matching unspecific antibody  
(Figure 7C). 

4.3.3 Histology and histological analysis 

4.3.3.1 Sample preparation and visualization 
Aneurysms embedded in paraffin blocks were cut in the middle along the longitu-
dinal axis and into consecutive 4 μm sections for hematoxylin-eosin, elastica van 
Gieson’s, Masson-Goldner’s trichrome and Prussian blue staining (Figure 8). All 
histological slides underwent qualitative analysis by two observers. Histological 
scoring was performed blinded to the treatment allocation. Slides were visualized 
under light and fluorescence microscope and post processed using Adobe Pho-
toshop CS 6  and Image J 1.47e (National Institutes of Health, Bethesda, MD, 
USA) software.423 
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Fluorescent images were examined to determine the fate of transplanted CM-
Dil labeled smooth muscle cells: ingrowth in luminal thrombosis and organization 
of thrombosis and fibrin glue, neointima formation, infiltration of the adventitia, 
ingrowth in periadventitial environment, migration to the parent artery and CM-
Dil uptake by macrophage cells. Detailed evaluation of periadventitial environ-
ment, aneurysm wall structure and endoluminal thrombus was performed on he-
matoxylin-eosin and elastica van Gieson’s stain. 

4.3.3.2 Quantitation of histology 
The following characteristics were assessed and scored as follows (Figure 9): Per-
iadventitial inflammation (0 = none, 1 = mild, 2 = moderate, 3 = severe), periad-
ventitial fibrosis (0 = none, 1 = mild, 2 = moderate, 3 = severe), aneurysm wall in-
flammation (0 = none, 1 = few (1-3) spots, 2 = many (>4) spots, 3 = ubiquitous), 
aneurysm wall hematoma (0 = none, 1 = few (1-3) spots, 2 = many (>4) spots, 3 = 
ubiquitous), aneurysm wall cellularity (0 = none, 1 = few (1-3) spots, 2 = many 
(>4) spots, 3 = ubiquitous), aneurysm wall dissection (0 = none, 1 = few (1-3) 
spots, 2 = many (>4) spots, 3 = ubiquitous), endothelial cellularity (0 = none, 1 = 
few (1-3) spots, 2 = many (>4) spots, 3 = ubiquitous), luminal thrombus (0 = ab-
sent, 1 = present), neutrophils in the thrombus (0 = none, 1 = mild, 2 = moderate, 3 
= severe) and neointima formation (0 = none, 1 = organizing thrombus, 2 = organ-
izing thrombus and neointima formation, 3 = mature neointima). Scores were di-
chotomized as (1) none/mild and moderate/severe, (2) no/few cells and focal hy-
pocellularity/normal cell count, and (3) no neointima/organizing thrombus and or-
ganizing neointima/mature neointima. 
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Figure 6. Cell count in decellularized walls. 

 

 A, thoracic aorta segments were harvested and cell counts assessed over time (serial specimens in the 
same specimen at 3h, 6h, 12h, 24h, 3d, 4d, 5d, 7d, 1w, 2w, 4w). B, at each time point, three histologi-
cal slides with four to six vessel cross sections were stained and hematoxylin positive cells counted in 
a random field of view at 6h, 24h, 3d, 7d, 2w and 4w. C, digitalized microphotographs of three vessel 
cross sections were taken at 40x magnification, blinded and analyzed separately for each vessel wall 
layer (adventitia, medial layer, and endothelium) using ImageJ software. RT = room temperature. 
SDS = sodium dodecyl sulfate. 
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Figure 7. Cell culture staining and labeling. 

  
 
A, Double-labeled cells taken from cell culture indicating differentiation into SMCs of synthetic phe-
notype. B, Cellspin mounted samples of CM-Dil stained cells. C1, Concfocal microscopy of im-
munostaining for -SMA and vimentin filaments confirmed phenotype change. C2, negative controls 
in unlabelled and CM-Dil-labeled (C3) cell cultures. 20x (A, B) and 40x (C) magnification. Scale bar 
= 50 μm (A, B); 10 μm (Inlet, C). -SMA = -smooth muscle actin. 
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Figure 8. Light microscope staining. 

 
 
Overview: Decellularized aneurysm wall (white arrows) and healthy parent artery (black arrows). HE: 
Cell morphology; EVG: Connective tissue (violet). MT: Collagen (greenish blue). FE2+: Iron and 
hemosiderin (azure). Large panel 10x magnification, scale bar = 50 μm; Small panels 20x magnifica-
tion, scale bar = 100 μm; Inlets 5x magnification. 
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Figure 9. Histological characteristics. 

 
 
A, Periadventitial inflammation (strong adventitial inflammation); 20x magnification; scale bar = 100 
μm. B, periadventitial fibrosis (severe fibrosis); 20x magnification; scale bar = 100 μm. C, aneurysm 
wall inflammation (ubiquitous inflammation); 10x magnification; Scale bar = 50 μm. D, aneurysm 
wall hematoma (ubiquitous); 20x magnification; scale bar = 100 μm. E, aneurysm wall cellularity 
(many spots); 20x magnification; scale bar = 100 μm. F, aneurysm wall dissection (ubiquitous); 20x 
magnification; scale bar = 100 μm. G, endothelial cellularity (none; neutrophils attached to the sur-
face); 20x magnification; scale bar = 100 μm. H, luminal thrombus (present); 20x magnification; 
scale bar = 100 μm. I, neutrophils in the thrombus (severe inflammation); 40x magnification, oil; 
Scale bar = 50 μm. J1, unorganized thrombus; 20x magnification; scale bar = 100 μm. J2, thrombus 
and neointima formation; 10x magnification; Scale bar = 50 μm. J3, mature neointima; 10x magnifi-
cation; Scale bar = 50 μm. All specimens are stained with HE. 
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4.4 Statistics 
Two-tailed Fisher`s exact test was used for comparison of dichotomized histological 
grades, aneurysm growth, and rate of thrombosis between decellularized and non 
decellularized groups and growing and stable aneurysms, respectively. Two-tailed 
Student t-test was performed to assess differences in surgical characteristics of the 
sidewall aneurysm model and to evaluate differences between one-month and 
twelve-month morphometric measurements of complex bifurcation aneurysms. 
Data were analyzed and visualized using Graph Pad Prism statistical software V6.01 
for Windows. Values are expressed as mean ± standard deviation (SD) and 95% 
confidence interval (CI). A probability value of less than 0.05 was considered sta-
tistically significant.  
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5 Results and Discussion 

5.1 Microsurgical complex bifurcation aneurysms in rabbits 

5.1.1 Surgical and neuroradiological findings 

5.1.1.1 Mortality, morbidity, and surgical characteristics 
Perioperative and one-month postoperative mortality and morbidity was 0% and 
9% respectively.I One year follow-up mortality and morbidity increased to 18% 
and 24% for complications related to long-term housing.I, II Strict adherence to 
elaborated perioperative and postoperative management is needed to achieve such 
low rates of mortality and morbidity.424, 425 

Despite relatively long operation times of approximate 2.5 hoursI, II, the mean 
clamping time of both CCA’s did not exceed one hour, which is comparable to 
conventional surgical aneurysm creation.426, 427 This indicates that it is not the 
anastomosis procedure itself but rather the harvest and creation of the venous 
graft/pouch that requires additional operation time. This may also explain why the 
complication rate did not rise despite an increase in overall operation time. 

5.1.1.2 Aneurysm volume changes over time 
There were no significant differences in aneurysm volume or parent artery config-
uration over the period of one year II. Volume of complexly shaped aneurysms is 
far larger than those in conventional berry-shaped venous pouch bifurcation aneu-
rysms (< 100 mm3)428 or elastase-induced aneurysms (~ 30–100mm3).420 

It has been shown that elastase-induced410, bifurcation aneurysms369 and side-
wall aneurysms412 enlarge during the first weeks after creation. The most impres-
sive growth has been documented in a rat venous pouch bifurcation model, with 
an increase of 145% in aneurysm size over a three-month period (SD=30%).429 
While some aneurysms from the presented series demonstrated an increase in vol-
ume, others decreased in volume by the one year follow-up. Aneurysm shrinking 
in absence of thrombosis can likely be explained by remodeling processes.380 
These remodeling processes provoked criticism of the microsurgical venous pouch 
model until recent studies demonstrated that a significant number of ruptured, and 
especially unruptured human aneurysms, do contain intimal thickening and in-
flammatory cell infiltration, therefore supporting the use of the model.112, 140 

5.1.1.3 Patency rate and antithrombotic regimen 
One month aneurysm and parent vessel patency was over 90% in both series.I, II 
Overall long-term follow-up of all three groups together revealed a patency rate of 
86% with only one complete and one partial occlusion in bisaccular aneurysms.II 
Bilobular, bisaccular and broad-neck aneurysms represent different hemodynamic 
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features. In future studies the three different shapes should be evaluated sepa-
rately. 

Previous studies report small numbers of early spontaneous thrombosis and 
stable long-term patency. More recent publication with large case numbers (224 
canine and 40 rabbit sidewall vein pouch aneurysms) and excellent short term pa-
tency rates of 99.5%430 and 95%412 stand in contrast to the smaller series with 
more frequently reported early spontaneous thrombosis.367, 368, 431 We assume that 
initial aggressive anticoagulation is important to protect the anastomotic complex 
from early thrombosis until endothelialization inhibits extrinsic activation of the 
coagulation system.149 

However, especially when considering the reported excellent patency rates in 
very experienced hands412, 430, it remains unknown whether other factors such as 
extensive microsurgical training426, 427 and associated technical factors (suture line, 
badly placed sutures, or constricted neck of the aneurysm)391, 431, shape of arteri-
otomy13, aneurysm volume-to-neck ratio28, number of sutures, tensionless anasto-
mosis and perioperative and post-operative management (compensation for fluid 
loss, pain management, antibiotics, vitamin complexes) are as important as antico-
agulation in preventing thrombosis.426 Interestingly, in our series parent vessel and 
aneurysm thrombosis occurred only in the group with the greatest number of su-
tures (bisaccular aneurysms).I, II 

Only a control study (one group with extended anti-coagulation, another only 
with anti-coagulation at the day of surgery) could answer the question of whether 
initial aggressive one month anticoagulation is necessary. The present study con-
firms that strict adherence to the mentioned measures prevents extensive early 
spontaneous thrombosis. The results further demonstrate that long-term patency 
can be achieved in absence of ongoing anticoagulation.  

5.1.2 In vivo animal testing of human endovascular devices 
Nowadays, the range of cerebral aneurysms found to be suitable for endovascular 
treatment is steadily increasing in the clinical setting. Nevertheless, the incidence 
of recanalization and recurrent aneurysms after endovascular treatment must be 
considered as a limitation of these techniques. The complexity and difficulty of 
cases demand further development of endovascular technology. The various angi-
oarchitecture of the experimental aneurysm formations presented here offer a 
promising tool for in vivo animal testing of human devices in true bifurcation he-
modynamics, and provide a valuable training opportunity for neurointerventional 
radiologists and endovascular neurosurgeons. 
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5.2 Microsurgical arterial sidewall aneurysms in rats 

5.2.1 Mortality, morbidity and surgical characteristics 
Anesthesia-related death occurred in five rats. Further non anesthesia related mor-
tality was: two animals died during pilot transvascular embolization attempts, five 
animals deceased due to either proximal or distal dissection of the aorta with or 
without pseudoaneurysm formation, four rats died due to massive intra-abdominal 
bleeding from a ruptured enlarged aneurysm, one animal died due to thrombosis of 
the parent artery, one animal died due to abdominal cavity infection and in three 
animals the cause of death remained unclear due to delayed autopsy (>12h post-
mortem). One animal was euthanized after occurrence of bilateral femoral artery 
thrombosis on day one after surgery. Key steps of the model and related surgical 
characteristics are given in Figure 10.III 

5.2.1.1 Fast, simple and affordable 
The basic principles of the rat aneurysm model can be mastered in a short period 
of time. An introductory course in rodent microsurgery is recommended for those 
researchers inexperienced in performing dissections and suture techniques under 
an operating microscope. An average total operation time of less than 60 minutes 
for microsurgical creation of a sidewall aneurysm in rats is much shorter than that 
needed for creation of more complex microsurgical venous pouch arterial bifurca-
tion aneurysm in rabbits and dogs.130, 432 Small animals such as the rat are inher-
ently associated with lower experiment and housing costs and the reduced need for 
specialized equipment. 

The advantages of low costs and faster methods of aneurysm creation may fa-
cilitate conduction of studies with larger number of experiments and subsequent 
increased statistical power. In addition, the rodent arterial sidewall aneurysm 
model has been successfully implemented to answer research questions requiring 
more sophisticated laboratory methodology, including transgenic animals.140, 433 

5.2.1.2 The study of endovascular devices and aneurysm biology  
Experimental models for saccular aneurysms are needed to study the biology of 
arterial aneurysms and for the testing of novel therapeutic devices and strategies. 
For these purposes, several different models in different species have been devel-
oped and published.382 Larger aneurysm models in pigs, dogs and rabbits are pre-
ferred to test endovascular innovations in complex aneurysm architecture.382, 432 
Murine aneurysm models, on the other hand, allow research in genetically modi-
fied species.140, 433 and facilitate clarification of aneurysm biology at cellular and 
molecular levels far better than larger species.382 The model presented has been 
successfully implemented to answer research questions needing more sophisti-
cated laboratory methodology, including transgenic animals.140, 433 
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Although endovascular trans-carotid and trans-iliac device deployment is lim-
ited to bigger rats (>400-500g) and to stents smaller than 2.0 mm and 1.5 mm in 
diameter434, stents can also be placed through direct insertion into the abdominal 
aortic segment harboring the experimental aneurysms.267, 419 Previous work using 
the rat microsurgical abdominal aortic sidewall aneurysm model demonstrated its 
feasibility in testing platinum- and polyglycolic-polylactic acid- coated coils.267 

5.2.1.3 Robust, standardized model for multicenter preclinical trials  
Preclinical trials should ideally be performed with the same standardized model in 
various institutions and labs, in order to allow better comparison of data, devices 
and treatments. To date, there are no guidelines for standardized testing of endo-
vascular devices prior to clinical application and animal models remain un-
derused.382 Most of the proposed novel treatment modalities are single-center 
cases that lack validation and replication. Standardized models will gain im-
portance once multicenter randomized preclinical trials also emerge in this field of 
research. The model presented is the most standardized and inexpensive one cur-
rently available and is of great interest to those working on the development of 
treatments for intracranial aneurysms, or in the field of vascular neurosurgery and 
neuroradiological interventions in general. 

Microsurgical sidewall aneurysm creation in rodents allows standardization of 
graft origin, volume-to-orifice ratio and parent vessel to aneurysm long axis angle. 
The presented technique resulted in standardized aneurysms with minimal varia-
tion in aneurysm dimension, location and relation to the parent artery. Previous 
experiments revealed high overall patency rates of 92.5% at a median follow-up of 
six weeks after creation.140, 267, 419 With the exception of a single case, significant 
growth or dilatation of native experimental aneurysms was not observed and none 
of the aneurysms ruptured during median follow-up of 6 weeks (range 3 days – 
2 years).140 
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Figure 10. Saccular arterial sidewall aneurysm. 

  
 
A, preparations. B, graft harvesting. C, end-to-side anastomosis. D, surgical characteristics: The 
graphs visualize the distribution of single data values (small black dots), data mean (bold long bar) 
and standard deviation (error bars). 
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5.3 Biological effect of mural cell loss 

5.3.1 Physical and chemical decellularization 
Any decellularization methods alter ECM and cause some ultrastructural disrup-
tion. Minimized damage to the ECM, coupled with complete decellularization is 
the aim of each decellularization method (chemical, biological, and physical) and 
depends on many factors, such as the tissue’s cellularity, density, organization and 
thickness.435 Agents and techniques need to be verified for the rat abdominal aorta. 

Ex vivo pilot series using various physical decellularization including freez-
ing/thawing cycles, pressure and ischemia periods at four degrees Celsius (4 °C) 
and RT proved to be insufficient to remove nuclear components unless further 
chemical or biological processing was added. Chemical decellularization using the 
ionic detergent SDS successfully removed nuclear remnants of the rat abdominal 
aorta in an incubation time-dependent manner (Figure 11).  

After ten hour of SDS treatment, near-complete graft decellularization was 
documented in all three layers of the rat abdominal aorta. Following SDS treat-
ment, matrix components of the extracellular matrix including medial elastin, col-
lagen networks and adventitial extracellular matrix are known to be preserved.422 
Although there are no clear microscopic changes in the matrix it is still possible 
that the SDS treatment alters the mechanical strength of the vessel wall. It has 
been shown that SDS treatment decreases compliance of vessels.436 Since no dif-
ferences in the amount of collagen between native and decellularized vessels was 
found, collagen denaturation was ruled out and the authors hypothesized that the 
absence of vascular smooth muscle cells is causative for the altered vessel compli-
ance. 

5.3.2 Luminal thrombus formation 

5.3.2.1 Failure of stable thrombus organization causes recanalization 
There were no significant differences between the aneurysm patency rates in the 
two groups at any time during follow-up.IV Aneurysms in the non decellularized 
group showed a linear course of thrombosis over time. Decellularized aneurysms 
exhibited a heterogeneous pattern of thrombosis and recanalization.  

Repeated follow-up MRA revealed that aneurysms with a “healthy” wall de-
veloped thrombosis stepwise, while decellularized aneurysms showed continually 
repeating cycles of clot formation, dissolution and aneurysm recanalization. Histo-
logically-confirmed unorganized thrombus and failure of neointima formation was 
only noticed in decellularized aneurysms, which further supports the concept of 
impaired thrombus organization in aneurysms missing mural cells. 

Together, the radiological and histological findings indicate that aneurysms 
with loss of mural cells are less likely to form a stable thrombus. Previous studies 
have already demonstrated the paramount importance of aneurysm wall smooth 

84



Results and Discussion 
 

 
 

 

muscle cells in thrombus organization and neointima formation.140, 437 Therefore, it 
can be hypothesized that loss of mural cells is causative for the failure of luminal 
thrombus transformation into stable fibrotic tissue. 

Intraluminal thrombus (38% in non-giant IA radiographic series438; as an in-
traoperative finding, luminal thrombosis is even more common in giant aneu-
rysms) and wall hematomas are common features of human giant intracranial an-
eurysms and in line with our histological findings. Fresh luminal thrombosis is 
seen in up to 25% of unruptured and 70% of ruptured non-giant aneurysms.102 The 
histological changes of luminal thrombus formation and luminal thrombus organi-
zation found in the experimental aneurysm resemble those seen in human histo-
pathological series.100, 102, 105 

5.3.2.2 Increased neutrophil accumulation in the luminal thrombus 
Decellularized aneurysm demonstrated a trend towards increased neutrophil accu-
mulation in the thrombus (p = 0.08) when compared to non decellularized aneu-
rysms. Analyses comparing stable and growing aneurysms revealed a significant 
increase in neutrophil accumulation (p = 0.001) in unorganized intraluminal 
thrombus formation. Failure of thrombus organization and neointima formation 
was seen only in decellularized aneurysms.IV 

This interesting finding indicates that decellularized aneurysms  are not only 
incapable of thrombus organization, or continually repeating cycles of clot for-
mation, dissolution and aneurysm recanalization; but also induce increased neutro-
phil accumulation in the luminal thrombus. Fibrin deposition and platelet-derived 
neutrophil-attracting chemokine released from the thrombus attracts neutrophils 
per se.439 The additional increased neutrophil content in the luminal thrombus of 
decellularized aneurysm could be explained by the fact that ongoing degeneration 
of red blood cells and degranulation of thrombocytes, platelets and neutrophils 
trapped in the fibrin scaffold of an unorganized thrombus initiates additional 
chemotropic responses and attracts even more neutrophils.440 In abdominal artery 
aneurysms, intraluminal thrombus is associated with wall instability which ap-
pears to contribute to growth and rupture.441 

Crompton has divided the IA into three parts and identified the most frequent 
rupture point in the distal third (IA fundus)34. In our series we did not perform 
multiple contiguous sections throughout the entire paraffin-embedded specimen. 
Therefore we cannot comment on the rupture site.  

5.3.2.3 Benefits and limitations of the model 
The behavior of aneurysm growth seen in our model does not mirror the growth 
pattern of human cerebral aneurysms exactly. Small aneurysms grew in to giant 
aneurysms within two weeks which is considerably faster than what was believed 
necessary for cerebral aneurysm formation and maturation. The loss of mural cells 
in human intracranial aneurysms is most likely a long term process requiring more 
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time than in the experimental model presented. It therefore follows that the natural 
history of these experimental aneurysms is not the same as that of human aneu-
rysms. 

Animals are prone to sudden death due to aneurysm growth and rupture, 
which raises ethical concerns about acceptability of the severity of an experiment. 
The results revealed that aneurysm growth began within the first two weeks and 
first ruptures occurred no earlier than ten days after aneurysm creation. The fore-
seeable changes in aneurysm geometry can by tracked noninvasively by MRA, 
micro computed tomography and high-frequency ultrasound and guarantees an 
early discontinuation of the experiment. 

The presented model aortic artery sidewall rat aneurysm model using decellu-
larized aneurysms is based on a relatively small number of animals and needs fur-
ther validation and replication. Despite all attempts to minimize surgical trauma, 
aortic clamping time and standardize aneurysm angioarchitecture, multiple com-
plex factors can influence biological behavior and it is impossible to disentangle 
confounding factors from true causal factors and events. Aneurysms arising in the 
abdominal cavity are allowed to grow unrestricted without causing mass effect for 
a long time (up to more than tenfold increase in size), but inflammatory cells are 
more easily attracted than in other parts of the body.  

The microsurgical sidewall aneurysm model using decellularized grafts can be 
used to study basic biological concepts of aneurysm formation although one must 
be aware of differences in hemodynamic characteristics and vascular biology be-
tween the aorta and cerebral arteries. With the exception of the Hashimoto 
model365, in which induction of intracranial aneurysms is triggered by hyperten-
sion, this limitation should be considered in all currently used aneurysm models. 
Using the side-wall arterial out-pouch model, future experiments may allow test-
ing the efficacy and interaction of endovascular devices on different wall condi-
tions, including growing aneurysms. 

5.3.3 Aneurysm wall degeneration, growth and rupture 

5.3.3.1 Wall inflammation is associated with wall disruption 
Decellularized aneurysms demonstrate higher grades of periadventitial fibrosis 
and significantly enhanced aneurysm wall inflammation (p = 0.03) when com-
pared to non decellularized aneurysms. Wall dissection and mural hematomas 
were seen exclusively in decellularized aneurysms. Aneurysm with increased neu-
trophil accumulation in the thrombus and increased wall inflammation showed a 
trend for mural hematomas (p = 0.05 and p = 0.08).IV 

A main source of matrix-degrading proteases are neutrophils trapped in unor-
ganized thrombus.141 In addition, intraluminal thrombosis is not only a site of pro-
tease release and activation itself, but also releases cytotoxic compounds and in-
duces inflammation throughout the wall promoting further matrix degradation.122 
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The increased accumulation of neutrophils in aneurysm walls missing mural cells 
may also be linked to the lack of "cell barrier" meaning that macromolecular 
plasma components such as lipids, complement compounds and immunoglobulins 
diffuse freely to the decellularized wall matrix and induce inflammation. These re-
sults demonstrate that neutrophil accumulation in the thrombus and wall inflam-
mation is associated with aneurysm wall dissections and mural hematomas. Aneu-
rysm wall fragility is, in turn, associated with aneurysm growth and eventual rup-
ture. 

5.3.3.2 Aneurysm wall fragility is associated with growth 
Aneurysm growth occurred in five out of twelve decellularized aneurysms (42%). 
Four of the growing aneurysms increased in size during the first week and contin-
ued to grow thereafter. One aneurysm started to grow during the second week. All 
non decellularized aneurysms remained stable (Figure 12). 

Macroscopic measurement of width and length of non decellularized aneu-
rysms at creation confirmed that these aneurysms remained stable over time. In the 
decellularized aneurysm group, four aneurysms (4/12; 33%) remained stable and 
four grew to giant aneurysms (4/12; 33%) that were as large as 43 mm x 38 mm x 
24 mm (Figure 13). Three of the growing aneurysms in the decellularized group 
ruptured during the observation period (3/4; 75%). Endoscopy showed massive in-
traluminal thrombosis in two of these ruptured aneurysm (2/3; 66%). One sus-
pected case of growth and rupture had to be excluded from final histological anal-
ysis due to delayed autopsy. Histology revealed that growing aneurysms had 
marked adventitial fibrosis and inflammation (p = 0.002 and 0.03), wall disruption 
(p = 0.008) with inflammation (p = 0.003) and intramural hematomas (p = 0.05) 
when compared to stable aneurysms.IV 

In summary, the results show first, that neutrophil accumulation in the throm-
bus and wall inflammation is associated with aneurysm wall dissections and mural 
hematomas. Second, that aneurysm wall fragility is associated with aneurysm 
growth and eventual rupture. Lack of viable mural smooth muscle cells, matrix de-
generation, intramural hematomas, aneurysm wall inflammation and intraluminal 
thrombus formation are known characteristics of ruptured human IA.100, 102, 146 

Loss of mural cells also means loss of aneurysm wall repair (defense) mecha-
nisms such as re-synthesis of degraded collagen442, induction of antioxidant en-
zymes443 or proteases inhibitors.444 Together, these detrimental effects may shift 
the balance from aneurysm wall cicatrisation to wall destruction which promotes 
growth and eventual rupture. 
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Figure 11. Graft decellularization.  

 
 

Physical decellularization using prolonged ischemia time at four degree (A) and room temperature (B) 
demonstrated insufficient cell removal. Chemical decellularization by incubation for 10 hours at 
37 °C in 0.1% SDS (C) in Milli-Q® water reveals almost total loss of nuclear components. 40x mag-
nification. All specimens are stained with hematoxylin. 
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Figure 12. Stable and growing aneurysm. 

 
 3D reconstructions, three main axis cutting planes and source CE-MRA at baseline and four weeks 

follow up. A, non-decellularized stable aneurysm. B, decellularized growing aneurysm. 
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Figure 13. Growth of decellularized aneurysms.  

 
 

A, non-decellularized (control group). B, decellularized (sodium dodecyl sulphate treated group). The 
graphs depict aneurysm dimensions (width and length) in mm at baseline and final follow up four 
weeks after creation. All non decellularized aneurysms remained stable. Marked growth was docu-
mented in four decellularized aneurysms. C, some of the decellularized aneurysms grew to giant an-
eurysm proportions (largest length 4 cm) with irregular shape and secondary pouches. 
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5.4 Local cell therapy for decellularized aneurysms 

5.4.1 Effect of luminal thrombosis on aneurysm walls 

5.4.1.1 The role of luminal thrombosis in healthy aneurysms 
Healthy untreated non decellularized aneurysms demonstrate a linear course of 
stepwise thrombosis over time and remained stable. Histology of these aneurysms 
revealed preserved aneurysm wall cellularity, virtually no wall disruption, minimal 
wall inflammation and rare neutrophil accumulation in the luminal thrombus. Or-
ganizing or mature neointima was observed in all healthy aneurysms that under-
went spontaneous thrombosis.V  

On the other hand, all except one healthy non decellularized rapid thrombus in 
the induced aneurysms were incapable of forming neointima. Almost half of the 
healthy non decellularized aneurysms showed complete loss of (or only a few re-
maining viable) mural cells. Aneurysms with an initially healthy wall that suffered 
mural cell loss showed significantly more wall inflammation (P = 0.01) and a 
trend to increased neutrophil accumulation in the thrombus (P = 0.072) as com-
pared to aneurysms without loss of mural cells.V 

All but one healthy aneurysm showed partial or complete recurrence after 
three weeks and three aneurysms increased in size. Two of these growing aneu-
rysms in the healthy aneurysm group with acute thrombus induction demonstrated 
complete loss of mural cells, enhanced intrathrombus and intramural neutrophil 
accumulation, complete wall disruption and prominent periadventitial fibrosis. 

The observed cell loss in “healthy” aneurysms could be attributed to ischemic 
or inflammatory reactions induced by the fibrin glue thrombus. It also seems pos-
sible that luminal fibrin glue impaired diffusion of nutrients to the healthy media 
and promoted inflammation as a secondary reaction. Inflammation or mural cell 
loss is rare in stepwise spontaneous thrombosis of healthy untreated aneurysms. A 
potential explanation might be that acute thrombosis induces inflammation to such 
a large scale that it overruns the aneurysm wall defense mechanisms. This results 
in wall destabilization, loss of mural cells, destructive remodeling, growth and 
eventual rupture prior to thrombus stabilization/organization caused by cell in-
growth promoting scar formation. 

Our results are consistent with those of Raymond et al.144 who found (in a swine 
sidewall aneurysm model), that wide-neck aneurysms (n = 6) with stepwise throm-
bosis demonstrated gradual healing with substantially thickened hypertrophied 
walls infiltrated with myofibroblasts and collagen, mature neointima and organized 
thrombus filling the aneurysm lumen. On the other hand, 50% of small-neck aneu-
rysms (n =4) with fast thrombosis demonstrated aneurysm wall destabilization and 
rupture. 

Acute thrombus induction has been linked to mural destabilization not only in 
experimental aneurysms143, 144 but also in clinical settings following application of 
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flow diverters to treat intracranial aneurysms.145, 146 The studies consistently found 
histopathological characteristics comparable to those found in our study, with 
large numbers of inflammatory cells and loss of mural cells in destabilized aneu-
rysm wall segments after rapid thrombosis.143, 144, 146  

5.4.1.2 Luminal thrombosis in sick decellularized aneurysms 
First recurrence in decellularized embolized aneurysms was seen seven days after 
thrombus induction. After three weeks, all decellularized embolized aneurysms 
were partially or completely recanalized. Three aneurysms had grown, including 
one aneurysm that developed into a giant partially thrombosed multilobulated an-
eurysm. One of the growing aneurysms ruptured ten days after creation. With the 
exception of two cases, neointima formation was incomplete in all aneurysms with 
a decellularized wall. In the replication series, half of the aneurysm demonstrated 
incapability of thrombus organization, recurrence and growth. All aneurysms that 
underwent growth demonstrated enhanced endoluminal and intrathrombus neutro-
phil accumulation, inflammatory and hemorrhagic transformation of the wall and 
enhanced periadventitial fibrosis.V 

MRA, macro- and microscopic evaluation and histology confirmed that aneu-
rysms with loss of mural cells are incapable of organizing induced thrombosis. If 
the intraluminal thrombus is not infiltrated by cells that turn it into fibrous tissue 
(neointima), the thrombus is absorbed and recanalized. Thrombus recurrence was 
noted as early as one week after induction and was present in all aneurysms at 
three weeks follow-up. At that time point, aneurysm recurrence was associated 
with fresh unorganized intraluminal thrombosis and marked inflammatory reac-
tions.V 

5.4.1.3 Cell loss triggers wall degeneration, growth and rupture 
Loss of mural cells per se did not induce aneurysm wall inflammation. Decellular-
ized embolized aneurysms without recurrence revealed less intrathrombus and in-
tramural inflammation. A possible explanation for this might be that macromolec-
ular plasma components capable of inducing inflammation were blocked by fibrin 
glue and only recurrence allowed free diffusion towards the aneurysm wall. 

It is important to note that initially “healthy” aneurysms that acquired mural 
cell loss due to thrombus induction showed evolution similar to genuine decellu-
larized embolized aneurysms; with recurrence, growth and significant increase in 
aneurysm wall inflammation, intrathrombus neutrophil accumulation, wall disrup-
tion and periadventitial fibrosis. Taken together, the findings corroborate that an-
eurysms missing mural cells are subjected to increased inflammatory reactions, se-
vere wall degeneration, aneurysm growth and eventual rupture. 
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5.4.2 Luminal cell replacement heals decellularized aneurysm 
To further test the hypothesis that mural cell loss impairs thrombus organization 
and neointima formation, we treated decellularized aneurysms with syngeneic 
smooth muscle cell transplantation. If mural cell loss causes impaired thrombus 
formation, recanalization, growth and rupture, cell replacement might reduce these 
events. 

5.4.2.1 Cell transplantation promotes early thrombus organization 
All but one aneurysm with transplanted cells and a decellularized wall remained 
occluded with complete or near complete neointima formation. This single case of 
incomplete neointima formation demonstrated an increase in aneurysm size at 
three weeks follow-up. There was no recurrence or growth in the replicate experi-
ments. After transplantation, cells were equally distributed within the intraluminal 
thrombus, became confluent and demonstrated no migration trend towards the an-
eurysm wall or the aneurysm ostium. Thrombus-induced and cell transplanted an-
eurysms demonstrated progressive healing over time (Figure 14). Spindle-shaped 
CM-Dil labeled cells embedded in collagen bundles were found to organize the fi-
brin clot and noeintima along the neck. OPT revealed that transplanted cell infil-
tration of adventitia, ingrowth in periadventitional environment and migration to 
parent artery was absent. (Figure 15).V 

5.4.2.2 Reduced inflammation and enhanced neointima formation 
There was significantly more neutrophil accumulation in the thrombus in decellu-
larized aneurysms (P = 0.03), and a trend (P = 0.15) towards increased neutrophils 
in the thrombus of non-decellularized aneurysms as compared to decellularized 
aneurysms with local cell transplantation. Healed aneurysms had significantly 
fewer neutrophils in the thrombus when compared to aneurysms with missing neo-
intima formation (P = 0.017). Decellularized aneurysms treated with local cell re-
placement at the time of thrombosis demonstrated considerably better histological 
neointima formation than thrombosed non decellularized aneurysms (P < 0.001) 
and thrombosed decellularized aneurysms (P = 0.002) (Figure 16). Overall recur-
rence rate of thrombosed decellularized aneurysms was notably higher as com-
pared to embolized decellularized aneurysms with concomitant cell replacement 
(P = 0.037).V 

In summary, replacement of lost smooth muscle cells not only promoted fast 
thrombus organization within days after thrombus induction but also reduced neu-
trophil accumulation in the thrombus. It can be hypothesized that the presence of 
viable cells improves early thrombus reorganization and neointima formation, pre-
venting recurrence and additional thrombus formation. Consequently, intraluminal 
amount of new red blood cells, platelets and macromolecular plasma components 
such as lipids, complement compounds and immunoglobulins are reduced which 
in turn attenuates fishing of neutrophils. This could explain the finding that healed 
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aneurysms had significantly less neutrophils in the thrombus as compared to aneu-
rysms with missing neointima formation. 
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Figure 14. Time course of aneurysm healing.  

 

 
 

Panels from left to right demonstrate merged light microscope hematoxylin-eosin, Masson-Gold-
ner's trichrome, elastica van Gieson's staining and fluorescent stained photomicrographs (10x magnifi-
cation). A, organization of the fibrin clot and neointima formation starts three days after cell graft 
placement. B, organization progresses already after one week and thick neointima is formed at the an-
eurysm orifice. C, in week three the ostium is completely occluded by thick neointima and large 
amounts of collagen deposits. 
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Figure 15. Fibrin clot organization and spatial cell distribution. 

 
Day 3: A, cells trapped in the fibrin clot; HE, 10x; B, organization of cells; MT, 10x; C, CM-DiI-la-
beled cells in fibrin clot; 10x; Scale bar = 50 μm. Day 7: D, connective tissue formation; E, labeled 
cells in areas of collagen formation. 20x magnification; Scale bar = 50 μm. Panels below: OPT time 
profile (Day 0, 3, and 7) of spatial cell distribution within the aneurysm. Labeled cells appear in bright 
red; Scale bars = 500 μm. The whole aneurysm and part of its parent artery is displayed in translucent 
greenish-blue (scale bars = 1000 μm). 
 

 

96



Results and Discussion 
 

 
 

 

Figure 16. Healed aneurysm neck.  

 
A, merged light microscope photomicrographs (MT; 10x magnification) depict aneurysm orifice cov-
ered with a thick neointima. B, transmission zone between healthy parent artery (black arrow) and de-
cellularized aneurysm wall (white arrow). C, MT staining reveals connective tissue formation with 
abundant collagen deposits (*) and formation of a thick layer of hypercellular tissue (**) across the 
aneurysm's neck. 
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Conclusions 

Rabbit and rats have become the most frequently used animal models in the field 
of IA research. The rabbit is customarily used to test EVT devices, while rats are 
mainly used for research concerning IA biology. Although coagulation and heal-
ing profiles similar to humans and true bifurcational hemodynamics are essential 
in determining the technical proficiency of novel EVT devices, biological princi-
ples are ideally tested in standardized models that facilitate analysis of efficacy 
and interaction of endovascular devices within different wall conditions, including 
growing aneurysms. 
 
I Creation of complex venous pouch bifurcation aneurysms in the rabbit is 

feasible with low morbidity, mortality, and high short-term aneurysm pa-
tency. The necks, domes and volumes of the bilobular, bisaccular and 
broad-neck aneurysms created are larger than those previously described 
and provide a promising tool for in vivo animal testing of human endovas-
cular devices. 

 
II Long term patency without spontaneous thrombosis is one of the most im-

portant preconditions for analysis of embolization devices. Complex bilob-
ular, bisaccular and broad-neck microsurgical aneurysm formation in the 
rabbit venous pouch bifurcation model demonstrates a high long term pa-
tency rate without need for prolonged (more than four weeks) anticoagula-
tion. 

 
III The microsurgical sidewall rat aneurysm model is a fast, affordable and 

consistent method to create experimental aneurysms with standardized cate-
gories for size, shape and geometric configuration in relation to the par-
ent artery. The model allows the study of aneurysm growth and rupture and 
could potentially be used to assess biological responses induced by emboli-
zation devices in growing and rupture-prone aneurysms. 

 
True understanding of IA reopening after EVT requires comprehensive knowledge 
of the biological mechanisms involved in aneurysm wall remodeling, intraluminal 
thrombosis formation and resorption, tissue response to EVT materials, and their 
interaction. Most of the EVT modalities currently available and large research ef-
forts are directed towards the treatment of the visible lumen. However, it is be-
coming increasingly difficult to ignore the importance of IA wall pathobiology in 
aneurysm healing. Therefore, novel interventions should not only target the visible 
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lumen, but also focus on the wall as such, and the molecular pathways relevant to 
IA wall pathobiology. 
 
IV Aneurysms missing mural cells are incapable of organizing a luminal 

thrombus, leading to aneurysm recanalization and increased inflammatory 
reaction, which in turn causes severe wall degeneration, aneurysm growth 
and eventual rupture. The results suggest that mural cells are of paramount 
importance for thrombus organization and aneurysm wall homeostasis. 

 
V Loss of smooth muscle cells from the aneurysm wall impairs thrombus or-

ganization and neointima formation in thrombosed aneurysms and drives 
the healing process towards destructive wall remodeling. This promotes re-
currence, growth and eventual rupture of embolized aneurysms. The biolog-
ically active luminal thrombus can provoke mural cell loss and increased 
intramural and intrathrombus inflammation even in healthy aneurysms. Lo-
cal smooth muscle cell transplantation compensates for the loss of mural 
cells, attenuates inflammatory reactions, promotes aneurysm healing and re-
duces recurrence, growth and rupture rate in a rat saccular sidewall aneu-
rysm model.
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Despite numerous known clinical factors associated with IA rupture, estimation of 
rupture risk remains an educated guess. Over the last few years it has become ap-
parent that shape and aspect ratio may be more effective than size in determining 
IA rupture risk.47, 48, 53 These findings, and the discrepancies between the reported 
low risk of rupture in small anterior circulation aneurysms from ISUA39, 42 and 
UCAS37 as compared to other studies34, 41, 445-447 with a significant numbers of IA 
rupture at 3-6 mm in size, highlight the need for improved parameters for the pre-
diction of  IA rupture risk. Perhaps in the future, imaging modalities allow better 
characterization of the IA wall, intraluminal space and periadventitial surround-
ings, either by use of molecular/cellular biomarkers and/or increased spatial image 
resolution. Adding such pathobiological characterization could improve IA rupture 
risk assessment.448 

Improved pathobiological assessment of the IA wall could not only aid in bet-
ter determination of the IA’s natural history, but may also be advantageous in 
choosing the best possible treatment. Histopathology of human IA samples have 
long indicated that ruptured and unruptured IA represent different biological enti-
ties with increased inflammatory reactions, and the loss of mural cells in ruptured 
IAs.100, 102, 107, 138 When considering the assumption that IA healing is primarily or-
ganized by cells originating in the IA wall140, and the finding that unruptured IA 
present more stably following GCD embolization than ruptured IA12, 13, 274, 275, it is 
intriguing that the best treatment modality for any given aneurysm might be influ-
enced by the IA wall condition. In case of an IA with a severely degenerated acel-
lular thin wall, it is likely that only surgical exclusion or endovascular bridging of 
the diseased vessel wall will result in successful IA occlusion. On the other hand, 
aneurysms with a healthier, less degenerated wall may have a greater chance to 
heal completely after standard endovascular coiling. 

In the future, IA classification and treatment might be wall-oriented rather 
than lumen-oriented and vessel wall imaging may allow direct visualization of 
pathological processes and the degree of wall degeneration.305, 449-451 Reports of 
successful visualization of IA wall pulsation and protuberances452, site of rup-
ture172, measurement of IA wall thickness453, 454, intravascular cerebral ultrasonog-
raphy455, 456, in vivo molecular enzyme-specific MRI of inflammation457 and mac-
rophage imaging458-460 already demonstrate the current imaging possibilities. Fur-
ther advances in diagnosis and better understanding of the underlying pathways in 
IA pathobiology will allow identification of IA wall types with different biological 
behaviors. Their influence on growth, susceptibility to rupture and reaction to 
endovascular treatment will provide clues to developing and selecting the best 
possible treatment options for the patient. 
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As with the dilemma of not knowing which IA will eventually rupture, we 
cannot anticipate which aneurysm will eventually reopen after EVT. However, 
there is growing evidence that healing after EVT is determined primarily by the IA 
wall condition. The rapidly growing body of knowledge on molecular biological 
pathways involved in IA formation, growth and rupture (obtained from intracra-
nial animal models and human histopathological IA tissue samples) will support 
the development of EVT modalities, successfully addressing both the luminal part 
of the IA and the pathology within the vessel wall. Development of pharmacologi-
cal treatments to repair the diseased vessel segment will not only provide stabiliza-
tion of untreated IA, but most likely improve long term stability after EVT and re-
sult in a true clinical cure.  
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1. Bifurcation rabbit complex microsurgical aneurysm model. 
 

2. Long-term patency of complex microsurgical aneurysms.  
 

3. The Helsinki rat microsurgical sidewall aneurysm model. 
 

4. Loss of mural cells causes aneurysm growth and rupture. 
 

5. Smooth muscle cells and thrombus in aneurysms. 
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