
Product-Focused Software
Process Improvement

15th International Conference, PROFES 2014

Helsinki, Finland, December 10-12, 2014

Proceedings Volume 2

Fabian Fagerholm, Maria Paasivaara, Andreas Jedlitschka,
Pasi Kuvaja, Marco Kuhrmann, Tomi Männistö,

Jürgen Münch, Mikko Raatikainen (editors)

University of Helsinki
Department of Computer Science
Publication series B
Report B-2014-3
ISSN 1458-4786
ISBN 978-951-51-0512-7 (PDF)
Helsinki 2014

ii

Preface

On behalf of the PROFES Organizing Committee, we are proud to present the
proceedings volume 2 of the 15th International Conference on Product-Focused
Software Process Improvement (PROFES 2014) held in Helsinki, Finland. This
volume 2 consists of the tutorial abstracts and the doctoral symposium papers.
The volume 1 consisting of the long and short papers is published as Springer’s
Lecture Notes in Computer Science (LNCS) 8892.

Since 1999, PROFES has established itself as one of the recognized interna-
tional process improvement conferences. The main theme of PROFES is profes-
sional software process improvement (SPI) motivated by product, process, and
service quality needs. PROFES 2014 addressed both, quality engineering and
management topics, including processes, methods, techniques, tools, organiza-
tions, and enabling SPI. Both, solutions found in practice and relevant research
results from academia were presented.

We are thankful for the opportunity to have served as Chairs for this confer-
ence. We thank the organization committee. The program committee members
and reviewers provided excellent support in reviewing the papers. We are also
grateful to the authors, presenters, and session chairs for their time and effort
in making PROFES 2014 a success.

November 2014 Andreas Jedlitschka
Pasi Kuvaja

Marco Kuhrmann
Tomi Männistö
Jürgen Münch

Mikko Raatikainen

iii

Preface for PROFES 2014 Tutorials

PROFES 2014 hosted tutorials to complement and enhance the main confer-
ence program, offering a wider knowledge perspective around the conference
topics. These tutorials provided insights into special topics of current and on-
going relevance to the conference focus areas. Three tutorials were presented,
covering real-time product innovation planning, software reuse and reusability,
and process improvement for QA and testing. Each tutorial was based on re-
search combined with practical application in the software industry. I would like
to thank the tutors for sharing their valuable insights, and the tutorial audience
for the interesting discussions.

November 2014 Fabian Fagerholm
PROFES 2014 Tutorial Chair

iv

Preface for PROFES 2014 Doctoral Symposium

The PROFES Doctoral Symposium is a forum for PhD students, working on
foundations, techniques, methods and tools in the area of software process and
product quality improvement, to present their research and receive feedback
and advice. In the PROFES 2014 Doctoral Symposium seven PhD students pre-
sented and discussed their work. The opening keynote was held by Prof. Torgeir
Dingsøyr on ”How to make impact with journal publications on software process
improvement?” I would like to thank the keynote speaker and all the symposium
presenters, participants and discussants. I am also grateful for the Doctoral Sym-
posium Program Committee members, Torgeir Dingsøyr, Martin Höst, Daniel
Méndez Fernández, Tommi Mikkonen, Kai Petersen, Kari Smolander, Burak
Turhan, Pasi Tyrväinen and Sjaak Brinkkemper, for reviewing the submissions
and giving students feedback both before and during the symposium.

November 2014 Maria Paasivaara
PROFES 2014 Doctoral

Symposium Chair

v

Organization

General Chair

Jürgen Münch University of Helsinki, Finland
Tomi Männistö University of Helsinki, Finland

Program Co-Chairs

Andreas Jedlitschka Fraunhofer IESE, Germany
Pasi Kuvaja University of Oulu, Finland

Short Papers and Posters Chair

Marco Kuhrmann University of Southern Denmark, Denmark

Tutorial Chair

Fabian Fagerholm University of Helsinki, Finland

Doctoral Symposium Chair

Maria Paasivaara Aalto University, Finland

Proceedings Chair

Mikko Raatikainen Aalto University, Finland

Local Arrangements Chair

Simo Mäkinen University of Helsinki, Finland

Publicity Chair

Kari Liukkunen University of Oulu, Finland

vi

Social Media Chair

Daniel Graziotin Free University of Bozen-Bolzano, Italy
Daniel Méndez Fernández Technische Universität München, Germany

Web Site Chair

Max Pagels University of Helsinki, Finland

Head of Conference Secretariat

Mary-Ann Wikström Aalto University, Finland

vii

Table of Contents

Tutorials

Tutorial: Towards Real-time Product Innovation Planning 1
Guenther Ruhe

Tutorial: Software Reuse and Reusability based on Business Processes
and Requirements . 2

Hermann Kaindl

Tutorial: Practical Process Improvements — Applying the LAPPI
Technique in QA and Testing . 3

Anu Raninen and Päivi Brunou

Doctoral Symposium

From Product Roadmapping towards Continuous Planning: Changing
the ways of planning . 4

Tanja Suomalainen

Understanding Continuous Delivery - A Research Plan 10
Eero Laukkanen

Measurement in Software Startups . 16
Sohaib Shahid Bajwa

Visualizations for Software Analytics . 22
Anna-Liisa Mattila

Evaluating and managing technical debt in software development lifecycle 26
Jesse Yli-Huumo

The Dynamics of Test-driven Development . 31
Davide Fucci

Language for Choreography Modeling in Embedded Systems Domain 36
Nebojsa Tausan

viii

Tutorial: Towards Real-time Product Innovation
Planning

Guenther Ruhe

Software Engineering Decision Support Laboratory
University of Calgary

Alberta, Canada

Abstract

This tutorial provides hands-on knowledge and skills to perform real-time prod-
uct innovation planning. As the starting point, current deficits in the product
innovation planning process are analyzed. Subsequently, different strategies to
overcome the current deficits are studied. The proposed process is accompanied
by tool support combining optimized release planning strategies offered by Re-
leasePlanner 2.0 with real-time issue management operated by Atlassians JIRA.
A variety of use cases are studied to (i) illustrate the process and (ii) document
the added value for product innovation.

1

Tutorial: Software Reuse and Reusability based
on Business Processes and Requirements

Hermann Kaindl

Vienna University of Technology, ICT
Vienna, Austria

Abstract

Software reuse and reusability is often just addressed at the level of code or low-
level design. In contrast, this tutorial explains them based on business processes
and requirements. It presents and compares three approaches co-developed by
the presenter over more than a decade.

The first of these approaches deals with requirements reuse in the context of
product lines. It makes the relations among product line requirements explicit, so
that single system requirements in this product line can be derived consistently.
A key issue is commonality and variability across different products. This tutorial
shows how requirements for a product line can be modeled, selected and reused
to engineer the requirements for innovative new products.

The second approach for software reuse involves case-based reasoning. Instead
of explicit relations between requirements (or other artifacts), similarity metrics
are employed for finding the most similar software case in a repository to a given
set of requirements. This even works when a single envisioned usage scenario
is specified yet, and it allows reusing also requirements from retrieved cases.
The major point, however, is to facilitate reusing software design (including
architecture) and code from similar software cases.

The third approach strives for (partly) automating software development for
certain business applications through reusing business knowledge and software,
where both are tightly connected. It involves automated reuse of business pro-
cesses, and software (services)executing them, based on ontological knowledge. A
key point is closing the representational gap between procedurally represented
business processes and declaratively represented concepts and their relations,
taxonomies, partonomies, etc. So, this is an ontology-based approach for (partly)
automated software development guided by business models.

These approaches have different key properties and trade-offs between costs
of making software artefacts reusable and benefits for reusing them. These will
be particularly explained in this tutorial.

2

Tutorial: Practical Process Improvements —
Applying the LAPPI Technique in QA and

Testing

Anu Raninen1 and Päivi Brunou2

1Sogeti Finland Oy
Espoo, Finland

2 Knowit Oy
Helsinki, Finland

Abstract

Understanding the current state of software development and QA processes and
their problem points is important. Without this understanding, software process
improvement (SPI) resources may not be properly allocated. This tutorial focuses
on identifying and prioritizing SPI activities from a quality improvement point
of view. The importance of motivating and monitoring during the improvement
is not forgotten either.

This tutorial is organised as an interactive workshop interlaced with real life
experiences in SPI. During the tutorials attendees learn about the Light-weight
Technique to Practical Process Modelling and Improvement Target Identifica-
tion (LAPPI). The technique enables process modelling and improvement target
identification, is suited to organizations of all sizes, and can be integrated with
various SPI initiatives. It was developed through multiple academia-industry
collaboration projects and by industry actors themselves.

3

From Product Roadmapping towards Continuous

Planning:

Changing the Ways of Planning

Tanja Suomalainen1

1Kaitoväylä 1, P.O. Box 1100, FI-90571 Oulu, Finland

tanja.suomalainen@vtt.fi

Supervisor:

Professor Jouni Similä2

2Department of Information Processing Science

P.O. Box 3000, 90014 University of Oulu, Finland

jouni.simila@oulu.fi

Abstract. In recent few years, the adoption of agile and lean development

practices has increased remarkably. However, this is not the end, new and

innovative approaches that support continuous practices are needed. Continuity

is required in all the levels of the organisation; from business strategy and

planning to software development and thereafter to operational deployment, as

well as between these levels. Continuous planning means implementing

planning practices continuously, in rapid parallel cycles, instead of the

predefined and regular planning occasions. Continuous planning is not

commonly adopted and applied throughout the organisation and currently

involves only a certain level of planning, e.g. release planning. Based on the

current literature, continuous planning is a relatively new and not yet fully

studied field of research. To augment the knowledge relating to continuous

planning, this research plan presents how the knowledge relating to continuous

planning is going to be increased and disseminated.

Keywords: Continuous planning, product roadmapping, agile, lean

1 Introduction and Background

Market uncertainties, competitive pressures, and the constant need for shortened

development cycles call for flexible, responsive and adaptive software development

practices [1]. Since the mid-1990s, a variety of agile methods and practices have been

designed to enhance development teams’ or an organisation’s ability to respond to

dynamic market changes [1, 2, 3]. Also, in recent years, lean thinking [4] has been

introduced in software development companies [5, 6, 7] with the aim of achieving a

continuous and smooth flow of production in pursuance of removing waste in

processes. The promise of lean development is to create a change-tolerant

organisation that can survive and succeed in times of uncertainty, change and

complexity [7]. In emphasising the use of iterations and development of small

4

features, agile practices and lean development have indeed increased the ability for

software development companies to accommodate fast changing customer

requirements and fluctuating market needs as well as decreasing lead times and

improving the quality of their products [1].

Even though many software development companies have succeeded adopting

agile practices, in order to improve responsiveness to customers, agile development is

not the end, the final step of software development [1]. Therefore, new and innovative

approaches that support continuous practices are needed. Thus, Olsson et al. [1]

highlight that software development companies need to move beyond the concept of

agile development and towards a situation in which software functionality is

continuously deployed and where customer feedback is the main driver for

innovation. Fizgerald and Stol [8], on the other hand, emphasize continuous

integration between software development and its operational deployment, called

DevOps. Similarly the link between business strategy and software development

should be continuously assessed and improved, called BizDev [8].

Planning in general is seen to consist of two things: actions and forecasts (i.e.

expected outcomes). After understanding the aims and directions, it is time to plan

how to get there [9]. However, planning is not only about target setting, since it lies

behind us, instead, targets should be ambitious and forecasts realistic in order to take

the necessary corrective actions [10]. In large organisations there are multiple levels

of planning that are performed at time horizons and by different actors [11, 12].

Therefore, the most important aspects of organisational planning are the required

planning levels and time horizons [13]. In the software development context, planning

is commonly episodic and performed according to a traditional cycle usually triggered

by annual financial year-end considerations [8]. In fact, the ongoing planning problem

is that time is divided into a number of planning horizons, each lasting a significant

period of time [8], and the continuity is not seen.

Already, for some years ago, long-term planning called roadmapping has been

proposed as a solution to bridge the gap between different levels of planning [14]. It

was realised then that changing planning processes e.g. towards a roadmap-based

planning is a major cultural change. Roadmapping requires cross-functional

participation to be successful and getting various departments to work together can be

hard [15]. Therefore, it was suggested that roadmapping should be seen as part of the

company’s overall business processes and integrated into the company’s planning

cycles [15]. But now, as the agile and lean practices are becoming the norm, the

transformation towards continuous practices is emphasized in the organisations.

Drawing on the lean concept of flow, Fizgerald and Stol [8] identify a number of

continuous activities which are important to software development today’s context,

one of them being continuous planning.

Continuous planning is about implementing planning practices continuously, in

rapid parallel cycles, instead of the predefined and regular planning occasions. Thus,

planning is not conducted just as part of a top-down annual event [9]. Environmental

changes trigger planning instead of the predefined and regular planning cycle (e.g.

financial year) and thus, plans are adjusted according to internal and external events

[16]. Planning should be done continuously so that at any time, the full scale of the

development can be presented [17]. Fizgerald and Stol [8] define continuous planning

as a holistic attempt involving multiple stakeholders from business and software

5

functions whereby plans are dynamic open-ended artifacts that evolve in response to

changes in the business environment, and thus involve a tighter integration between

planning and execution. In software development, continuous planning refers to the

organisational capability to conduct planning in rapid parallel cycles, which can be

hours, days or very small numbers of weeks or months depending on the level of

planning. In order to achieve continuous planning, organisations need to be capable of

changing their operations and adapting their mind-set towards continuous planning

and transparency throughout the whole organisation.

Based on the current literature, continuous planning is not commonly adopted and

applied throughout the organisation and currently involves only a certain level of

planning, e.g. release planning (e.g. using Scrum). According to Fizgerald and Stol

[8] the only form of continuous planning is what emerges from agile development

approaches and is related to sprint iterations or at best, software releases. Similarly

they conclude that continuous planning is not widespread throughout the organisation.

For example, Heikkilä et al. [18] have adopted a three-level planning model:

including strategic planning, release planning, and operational planning. Strategic

planning is the interface between business and management and development and it is

performed in long-term. Release planning defines the feature content of the next

release and on planning how to efficiently create content. Operational planning, on

the contrary, concerns implementation of features on day-to-day basis. However, they

focus on release planning in large agile organisations. Thus, continuous planning

requires wider perspective than currently considered.

Based on the literature review, continuous planning is a relatively new and poorly

studied field of research, and hence the literature relating to continuous planning is

not adequate. The current literature focuses mainly on some specific or single level of

planning in the organisation and a wider perspective of continuous planning is not

viewed. For instance, there is very little empirical research literature of continuous

planning that describes how continuous planning is conducted at the different levels

of planning and at the different levels of organisation, and how the information from

the planning and the plans are visible to the other levels of planning. The intention in

this research is to increase the current empirical evidence on continuous planning and

roadmapping both for industry and science, and based on that evidence companies can

develop their own planning and roadmapping activities. Also, the intention is to

provide guidelines how to improve and change the planning practices towards

continuous ways of working and planning.

2 Research design

The purpose of this research is to study continuous planning and roadmapping in the

context of Information and Communication Technology (ICT) companies.

Furthermore, the research is done in the context of large organisations that have

multiple levels of planning and that are performed at time horizons and by different

actors. The research focuses on defining factors related to continuous planning and

roadmapping, e.g. level of planning, timeframe, process, and participants. The

6

background for this research lies on agile and lean development methods and

practices that have triggered the need for continuous ways working and planning.

The research is conducted as empirical research and the research is carried out as a

case study [19]. Case study research can be used to achieve various research aims, for

instance to provide descriptions of the phenomena, to test a theory, and to develop a

theory [20]. The case studies can be based on both quantitative and qualitative

evidence, because data is collected through such methods as inquiries, interviews,

observation, and through the use of documents and artefacts [19, 21]. Also, the case

study methodology claims to be well suited for software engineering research as it

studies contemporary phenomena in its natural context [22].

A multiple-case studies approach [19] is chosen for this research, since the theory

on the continuous planning is not yet well formulated and practical experiences from

the field of research are difficult to find. Therefore, the purpose is to fill in the gaps

found in the literature, and thereafter, to create a theory relating to continuous

planning practices and processes. To verify the theory, the experiences of several

companies should be gathered and analysed. Data collection is carried out by

conducting narrative and semi-structured interviews to persons from different levels

of the organisation namely people that are involved in the strategy and business

planning, product planning, and release planning. The case companies are selected

based on their size, since the focus is on large organisations that have multiple levels

of planning. The duration of the interviews will be around one hour and all the

interviews are recorded. After the interviews, the recordings will be transcribed and

analysed. The data will be analysed by using e.g. a generic process of data analysis

[23]. A brief summary from each of the interview will be written and sent to the

interviewees to be read through and validated (e.g. corrected if needed).

2.1 Research Questions

The research problem is addressed through answering the following research

questions:

RQ1. What is product roadmapping (process, participants, roles, etc.)? (Paper I and II)

a) How collaboration affects product roadmapping? (Paper I)

RQ2. How continuous planning is conducted? (Paper III, IV)

a) How information from the continuous planning and the plans are visible to

the other levels of planning, and how they affect to each other?

b) What are the benefits, challenges and drawbacks of continuous planning?

(Paper III)

2.2 Results achieved so far

Following articles relating to the thesis have been already written:

I. Suomalainen, Tanja; Tihinen, Maarit; Parviainen, Päivi. Challenges for

product roadmapping in inter-company collaboration. SEAFOOD Proceedings

of the Third International Conference on Software Engineering Approaches

7

for Offshore and Outsourced Development (SEAFOOD). ETH Zurich,

Switzerland on July 2-3 2009. Springer (2009), pp. 66 – 80.

II. Suomalainen, Tanja; Salo, Outi; Abrahamsson, Pekka; Similä, Jouni. Software

product roadmapping in a volatile business environment. The Journal of

Systems and Software, volume 84 issue 6, (2011), pp. 958–975.

III. Suomalainen, Tanja; Kuusela, Raija; Tihinen, Maarit. Continuous Planning –

An important Aspect of Agile and Lean Development. SUBMITTED to

Journal of Agile Systems and Management

IV. Suomalainen, Tanja; Kuusela, Raija; Teppola, Susanna; Huomo, Tua.

Challenges of ICT Companies in Lean Transformation. ToBeSubmitted

The first two articles (I and II) create ground understanding about product

roadmapping by describing the theory and practice behind it. The intention was to

define the process, participants, and roles of product roadmapping (II), and how

collaboration affects to it (I). When the research relating to these articles was done,

there was clear need for this research, since only a few scientific articles could be

found about product roadmapping. Since then, the scientific literature about product

roadmapping has somewhat increased, but the major change is that the world has

moved more towards continuous planning mode, and it has been even questioned how

vital the long-term plans are. Thus, article III, focuses on defining continuous

planning and how it is conducted as well as identifying the main benefits and

challenges of continuous planning. The research also defines what the main elements

of continuous planning are: organisational planning, strategic planning and business

planning. Accordingly, all of these elements are tightly related to each other;

organisational planning defining organisational level and the time frames of the plan;

strategic planning forming the overall plan of the organisation and business planning

giving the budgeting frame to the plans. Article IV, defined lean transformation

framework including three cycles, i.e. strategic alignment cycle, organisational and

business alignment cycle, and lean implementation cycle. Continuous planning is

mainly discussed at the strategic alignment cycle in the article.

2.3 Future Research Agenda

The continuous planning research is going to be continued in the Need for Speed

(N4S) program (http://www.n4s.fi/en/), which is a Tekes funded program of Digile

(2014-2017). First, the future case studies are planned and the case companies are

selected (during autumn 2014), and thereafter the case studies are conducted, i.e.

interviews are held (during spring 2015). Finally, the case study results are analysed

and results are reported (during autumn 2015), including writing both journal and

conference articles based on the results. The dissertation will be written during 2016.

References

1. Olsson, H. H., Bosch, J., Alahyari, H.: Towards R&D as Innovation Experiment Systems:

A Framework for Moving Beyond Agile Software Development. IASTED

8

http://www.n4s.fi/en/

Multiconferences-Proceedings of the IASTED International Conference on Software

Engineering, SE 2013, pp. 798-805 (2013)

2. Highsmith, J.: Agile software development ecosystems. Addison-Wesley, Boston (2002)

3. Kettunen, P.: Adopting Key Lessons from Agile Manufacturing to Agile Software Product

development—A Comparative Study. Technovation 29, pp. 408-422 (2009)

4. Womack, J. P., Jones, D. T.: Lean thinking: Banish waste and create wealth in your

corporation, revised and updated. Free Press (2003)

5. Middleton, P., Flaxel, A., Cookson, A.: Lean Software Management Case Study:

Timberline Inc. Extreme Programming and Agile Processes in Software Engineering, pp.

1-9-9 Springer, (2005)

6. Poppendieck, M., Poppendieck, T.: Lean software development: An agile toolkit.

Addison-Wesley, Boston, MA (2003)

7. Charette, R. N.: Challenging the Fundamental Notions of Software Development. Cutter

Consortium, Executive Rep 4, (2003)

8. Fitzgerald, B., Stol, K.: Continuous Software Engineering and Beyond: Trends and

Challenges. Proceedings of the 1st International Workshop on Rapid Continuous Software

Engineering, pp. 1-9-9 ACM, (2014)

9. Hope, J., Fraser, R.: Beyond budgeting: How managers can break free from the annual

performance trap. Harvard Business School Press, Boston, Massachusetts (2003)

10. Bogsnes, B.: Implementing beyond budgeting: Unlocking the performance potential. John

Wiley & Sons, Hoboken, New Jersey (2008)

11. Cohn, M.: Agile estimation and planning. Prentice Hall, NJ; US (2006)

12. Leffingwell, D.: Agile software requirements: Lean requirements practices for teams,

programs, and the enterprise. Pearson Education, Inc., Boston, MA, USA (2011)

13. Lehtola, L., Kauppinen, M., Vähäniitty, J.: Strengthening the Link between Business

Decisions and RE: Long-Term Product Planning in Software Product Companies. 15th

IEEE International Requirements Engineering Conference (RE' 07), pp. 153-162 IEEE

Computer Society, (2007)

14. Phaal, R., Muller, G.: An Architectural Framework for Roadmapping: Towards Visual

Strategy. Technological Forecasting and Social Change 76, pp. 39-49 (2009)

15. Cosner, R. R., Hynds, E. J., Fusfeld, A. R. et al.: Integrating Roadmapping into Technical

Planning. Research-Technology Management 50, pp. 31-48 (2007)

16. Rickards, R. C., Ritsert, R.: Rediscovering Rolling Planning: Controller's Roadmap for

Implementing Rolling Instruments in SMEs. Procedia Economics and Finance 2, pp. 135-

144 (2012)

17. Westkamper, E., Von Briel, R.: Continuous Improvement and Participative Factory

Planning by Computer Systems. CIRP Annals-Manufacturing Technology 50, pp. 347-352

(2001)

18. Heikkilä, V. T., Paasivaara, M., Lassenius, C. et al.: Continuous release planning in a

large-scale scrum development organization at ericsson. Springer, Berlin Heidelberg

(2013)

19. Yin, R. K. Applied social research methods series vol 5; case study research: Design and

methods. 2nd ed. Sage Publications, Inc.Yin, R.K, Thousand Oaks, California (1994)

20. Darke, P., Shanks, G., Broadbent, M.: Successfully Completing Case Study Research:

Combining Rigour, Relevance and Pragmatism. Information Systems Journal 8, pp. 273-

289 (1998)

21. Patton, M. Q.: Qualitative research & evaluation methods. Sage Publications, Inc.Patton,

M.Q, Thousand Oaks, California (2002)

22. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research in

Software Engineering. Empirical Software Engineering 14, pp. 131-164 (2009)

23. Creswell, J. W. Research design: Qualitative, quantitative, and mixed method approaches.

2nd ed. Sage Publications, Thousand Oaks, California (2003)

9

Understanding Continuous Delivery – A
Research Plan

Eero Laukkanen and Casper Lassenius (supervisor)

Aalto University, P.O. BOX 19210, FI-00076, Aalto, Finland,
{eero.laukkanen,casper.lassenius}@aalto.fi

Abstract. Continuous delivery is a software development discipline in
which software can be released to production at any time. While many
organizations report adopting continuous delivery or at least pursuing it,
there exist little scientific knowledge about it. A research plan for doc-
toral dissertation is introduced which seeks to create a base of scientific
knowledge for understanding and further studying continuous delivery.
The dissertation aims to understand the problems that emerge when
adopting continuous delivery and find solutions to those problems.

Keywords: continuous integration, continuous delivery, continuous de-
ployment, software project

1 Introduction

Continuous delivery (CD) is a software development discipline in which software
can be released to production at any time [12]. The discipline is an extension of
continuous integration (CI) [11] where software is integrated multiple times per
day. CI gained most attention as a part of extreme programming (XP) [1] and
is broadly adopted today [21], independently of other XP practices. Contrasted
to CD, CI does not mandate that software is always in a releasable state.

Until recently, little empirical research has been done addressing continuous
integration individually. At the same time, continuous delivery and its more
ambitious form, continuous deployment, are gaining much attention amongst
practitioners. This research plan for doctoral dissertation aims to bridge the gap
between research and practice.

2 Research area and problem

The dissertation will be conducted in the field of empirical software engineering.
Continuous delivery describes how software is developed, tested and deployed. It
does not mandate how requirements are elicited or how architecture is designed,
except that architecture needs to be structured so that software can be developed
in a continuous way, and requirements need to be splittable to small increments.

More ambitious form of continuous delivery is continuous deployment [9],
where the software is deployed to its users automatically after a change has

10

passed all automated tests. This makes the release of the software a non-event,
thus affects release planning part of software development. However, this release
strategy might not be feasible for software projects with certain business reasons
[14]. In some contexts, it might be feasible to release only at specific times
and some testing might need to be done manually. Continuous delivery allows
these, while continuous deployment does not. Therefore, the initial scope of
the dissertation is limited to continuous delivery, so that the field of software
engineering can be covered more broadly.

While success with continuous delivery has been reported in web application
context, e.g. at IMVU [8], Facebook [7] and Rally Software [16], some reports
still note that in other contexts companies are still moving towards the state
of the art [10, 19]. Therefore, a question arises: why is continuous delivery not
adopted more widely outside the web application context? Are organizations just
adopting continuous delivery slowly, or does there exist some constraints that
inhibit practicing continuous delivery? Might it be that continuous delivery is
not useful in some contexts? The main purpose of the dissertation is to provide
empirical evidence to answer these questions.

To guide individual parts of the dissertation more specifically, the following
research questions are asked:

1. What problems software projects face when adopting continuous integration
and delivery? The outcome of this research question is a list of problems
that should be studied further.

2. What are the causes for those problems? The outcome of this research ques-
tion is a causal network of causes and problems.

3. What solutions can be used for solving those problems? The outcome of this
research question is a list of solutions to the found problems.

Answering these questions contributes to the knowledge of continuous delivery
and is beneficial for practitioners who wish to introduce continuous delivery in
their organization or projects. The focus of the research questions is on soft-
ware projects instead of organizations, because it is possible that suitability of
continuous delivery can vary between projects.

3 Literature review

Previously, multiple studies of continuous integration have been published that
introduce a technical concept that solves a certain problem [20, 13, 4]. This disser-
tation takes a different route and empirically studies real-life software projects.

There has been increased interest in empirical research on continuous inte-
gration. Downs et al. [5] studied how continuous integration affects awareness
and communication. Their research shows that communication and awareness
are an important part of continuous integration practice, which is useful back-
ground information for the dissertation. St̊ahl and Bosch studied what positive
effects does continuous integration have and how differences in continuous inte-
gration implementations can be modeled [19]. They argue that implementations

11

and effects of continuous integration vary between projects. This dissertation
continues their research by asking why and when do the continuous integration
implementations differ. Eck et al. [6] studied how organizations assimilate con-
tinuous integration practice. The focus on this dissertation will be on individual
software projects instead of organizations.

To our knowledge, there has been no empirical research done that addresses
continuous delivery directly. On the other hand, continuous deployment has been
addressed in research recently. Olsson et al. [17] created a stairway model through
which organizations can transform to accomplish continuous deployment. Claps
et al. [2] examined challenges and mitigation strategies when adopting continuous
deployment in an organization. Again, our focus is on software projects and not
on organizations.

4 Research methodology

Instead of relying on a previous theoretical framework, an inductive approach is
taken and the theory is built based on existing literature on the subject. First
part of the dissertation will be a systematic literature review (SLR). Guidelines
by Kitchenham et al. [15] will be followed to establish and validate a reliable
method for including relevant studies. Data will be extracted with qualitative
coding and thematic synthesis [3] will be used to synthesize the studies. There
are not many scientific studies of continuous delivery or even of continuous in-
tegration, but multiple experience reports about the subjects exist. However,
the reliability of experience reports is not good enough for scientific knowledge.
Therefore the goal of the SLR is only to form initial hypotheses for the research
questions which are tested in the later studies.

The results of the SLR will be compared to the results of a survey which has
been done to understand continuous delivery within Finnish IT companies. To
further study individual challenges, case studies (CS) will be performed. Case
study is a suitable research strategy if the form of the research question requires
deep understanding about the subject, which is the case in the dissertation.
Methodology provided by Yin [22] and guidelines for software engineering con-
text by Runeson and Höst [18] are followed. Case study is an appropriate research
strategy when a contemporary phenomenon is studied in its context and there
is no distinct boundary between the phenomenon and the context [18]. In our
study, the unit of analysis is continuous delivery discipline and the context for
it is a distinct software project. Since software development practices are often
adapted, it would be infeasible to study continuous delivery without taking the
software project itself into account.

For the case studies, data collection methods can include surveys, interviews,
observation and documents. Multiple methods are needed to triangulate findings
in a single case, and later on multiple-case studies are conducted to generalize re-
sults. Both quantitative and qualitative data are expected from the case studies,
because quantitative data is available from continuous integration systems while
interviews and observation methods produce qualitative data. Therefore mixed

12

methods are used for data analysis. Data sources are Finnish software companies
in the Digile Need for Speed program that continues until 2017. Thus, there is an
opportunity to conduct long-term longitudinal case studies of continuous deliv-
ery adoption. The selection of data sources is done partly based on convenience,
but also according to the research goals. The subject of the research program is
tightly related to continuous delivery, so it is expected that the case companies
are also valid subjects for the studies.

5 Results and future research agenda

Systematic literature review has been started in July 2014 and studies have been
selected. Used search string was ”(”continuous integration” OR ”continuous de-
livery” OR ”continuous deployment”) AND software”. From five databases, 526
search results were attained. After removing duplicates and totally irrelevant
articles, 251 remained. Next, abstracts were read and inclusion criteria were
applied, which yielded 85 articles. After analyzing full texts and executing back-
ward snowballing, 27 articles remained. The data is extracted by doing qualita-
tive coding, which is in progress.

Proposed future studies and schedule are summarized in Table 1. First, back-
ground understanding is gained with the ongoing SLR (1.). From previous re-
search, we can synthesize different problems (RQ1), causes for the problems
(RQ2) and solutions for the problems (RQ3). Second, an initial case study will
be conducted (2.) to refine the results of the SLR and the methodology of the
dissertation. The case study will investigate a single context more deeply (RQ2)
and it will be extended to longitudinal (4.), because the continuous delivery
practices are under constant improvement (RQ3) in the selected case. Another
study is made of the improvement process (3.) in multiple cases to formulate a
general model for continuous delivery improvement (RQ3). Finally, the accumu-
lated understanding is validated and generalized with a final multiple-case study
(5.).

Table 1. Studies and Schedule of the Dissertation

Subject Method Schedule

1. What do we know about continuous delivery? SLR Fall 2014
2. Continuous delivery in a large software project CS Spring 2015
3. Model for continuous delivery improvement Multiple-CS Fall 2015
4. Large-scale continuous delivery transformation Longitudinal CS Spring 2016
5. Multiple-case study of continuous delivery Multiple-CS Spring 2017
Summary for the dissertation – Spring 2018

13

References

1. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley Pro-
fessional (2000)

2. Claps, G., Svensson, R.B., Aurum, A.: On the journey to continuous deployment:
technical and social challenges along the way. Information and Software Technology
(2014)

3. Cruzes, D., Dyb̊a, T.: Recommended steps for thematic synthesis in software en-
gineering. In: 2011 International Symposium on Empirical Software Engineering
and Measurement. pp. 275–284 (Sep 2011)

4. Dösinger, S., Mordinyi, R., Biffl, S.: Communicating continuous integration servers
for increasing effectiveness of automated testing. In: Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering. pp.
374–377. New York, NY, USA (2012)

5. Downs, J., Plimmer, B., Hosking, J.: Ambient awareness of build status in collo-
cated software teams. In: 34th International Conference on Software Engineering.
pp. 507–517 (Jun 2012)

6. Eck, A., Uebernickel, F., Brenner, W.: Fit for continuous integration: How organi-
zations assimilate an agile practice. Savannah, Georgia, USA (2014)

7. Feitelson, D., Frachtenberg, E., Beck, K.: Development and deployment at face-
book. IEEE Internet Computing (2013)

8. Fitz, T.: Continuous deployment (Feb 2009), http://timothyfitz.com/2009/02/
08/continuous-deployment/

9. Fitz, T.: Continuous deployment at IMVU: Doing the impossible
fifty times a day (Feb 2009), http://timothyfitz.com/2009/02/10/

continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

10. Forrester Research: Continuous delivery: A maturity assessment model (Mar 2013),
http://info.thoughtworks.com/Continuous-Delivery-Maturity-Model.html

11. Fowler, M.: Continuous integration (May 2006), http://martinfowler.com/

articles/continuousIntegration.html

12. Fowler, M.: ContinuousDelivery (May 2013), http://martinfowler.com/bliki/

ContinuousDelivery.html

13. Guimarães, M.L., Rito Silva, A.: Making software integration really continuous.
In: Proceedings of the 15th International Conference on Fundamental Approaches
to Software Engineering. pp. 332–346. Berlin, Heidelberg (2012)

14. Humble, J.: Continuous delivery vs continuous deploy-
ment (Aug 2010), http://continuousdelivery.com/2010/08/

continuous-delivery-vs-continuous-deployment/

15. Kitchenham, B.: Guidelines for performing systematic literature reviews in software
engineering. Tech. rep., Keele University Technical Report (2007)

16. Neely, S., Stolt, S.: Continuous delivery? easy! just change everything (well, maybe
it is not that easy). In: Proceedings of the 2013 Agile Conference. pp. 121–128.
Washington, DC, USA (2013)

17. Olsson, H., Bosch, J., Alahyari, H.: Towards r&d as innovation experiment systems:
A framework for moving beyond agile software development. In: IASTED Multi-
conferences - Proceedings of the IASTED International Conference on Software
Engineering, SE 2013. pp. 798–805 (2013)

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

14

19. St̊ahl, D., Bosch, J.: Automated software integration flows in industry: A multiple-
case study. In: Companion Proceedings of the 36th International Conference on
Software Engineering. pp. 54–63. New York, NY, USA (2014)

20. Van Der Storm, T.: Backtracking incremental continuous integration. In: 12th Eu-
ropean Conference on Software Maintenance and Reengineering, 2008. pp. 233–242
(Apr 2008)

21. West, D., Grant, T.: Agile development: Mainstream adoption has changed agility.
Forrester Research (2010)

22. Yin, R.K.: Case study research: Design and methods, vol. 5. Sage publications,
second edn. (1994)

15

Measurement in Software Startups1

Sohaib Shahid Bajwa
Faculty of Computer Science,

Free University of Bozen – Bolzano,

Bozen (Bolzano), Italy

bajwa@inf.unibz.it

Abstract. This PhD research plan aims to present the proposed research on

measurement in software startup contexts. It describes the motivation behind

conducting this study and also proposes the research questions. This plan also

explains the research methods that will be employed. The preliminary results,

after conducting interviews with several early stage software startups, show that

early stage software startups do not collect measures during software

development. However, they collect measures related to the usage of software

using automated tools at their earlier stages. Our next step is to explore

measurement in established software startups.

1 Research Area

The discipline of my research work is Software Engineering (SE). This research work

has following sub areas: Software Startups, Software Measurement (Product metrics,

Management metrics etc.) and Software Business.

2 Research Questions

This PhD study is at the earliest stage. We have proposed the following research

questions:

RQ. How do software startups measure (product, customer development, progress)?

RQ 1. What are the measures that software startups collect?

RQ 2. Why do software startups collect these measures?

RQ 3. How do software startups collect and use these measures?

RQ 4. How often do software startups collect these measures?

The aim of this study is to explore the measurement in software startups. This

study would help us to identify and understand the information needs of software

startups. The study would also propose different measures that software startups need

1 Supervisors: Prof. Pekka Abrahamsson (pekka.abrahamsson@unibz.it) and Dr. Xiaofeng

Wang (xiaofeng.wang@unibz.it)

16

mailto:pekka.abrahamsson@unibz.it
mailto:xiaofeng.wang@unibz.it

to collect in order to make better decisions. Empirical studies will be conducted to

analyze the usefulness of these measures for software startups.

The expected outcome of this PhD would be a conceptual framework that will help

software startups to collect, analyze and utilize different measures according to their

information needs.

3 Rationale and Significance of the Study

Software startups are established worldwide in a very large number every day [1]. It is

relatively easy to start a software startup nowadays due to technology advancement,

smartphone, cloud infrastructure etc. Software companies e.g. Facebook, Instagram,

LinkedIn, Spotify etc. are some examples of successful software startups in modern

time. These software companies were initially a startup but later become a well-

established business. However it does not mean that all software startups are

successful. According to [2], 98% of software startups fail.

It is important to understand what exactly a startup constitutes. Ries [3] defines

that a startup is a human institution which is designed to create a novel product or

service under extreme uncertainty. A startup has the following characteristics:

Young and Immature: A software startup has a little or no operational history.

Lack of resources: A software startup has limited resources both in terms of funds

and technical skills.

Multiple Influences: Customers, investors, and/or competitors might influence the

development process.

Dynamic Technologies and Markets: Technology is changing rapidly especially

in IT industry e.g. new network technologies, computing technologies etc.

Software startups try to develop products which are new and useful at the same

time. They do not know whether they would be successful or not. They lack clear

requirements. They have high time pressure, limited resources and tight deadlines. It

is difficult to find right skillful people for software startups. All above-mentioned

factors make startup a challenging but exciting field.

The role of software in economy has become increasingly crucial nowadays [5]. A

larger number of startups are established nowadays and most of these startups are

software startups. According to [6], startups create an average of 3 million new jobs

annually only in US. The increasing popularity of software startups demand extensive

research in this area. Academia has not paid proper attention to address the different

problems and challenges that software startups face. Very few empirical studies are

conducted related to software startups.

Steven Blank, one of the pioneers of software startup research, has developed a

customer development process which is described in detail in “The Four Steps to the

Epiphany” [7]. According to him, customer development and product development

are two different but highly co-related concepts that need to be addressed separately

[7]. In order to attract right market and validate idea, customer development process

should be separated but aligned with the product development process.

Software startups have been applying agile methods to develop products. It is

important to note that agile methods are applied when a problem is fairly understood

17

[8]. In a startup contexts, neither the problem, nor the solution is understood. Another

approach is to apply lean principles in software startups. Ries [3], introduced the idea

of Lean Startup which is based on lean manufacturing principles and Steven Blank’s

customer development model. The two key terms that are related to Lean Startup are

[3]:

Minimum Viable Product: An incomplete product that displays different

functionalities. It helps to assess customer value.

Pivot (or persevere): Pivot is a point where a software startup company changes

direction. Persevere means that they would continue with the current strategy.

Many successful software startups are continually challenged by this stage of

pivoting [8]. They do not end with what they have initially started. We find few case

studies that have successfully implemented lean in software startups. In [9], lean

methodology is applied in software startups and results are promising.

There is not much literature available on software startups. Recently, a systematic

mapping study [11] shows that there is a lack of primary studies related to software

development in startups [11]. In [8], the authors have proposed a software

development model for early stage software startups. This model is based on the lean

principles and helps software startups to make decisions e.g. when to abandon an idea

or when to move forward with it. Another study [12] describes the industry-academia

collaboration to create MVP. According to it [12], industry-academic collaboration

reduces the company specific risks when testing customer value. In [18], the failure

factors of early stage software startups are identified. Many of the software startups

fail because they heavily focus on solution, rather than focusing on potential

customers.

Measurements help us to control, estimate and improve process, project and

product [10]. On the other hand, software measurement helps organizations to

estimate and predict software characteristics to support better decisions [19]. In [19]

[20], the current state of software measures is addressed. These studies have not

discussed any measure/metrics related to software startups. One approach to collect

measures is the Goal Question Metric (GQM) approach – which suggests that one

should collet only goal related measures [21].

Software startups need to answer many questions quickly e.g. what features should

be included in a MVP? When and how to pivot or persevere? At what stage we need

to accelerate our progress? Are we going in the right direction? Software startups

need to continuously monitor and understand their current stages. Without having a

right set of measures/metrics, it becomes very difficult to make right decisions

especially in software startups where they have short time and limited resources. One

cannot understand current stage, measure progress, or make better decisions until

starting collecting metrics. What to measure, when to measure and how to measure in

software startup contexts are not addressed appropriately. Software startups should

collect measures/metrics that are very critical to their business.

Measurement in established companies is discussed in the literature, but it’s not yet

explored in software startups. Software startups operate differently than established

and mature software companies. This different nature and the dynamic behavior of

software startups demand that measurement in software startups should be explored.

According to the best of our knowledge, measurement in software startup contexts

is not yet explored. There are some studies related to software startups recently, but

18

none of these studies have discussed the measurement in software startups. In 2013, a

book [13] was published that provided different key measures/metrics that were

essential for the success of business in a startup. According to the book [13],

measures should be collected keeping in mind the business type and the stage of

startups.

The primary purpose of this study is to explore measurement in software startup

contexts. This study investigates both software related measures and business related

measures. We will also investigate how measurement is done in early stage software

startups and in established software startups.

4 Research Methodology

Research methods include qualitative, quantitative or mix methods. We use a mixed

method that includes both qualitative and quantitative research methods [14].

A thorough literature review will be carried out to synthesize prior work

addressing measurement in software startups, and the consideration of different

measures/metrics in making decisions in software startup contexts. The literature

survey will cover material that has appeared in scholarly articles, journals, books and

web references (published primarily by the ACM, the IEEE, Elsevier, Springer and

Wiley). We will conduct exploratory interviews (preliminary study) to understand the

information needs of software startups.

According to Wohlin et al. [16], survey, case study and experiment are the three

main empirical research strategies in the SE field. A detailed web survey will be

carried out to investigate the current measures/metrics that software startups collect

for different purposes. This web survey will be in the form of semi-structured

questionnaire. The questionnaire will contain both the close-ended and open-ended

questions. The web survey would also allow us to obtain insights to the rationales

behind collecting these measures. In addition, it will help us to understand when and

how often software startups collect these measures.

We will also conduct multiple case studies on software startups. The main purpose

of conducting the case study is to have a deeper understanding of measurement in

software startups.

A software startup has a dynamic nature. Taking into account the dynamic

behavior of software startups, the case study will be a cross-sectional study. The

cross-sectional study takes a snapshot of a research phenomenon at a particular point

in time. One can study and compare different groups (software startups) at a specific

point in time.

4.1 Research Benefits

This study will enable researchers and practitioners to understand the information

needs of software startups, and the challenges that software startups face. It will also

help software startups to better understand their current stages, measure progress and

better support their decisions.

19

The following table shows the time plan of the PhD work:

Table 1: Activities and Duration (Months)

Activity Duration (Months)

Literature review 7 Months

 Exploratory interviews 5 Months

Survey – design and data collection 4 Months

Survey – analysis 4 Months

Case study – data collection 4 Months

Case study – analysis 6 Months

Prepare and revise thesis 6 Months

Total 36 Months (3 Years)

(Note that while the activities listed above are shown as distinct and occurring in

sequence, there will naturally be overlap among them).

5 Preliminary Findings

We have conducted four interviews in three early stage software startups as the pilot

study. These interviews are transcribed and coded using open coding [15]. We have

used an online tool, dedoose [17] to code and analyze data. The preliminary findings

are:

 Early stage software startups do not collect measures related to product

during software development.

 They collect measures regarding the usage of the application (no. of active

users, no. of new users per week etc.). They use different tools (google

analytics etc.) to collect measures.

 The decision on which features to include in their MVPs is based on their

intuitions.

 The decision about whether to pivot or persevere is based on the feedback

from the customers.

 There is no software related measure to know the current state of the

software and to measure the progress.

 They do not have specific methodology to achieve their visions.

The results also show that early stage software startups face many challenges. Lack of

time, lack of technical skills, initial funding, and teamwork are major challenges. Due

to these challenges, it may not be feasible for them to spend time and resources to

identify and collect the related metrics according to their information needs.

6 Next Step

Out next step is to carry out an industrial survey in established software startups. This

industrial survey would help us to understand the current state of practice related to

measurement/metrics in established software startups.

20

References

1. Smagalla, D.: The truth about software startups, MIT Sloan Manage. Rev. (USA), vol. 45,

no. 2, p. 7, (Winter 2004)

2. Mullins, J., Komisar, R.: Getting to Plan B: Breaking Through to a Better Business Model.

Harvard Business Review Press (2009)

3. Ries, E.: The Lean Startup: How Constant Innovation Creates Radically Successful

Businesses. Penguin Group, London (2011)

4. Sutton, S. M.: The role of process in software start-up. IEEE Software, Vol. 17, Issue. 4,

pp. 33–39 (2000)

5. Andreessen, M.: Why software is eating the world. [Online]. Available:

http://goo.gl/6CEVN (Accessed: Sep. 08, 2014)

6. Kane, T.: The Importance of Startups in Job Creation and Job Destruction, Kauman

Foundation, Tech. Rep., July (2010).

7. Blank, S.: The Four Steps to the Epiphany: Successful Strategies for Products that Win,

3rd ed., Cafepress.com. (2005)

8. Bosch, J., Olsson, H. H., Björk, J., Ljungblad, J.: The Early Stage Software Startup

Development Model: A Framework for Operationalizing Lean Principles in Software

Startups, Lecture Notes in Business Information Processing (LNBIP), Vol 167, pp 1- 15,

(2013)

9. Taipale, M.: Huitale – A Story of a Finnish Lean Startup, Lecture Notes in Business

Information Processing (LNBIP), Vol. 65, pp. 111- 114, (2010)

10. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach 2nd edn.

PWS Publishing Company (1997)

11. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:

Software development in startup companies: A systematic mapping study. Information &

Software Technology, Vol. 56, Issue 10, pp. 1200-1218, (2014)

12. Münch, J., Fagerholm, F., Johnson, P., Pirttilahti, J., Torkkel, J., Jäarvinen, J.: Creating

Minimum Viable Products in Industry-Academia Collaborations. Lean Enterprise

Software and Systems, 137-151. (2013)

13. Croll, A., Yoskovitz, B.: Lean Analytics: Use Data to Build a Better Startup Faster.

O'Reilly Media Inc. (2013)

14. Creswell, W.: Research Design - Qualitative, Quantitative and Mixed Method

Approaches, Sage Publications. (2002)

15. Corbin, J., Strauss, A.: Grounded theory research: Procedures, canons, and evaluative

criteria. Qualitative Sociology, Vol. 13, No. 1, pp. 3–21, (1990).

16. Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., Wesslen, A.:

Experimentation in Software Engineering: An Introduction, Kluwer Academic Publishers,

ISBN: 0-7923-8666-3, (2000)

17. Dedoose tool [Online]. Available: www.dedoose.com (Accessed: Sep. 08, 2014)

18. Giardino, C., Wang, X., Abrahamsson, P.: Why Early-Stage Software Startups Fail: A

Behavioral Framework. ICSOB, pp 27-41. (2014)

19. Gómez, O., Oktaba, H., Piattini, M., García, F.: A Systematic Review Measurement in

Software Engineering: State-of-the-Art in Measures. Communications in Computer and

Information Science Vol. 10, pp 165-176, (2008)

20. Kitchenham, B.: What's up with software metrics? - A preliminary mapping study. J. Syst.

Softw. Vol. 83, no. 1, pp 37-51 January (2010)

21. Basili, V. R., Caldiera, G., Rombach, H. D. The goal question metric approach. 1-10.

(1996)

21

http://goo.gl/
http://www.dedoose.com/

Research Plan: Visualizations for Software
Analytics

Author: Anna-Liisa Mattila
Supervisor: Tommi Mikkonen

Department of Pervasive Computing,
Tampere University of Technology,

Korkeakoulunkatu 1, FI-33720 Tampere, Finland
anna-liisa.mattila@tut.fi

Abstract. In this research proposal visualizing software engineering
data in order to get better overall picture to the software project is
described. Using visualizations in the initial step to form metrics can
reduce amount of data that needs to be collected and analyzed later
thus lowering the costs of software analytics. Also finding better metrics
and understanding the big picture of the project is an expected impact.
Proverb ”‘What you measure is what you get”’ is many times true so
measuring the right things for each projects is extremely important.

Keywords: Visualization, Software Analytics, Software Process Improve-
ment, Research Plan, Research Proposal

1 Introduction

In software engineering there are lots of questions where companies and practi-
tioners would like to get answers. Questions vary from enhancing software process
to how customers actually use the product [2]. In order to answer these questions
data from software process as well as from end users is collected, analyzed, and
used as a basis for decision making and process improvement.

Data collected from the software process can be anything from version control
logs to bug reports and mailing list conversations [7]. Data amounts collected
are usually large and data types diverse. Analysis of the data is not a simple
task. Data visualization can play important role in getting insights from these
data sets as visualizations can present large amount of information in relatively
small space [12]. From good visualization abnormalities, patterns and noise can
be detected easily with human visual perception [5]. Interesting findings can be
then analyzed further using other analysis methods. In this paper research about
visualizing software engineering data in order to get better over all pictures for
the projects is presented.

The paper is structured as follows. In Section 2 overview to the research area
is given based on current literature. Research objectives are discussed in Section
3 and methods for conducting the research are described in Section 4. In Section
5 results and future work are addressed. In Section 6 the final conclusions are
drawn.

22

2 Background

Software analytics have become an interesting and important topic in software
engineering community as gathering data from software process is getting more
common. Gathering data, like amount of code lines, and analyzing it to discover
code complexity and building quality metrics is not exactly a new trend [3].
However the direction is for more extensive data collection to get deeper un-
derstanding of the process and to have actual data behind the decision making
process [4].

There are many aspects to consider when initializing software analytics to
a project. Data collection is a thing that needs to be adressed. How it is done
so that the return of investment is good enough [9]? Collecting data from the
software process by hand is tedious and error prone but on the other hand
building automated data collection and analysis system costs. Many tools used
in software development already collects data from the process: bug tracking
systems, version control systems, etc. It can be worthwhile to actually use the
data from these tools as a basis for the analytics. However, different stake holders
have different questions to ask from the data. Even if we are able to answer
the questions based on the already collected data, many different views to the
data might be needed [1]. Good visualizations to the data plays important role
in understanding the collected data and in determining which data is actually
worth of collecting and analyzing.

3 Research Objectives

Objectives of the research are exploring the use of visualizations in software data
analysis to gain better insight to the software project’s state. Expected results
are generalizable guidelines for visualizing variety of software engineering data
in order to show improvement points in the software process and to determining
what data is interesting for further analysis and usable as a metric.

The main research questions of the proposed research are:
Q1 How visualizations should be applied in order to show the interesting findings

of software data?
Q2 How visualizations could be used in finding the right metrics?

Our aim is to work in collaboration with Finnish software companies which
can provide software engineering data from their projects. Software engineering
data is always somehow dependent on its context. Companies use different tools
and processes which affects to the data that can be collected. There is lot re-
search to do in order to do generalized guidelines or models for selecting metrics
and visualizing the data in a useful way. Our plan is to apply different kind of
visualization methods to variety of software engineering data.

Defining the metrics is important part of taking software analytics in to the
software process. Proverb ”‘What you measure is what you get”’ is often true

23

thus understanding the big picture of the project is important before determin-
ing metrics for the project. Visualizations can give good overall picture to the
software project to which the metrics are designed. The suggested approach for
determining metrics is iterative bottom up approach – the tools used in the
software projects already collects data from the projects. The data, already ex-
isting, is visualized to form an overall picture of the project. Reasonable data
sources and metrics for measuring the project is formed based on the knowledge
gained from the visualizations. The metrics are formed iteratively because when
knowledge from the visualization is gathered, the questions we would like ask
from the data might change or become irrelevant and another questions might
arise from the data.

4 Research Methods

The main research methods used in the proposed research are action research
and case study. For ground survey a literature review following guidelines of
systematic literature review introduced in [6] is conducted. The research is di-
vided into three phases: 1) Pre study to get insights and hypothesis from the
stake holder companies. 2) Developing visualizations and determining metrics in
action research cycle. 3) Post study to conclude the findings of the research.

Action Research is doing research rather in the environment where the
results are actually used than in the laboratory [8]. Action research is a cycle
process that contains five steps: diagnosing, action planning, action taking, eval-
uating and specifying learning. The problem is defined in the diagnosing phase
which is the starting point of the cycle. Action research is an iterative process
and output of a cycle acts as an input for next iterations diagnosing phase. These
steps are defined by Susman and Evered in [11].

Our aim is to do the proposed research with Finnish companies in their
real software development process context. The action research is selected as
one of the research methods to provide the most valid results which benefits
participants the most.

Case Studies are observation studies that can be used for many purposes
from generating hypothesis to explanation seeking as well as improving an aspect
of the studied phenomena [10]. Whereas action research’s aim is to take action
and influence to the process studied in case study the process is just observed
without taking action. We aim to do case studies with all stake holder companies
as pre studies for gathering hypothesis for the research. The results from the
case studies are used as an input for the first action research iteration. Also post
studies to conclude the results from research done with companies is done as
case study.

5 Current State and Future Work

The research has started at the beginning of the year 2014 and it is in its early
state where no results have yet been published. Systematic literature review of

24

visualization methods and tools is ongoing work. Three industrial cases have been
established with Finnish companies. First results from the cases are planned to be
published at the beginning of 2015. Research questions introduced are expected
to be answered within the year 2018.

6 Conclusions

In this paper research about using visualizing software engineering data is in-
troduced. The objectives of the research are to study how visualizations should
be applied in order to show the overall picture of the software project and how
visualizations could be used in forming metrics for the project.

Use of visualizations in software analytics to determine what is actually in-
teresting can make taking software analytics as part of the software process more
feasible to the companies. Visualizations can guide forming the right metrics and
thus decrease the amount of data which needs to be collected and analyzed, but
also give better overall picture of the project.

References

1. Baysal, O., Holmes, R., Godfrey, M.W.: Developer Dashboards: The Need for Qual-
itative Analytics. Software, IEEE 30(4), 46–52 (2013)

2. Begel, A., Zimmermann, T.: Analyze This! 145 Questions for Data Scientists in
Software Engineering. In: Proceedings of the 36th International Conference on
Software Engineering. pp. 12–23. ICSE 2014, ACM, New York, NY, USA (2014)

3. van Genuchten, M., Hatton, L.: Metrics with Impact. IEEE Software 30(4), 99–101
(2013)

4. Hassan, A.E., Hindle, A., Runeson, P., Shepperd, M., Devanbu, P., Kim, S.:
Roundtable: What’s Next in Software Analytics. Software, IEEE 30(4), 53–56
(2013)

5. Keim, D.A.: Information Visualization and Visual Data Mining. Visualization and
Computer Graphics, IEEE Transactions on 8(1), 1–8 (2002)

6. Kitchenham, B.: Procedures for Performing Systematic Reviews. Keele, UK, Keele
University 33, 2004 (2004)

7. Menzies, T., Zimmermann, T.: Software Analytics: So What? Software, IEEE
30(4), 31–37 (2013)

8. Reason, P., Bradbury, H.: Handbook of Action Research: Participative Inquiry and
Practice. Sage (2001)

9. Robbes, R., Vidal, R., Bastarrica, M.: Are Software Analytics Efforts Worthwhile
for Small Companies? The Case of Amisoft. IEEE Software 30(5), 46–53 (2013)

10. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Re-
search in Software Engineering. Empirical software engineering 14(2), 131–164
(2009)

11. Susman, G.I., Evered, R.D.: An Assessment of the Scientific Merits of Action Re-
search. Administrative science quarterly pp. 582–603 (1978)

12. Tufte, E.R., Graves-Morris, P.: The Visual Display of Quantitative Information,
vol. 2. Graphics press Cheshire, CT (1983)

25

Evaluating and managing technical debt in software

development lifecycle

Jesse Yli-Huumo, Andrey Maglyas (supervisor), Kari Smolander (supervisor)

Lappeenranta University of Technology, Finland

{jesse.yli-huumo,andrey.maglyas,kari.smolander}@lut.fi

Abstract. Increasing competition within software industry is forcing companies

to develop their products faster to market in order to acquire customers. Balanc-

ing the idea of releasing poor-quality software early or high-quality after deadline

is challenging for companies. Taking shortcuts and workarounds in development

can give companies the needed speed to release their product in time. However,

if these shortcuts are never paid back, they might show up as omitted quality and

extra costs in the future. This research is studying the challenges between devel-

opment and deadlines that can also be called as ‘technical debt’. We are interested

on the causes of the technical debt to the software development lifecycle and the

effects occurring from it. Moreover, the focus in on evaluation and management

strategies regarding controlling and reducing technical debt. Our goal is to create

a theoretical model about the evaluation and management of technical debt in

software development lifecycle. We use grounded theory method for creating a

theoretical model through several case studies and field interviews with profes-

sionals from both technical and business background. As a result of the research,

we will have a theoretical model of technical debt evaluation and management

that can be applied to practice for improving companies internal and external

processes that will help to create high-quality products on time and on budget.

1 Background

The competition within the software industry has been increasing and new services,

solutions and innovations are being brought to the consumers constantly. To obtain the

market share companies must think about time-to-market strategy to gain advantage

over competitors. Competition might drive companies to situation where they need to

omit quality and take shortcuts in different phases of software development life cycle

in order to meet these time-to-market demands and to acquire customers. Taking

shortcuts and speeding development might give a company the needed advantage, but

they also incur ‘debt’. If this debt is never paid it accumulates and might cause some

serious effects to the product and the company. This phenomenon in software develop-

ment is called “technical debt”.

 The term technical debt was first introduced in 1992 by Ward Cunningham [1]. He

explained a situation where long-term code quality is traded for a short-term gain. De-

ficiencies in software can be compared with financial debt [2]. Implementing shortcuts

to the system architecture incur ‘debt’ that must be paid back eventually. If this debt is

26

not properly managed, it might accumulate as ‘interest,’ affecting the overall quality of

the developed software systems. Although technical debt has negative consequences in

a long-term, it can be used as a competitive advantage in a short-term. Time-to-market

and constant customer feedback through releasing software faster than competitors al-

low companies to gain a bigger market share.

 Often technical debt is equated with shortcuts and workarounds in the source code

of the software. However, taking shortcuts and workarounds can happen in different

stages [3] of software development life cycle [4]. Lack of documentation [5] or lack of

requirements specification [6] can increase technical debt in the requirements phase.

Architectural flaws in the design phase can be seen as design debt [7]. In the testing

environment shortcuts in running and writing test cases can also incur testing debt [5].

 Technical debt is not always a shortcut or workaround that is done with intentional

decision. Instead, according to McConnell technical debt can be divided into an inten-

tional and unintentional debt [8]. Intentional technical debt occurs when organization

makes a conscious decision to incur debt that might come from the pressure to release

the product. Unintentional technical debt is non-strategic and usually a result of a poor

job or bad decisions done unknowingly that might reveal themselves after years.

 This research is a part of the Need for Speed -program. The aim of the Need for

Speed is to create the foundation for the success of the Finnish software intensive busi-

ness in the new digital economy. The research program focuses on business models,

tools and processes that help companies speed up their business to proactively take

advantage of the real-time economy. Our research is focusing on bringing an empirical

data about the challenges between managing the development and deadlines.

2 Research objectives

The current literature identifies several different technical debt causes and effects.

Technical debt is not always caused by technical reasons, but also for business reasons

[9]. In a short-term technical debt has often positive effects such as the time-to-market

advantage [9]. If this debt is not managed, it tends to turn to economic consequences

and quality issues in a long-term [10][11]. There are also some cases where the short-

term benefit overweighs the cost of long-term consequences [12]. However, the current

literature is lacking a clear mapping between the causes and effects of technical debt

and its sub-categories.

 Evaluating and managing is an important part of reducing and paying back the tech-

nical debt. There are some strategies and practices suggested in the current literature

for dealing with technical debt. In the portfolio management [13] technical debts are

collected to a ‘technical debt list’ that is being used to reduce the technical debt based

on their cost and value. There are also some guidelines [14][15] developed for improv-

ing refactoring, coding and teamwork that might reduce the amount of technical debt.

However, the current literature includes very few evaluation and management strategies

for technical debt and lacks empirical evidence.

 Based on these observations, the aim of this research is to investigate a topic that

has not been studied a lot in previous research: Evaluation and management of technical

debt in software development lifecycle. The topic is important because technical debt

27

is an essential part of current software development and companies must be able to

manage their technical debt in order to keep the product healthy and profitable in com-

petition. Our focus in this research is more on the management side of the technical

debt causes and effects, rather than on the qualities of technical debt in source code and

how to measure them.

 Technical debt in software development lifecycle in almost inevitable and this is the

reason why companies must be able to evaluate and manage it. Research in this area

has not been much carried out and this study should improve the research gap. In this

regards, the main research question will be “How to evaluate and manage technical

debt in the software development lifecycle?” The objective of this research is to cre-

ate a theoretical model which describes the role of technical debt evaluation and man-

agement in the software development lifecycle. It also helps to understand the causes

and effects of technical debt to software development. The main research question is

divided into sub-questions that will focus on the certain aspects of the research problem.

1. What are the causes and effects of technical debt in software development life

cycle?

2. What management and technical perspectives can be used in the evaluation

and/or management of technical debt?

3. What are the current management strategies and practices for managing and

reducing technical debt in software life cycle?

 Combining the information gathered during the research will help us to create a the-

oretical model of the technical debt evaluation and management in software develop-

ment lifecycle. This model will describe the evaluation and management of technical

debt with practices that help companies to manage and reduce it. In addition, we will

discuss the role of technical debt in software development lifecycle with causes and

effects of it. Companies must be able to change their practices and processes more suit-

able for dealing with the technical debt. As a result of the research, we will have a

theoretical model of technical debt evaluation and management that can be applied to

practice for improving companies’ internal and external processes that will help to cre-

ate high-quality products on time and budget.

3 Research methodology

To answer the main research question, sub-questions and to develop a model for the

evaluation and management of technical debt, we have decided to use qualitative re-

search and grounded theory method that was developed by Glaser and Strauss in 1967

[16]. The grounded theory is built on two main concepts: constant comparison and the-

oretical sampling. With constant comparison in grounded theory we are able to have

simultaneous involvement in data collection and constructing analytic codes and cate-

gories from the data. Theoretical sampling creates an iterative theory construction pro-

cess, where the next data sample is chosen based on the analysis of previous sample.

 Answering the research questions requires also qualitative research which will in-

clude case studies and field interviews. Due to the nature of the project, the selected

28

companies for the research are primary dictated by a list of partners in the research

project. Since our goal is to increase our knowledge of the relationship in technical debt

causes, effects, evaluation and management rather than the measurement and qualities

of technical debt in source code, we decided to use case study methodology with semi-

structured interviews for data collection. This research will include multiple case stud-

ies with face-to-face interviews from professionals with technical and business back-

ground related to each case.

4 Results

So far we have conducted total of 30 interviews from four different companies with

professionals from both technical and business side. The cases include both middle and

large-size companies from different industry areas. We have also two other case studies

planned for the future research.

 We have made one publication of the gathered results that has been accepted to

PROFES 2014 conference. In this publication we studied a one middle-size software

development company and their two different product lines. With this study we were

able to identify several different causes for technical debt. These can be further divided

into technical debt that is a caused with intentional decisions and technical debt incur-

ring unintentionally. We were also able to identify several short- and long-term effects

of technical debt to a software project. As expected, the effects of technical debt seemed

to be positive in a short-term, but turned negative in a long-term such as extra costs and

quality issues. Although we did not find any specific approach for managing technical

debt, we were able to identify some practices for reducing technical debt such as refac-

toring and coding standards/reviews. In addition, the company that took part in this first

publication stated after the conducted research that they are going to start use similar

technical debt ‘list’ suggested in a study conducted by Guo and Seaman [13]. In the

future we are going to conduct a research about the effects of using this ‘list’ to manage

and reduce technical debt.

In the future we are focusing on the analysis of current case studies. Even though the

current results have been promising and revealed several interesting aspects of the re-

search topic, we think that the amount of observed data is not enough at the moment

for creating a theoretical model for evaluation and management of technical debt. So

far we have been able to observe a lot of results regarding the causes and effects of

technical debt. However, the amount of data regarding the evaluation and management

of technical debt has been fairly low. Therefore, we are planning to conduct more case

studies and field interviews in the future to gather more data regarding the evaluation

and management aspect of technical debt.

References

1. W. Cunningham, “The WyCash Portfolio Management System,” Experience Report, 1992.

2. “TechnicalDebtQuadrant.” [Online]. Available: http://martinfowler.com/bliki/Tech-

nicalDebtQuadrant.html. [Accessed: 07-Jul-2014].

29

3. B. L. Yu, K. L. Wooi, Y. T. Wai, and F. T. Soo, “Software Development Life Cycle AGILE

vs Traditional Approaches,” in IPCSIT vol. 37 (2012), Singapore, 2012.

4. E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” J. Syst. Softw., vol.

86, no. 6, pp. 1498–1516, Jun. 2013.

5. N. Zazworka, R. O. Spínola, A. Vetro’, F. Shull, and C. Seaman, “A Case Study on Effec-

tively Identifying Technical Debt,” in Proceedings of the 17th International Conference on

Evaluation and Assessment in Software Engineering, New York, NY, USA, 2013, pp. 42–

47.

6. B. Ojameruaye and R. Bahsoon, “Systematic Elaboration of Compliance Requirements Us-

ing Compliance Debt and Portfolio Theory,” in Requirements Engineering: Foundation for

Software Quality, C. Salinesi and I. van de Weerd, Eds. Springer International Publishing,

2014, pp. 152–167.

7. N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack, R.

Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N. Zazworka, “Managing Tech-

nical Debt in Software-reliant Systems,” in Proceedings of the FSE/SDP Workshop on Fu-

ture of Software Engineering Research, New York, NY, USA, 2010, pp. 47–52.

8. S. McConnell, “Technical Debt-10x Software Development | Construx,” 01-Nov-2007.

[Online]. Available: http://www.construx.com/10x_Software_Development/Tech-

nical_Debt/. [Accessed: 25-Mar-2014].

9. E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Software Practitioners Have

to Say about Technical Debt,” IEEE Softw., vol. 29, no. 6, pp. 22–27, Nov. 2012.

10. N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the Impact of Design

Debt on Software Quality,” in Proceedings of the 2Nd Workshop on Managing Technical

Debt, New York, NY, USA, 2011, pp. 17–23.

11. Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Q. B. da Silva, A. L. M. Santos,

and C. Siebra, “Tracking technical debt #x2014; An exploratory case study,” in 2011 27th

IEEE International Conference on Software Maintenance (ICSM), 2011, pp. 528–531.

12. C. S. A. Siebra, G. S. Tonin, F. Q. B. Silva, R. G. Oliveira, A. L. O. C. Junior, R. C. G.

Miranda, and A. L. M. Santos, “Managing Technical Debt in Practice: An Industrial Re-

port,” in Proceedings of the ACM-IEEE International Symposium on Empirical Software

Engineering and Measurement, New York, NY, USA, 2012, pp. 247–250.

13. Y. Guo and C. Seaman, “A Portfolio Approach to Technical Debt Management,” in Pro-

ceedings of the 2Nd Workshop on Managing Technical Debt, New York, NY, USA, 2011,

pp. 31–34.

14. V. Krishna and A. Basu, “Minimizing Technical Debt: Developer’s viewpoint,” in Interna-

tional Conference on Software Engineering and Mobile Application Modelling and Devel-

opment (ICSEMA 2012), 2012, pp. 1–5.

15. V. Krishna and A. Basu, “Software Engineering Practices for Minimizing Technical Debt,”

presented at the SERP’13 The 2013 International Conference on Software Engineering Re-

search and Practice.

16. B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strategies for Qualita-

tive Research. 2009.

30

The Dynamics of Test-Driven Development

Davide Fucci
supervised by Burak Turhan

University of Oulu, Finland
davide.fucci@oulu.fi

burak.turhan@oulu.fi

Abstract. Test-driven development (TDD) has been the subject of sev-
eral software engineering experiments. However the controversial results
about its effects still need to be contextualized. This doctoral research
will show how TDD could be better assessed by studying to what extent
developers follow its cycle. Moreover, I aim at exploring the low level
aspects of the TDD process. This knowledge is foreseen to be beneficial
for software industries willing to adopt or adapt TDD.

Keywords: Test-driven development, Process conformance, software qual-
ity, developers’ productivity

1 Introduction and Research Gap

Test-driven Development (TDD) has been advertised as a development practice
that aids the production of high quality code in short time iterations, therefore
making it appealing for both academia and industry. If the promises of TDD
were to be kept in practice, it would have a big impact on the software industry;
on the other hand, academics have been interested in the study of TDD to con-
firm whether the promised effects are real and repeatable. TDD is an incremental
development practice in which tests are written before the implementation code,
reversing the conventional development process. Therefore, the tests drive the
implementation of production code. During the TDD process, developers (1)
write a test that describes a small piece of functionality they wish their produc-
tion code will have; (2) run the test to ensure that it fails; (3) write the minimal
amount of code that necessary for the test to pass; (4) run the test(s) in order to
ensure that the new implementation is correct, as well as not breaking existing
functionalities; (5) refactor the code to improve the design (e.g.; removing du-
plications) and (6) re-run the tests to check that all the functionalities still work
[2]. TDD is associated with an increased external quality [1, 2] of the code and
it is believed to achieve this effect mainly by encouraging developers to support
the code they write with a comprehensive suite of unit tests and keeping the
code itself easy to test through refactoring. Furthermore, using TDD with an
automated testing framework builds a regression test suite against which future
changes to the code can be verified. Proponents claim that TDD promotes a
modular, simple and emergent design thanks to the short iterations and con-
tinual refactoring in contrast with the classic, test-last approach, traditionally

31

focused on big up-front design [1, 2]. There is currently a gap in research about
TDD. In general, its effects, have not been assessed through sound evidence in
which the extent to which the developers follow the TDD cycle, i.e.; process
conformance has been taken into account. In order to achieve such goal the pro-
cess itself needs to be studied at a fine-grained level. Alongside, the results from
existing research about TDD have not been transferred to the industry; there-
fore another gap exists regarding how the research results can help the industry
stakeholders adopting and making decision about TDD in practice.

2 Prior Work

The results regarding TDD’s effects are so far contradicting. Turhan et al. [16]
conducted a systematic review of studies that performed a quantitative com-
parison of TDD with an alternative development method, such as after-the-fact
testing or ad-hoc in-process testing. Their analysis suggests that the primary
studies present moderate evidence in favour of TDD for improving external code
quality. However, this evidence disappears when studies classified as being less
rigorous were excluded. TDD’s effects on developer productivity were inconsis-
tent across different study types and levels of rigour. The primary studies also
present moderate evidence that TDD improves the quality of test code and de-
fect removal efficiency. Controversially, considering only the high rigorous and
relevant studies, Munir et al. [13], found that TDD increases external quality but
at the same time deteriorates productivity. Another systematic literature review
by Rafique and Misic [14] included the results from the 27 primary studies show-
ing that TDD has a small positive effect on quality but no significant effect on
productivity. A survey from Begel et al. [4] involving 488 software developers,
testers and project managers at Microsoft Corp., showed that even though 51%
have been using TDD and another 10% was willing to adopt it in their develop-
ment workflow, TDD remains one of the least used methodologies among Agile
development methodologies along with pair programming. TDD was perceived as
a factor mainly contributing to the higher code quality, while its overall benefits
were ranked 10th among the perceived benefits brought by Agile methodologies.
Many empirical studies about the effects of TDD, including the systematic re-
views [5, 14, 16], reported that process conformance is often underestimated or
not properly controlled by the experimenters, therefore posing threats to the
validity of the studies. In the case of TDD, process conformance is the level to
which the cycle is followed. In particular, the study by Causevic et al. [5] claims
that inadequate process conformance might be hindering the adoption of TDD
by industry. Although there are heuristics and tools [3] capable of assessing the
conformance to the TDD cycle, only few studies make use of them (or other
ad-hoc built solutions) to deal with the threat of low process conformance [12].
Another factor limiting the understanding, and therefore the adoption, of TDD
lies in having an understanding of what are the low-level aspects of the actual
process employed by the developers as opposed to the ideal one presented in
the literature [1, 2]. To the best of my knowledge, the state of the art about

32

TDD studies does not include a in-depth analysis of the dynamics underlying
the red-green-refactor cycle in practice, for both industry and academia.

3 Research Problem and Contribution

My research aims to achieve a deeper understanding of the dynamics of Test
Driven Development (TDD) and to provide necessary actions in order to offer
industry a more informed adoption of the practice. In the first place, I am inter-
ested in measuring how the level of conformance to the ideal practice impacts
developers’ productivity and the quality of the system under development. Ac-
cordingly, it is of interest to observe what actually happens when developers
claim to use TDD, how the actual process deviates from the ideal one, and what
are the most significant factors observed during the process.
RQ1 - How the level of conformance to TDD impacts its effects?
In turn, RQ1 is divided into:
RQ1.1 - How the level of conformance to TDD impacts external quality?
RQ1.2 - How the level of conformance to TDD impacts productivity?
The second level of analysis deals with how the TDD process takes place in
practice. I have identified four components representing the process:
Granularity: the duration of each development cycle.
Uniformity: the regularity, in terms of duration, of each development cycle.
Sequencing: the dominant testing pattern in each development cycle.
Refactoring: the amount of refactoring in each development cycle.
The objective is study how each component contributes to the actual TDD pro-
cess, and which have an impact on productivity and software quality.
RQ2 - What is the impact of the TDD components on its outcomes?
RQ2 is divided into sub-questions:
RQ2.1 - What is the impact of the TDD components on external quality?
RQ2.2 - What is the impact of the TDD components on productivity?
The expected contributions of my doctoral work are (1) the creation of new
evidence about how, and eventually which parts of the TDD process should be
employed by industry in order to bring quality and productivity improvements;
and consequently (2) create guidelines regarding the adoption of the process.

4 Methodology

I employ a quantitative approach by using the low-level data collected from TDD
developers’ IDE by a tool, to make inference about their level of conformance to
the ideal TDD process. At the same time source code is used to calculate met-
rics for external quality (in terms of defects) and productivity (in terms of time
necessary to develop the software requirements, e.g.; user stories). The dataset
composed of such metrics is then analysed, seeking for relationships in order to
answer RQ1. On the other hand, the same data is analysed to measure each of
the four actual TDD components to answer RQ2. I am gathering and analysing
data from industrial partners of my research group, who are willing to use, or are

33

already using, TDD. In order to validate my approach, I first collected and anal-
ysed data gathered from Master’s students in Information Processing Science at
University of Oulu using TDD in their courses. The findings from RQ1 and RQ2
will be processed into guidelines to provide practical support to practitioners.
Specifically, my research work will be approached through experimental research
methods. A set of quasi-experiments [15] (i.e. a baseline experiment and its repli-
cations) are appropriate means to investigate the research questions. The choice
of quasi-experiment is a compromise [11] due to the fact that the constructs of
interest cannot be artificially manipulated as in controlled experiments. In order
to have a richer understanding of the TDD process in practice and to overcome
the threat for causal inference posed by the use of quasi-experiment, surveys and
field observations will be used along with the experiments, to gauge the subjects’
skills, experience and attitude towards TDD. Such kind of assessments could be
useful to get more insights, support to the experiments’ results as well as drive
the focus of each experiment replication.

5 Progress Status and Agenda

At the moment four studies have been carried out [7–10]. The first two were
replications of the experiment described by Erdogmus et al [6], in which the
effects of TDD on external quality and productivity was studies in academic
context. The papers included also a correlation study in which the number of
tests—developed by both TDD and test last developers—was used to predict
the final software product quality as well as the productivity of the developers.
The result of those two previously published studies is that no improvement in
quality nor productivity was achieved by the adoption of TDD, while in the
original study TDD seemed to improve, although slightly, the external quality.
These initial results suffer from a threat to external validity since their findings
are hardly generalisable to the industrial context, they provide good material
for theory testing. In particular, the aim was to show that the selected variables
represent the constructs presented in the TDD literature and that, although
with a small sample, relationships and causality exists between such constructs.
From the methodological perspective such experiments allow to validate the
experimental design, and increase the confidence in using ESE techniques (e.g.
data analysis, reporting). In the latter two studies, the collected data is analysed
under the prospective of process conformance. This pre-study will support the
design of the experiments needed to answer RQ1. Alongside, the initial result
shed some light on the actual process employed by the developers claiming to
follow the TDD cycle. Three experiments run, focusing on the study of process
conformance, took place during Fall 2013 in industrial context. Part of the data
collected will be used to test the hypotheses necessary to answer RQ2. Hence, the
future work revolves around RQ2, which will be accompanied by an observational
field study in order to form guidelines that could help practitioners willing to
employ TDD in their workflow.

34

References

1. D. Astels. Test Driven development: A Practical Guide. Prentice Hall Professional
Technical Reference, 2003.

2. K. Beck. Test-driven Development: by Example. The Addison-Wesley signature
series. Addison-Wesley, 2003.

3. K. Becker, B. de Souza Costa Pedroso, M. S. Pimenta, and R. P. Jacobi. Besouro: A
framework for exploring compliance rules in automatic TDD behavior assessment.
Inf. Softw. Technol., pages 1–15, July 2014.

4. A. Begel and N. Nagappan. Usage and perceptions of agile software development
in an industrial context: An exploratory study. In 1st Symposium on Empirical
Software Engineering and Measurement, pages 255–264. IEEE, 2007.

5. A. Causevic, D. Sundmark, and S. Punnekkat. Factors limiting industrial adoption
of test driven development: A systematic review. In Software Testing, Verification
and Validation (ICST), Fourth International Conference on. IEEE, 2011.

6. H. Erdogmus, M. Morisio, and M. Torchiano. On the Effectiveness of the Test-
First Approach to Programming. IEEE Transactions on Software Engineering,
31(3):226–237, 2005.

7. D. Fucci and B. Turhan. A Replicated Experiment on the Effectiveness of Test-
driven Development. In Empirical Software Engineering and Measurement, 2013.
ESEM 2013. Seventh International Symposium on, pages 364–373. IEEE, 2013.

8. D. Fucci and B. Turhan. On the role of tests in test-driven development: a differ-
entiated and partial replication. Empirical Software Engineering, 2013.

9. D. Fucci, B. Turhan, and M. Oivo. Conformance factor in test-driven development:
initial results from an enhanced replication. In 18th International Conference on
Evaluation and Assessment in Software Engineering, page 22, 2014.

10. D. Fucci, B. Turhan, and M. Oivo. The Impact of Process Conformance on the
Effects of Test-driven Development. In Empirical Software Engineering and Mea-
surement, 2014. ESEM 2014. 8th International Symposium on. IEEE, 2014.

11. V. B. Kampenes, T. Dyb̊a, J. E. Hannay, and D. I. K Sjøberg. A systematic
review of quasi-experiments in software engineering. Information and Software
Technology, 51(1):71–82, 2009.

12. M. Müller and A. Höfer. The Effect of Experience on the Test-driven Development
Process. Empirical Software Engineering, 12(6):593–615, 2007.

13. H. Munir, M. Moayyed, and K. Petersen. Considering rigor and relevance when
evaluating test driven development: A systematic review. Information and Software
Technology, 56(4):375–394, Apr. 2014.

14. Y. Rafique and V. Misic. The effects of test-driven development on external quality
and productivity: A meta-analysis. 2012.

15. W. Shadish. Experimental and quasi-experimental designs for generalized causal
inference. Houghton Mifflin, Boston, 2001.

16. B. Turhan, L. Layman, M. Diep, H. Erdogmus, and F. Shull. How Effective Is Test
Driven Development? O’Reilly Media, 2010.

35

Language for Choreography Modeling in Embedded

Systems Domain

 Candidate: Nebojša Taušan, Supervisors: Markku Oivo, Pasi Kuvaja, Jouni Markkula

Department of Information Processing Science
University of Oulu, Oulu, Finland

 [nebojsa.tausan, markku.oivo, pasi.kuvaja,

jouni.markkula]@oulu.fi

Abstract. The choreography models are important artifacts for systems based
on service-oriented architecture. Conventional languages for choreography
modeling, however, have a limited applicability in the embedded systems do-
main where service-oriented architecture is increasingly present. Therefore the
main problem addressed in this doctoral study is the lack of the choreography
modeling language primitives needed to tackle embedded systems development
challenges. This problem will be addressed through the design of customiza-
tions for an existing choreography language. The expected benefits of the lan-
guage utilization include improved communication between the development
teams, faster development, and error reduction.

Keywords: service-oriented architecture, choreography, design science

Research Area: Software architecture, modeling languages

1 Introduction

Service-Oriented Architecture (SOA) is a well-established approach for enterprise
systems development [1], but today it is also used for the development of Embedded
Systems (ES) [2]. SOA introduces the service as a main building block of the system
and service interactions as a way to achieve a system’s goals. Service interaction
specification, therefore, represents an important development artifact which consists
of two related parts—choreography and orchestration [3]. The choreography de-
scribes the sequence of service interaction steps during which the distinct manage-
ment authorities (also called process participants) exchange messages. The orchestra-
tion describes service interactions from the perspective of a distinct process partici-
pant. Choreography and orchestration can be specified using general-purpose model-
ing languages, such as UML (uml.org), or domain-specific languages, such as those
used for business process modeling in enterprise systems domain [4][5]. These lan-
guages, however, have limited applicability in the ES domain, since the nature of
service interactions in ES is more complex [6][7][8]. This doctoral study will address

36

mailto:markku.oivo@oulu.fi
mailto:markku.oivo@oulu.fi

this problem by designing customizations for the existing choreography modeling
language in a way that makes the language applicable to ES development challenges.
The language customizations will provide primitives that will support (a) complex
service interactions modeling, (b) role identification and management, and (c) mid-
dleware heterogeneity.

1.1 Research Problem, Research Questions and Significance

The research problem addressed in this dissertation is the lack of the choreography
modeling language (CML) primitives needed to tackle embedded systems develop-
ment challenges. This research problem represents a synthesis of what is published in
the literature and what has been learned from the industry partners in the
AMALTHEA (amalthea-project.org) project of which this dissertation is part. The
identified research problem is decomposed on research questions (RQ), and for this
purpose, the Wieringa's guidelines are used [9]. Following these guidelines, the prob-
lem is decomposed to three higher-level RQs and eight sub questions. These RQs are:

 RQ1: Why is choreography modeling utilized in ES development?
a. Which practical ES development challenges can be addressed by choreography

modeling?
b. What is known in the scientific literature about the choreography modeling in

ES development?
 RQ2: How to design the CML customizations for the ES development domain?

a. How are different middleware platforms addressed with CML?
b. How to address the ES specific interaction complexity with CML?
c. How to facilitate the identification and management of participants' roles?

 RQ3: What effects on ES development are perceived by practitioners during the
utilization of the customized CML?
a. What are the effects of the customized CML on communication?
b. What are the effects of the customized CML on the development speed?
c. What are the effects of the customized CML on the number of errors?

The identified problem and its corresponding RQs are significant for several rea-
sons. These include the relationship of the choreography with (a) better performance
of a system [10][11][12], (b) network reliability and shorter network paths [13], and
(c) a reduced number of bottlenecks [14]. In addition, empirical findings from the
study of Lescevica et al. [15] indicate that practitioners expect improvements in or-
chestration and choreography capabilities.

1.2 Related Work

Languages for enterprise service interaction modeling [4][5] have a limited applica-
bility in the ES domain [6][7][8]. Today, there are several languages that are used for
service interaction in this domain. Call Control eXtensible Markup Language
(CCXML) [16] and State Chart eXtensible Markup Language (SCXML) [17] are used

37

for telecommunication service interaction modeling. SCALE [18] and SPATEL [19]
model the convergence between telecommunication services and services developed
in different domains and technologies. SENSORIA reference modeling language [20]
and customized Business Process Execution Language [6] are used to represent com-
plex service interactions in the automotive domain. The TOSCA language is an
emerging standard for cloud-based applications, but it is also used to model the inter-
actions between Internet-of-Things applications [21]. The analysis of these languages,
which was done in the course of this doctoral study, resulted in the conclusion that the
semantics and language primitives needed for choreography modeling in ES are not
sufficiently supported. This analysis result is also an argument for this dissertation
work.

2 Research Methodology

This research is framed by Design Science methodology and is instantiated in ac-
cordance with the framework of Hevner et al. [22]. Therefore, this study comprises a
sequence of research activities, where each activity utilizes a concrete research meth-
od(s) to explore (a) the topics relevant in practice, (b) what is known in the literature
about those topics, (c) how this knowledge can be used for designing the modeling
language and, (d) the benefits of language utilization. Figure 1 illustrates how the
selected research activities and methods fit into the Design Science framework.

E
n

vi
ro

n
m

e
n

t
E

n
vi

ro
n

m
e

n
t

T
h

e
o

ry (B
o

d
y o

f K
n

o
w

le
d

ge
)

T
h

e
o

ry (B
o

d
y o

f K
n

o
w

le
d

ge
)

Preliminary studyPreliminary study

AMALTHEA projectAMALTHEA project

Related work and
theoretical foundations

Related work and
theoretical foundations

Identifying research
context and

opportunities

Identifying research
context and

opportunities

Defines a broad
set of topics

Literature
analysis

Research executionResearch execution

Research problem
identification

Research problem
identification

Related work and
theoretical foundations

Related work and
theoretical foundations

Systematic Literature
Review

Empirical insights into
practical problems

Empirical insights into
practical problems

State of the practice
exploration

State of the practice
exploration

Innovative artifact
design

Innovative artifact
design

DevelopmentDevelopment

EvaluationEvaluation

Cooperation with
experts

Cooperation with
experts

Literature
analysis

Expert opinions
-workshops-

Contribution
(Improvement results)

Contribution
(Innovative design)

Research questions Research questions

Evaluation in the
laboratory and in the

field

Evaluation in the
laboratory and in the

field

Survey

Thematic analysis
(interview, coding)

RQ 1RQ 1

Empirical insights into
embedded systems

development

Empirical insights into
embedded systems

development

Preliminary
-workshops-

Empirical
investigation of

middleware products

Empirical
investigation of

middleware products

GQM &
DESMET

RQ 1RQ 1

RQ 2RQ 2

RQ 2RQ 2

RQ 3RQ 3

Piloting & observations

State of the art
exploration

State of the art
exploration

Expert opinions

Customized
choreography

modeling
language

Literature
analysis

Fig. 1. Research methodology, structured based on framework from Hevner et al. [22]

38

The research activities and methods are divided in two groups in the center of Fig-
ure 1. The first group of activities, labeled as ―preliminary study‖, establishes a con-
text and identifies and analyzes the research opportunities set by the AMALTHEA
project. For this purpose, the literature analysis and workshops were conducted with
industry experts. The preliminary study efforts defined the research problem, which is
relevant for experts and interesting for researchers.

The following group of activities is labeled as ―research execution‖. This group is
driven by the RQs derived from the identified research problem. Accordingly, to un-
derstand the practical challenges and to explore what is known in the literature about
the identified problem (RQ1), the state of the practice and literature will be investi-
gated. For these activities, research methods, including expert interviews, thematic
analyses [23], and a systematic literature review [24] will be employed. Several topics
will be studied to design the customizations for CML (RQ2). Methods such as the
Goal Question Metric [25] and DESMET [26] will be used to investigate the influ-
ence of the middleware on CML. Methods including focus groups, company-specific
document analyses, and the literature analysis will be utilized to explore and support
the complex interaction modeling and role management, answer RQ2. To answer
RQ3, which pertains to the evaluation of the customized CML, methods such as sur-
veys, piloting, and observations will be used.

Finally, according to the framework of Hevner et al. [22], the design of the CML
customizations will iterate over the development and evaluation activities until it is
unable to contribute utility to the environment and new knowledge to the theory. The
CML customizations designed in this dissertation will contribute to the software de-
velopment practice by improving the communication, reducing development time,
and reducing errors. The contribution to the theory will be in the form of a unique
design that combines the CML with the complex service interaction support, role
management, and middleware specifics.

3 Results

So far, results from the exploration of the state of the art in scientific literature, the
state of the practice, and the middleware products analysis have been obtained. State
of the art in scientific literature exploration provided the knowledge about the ways
choreography modeling is utilized for ES development, which tools are used, what
benefits can be expected and what are the research trends. State of the practice explo-
ration resulted in the set of software architecture development challenges that can be
addressed with choreography modeling [27]. Together, these challenges and the re-
sults from the state of the art in literature serve as one of the main guidepost for the
design of CML customizations, and form the answer to RQ1. Exploration of the mid-
dleware products provided knowledge about the influence of different middleware
implementations on CML [28]. This knowledge is used for the actual CML customi-
zation design, and partially answers RQ2.

39

4 Future Work

Three milestones will be sought in future work. First, the finalization of the custom-
ized CML design will provide support for (a) middleware heterogeneity, (b) role iden-
tification and management, and (c) complex service interactions modeling. Role iden-
tification and management will be supported using class-responsibility-collaboration
cards technique (c2.com/doc/oopsla89/paper.html) while the complex service interac-
tions modeling will incorporate the language for expressing and manipulation of the
event-condition-action rules [29]. The second milestone is the development of the
prototype that will allow user to model choreographies using the customized CML.
For this purpose, the Sirius technology (http://eclipse.org/sirius/) for domain modeling
will be used. The third milestone is the validation of the customized CML. Validation
activities will first be conducted in the laboratory setting, after which the final CML
modifications will be done. The piloting of the language with industry experts will
follow. Pilot results will be collected through surveys and by recording experts' evalu-
ations and opinions. These results will answer RQ3.

5 References

1. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: service-oriented architecture best
practices. Prentice Hall Professional (2005).

2. Scholz, A., Gaponova, I., Sommer, S., Kemper, A., Knoll, A., Buckl, C., Heuer, J., Schmitt,
A.: ∈ SOA-Service Oriented Architectures adapted for embedded networks. In: 7th IEEE
International Conference on Industrial Informatics, 2009. pp. 599–605. IEEE (2009).

3. Peltz, C.: Web services orchestration and choreography. Computer (Long. Beach. Calif).
36, 46–52 (2003).

4. Van der Aalst, W.M.P.: Don’t go with the flow: Web services composition standards
exposed. IEEE Intell. Syst. 18, 72–76 (2003).

5. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreography
description language. In: BPTrends Newsl. 3, 1–24 (2005).

6. Iwai, A., Oohashi, N., Kelly, S.: Experiences with automotive service modeling.
Proceedings of the 10th Workshop on Domain-Specific Modeling. p. 1. ACM (2010).

7. Bond, G., Cheung, E., Fikouras, I., Levenshteyn, R.: Unified telecom and web services
composition: problem definition and future directions. Proceedings of the 3rd International
Conference on Principles, Systems and Applications of IP Telecommunications. p. 13.
ACM (2009).

8. Lin, L., Lin, P.: Orchestration in Web Services and real-time communications. Commun.
Mag. IEEE. 45, 44–50 (2007).

9. Wieringa, R.: Design science as nested problem solving. Proceedings of the 4th
international conference on design science research in information systems and technology.
p. 8. ACM (2009).

10. Pontes Guimaraes, F., Kuroda, E.H., Batista, D.M.: Performance Evaluation of
Choreographies and Orchestrations with a New Simulator for Service Compositions. 17th
International Workshop on Computer Aided Modeling and Design of Communication
Links and Networks. pp. 140–144. IEEE (2012).

11. Mostarda, L., Marinovic, S., Dulay, N.: Distributed orchestration of pervasive services. In:
24th IEEE International Conference on Advanced Information Networking and
Applications. pp. 166–173. IEEE (2010).

40

http://eclipse.org/sirius/

12. Chafle, G.B., Chandra, S., Mann, V., Nanda, M.G.: Decentralized orchestration of
composite web services. Proceedings of the 13th international World Wide Web conference
on Alternate track papers & posters. pp. 134–143. ACM (2004).

13. Cherrier, S., Ghamri-Doudane, Y.M., Lohier, S., Roussel, G.: Services collaboration in
wireless sensor and actuator networks: orchestration versus choreography. IEEE
Symposium on Computers and Communications. pp. 411–418. IEEE (2012).

14. Barker, A., Besana, P., Robertson, D., Weissman, J.B.: The benefits of service
choreography for data-intensive computing. Proceedings of the 7th international workshop
on Challenges of large applications in distributed environments - CLADE ’09. p. 1. ACM
Press, New York, New York, USA (2009).

15. Lescevica, M., Ginters, E., Mazza, R.: Unified Theory of Acceptance and Use of
Technology (UTAUT) for Market Analysis of FP7 CHOReOS Products. Procedia Comput.
Sci., vol. 26, pp. 51–68, (2013).

16. Auburn, R.J., Cafarella, M., Jackson, D., Peck, J., Sharma, P., Shanmughan, S., Stohs, C.,
Zhang, Y.: Voice browser call control: CCXML version 1.0,W3C (2011).

17. Barnett, J., Akolkar, R., Auburn, R.J., Bodell, M., Burnett, D.C., Carter, J., McGlashan, S.,
Lager, T., Helbing, M., Hosn, R.: State Chart XML (SCXML): State machine notation for
control abstraction. W3C Work. Draft. (2013).

18. Niemoeller, J., Vandakas.K.,: SCALE – A language for dynamic composition of
heterogeneous services,
http://www.ericsson.com/res/thecompany/docs/journal_conference_papers/service_layer/10
1215_scale.pdf, (2010).

19. Almeida, J., Baravaglio, A., Belaunde, M., Falcarin, P., Kovacs, E.: Service Creation in the
SPICE Service Platform. Proceedings of the 17th Wireless World Research Forum Meeting
(WWRF17). pp. 1–7. Heidelberg: Wireless World Research Forum (2006).

20. Fiadeiro, J., Lopes, A., Bocchi, L., Abreu, J.: The Sensoria reference modelling language.
Rigorous software engineering for service-oriented systems. pp. 61–114. Springer (2011).

21. Binz, T., Breiter, G., Leyman, F., Spatzier, T.: Portable Cloud Services Using TOSCA.
IEEE Internet Comput. 16, (2012).

22. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28, 75–105 (2004).

23. Miles, M.B., Huberman, A.M.: Qualitative data analysis: An expanded sourcebook. Sage
(1994).

24. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in
Software Engineering. Engineering. Technical report, EBSE Technical Report EBSE-2007-
01 (2007).

25. Caldiera, V.R.B.G., Rombach, H.D.: The goal question metric approach. Encycl. Softw.
Eng. 2, 528–532 (1994).

26. Kitchenham, B., Linkman, S., Law, D.: DESMET: a methodology for evaluating software
engineering methods and tools. Comput. Control Eng. J. 8, 120–126 (1997).

27. Taušan, N., Aaramaa, S., Lehto, J., Kuvaja, P., Markkula, J., Oivo, M.: Customized
Choreography and Requirement Template Models as a Means for Addressing Software
Architect’s Challenges. In: 9th International Conference on Software Engineering
Advances. pp.55–63. IARIA XPS Press (2013).

28. Taušan, N., Lehto, J., Kuvaja, P., Markkula, J., Oivo, M.: Comparative Influence
Evaluation of Middleware Features on Choreography DSL. In: 8th International Conference
on Software Engineering Advances. pp. 184–193. IARIA XPS Press (2013).

29. Sterling, L., Kuldar T.: "A Logic Programming Perspective on Rules." Handbook of Re-
search on Emerging Rule-Based Languages and Technologies: Open Solutions and Ap-
proaches. IGI Global (2009).

41

	preface
	All DS papers
	88920001
	88920007
	88920013
	88920019
	88920023
	88920028
	88920033

