
 
 

 

 

 

Lipopolysaccharide:  

a link between periodontitis and 

cardiometabolic disorders 
 

Elisa Kallio 

 

 

Institute of Dentistry 

& 

Doctoral Programme in Biomedicine 

Faculty of Medicine 

University of Helsinki 

Helsinki, Finland 

 

   

  

ACADEMIC DISSERTATION 

 

To be presented, with the permission of the Faculty of Medicine of the University of 

Helsinki, for public examination in Lecture Hall 2, Biomedicum 1, Haartmaninkatu 8, 

Helsinki, on December 12th 2014, at 12 noon. 

 

   Helsinki 2014 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33725384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISBN 978-951-51-0458-8 (paperback) 

ISBN 978-951-51-0459-5 (PDF) 

ISSN 2342-3161 (Print)  

ISSN 2342-317X (Online) 

http://ethesis.helsinki.fi 

Unigrafia 

Helsinki 2014  



SUPERVISORS 

 

Docent Pirkko Pussinen 

Institute of Dentistry 

Faculty of Medicine 

University of Helsinki  

Helsinki, Finland 

 

Docent Matti Jauhiainen 

Public Health Genomics Unit 

National Institute for Health and Welfare  

Biomedicum Helsinki 

Helsinki, Finland 

 

REVIEWERS 

 

Professor Stina Syrjänen 

Department of Pathology  

Institute of Dentistry  

University of Turku  

Turku, Finland 

 

Professor Olavi Ukkola 

Institute of Clinical Medicine  

Department of Internal Medicine 

University of Oulu, and   

Medical Research Center Oulu  

Oulu University Hospital  

Oulu, Finland 

 

OPPONENT 

 

Professor Philippe Bouchard 

Department of Periodontology  

Service of Odontology 

Paris 7 - Denis Diderot University  

Paris, France 

  



CONTENTS 

 

LIST OF ORIGINAL PUBLICATIONS ................................................................................................ 6 

ABBREVIATIONS ............................................................................................................................ 7 

ABSTRACT ..................................................................................................................................... 9 

1. REVIEW OF THE LITERATURE .............................................................................................. 11 

1.1. Periodontal disease ................................................................................................... 11 

1.1.1. Structure of the periodontium ..................................................................... 11 

1.1.2. Classification of periodontal disease ............................................................ 12 

1.1.3. Pathogenesis of periodontitis ....................................................................... 13 

1.1.4. Host response ............................................................................................... 14 

1.1.5. Genetic susceptibility to periodontitis .......................................................... 17 

1.1.6. Definition of periodontitis ............................................................................ 20 

1.1.7. Prevention and treatment of chronic periodontitis ..................................... 21 

1.2. Lipoprotein metabolism ............................................................................................ 22 

1.2.1. Lipoproteins .................................................................................................. 22 

1.2.2. Lipoprotein metabolism and lipid transport ................................................. 24 

1.3. Lipopolysaccharide .................................................................................................... 26 

1.3.1. Structure of LPS............................................................................................. 26 

1.3.2. LPS-mediated signaling and the innate immune response .......................... 26 

1.3.3. LPS and periodontitis .................................................................................... 27 

1.3.4. LPS and nutrition ........................................................................................... 28 

1.4. Cardiometabolic disorders ........................................................................................ 29 

1.4.1. Atherosclerosis and cardiovascular diseases ................................................ 29 

1.4.2. Obesity, metabolic syndrome, and diabetes mellitus .................................. 32 

1.5. Periodontitis and cardiometabolic disorders ............................................................ 34 

1.5.1. Periodontitis and cardiovascular diseases .................................................... 34 

1.5.2. Periodontitis and obesity, MetS, and diabetes ............................................. 37 

2. AIMS OF THE STUDY ............................................................................................................ 39 

3. STUDY SUBJECTS AND METHODS ....................................................................................... 40 

3.1. Study subjects and design ......................................................................................... 40 

3.1.1. The Parogene study (I) .................................................................................. 40 



3.1.2. The Health 2000 Survey (I) ............................................................................ 40 

3.1.3. Periodontitis treatment study in Sweden (II) ............................................... 41 

3.1.4. Periodontitis treatment study in Finland (III) ............................................... 41 

3.1.5. The FINRISK97 Study (IV) .............................................................................. 41 

3.2. Methods .................................................................................................................... 43 

3.2.1. Periodontal examination and treatment (I, II, III) ......................................... 44 

3.2.2. Genotyping (I) ............................................................................................... 45 

3.2.3. Histological analysis and immunohistochemistry (I) .................................... 46 

3.2.4. Isolation of lipoproteins (II, III)...................................................................... 46 

3.2.5. Serum LPS activity determinations (II, III, IV)................................................ 47 

3.2.6. Cell culture (III) .............................................................................................. 47 

3.2.7. cDNA synthesis and quantitative real-time PCR (III) .................................... 48 

3.2.8. Statistical analysis (I, II, III, IV) ....................................................................... 49 

4. RESULTS ............................................................................................................................... 51 

4.1. Genetics predisposing to periodontitis (I)................................................................. 51 

4.2. Endotoxemia in patients with periodontitis (II, III) ................................................... 54 

4.2.1. Plasma LPS activity and lipoprotein distribution in periodontitis 

patients before and after periodontal treatment (II) ................................... 54 

4.2.2. Proatherogenic properties of VLDL isolated from periodontitis patients 

before and after periodontal treatment (III) ................................................ 55 

4.3. Endotoxemia and nutrition in patients with cardiometabolic disorders (IV) ........... 59 

5. DISCUSSION ......................................................................................................................... 63 

5.1. Genetic basis of periodontitis ................................................................................... 63 

5.2. Periodontal parameters and definition of periodontitis .......................................... 64 

5.3. Proinflammatory mediators ...................................................................................... 65 

5.4. The effects of periodontitis-induced endotoxemia on lipoproteins ......................... 66 

5.5. Local and systemic effects of periodontal treatment ............................................... 68 

5.6. Endotoxemia, cardiometabolic disorders, and diet .................................................. 69 

5.7. Challenges in the determination of LPS activity ....................................................... 70 

6. CONCLUSIONS ..................................................................................................................... 72 

ACKNOWLEDGEMENTS .............................................................................................................. 75 

REFERENCES ............................................................................................................................... 77 



6 
 

LIST OF ORIGINAL PUBLICATIONS 

 

The present thesis is based on the following original publications, referred to in the text by 

their Roman numerals I–IV. 

 

I. Kallio KA*, Marchesani M*, Vlachopolou E, Mäntylä P, Paju S, Buhlin K, Suominen 

AL, Contreras J, Knuuttila M, Hernandez M, Huumonen S, Nieminen MS, Perola 

M, Sinisalo J, Lokki ML, Pussinen PJ. Genetic variation on the BAT1-NFKBIL1-LTA 

region of major histocompatibility complex class III associates with periodontitis. 

Infection and Immunity 2014 May; 82(5):1939-48. 

 

II. Kallio KA, Buhlin K, Jauhiainen M, Keva R, Tuomainen AM, Klinge B, Gustafsson A, 

Pussinen PJ. Lipopolysaccharide associates with pro-atherogenic lipoproteins in 

periodontitis patients. Innate Immunity 2008 Aug; 14(4):247-53. 

 

III. Kallio KA, Hyvärinen K, Kovanen PT, Jauhiainen M, Pussinen PJ. Very low density 

lipoproteins derived from periodontitis patients facilitate macrophage activation 

via lipopolysaccharide function. Metabolism 2013 May; 62(5):661-8. 

 

IV. Kallio KA, Hätönen KA, Lehto M, Salomaa V, Männistö S, Pussinen PJ. 

Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetologica 2014 

Oct 19 (Epub ahead of print). 

 

 

* The authors contributed equally to the study.  

In addition, this thesis contains some unpublished data. 

 

The original publications are reproduced with the permission of the copyright holders: 

Study I: American Society for Microbiology 

Study II: SAGE Publications 

Study III: Elsevier 

Study IV:  Springer  



7 
 

ABBREVIATIONS 

 

AAP American Academy of Periodontology 

ABC ATP-binding cassette transporter 

ABL  Alveolar bone loss 

ACAT-1 Acetyl-Co A acetyltransferase 1 

AMI Acute myocardial infarction 

apo Apolipoprotein 

ACS Acute coronary syndrome 

BAT1 HLA-B-associated transcript 1 

BMI Body mass index 

BOP Bleeding on probing 

CAD Coronary artery disease 

CAL Clinical attachment level 

CD Cluster of differentiation 

CDC Centers for Disease Control and Prevention 

CE Cholesteryl ester 

CETP Cholesteryl ester transfer protein 

CHD Coronary heart disease 

CRP C-reactive protein 

CVD Cardiovascular disease 

ECM Extracellular matrix 

EFP European Federation of Periodontology 

ELISA Enzyme-linked immunosorbent assay 

EU Endotoxin unit 

FA Fatty acid 

FFA Free fatty acid 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GCF Gingival crevicular fluid 

GGT Gamma-glutamyltransferase 

GWA Genome-wide association 

HDL High-density lipoprotein 

HWE Hardy–Weinberg equilibrium 

IDF International Diabetes Federation 

IDL  Intermediate-density lipoprotein 

IL Interleukin 

IQR Interquartile range 

LAL Limulus amebocyte lysate  

LBP Lipopolysaccharide binding protein 

LCAT Lecithin-cholesterol acyltransferase 



8 
 

LDL Low-density lipoprotein 

Lp(a) Lipoprotein(a) 

LPDP Lipoprotein deficient plasma 

LPS Lipopolysaccharide 

LTA Lymphotoxin-α 

MetS Metabolic syndrome 

MCP-1 Monocyte chemoattractant protein-1 

MHC Major histocompatibility complex 

MMP Matrix metalloproteinase 

MUFA Monounsaturated fatty acid 

NAFLD Non-alcoholic fatty liver disease 

nCEH Neutral cholesterol ester hydrolase 

NFκВ Nuclear factor-κВ 

NFKBIL1 Nuclear factor of κ light chain gene enhancer in B cells inhibitor-like 1 

OR  Odds ratio 

PAL Proximal attachment loss 

PBS Phosphate-buffered saline 

PPD Probing pocket depth 

PL Phospholipid 

PLTP Phospholipid transfer protein 

PMA Phorbol 12-myristate 13-acetate 

PUFA Polyunsaturated fatty acid 

qPCR Quantitative real-time polymerase chain reaction 

SAA Serum amyloid A 

SFA Saturated fatty acid 

SNP Single nucleotide polymorphism 

SR Scavenger receptors 

SR-B1 Scavenger receptor class B, member 1 

TG Triglyceride 

TLR Toll-like receptor 

TNF Tumor necrosis factor 

T2DM Type 2 diabetes mellitus  

VLDL Very low-density lipoprotein 

WHO World Health Organization 

  



9 
 

ABSTRACT 

 

Periodontitis is characterized by an inflammatory response to bacterial infection in the 

supporting tissues of the teeth. The disease manifests with gingival swelling and bleeding, 

increased periodontal pocket depth, and alveolar bone loss. Intact bacteria or bacterial 

products, including lipopolysaccharide (LPS), may enter the bloodstream through inflamed 

periodontal tissue or via saliva. Bacterial dissemination, further potentiated by 

gastrointestinal microbiota, may result in endotoxemia and low-grade inflammation.  

 

The general aim of this thesis research was to investigate whether LPS links periodontitis 

with cardiometabolic disorders. The following topics were studied: genetic factors 

associated with the susceptibility to periodontitis, the systemic effects of endotoxemia 

induced by periodontitis and cardiometabolic disorders, as well as the influence of 

periodontal treatment on plasma LPS activity and lipoprotein composition. 

 

A study of genetic polymorphisms of the human major histocompatibility complex region 

demonstrated that a haplotype comprising six SNPs of the BAT1, NFKBIL1, and LTA genes 

was associated with the risk of having periodontitis. The risk haplotype showed an 

association with bleeding on probing, probing pocket depth ≥6 mm, and severe 

periodontitis, and the result was replicated in two different study populations with 

concordance. In addition, the serum lymphotoxin-α (LTA) concentration was associated 

with LTA SNPs of the risk haplotype in homozygous patients, and LTA was expressed in the 

inflamed periodontal tissue. 

 

The systemic effects of the periodontitis-derived endotoxemia were investigated before 

and after periodontal treatment. In the serum of periodontitis patients, LPS was 

associated with the proatherogenic very low-density lipoprotein – intermediate-density 

lipoprotein (VLDL-IDL) fraction. Although local healing of the periodontium was successful, 

the systemic inflammation status of the patients failed to improve after periodontal 

treatment, reflecting the complexity and persistence of the disease. There were no 

significant changes in plasma LPS activity or its distribution among lipoprotein classes after 

periodontal treatment. However, the VLDL of patients with severe periodontitis induced 

higher expression of proinflammatory cytokines in macrophages when compared with 

VLDL derived from patients with moderate periodontitis. In addition, VLDL isolated from 

patients with severe periodontitis with suppuration contained more LPS and induced 

higher cholesterol uptake in macrophages.  

 

The effect of nutrient intake on the association of serum LPS activity with cardiometabolic 

disorders was examined in a population-based cohort. Endotoxemia was strongly 

associated with prevalent obesity, metabolic syndrome (MetS), diabetes, and coronary 
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heart disease (CHD). In addition, high serum LPS activity was associated with an increased 

risk of future CHD events. Even though energy intake was correlated with LPS activity in 

lean, healthy subjects, the general associations were independent of energy or 

macronutrient intake.  

 

The results indicate that genetic variation in the MHC class III region may be important in 

periodontitis susceptibility. Endotoxemia and low-grade inflammation originating from 

periodontitis may induce the proatherogenic properties of VLDL particles via macrophage 

activation and foam cell formation, thereby promoting atherogenesis. The association of 

obesity, MetS, diabetes, and CHD with endotoxemia supports the significance of bacterial 

infections and the immune response in the etiology of cardiometabolic disorders. In 

conclusion, the findings highlight the close relationship between genetics, the immune 

response, and lipid metabolism, promoting the role of LPS as a link between periodontitis 

and cardiometabolic disorders. 

 

 

Keywords: periodontal disease, genetics, lipopolysaccharide, lipoproteins, treatment, 

cardiometabolic disorders, nutrition  
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1. REVIEW OF THE LITERATURE 

 

1.1. Periodontal disease 

 

Periodontitis is an inflammatory disease of the supporting tissues of the teeth initiated by 

microorganisms, resulting in progressive destruction of the periodontal ligament and bone 

support. The host response to bacterial insult leads to inflammatory gingival swelling and 

bleeding from the gingival pocket on gentle probing, increased pocket depth, recession, or 

both, and alveolar bone loss. Finally, untreated periodontitis may lead to the loss of teeth. 

It is among the most common causes of tooth loss worldwide. 

 

1.1.1. Structure of the periodontium 

 

Healthy periodontal tissue is composed of four principal components: gingiva, periodontal 

ligament, root cementum, and alveolar bone (Figure 1). The gingiva covers the alveolar 

bone and tooth root to a level just coronal to the cementoenamel junction. The gingival 

epithelium is morphologically and functionally divided into the oral epithelium, junctional 

epithelium, and sulcular epithelium. The shallow, V-shaped region between the tooth and 

the sulcular epithelial surface is called the sulcus. In periodontitis, the volume of sulcular 

fluid or the gingival crevicular fluid (GCF) increases. GCF is an inflammatory exudate 

composed of serum and locally produced molecules such as inflammatory mediators, 

antibodies, and tissue breakdown products. In addition to saliva, it offers potential use as 

a sample material for diagnostics or prognostics when analyzing the health status of the 

periodontium (Embery et al. 2000). The probing depth of a healthy gingival sulcus is 2-3 

mm (Newman et al. 2012). The fibrous connective tissue structure, periodontal ligament, 

joins the root to the alveolar bone. One side of the periodontal ligament is attached to the 

root cementum and the other side to the alveolar bone. It serves as a shock absorber by 

mechanisms that provide resistance against physical forces and participates in the repair 

and resorption of cementum and bone, and supplies nutrients to the periodontium. 

 

The periodontal pocket, denoting a deepened sulcus provoked by bacterial plaque, is one 

of the most important clinical and pathological changes associated with periodontal 

disease (Figure 1) (Newman et al. 2012). The clinical attachment level (CAL) represents the 

distance from the cementoenamel junction of the tooth to the bottom of the pocket, and 

it often correlates with periodontal pocket depth. The destruction of the supporting 

periodontal tissue can involve one or more tooth surfaces.  

 

 

 



12 
 

 
Figure 1. Periodontal anatomy and the effects of periodontitis. The left side of tooth represents the healthy 

periodontal tissue and the right side the presence of periodontal disease. (Lockhart et al. 2012) Reprinted 

with permission from Wolters Kluwer Health. 

 

 

1.1.2. Classification of periodontal disease 

 

Gingivitis is a reversible form of periodontal disease with increased GCF flow and swelling 

and redness of the gingiva, which without the treatment may lead to periodontitis. The 

classification system for periodontal diseases established in 1999 listed the following 

major categories of destructive periodontal diseases: 1) chronic periodontitis, 2) 

aggressive periodontitis, 3) periodontitis as a manifestation of systemic disease, 4) 

necrotizing ulcerative gingivitis / periodontitis, 5) abscesses of the periodontium, and 6) 

combined periodontic-endodontic lesions (Armitage 2004), from which chronic 

periodontitis and aggressive periodontitis are described here in more detail.   

 

The most common form of periodontitis among the adult population is chronic 

periodontitis. It occurs as a slowly progressing disease. The clinical findings generally 

include supra- and subgingival plaque accumulation associated with the formation of 

dental calculus, gingival inflammation, periodontal pocket formation, loss of tooth 

attachment, and occasional suppuration. Chronic periodontitis is a common disease 

worldwide and the prevalence increases with age in both genders. In the United States, 

over 47% of the adult population suffers from periodontitis (Eke et al. 2012), while in 
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Finland, 64% of adults have deepened periodontal pockets and 21% are diagnosed with 

more severe forms of the disease (Knuuttila and Suominen-Taipale 2008).  

 

Aggressive periodontitis differs from the chronic form primarily by the rapid destruction of 

the periodontal ligament and alveolar bone in otherwise healthy individuals. There is an 

absence of notable accumulations of plaque and calculus, while otherwise the clinical 

findings may be similar to those observed in chronic periodontitis. A family history of 

aggressive periodontitis has been acknowledged as suggestive of a genetic trait (Vieira and 

Albandar 2014) (see also 1.1.5.). Clinically, aggressive periodontitis may occur either as 

localized disease or as generalized disease. Localized aggressive periodontitis generally has 

a circumpubertal onset, while patients with generalized aggressive periodontitis are 

typically - but not necessarily - under the age of 30 years (Lang et al. 1999). The 

prevalence of aggressive periodontitis varies greatly among different ethnic groups from 

≤0.5% in a Caucasian population to 1–5% in African populations (Susin et al. 2014). In 

Finland, the prevalence of juvenile periodontitis (an old term replaced by aggressive 

periodontitis since 1999) has been reported to situate between 0.06 and 0.26% (Saxen 

1980). Currently, many parts of the world still lack information on the epidemiology of the 

disease.  

 

1.1.3. Pathogenesis of periodontitis 

 

The onset of periodontitis is characterized by inflammation of the gingiva in response to 

bacterial challenge. Information based on the application of massively parallel 

pyrosequencing linked to 16S rDNA analysis has increased the estimated number of 

bacterial phylotypes in the oral cavity to 2 x 104 (Keijser et al. 2008), and the developing 

techniques are continuously identifying novel bacteria associated with periodontal pocket 

depth. As periodontitis proceeds, the bacterial composition of the overgrowing 

subgingival biofilm transforms from the dominance of Gram-positive bacteria to a majority 

of Gram-negative bacteria (Marsh 1994). Socransky et al. (1998) contributed to further 

understanding of the different bacteria associated with periodontal disease by revealing 

five major microbial color-coded complexes identified with DNA-DNA hybridization. These 

sets of bacteria were repeatedly found together in periodontitis. Porphyromonas 

gingivalis, Tannerella forsythia, and Treponema denticola were determined to form the 

‘red-complex’ periopathogens, since they had a strong association with periodontitis-

related variables, for example periodontal pocket depth (Socransky et al. 1998). In 

addition, Aggregatibacter actinomycetemcomitans is among the key bacteria implicated in 

the pathology of periodontal disease (Henderson et al. 2010; Könönen and Müller 2014). 

 

Although periodontopathic bacteria are needed for the initiation of periodontitis, the 

volume of plaque and the bacterial species do not alone correlate with the severity of the 
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disease (Offenbacher et al. 2008). Several systemic and local risk factors are involved in 

modifying the susceptibility or resistance to the periodontitis. The common risk factors in 

addition to age, gender, ethnicity, and genetic factors include lifestyle and human 

behavior, such as smoking and alcohol, and medical conditions, such as dyslipidemia, 

diabetes, obesity, osteoporosis, and stress (Bouchard et al. 2006; Könönen et al. 2010; 

Genco and Borgnakke 2013), although other risk factors, for example a low educational 

level (Boillot et al. 2011), have also been identified. Therefore, it is important for clinicians 

to search for risk factors beyond the oral cavity in order to understand the complex nature 

of periodontal disease. 

 

1.1.4. Host response 

 

Periodontitis is described as polymicrobial disruption of host homeostasis (Darveau 2010).  

Pathogenic biofilms cause a challenge to the host response; therefore, the immune 

system has a substantive role in the maintenance of periodontal health. The different 

microbial- and host-derived markers of periodontitis can be measured locally from saliva, 

GCF, or mouth rinse, or systemically from serum or plasma (b Pussinen et al. 2007). In 

serum, for example, concentrations of soluble CD14 (Jin and Darveau 2001; Jin et al. 

2004), lipopolysaccharide-binding protein (LBP) (Ren et al. 2004), and toll-like receptors 

(TLRs) are elevated after exposure to periodontobacteria.  

 

In order to resist the continuous exposure to microbes, the periodontium produces a wide 

range of pro-inflammatory cytokines, chemokines, and matrix metalloproteinases (MMPs) 

that participate in the destruction of periodontal tissue. Following endotoxin activation, 

gingival epithelial and inflammatory cells start producing, for example, interleukin-1β (IL-

1β), IL-6, tumor necrosis factor-α (TNF-α), IL-8, and intercellular adhesion molecules. 

Furthermore, the chemoattractant signals precipitate leukocytes and monocytes or 

macrophages to amplify inflammation in the infected periodontium (Uitto et al. 2003). The 

most common chemokines and cytokines suggested as markers of periodontitis in GCF are 

summarized in Table 1. Other markers of periodontitis include serum antibody levels 

against periodontopathogens (Papapanou et al. 2001; Pussinen et al. 2002; Dye et al. 

2009; b Pussinen et al. 2011). 

 

Lymphotoxin-α (LTA) cytokine, formerly known as TNF-β, is expressed by lymphocytes 

(Ware 2005) and has several proinflammatory activities in critical immunological 

processes (Vassalli 1992). The gene for LTA is located in the TNF gene cluster in the human 

major histocompatibility complex (MHC) class III region. Genetic polymorphisms in LTA 

associate with the risk of having periodontitis (Holla et al. 2001; Fassmann et al. 2003; 

Palikhe et al. 2008; Vasconcelos et al. 2012), but also with the susceptibility to coronary 

heart disease (Ozaki et al. 2002; Laxton et al. 2005). 
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Increased production of acute-phase proteins in the liver is activated by the 

proinflammatory cytokines originating from infected tissue. Periodontitis research has 

mainly focused on C-reactive protein (CRP), serum amyloid A (SAA), and fibrinogen (b 

Pussinen et al. 2007). These proteins defend the host from adjunct injuries by activating 

complement factors and participating in tissue regeneration. 

 

MMPs are a family of catalytic enzymes that are capable of degrading extracellular matrix 

(ECM) proteins and are involved in multiple biological development and tissue repair 

processes, as well as pathological conditions such as periodontitis (Sorsa et al. 2006). They 

are secreted by the majority of cell types in the periodontium, and the expression is 

significantly increased in infection-induced periodontal inflammation. The main level of 

MMP activity control is regulation of the expression of genes coding for MMPs. The 

transcription is stimulated by cytokines, hormones, and growth factors such as IL-1β, TNF-

α, estrogen, epidermal growth factor, and fibroblast growth factor (MacNaul et al. 1990; 

Ruhul Amin et al. 2003; Sorsa et al. 2006). In addition, the activity of MMPs is regulated by 

endogenous inhibitors, the tissue inhibitors of metalloproteinases (Uitto et al. 2003). 

Previous studies on the diagnostic utilization of MMPs have highlighted MMP-8, MMP-9, 

and MMP-13 as the main MMPs associated with periodontitis (Table 1) (Sorsa et al. 2014).  
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Table 1. The most common biomarkers of periodontitis in gingival crevicular fluid. 

Molecule Source Function  

CCL5 T-cells Chemoattractant for inflammatory cells 

IL-1β Lymphocytes  

Monocytes/macrophages 

Endothelial cells 

Induces bone resorption and the production of other cytokines, 

matrix-degrading enzymes, and prostaglandin E2  

Inhibits bone formation 

IL-6 Monocytes/macrophages 

Endothelial cells  

Fibroblasts  

T- and B-cells  

Keratinocytes 

Induces the final maturation of B-cells  

Provokes antibody secretion 

IL-8 Monocytes/macrophages 

Endothelial cells  

Fibroblasts 

Facilitates neutrophil transit through the tissue 

MMP-8 Polymorphonuclear 

leukocytes 

Chondrocytes 

Fibroblasts 

Epithelial cells 

Monocytes/macrophages 

Plasma cells 

Collagenase 

Degrades interstitial collagen (type I, II, and III) 

Digests ECM and non-ECM molecules such as fibrinogen 

MMP-9 Keratinocytes 

Osteoclasts 

Neutrophils 

Macrophages 

Gelatinase 

Degrades denatured collagen and gelatin 

MMP-13 Chondrocytes 

Osteoblasts 

Fibroblasts 

Plasma cells 

Collagenase 

Digests type II collagen ten times faster than types I and III 

Produced during bone development and in wound healing 

Activates osteoclasts 

TNF-α Monocytes/macrophages Induces synthesis of collagenase, IL-1, and prostaglandin E2 

CCL5, C-C chemokine ligand 5, also known as Regulated upon Activation, Normal T-cell Expressed, and 
Secreted (RANTES); ECM, extracellular matrix; IL, interleukin; MMP, matrix metalloproteinase; TNF, tumor 
necrosis factor  

Modified from Sorsa et al. 2006; Pussinen et al. 2007. 
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1.1.5. Genetic susceptibility to periodontitis 

 

Clinical and radiological findings together with the patient’s medical history form the basis 

for evaluating the severity of periodontitis. Similarly as in other chronic diseases, both 

genetic and environmental factors play a role in the development of chronic and 

aggressive periodontitis. Based on previous studies, multiple genes are likely to have some 

influence on the risk of or protection against periodontitis (Laine et al. 2012). The genes 

and their variants may affect the disease outcome via encoded proteins, or their 

expression, resulting in alterations in patient immunity and thereby in the disease 

outcome.   

 

The supposed genetic background of aggressive periodontitis may be stronger than in 

chronic periodontitis. The heredity of aggressive periodontitis has attracted interest for 

decades (Saxen 1980), and the genetic trait has been shown in familial aggregation studies 

(Genco and Borgnakke 2013). The largest family study on aggressive periodontitis 

concluded that the disease is inherited as an autosomal-dominant trait in both Caucasian 

and African-American families (Marazita et al. 1994). Meng et al. reviewed the genetic 

studies on families suffering from aggressive periodontitis, showing that the frequency of 

affected siblings reached 40–50% in many families (Meng et al. 2011).  

 

In relation to familial aggregation in chronic periodontitis, Shearer et al. reported that 

parents with poor periodontal health usually have descendants with similar problems 

(Shearer et al. 2011). However, there was no clear distinction between genetic and 

environmental factors. One twin study estimated that approximately 50% of the variance 

in chronic periodontitis is attributed to heritability (Michalowicz et al. 2000), but another 

study comparing the periodontal parameters of monozygotic and dizygotic twin pairs 

concluded that the role of genetics in chronic periodontitis may have been overestimated 

(Torres de Heens et al. 2010).  

 

Case-control association studies suggest that single nucleotide polymorphisms (SNPs) in 

the genes for IL-1β, IL-1RN, IL-6, IL-10, CD14, vitamin D receptor, MMP-1, and TLR4 may be 

associated with chronic periodontitis, although most of the findings have lacked 

replication analyses in larger study cohorts (Laine et al. 2012). One specific area of interest 

in the human genome has been the human MHC region, which in addition to other 

infectious diseases, has been associated with periodontitis in smaller scale studies 

(Takeuchi et al. 1991; Nunes et al. 1994; Palikhe et al. 2008).  

 

The purpose of the hypothesis-free genome-wide association (GWA) studies is to explore 

genetic variation associated with certain disease across the whole human genome. Again, 

studies on aggressive periodontitis have identified more distinct associations with the 
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disease compared to chronic periodontitis. For example, Schaefer et al. demonstrated 

aggressive periodontitis as the most severe form of periodontitis to be associated with the 

SNP located in glycosyltransferase gene GLT6D1 (9q34.3) in German patients (Schaefer et 

al. 2010). The first genome-wide investigation of the periodontopathogen profile detected 

suggestive evidence of an association of 13 loci with periodontopathogen colonization 

(Divaris et al. 2012), but the findings did not reach statistical significance (threshold for 

significance p < 5 × 10−6). Neither did the two following GWA studies on chronic 

periodontitis find any significant associations (Divaris et al. 2013; Teumer et al. 2013). 

However, Divaris et al. suggested an association of six loci with different levels of chronic 

periodontitis, one of these located in the MHC region. The most recent GWA study 

detected 10 genetic loci associated with periodontitis phenotypes at the suggestive level 

of significance (Shaffer et al. 2014). A summary of GWA studies on chronic periodontitis is 

proivided in Table 2. 

 

In addition to GWA studies, haplotype analysis may be an interesting approach for genetic 

mapping of periodontitis.  A haplotype is a combination of SNP alleles along a region of a 

chromosome that are inherited together. To date, for example, haplotypes in the IL-4 and 

IL-6 genes have been associated with periodontitis (Holla et al. 2004; Nibali et al. 2008; 

Holla et al. 2008). In addition, MHC class II polymorphisms have been suggested to protect 

against aggressive periodontitis in an Iranian sample (Jazi et al. 2013).  

 

Emerging interesting research areas include epigenetics and modern bioinformatics. 

Epigenetic variations are heritable differences in gene function without alterations in the 

nuclear DNA sequence, and they may have an important role in connecting the genotype 

and environment to an individual’s phenotype, thereby providing new insights into 

susceptibility to periodontitis (Laine et al. 2012). Laine et al. succeeded in detecting 

periodontitis cases with a combination of the presence of P. gingivalis, T. forsythia, and A. 

actinomycetemcomitans species in gingival pocket sample cultivations, and SNPs IL-1A -

889 and TNF -857 in new analysis based on bioinformatics tools (Laine et al. 2013). The 

model reached the sensitivity of 85% and specificity of 73%, and it may be valuable when 

considering the complex characteristics of periodontitis. 
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Table 2. Summary of genome-wide association studies showing suggestive evidence for 

an association with chronic periodontitis. 

Study and phenotypes SNP Chr. Closest gene Beta / OR SE / 95% CI P-value 

Divaris et al., 2013       

CDC-AAP+ Severe rs12883458* 14 NIN (intronic) 1.89 1.48–2.41 3.5x10−7 

  rs2521634 7 NPY (not in gene) 1.47 1.25–1.73 1.6x10−6 

  rs11925054 3 WNT5A (not in gene) 1.69 1.37–2.10 6.5x10−7 

 Moderate rs7762544 6 NCR2 (not in gene) 1.41 1.24–1.60 1.1x10−7 

  rs3826782 19 EMR1(intronic) 2.00 1.48–2.70 4.0x10−6 

  rs12260727 10 CELF2 (not in gene) 1.54 1.30–1.82 6.0x10−7 

Teumer et al., 2013       

20–81 years Mean PAL rs12497795 3 EPHA3 (not in gene) -0.08 0.02 1.7x10−6 

 PAL4Q3 rs7567687 2 RAB6C (not in gene) 0.76 0.68–0.85 8.0x10−7 

 CDC-AAP (mod. + sev.) rs1953021 9 C9orf150 (not in gene) 1.35 1.20–1.53 1.2x10−6 

 5-year change in mean PAL rs2569991 3 IQSEC1 (not in gene) 0.20 0.04 1.3x10−6 

20–60 years Mean PAL rs1875110 3 ERC2 (intronic) -0.13 0.03 3.6x10−6 

 PAL4Q3 rs1370967 5 CAMK4 (not in gene) 2.21 1.61–3.02 7.9x10−7 

 CDC-AAP (mod. + sev.) rs9822005 3 MFSD1 (not in gene) 0.76 0.67–0.85 3.7x10−6 

 5-year change in mean PAL rs11536940 20 LBP (intronic) 0.38 0.08 2.2x10−6 

 1000G mean PAL rs9979250 21 ETS2 (not in gene) 0.15 0.03 4.1x10−7 

 1000G CDC-AAP (mod. + sev.) rs13237474 7 FAM180A (not in gene) 3.05 2.00–4.65 2.4x10−7 

Shaffer et al., 2014       

At least two sextants with PPD ≥5.5mm#  rs733048 4 RAB28 (not in gene) 2.40 NA 1.0x10−6
 

  rs10457525 6 ARHGAP18 (not in gene) 2.33 NA 3.5x10−6
 

  rs7749983 6 ARHGAP18 (not in gene) 2.39 NA 2.4x10−6
 

  rs10457526 6 ARHGAP18 (not in gene) 2.26 NA 6.0x10−6
 

  rs7816221 8 HAS2 (not in gene) 2.12 NA 9.2x10−6
 

  rs3870371 8 HAS2 (not in gene) 2.15 NA 5.6x10−6
 

  rs920455 8 HAS2 (not in gene) 2.11 NA 9.2x10−6
 

  rs12799172 11 GVINP1 (not in gene) 2.12 NA 5.1x10−6
 

  rs11659841 18 CDH2 (not in gene) 2.48 NA 9.4x10−6
 

  rs8094794 18 FHOD3 (intronic) 2.17 NA 5.9x10−6
 

  rs11713199 3 OSBPL10 (intronic) 1.87 NA 6.9x10−6
 

  rs12630254 3 OSBPL10 (intronic) 1.90 NA 6.7x10−6
 

  rs12630931 3 OSBPL10 (intronic) 1.89 NA 6.2x10−6
 

  rs733048 4 RAB28 (not in gene) 1.95 NA 4.4x10−6
 

  rs2297778 6 AKAP12 (intronic) 2.32 NA 9.7x10−6
 

  rs3783412* 14 CDKL1 (intronic) 1.85 NA 7.9x10−6
 

  rs12589327 14 SEL1L (not in gene) 2.13 NA 6.6x10−6
 

*SNPs are located in the same chromosomal region (14q21) within a distance of 423 kb. 
+
Severe and 

moderate chronic periodontitis classified according to the Centers for Disease Control and Prevention (CDC) 
in partnership with the American Academy of Periodontology (AAP); see also 1.1.6. 

#
 In addition, 14 subjects 

with self-reported “gum surgery”. SNP, single nucleotide polymorphism; Chr, chromosome; Mean PAL, mean 
proximal attachment loss; PAL4Q3, first vs. third sex- and age-specific tertiles for the percentage of sites 
with proximal attachment loss ≥4 mm; Mod. + sev., moderate and severe chronic periodontitis; 1000G, 
analysis performed using the 1000 Genomes imputed variant set; NA, not available. 
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1.1.6. Definition of periodontitis 

 

Epidemiological studies on periodontal diseases are complicated by the variety of 

definitions and methodologies used. The lack of globally accepted case definitions for 

periodontitis has been addressed by many authors (Albandar 2007; Page and Eke 2007; 

Savage et al. 2009). The most generally used clinical determinants for periodontitis have 

been CAL and PPD, and the disease has been categorized as mild, moderate, or severe 

(Page et al. 1997). However, Savage et al. revealed heterogeneity in the threshold for 

defining periodontitis in terms of CAL from 2 to ≥6 mm, and when PPD was used, from 3 

to ≥6 mm (Savage et al. 2009). In addition, previous studies have used other parameters 

such as gingival inflammation, BOP, or radiographically defined alveolar bone loss for the 

definition of the disease. 

 

The Group C consensus report of the 5th European Workshop in Periodontology (Tonetti et 

al. 2005) underlined that attachment loss should be the primary measure used in studies 

on the risk factors for periodontitis, and periodontitis cannot be determined by a single 

variable. Since CAL measures the accumulated past disease at a site, the report 

emphasized that in combination with attachment loss, additional measurement of the 

currently active disease status (BOP and/or PPD) is needed. The proposed criteria for the 

two-level periodontitis case definition by the European Federation of Periodontology to 

be used in epidemiological studies of risk factors are presented in Table 3. Elsewhere, the 

Centers for Disease Control and Prevention (CDC), in partnership with the American 

Academy of Periodontology (AAP), have focused on improving the surveillance of 

periodontal disease in the US adult population (Eke and Genco 2007). In 2007, they 

published their own case definitions for the population-based follow-up of periodontitis 

(Page and Eke 2007), which were updated in 2012 (Eke et al. 2012). The CDC-AAP case 

definitions for the surveillance of periodontitis are also presented in Table 3. 

Subsequently, Baelum and Lopez demonstrated that the case definitions presented by 

Tonetti & Claffey (2005) and by Page & Eke (2007) yielded similar results, which were also 

comparable to the results of simply identifying a case of periodontitis as a person having 

at least one site with both AL ≥4 mm and BOP (Baelum and Lopez 2012).  
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Table 3. Definition criteria for a “periodontitis case” for research purposes according to 

the AAP and EFP. 

  EFP CDC-AAP 

 Mild periodontitis 

≥2 non-adjacent 

teeth with proximal 

AL ≥3 mm 

≥2 interproximal sites with AL ≥3 mm and ≥2 

interproximal sites with PD ≥4mm (not on same 

tooth), or one site with PD ≥5mm 

 

Moderate to 

severe 

periodontitis 

Proximal AL of 

≥5mm in ≥30% of 

teeth 

Moderate: ≥2 interproximal sites with AL ≥4mm (not 

on same tooth), or ≥2 interproximal sites with PD 

≥5mm (not on same tooth) 

Severe: ≥2 interproximal sites with AL ≥6 (not on 

same tooth) and ≥1 interproximal site with PD ≥5 mm 

EFP, European Federation of Periodontology (Group C consensus report of the 5th European Workshop in 
Periodontology; CDC-AAP, Centers for Disease Control and Prevention in partnership with the American 
Academy of Periodontology; AL, attachment loss; PD probing depth. 

Modified from Tonetti and Claffey, 2005; Eke and Page, 2012. 

 

1.1.7. Prevention and treatment of chronic periodontitis 

 

Periodontitis is an insidious disease due to the lack of early explicit symptoms in affected 

patients. However, careful screening as a part of regular dental inspections helps to detect 

the early sings of periodontitis. Proper diagnosis, including risk assessment, is vital for 

accurate treatment. In Finland, the treatment of periodontitis is based on Current Care 

Guidelines (Könönen et al. 2010). The Current Care Guidelines for dentistry, generated by 

the Finnish Medical Society Duodecim and the Finnish Dental Society Apollonia, are 

independent, evidence-based guidelines for clinical practice. The basis of periodontal 

treatment is to eliminate the biofilm and plaque retentions in collaboration between the 

dentist, dental hygienist, and the patient. 

 

The prevention of periodontitis demands intervention in the patient’s oral hygiene, such 

as individual brushing and interdental cleaning instructions together with tobacco 

counseling. It has been shown that periodontitis is more common among subjects 

brushing their teeth less than twice a day (Knuuttila and Suominen-Taipale 2008), and 

smokers have a poor response to periodontal treatment compared to non-smokers 

(Paulander et al. 2004). The additional use of chlorhexidine may support the oral self-care 

and plaque removal of elderly and physically challenged people (al-Tannir and Goodman 

1994).  
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Mechanical root debridement, i.e. scaling and root planing, in the removal of subgingival 

biofilm and calculus by hand and ultrasonic instruments retains its leading position in the 

cause-related nonsurgical treatment of chronic periodontitis (Sanz et al. 2012). Scaling and 

root planing exclusively are powerful in boosting periodontal attachment levels and 

decreasing inflammation. In cases with severe periodontitis, systemic antibiotics and 

surgical treatment may be used as adjuncts. Systematic maintenance care in addition to 

reinforcement of daily microbial plaque control practices is essential to achieve long-term 

success in periodontal therapy. 

 

1.2. Lipoprotein metabolism 

 

1.2.1. Lipoproteins 

 

Lipoproteins are water-soluble complex aggregates of lipids and proteins that transport 

cholesterol and triglycerides through the vascular and extravascular body fluids to cells, 

which demand these compounds for anabolic and energy purposes. Lipoprotein particles 

are spherical-shaped with an amphiphilic outer layer of phospholipids (PL), free 

cholesterol (FC), and amphipathic apolipoproteins, and a hydrophobic core of lipids, 

mainly triglycerides (TG), and cholesteryl esters (CE) (Wasan and Cassidy 1998). The 

human plasma lipoproteins are categorized into five major classes according to their 

density, function, and protein composition: chylomicrons (CM), very low-density 

lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins 

(LDL), and high-density lipoproteins (HDL).  In addition, lipoprotein(a) [Lp(a)] is considered 

as a specific lipoprotein subclass (Kostner et al. 1981). The classes differ in their sizes and 

densities, and protein and lipid compositions. Several processes, including enzymatic 

reactions, the exchange of apolipoproteins, and transfer of lipids, constantly modify the 

size and lipid-protein contents of lipoproteins in the circulation (Gotto et al. 1986). The 

hydrated density of the lipoprotein particles is determined by their lipid-protein ratio: the 

denser lipoprotein contains more protein. 

 

The largest lipoprotein particles, CMs, are mainly composed of TGs (86%), and their 

relative protein content is low. VLDLs are the second largest lipoprotein particles still 

primarily containing TGs, but also more proteins, phospholipids, and cholesterol than 

CMs. IDL particles represent the largest lipoprotein particles that contain more cholesterol 

than TGs, while approximately half of the mass of smaller LDL particles comprise 

cholesterol. Finally, HDLs are the smallest and densest lipoprotein particles, rich in protein 

and consisting of only 3% triglycerides. In plasma, HDL exists in discoidal and spherical 

forms, from which the spherical HDLs are divided into subclasses HDL2 and HDL3 according 

to the particle size. HDLs together with LDLs are the most abundant lipoproteins in the 
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circulation (Rader and Daugherty 2008). The major characteristics of human plasma 

lipoproteins are summarized in Table 4.  

  

Table 4. Characteristics of human plasma lipoprotein fractions 

 CM VLDL IDL LDL HDL2 HDL3 

Density (g/ml) <0.95 0.95–1.006 1.006–1.019 1.019–1.063 
1.063–

1.125 

1.125–

1.210 

Diameter (nm) 75–1200 30–80 25–35 18–25 9–12 5–9 

Composition 

(mass%) 
      

Prot* 1–2 8 19 22 40 55 

PL 7 18 19 22 33 25 

FC 2 7 9 8 5 4 

TG 86 55 23 6 5 3 

CE 3 12 29 42 17 13 

Major 

apolipoprotein 
apo B-48 apo B-100 apo B-100 apo B-100 

apo A-I, 

apo A-II 

apo A-I, 

apo A-II 

Source Intestine Liver VLDL VLDL, IDL 
Liver, 

intestine 

Liver, 

intestine 

Main function 

Transport of 

exogenous 

TG and Chol 

Transport of 

endogenous 

TG 

Transport of 

endogenous 

TG 

Transport of 

endogenous 

Chol 

Reverse 

cholesterol 

transport 

Reverse 

cholesterol 

transport 

CM, chylomicrons; VLDL, very low-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-
density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; CE, cholesteryl ester; FC, free 
cholesterol; PL, phospholipids; Prot, protein; Chol, cholesterol. Specific lipoprotein class lipoprotein(a) is not  
included in this table. 

*Does not include bound carbohydrate. 

Modified from Gotto et al., 1986; Wasan and Cassidy, 1998.                 
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1.2.2. Lipoprotein metabolism and lipid transport 

 

This section describes the most important routes related in exogenous and endogenous 

lipid transport, and reverse cholesterol transport. In addition, an overview of lipoprotein 

metabolism is presented in Figure 2. 

 

Cholesterol derives exogenously from dietary fats or endogenously via biosynthesis. The 

CM particles are produced in the intestine, where the postprandial fats are first emulsified 

by bile acids, hydrolyzed into free fatty acids (FFAs), monoacylglycerols, and non-esterified 

cholesterol, and further internalized by mucosal enterocytes. The resynthesized TGs and 

CEs are packed into CMs with PLs, FC, and apolipoproteins, and secreted into the 

lymphatic circulation (Green and Glickman 1981). In the endothelium of capillaries, the 

lipolytic activity of lipoprotein lipase (LPL) releases FFAs from the TGs of CMs. This results 

in CM remnants, which are subsequently delivered to the liver, internalized by the hepatic 

LDL-receptor related protein (Hussain et al. 1991), and used, for example, for bile acids 

synthesis. Albumin-bound FFAs are transported in the circulation to peripheral tissues for 

use as energy in muscles or for storage in adipose tissue (Havel 1997). 

 

Most human cells are capable of synthesizing cholesterol, but the liver has a particularly 

important role in endogenous cholesterol synthesis (Dietschy et al. 1993). In addition, the 

liver produces several apolipoproteins used in lipoprotein assembly. Hepatic cholesterol 

and especially triglycerides synthesized by the hepatocytes are assembled into VLDL 

particles and secreted into the circulation. Similarly to CMs, LPL hydrolyzes TGs of the 

VLDL core into FFAs (Wasan et al. 2008), resulting in VLDL remnants or IDLs, which may be 

absorbed back into the liver or further remodeled to LDL by hepatic lipase. LDL particles 

are the major cholesterol-carrying lipoprotein particles in the circulation and provide 

cholesterol for peripheral tissues, for example for hormone synthesis and the assembly of 

cellular membranes. LDL is internalized in cells via receptor-mediated endocytosis and 

transported into lysosomes for degradation (Brown and Goldstein 1983). Most of the cells 

have strict feedback control of cholesterol uptake via the number of LDL receptors. The 

over-accumulation of LDL can be seen as elevated concentrations of plasma cholesterol, 

which is mainly controlled by the liver. Deviating from the other cells, macrophages may 

take up large amounts of cholesterol via scavenger receptors (SRs) leading to the 

formation of foam cells (Greaves and Gordon 2005), lipid accumulation, for example, in 

the arterial wall subendothelial space, and eventually the development of atherosclerosis 

(see 1.4.1). In macrophages, the modified lipoproteins are delivered to lysosomes, where 

CEs are hydrolyzed to FC and FFAs at an acidic pH. Acetyl-Co A acetyltransferase 1 (ACAT-

1) catalyzes the esterification of FC into CE, while neutral cholesterol ester hydrolase 

(nCEH) acts in the opposite direction, hydrolyzing intracellular CE at a neutral pH (Sekiya et 

al. 2011). Neutral CEH action is the initial step of reverse cholesterol transport. 
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The accumulating cholesterol, mainly derived from LDL in peripheral tissues, is taken up by 

HDL particles and transported to the liver, where it is further disposed of via bile into the 

feces in a process called reverse cholesterol transport (Fielding and Fielding 1995). The 

lipid-poor apoA-I originating from synthesis by hepatocytes and intestinal cells interacts 

with ATP-binding cassette A1 (ABCA1), a transport protein on the surface of peripheral 

macrophages (Wang et al. 2001). Subsequently, lipid-poor apoA-I is enriched with FC to 

form nascent pre-β-HDLs, which is converted into α-HDL during cholesterol esterification 

reaction by lecithin-cholesterol acyltransferace (LCAT). The maturation into HDL occurs via 

the fusion of α-HDL particles. Both nascent and mature HDL particles induce cholesterol 

efflux from peripheral cells via ABCA1 or ABCG1 and ABCG4, respectively (Wang et al. 

2004; Rader and Daugherty 2008), acting as preferred acceptors of cellular cholesterol. 

HDL particles are mainly cleared from the circulation via uptake in the liver. Alternatively, 

HDL-associated CEs are transferred into LDL and VLDL via the cholesterol ester transfer 

protein (CETP). The lipid content of HDL particles is actively modified by CETP and also by 

phospholipid transfer protein (PLTP) (Stein and Stein 2005). CETP transfers triglycerides 

from VLDL to HDL, and CEs in the opposite direction, while PLTP transports PLs from the 

lipolyzed VLDL and CM particles mainly to HDL. In addition, PLTP is able to convert HDL3 

into larger and smaller HDL particles (Jauhiainen et al. 1993). 

 

 

 
 
Figure 2. Lipoprotein metabolism. The transfer of lipids is represented by dashed lines, while intact lines 

represent lipoprotein pathways. (Wasan et al. 2008) Reprinted with permission from Nature Publishing 

Group.  



26 
 

1.3. Lipopolysaccharide 

 

Lipopolysaccharide (LPS), often referred to as endotoxin, is a unique outer membrane 

structure and an important virulence factor of Gram-negative bacteria. It may originate 

from several sources, including infections, diet, and commensal microbiota. Gram-

negative bacteria, e.g. Escherichia coli, Chlamydia pneumoniae, and periodontopathogens 

(see 1.1.3), are common pathogens colonizing the human gastrointestinal tract, including 

the oral cavity and the gut. The LPS molecule is essential for the viability of most Gram-

negative bacteria, since it plays a crucial role in outer-membrane integrity as a 

permeability barrier, thereby protecting bacteria from toxic molecules. Bacteria may even 

fine-tune the structure of LPS to promote their survival. In the circulation, LPS interacts 

with several cell types, including epithelial cells, fibroblasts, macrophages, smooth muscle 

cells, T-cells, B-cells, and endothelial cells (Whitfield and Trent 2014). 

 

1.3.1. Structure of LPS 

 

LPS is a complex glycolipid composed of lipid and polysaccharide moieties joined by a 

covalent bond. The three structural regions of LPS are lipid A, a core oligosaccharide, and 

an O-specific side chain (O antigen). The biological activity of LPS is vitally dependent on 

the lipid A moiety, which is the most conserved part of the LPS and anchors the molecule 

to the bacterial outer membrane. It is a phosphorylated glucosamine disaccharide 

acylated with hydroxyl saturated fatty acids. Saturated fatty acids further 3-O-acylate the 

3-hydroxyl groups of the fatty acids of lipid A (Raetz 1990). It has been shown that 

removal of the O-acylated saturated fatty acids or their substitution with unsaturated 

fatty acids leads to the disappearance of endotoxin activity (Munford and Hall 1986). The 

core oligosaccharide adheres directly to lipid A. The hypervariable O-side chain is a 

repetitive glycan polymer, which binds to the core oligosaccharide and forms the 

outermost part of the LPS (Manco et al. 2010). The repetitive units of the polymer may be 

linear or branched, and form homo- or heteropolymers (Raetz and Whitfield 2002).  Each 

repeating unit represents diverse antigen properties, determining the serotype of the 

bacteria.  

 

1.3.2. LPS-mediated signaling and the innate immune response 

 

Through binding to the pathogen-sensing system, LPS induces the release of a large 

number of inflammatory cytokines, which play an important role in metabolic processes. 

The main elements of LPS-mediated signaling comprise lipoproteins, LPS-binding protein 

(LBP), cluster of differentiation 14 (CD14), an accessory protein (MD-2), and TLR4 

(Bosshart and Heinzelmann 2007). These proteins act together to initiate a signaling 

pathway, which ultimately leads to the activation of nuclear factor-κВ (NFκВ) transcription 
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factor. In the circulation, LPS is transported by LBP, PLTP, and by lipoproteins to 

hepatocytes (Munford et al. 1981; Hailman et al. 1996). Approximately 80–96% of the LPS 

is bound to the lipoproteins via lipophilic lipid A (Levels et al. 2001; Harris et al. 2002), 

including all main lipoprotein classes (Levine et al. 1993). The process appears to be 

dependent not only on the content of phospholipids, but especially apolipoproteins such 

as apoA-I and apoE on the lipoprotein surface (Kitchens et al. 2003; Berbee et al. 2005). 

Lipoproteins receive LPS from LBP and PLTP. Under physiological conditions, LPS mainly 

associates with HDL, which contributes to its clearance via the liver and bile (Levine et al. 

1993; Read et al. 1993). When the serum HDL is low, for example in sepsis patients, the 

majority of LPS is bound to VLDL (Levels et al. 2003). The TG-rich lipoprotein-LPS complex 

is rapidly eliminated by hepatocytes in order to reduce LPS-induced toxicity (Barcia and 

Harris 2005), or is internalized by macrophages (see 1.4.1) (Brown and Goldstein 1983). 

Therefore, the metabolic fate of LPS may be regulated by the lipoprotein profiles (Berbee 

et al. 2005).  

 

LPS is bound to LBP, which transports the LPS molecules to soluble or membrane-bound 

CD14. For example, monocytes and neutrophils are activated via membrane-bound CD14, 

while endothelial cells are believed to respond to endotoxin exposure primarily through 

soluble CD14 (Stoll et al. 2004). PLTP is not able to transport LPS to CD14, and it is not 

therefore involved in this pathway of the immune response (Hailman et al. 1996). 

Alternatively, LBP may transport LPS to lipoproteins. Subsequently, the LPS-CD14 complex 

engages TLR4 via lipid A moiety (Chow et al. 1999). TLRs are needed in the downstream 

signaling pathway, since CD14 lacks a transmembrane domain. In addition, the secreted 

MD-2 binds to TLR-4 and LPS, thereby serving as an important factor of this receptor 

complex (Viriyakosol et al. 2001; Nagai et al. 2002). The activation of TLR4 leads to the 

recruitment of five additional adaptor molecules, including MyD88 and TRIF, which further 

trigger a cascade enabling NFκВ to diffuse into the nucleus and activate the transcription 

of cytokines. TLR4 is the only TLR known to utilize all of these different adaptor proteins. 

(Lu et al. 2008) The most important proinflammatory cytokines produced by TLR4 

activation are TNFα, IL1β, IL6, and chemokines (Stoll et al. 2004; Parker et al. 2007). In 

addition, TLR4 mediates the LPS response in vascular endothelial cells and in 

atherosclerotic plaques containing macrophages (Xu et al. 2001; Edfeldt et al. 2002). 

 

1.3.3. LPS and periodontitis 

 

Oral gingival epithelial cells act as a physical barrier against bacteria and play an important 

role in the host's innate defense (Andrian et al. 2006). In the progression of periodontitis, 

the composition of the biofilm changes from a predominance of Gram-positive bacteria to 

a majority of Gram-negative bacteria (Marsh 1994), and host cell invasion by 

periodontopathogens is regarded as a possible mechanism of chronic periodontitis 
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pathogenesis. For example, Porphyromonas gingivalis has the ability adhere to, invade, 

and replicate within epithelial cells (Kinane et al. 2008). Epithelial cells respond to 

bacterial challenge through pattern-recognition receptors, including TLRs, and activate the 

innate immunity system by expressing proinflammatory cytokines. Intact bacteria or 

bacterial products, including LPS, may enter the bloodstream through inflamed 

periodontal tissue and lymph vessels or via saliva to the gastrointestinal tract. It has been 

shown that transient bacteremia is a general occurrence after certain dental procedures, 

such as tooth extraction or periodontal examination (Olsen 2008). Indeed, bacteremia and 

endotoxemia are more common than previously thought, and are even induced by daily 

routines such as chewing or tooth brushing (Forner et al. 2006).  

 

In the circulation, depending on the lipoprotein profiles, LPS may be complexed with the 

proatherogenic lipoproteins and internalized by macrophages, which may transform to 

foam cells (Brown and Goldstein 1983; Lakio et al. 2006). Hayashi et al. demonstrated that 

periodontitis patients have increased serum levels of soluble CD14 (Hayashi et al. 1999), 

which had earlier been correlated with increased mortality in bacteremia (Landmann et al. 

1995). Via lipid A, ‘red-complex’ bacteria can impede the innate immune system by 

inhibiting the response of TLR4 to other microbes (Coats et al. 2005; Coats et al. 2007).   

 

1.3.4. LPS and nutrition 

 

In addition to the oral cavity, the gut is the other main source of LPS.  Under physiological 

conditions, the intestinal epithelium defends itself from LPS translocation. However, LPS 

has a strong affinity for chylomicrons, and is able to easily cross the gastrointestinal 

mucosa (Ghoshal et al. 2009). The other suggested mechanisms for LPS translocation from 

the gut include uptake by intestinal enterocytes and microfold cells (Hathaway and 

Kraehenbuhl 2000), and alterations in the gene expression of host epithelial cells by Gram-

negative bacteria (Hooper and Gordon 2001). A high-fat diet, obesity, diabetes, and non-

alcohol fatty liver disease have been associated with increased permeability of the 

gastrointestinal mucosa, leading to metabolic endotoxemia (Neves et al. 2013).   

 

In mice, chronic exposure of the host to LPS has been associated with the onset of insulin 

resistance, weight gain, and low-grade inflammation. A high-fat diet appears to favor the 

absorption of LPS across the intestinal barrier, and LPS appears to be a molecular link 

between a high-fat diet, the microbiota, and inflammation (Cani et al. 2007). Therefore, 

LPS may be identified as a novel factor triggering the onset of high-fat diet-induced 

obesity and type 2 diabetes (Manco 2009). Recently, Mani et al. demonstrated in pigs that 

serum LPS concentrations increased after a meal rich in saturated fatty acids (Mani et al. 

2013). In a study on mice, a palm oil-based diet caused the most active transport of LPS to 

peripheral tissues via high LBP levels and low soluble CD14 levels, resulting in the 
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strongest inflammatory outcomes compared to milk fat, rapeseed, or sunflower oils 

(Laugerette et al. 2012). Since saturated fatty acids are able to affect the immune system 

and activate TLR4 (Fritsche 2006; Suganami et al. 2007), it is reasonable to assume that 

LPS acts synergistically with certain types of fatty acids, mainly saturated. 

 

Besides animal studies investigating the relationship between dietary fat and LPS, studies 

in human subjects have shown that a high-fat and/or energy-rich diet may lead to low-

grade endotoxemia (Erridge et al. 2007; Amar et al. 2008; Ghanim et al. 2009; Pendyala et 

al. 2012). Erridge et al. measured the plasma endotoxin concentration for 4 h after a high-

fat meal in healthy men (Erridge et al. 2007). They discovered that endotoxin 

concentrations increased significantly after a high-fat meal alone or with cigarettes, but 

not after no meal or cigarettes alone. Moreover, Amar et al. observed a positive 

correlation between plasma LPS concentration and fat and energy intakes (Amar et al. 

2008). Ghanim et al. demonstrated that a high-fat high-carbohydrate diet increased 

endotoxemia during 3 h after a meal compared with a meal rich in fruit and fiber (Ghanim 

et al. 2009). In addition to studies with healthy subjects, Harte et al. observed that a high-

fat meal elevated circulating endotoxin irrespective of the metabolic state, but the 

postprandial elevation of endotoxin levels was stronger in groups with a high-metabolic 

risk, i.e. impaired glucose tolerance and type 2 diabetes mellitus, compared to non-obese 

controls (Harte et al. 2012). Dietary fats certainly appear to acutely increase the 

absorption of LPS via modification of the gut microbiota, increasing the amount of 

chylomicrons, and increasing the permeability of the gastrointestinal mucosa (Manco et 

al. 2010). 

 

1.4. Cardiometabolic disorders 

 

1.4.1. Atherosclerosis and cardiovascular diseases 

 

Cardiovascular diseases (CVD) mainly caused by atherosclerosis lead to up to 16.7 million 

deaths every year, principally resulting from heart attacks and strokes (Dahlöf 2010). 

Atherosclerosis is described to be both a disorder of lipid metabolism and a chronic 

inflammatory disease of the large arteries (Ross 1999; Shibata and Glass 2009). It is a 

progressive and multifactorial disease having numerous risk factors contributing to the 

susceptibility to the disease. Established risk factors for atherosclerosis are divided into 

factors with a strong genetic component including family history of atherosclerotic 

disease, age, hypertension, male gender, increased concentrations of circulating LDL or 

VLDL cholesterol, reduced levels of circulating HDL cholesterol, elevated levels of 

lipoprotein(a), metabolic syndrome, diabetes, obesity, and depression, and environmental 

factors such as high-fat and high-sugar diet, smoking, low antioxidant levels, lack of 

exercise, and infectious agents (Lusis 2000). Risk factors act at several points on the 
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pathogenic pathway of atherosclerosis, and all of the genetic risk factors involve the 

function of several genes, with the exception of gender and the level of Lp(a). In addition, 

many inflammatory markers, such as CRP, may indicate systemic atherosclerotic 

alterations (Danesh et al. 1997).  

 

Atherosclerosis is also a major cause of coronary heart disease (CHD). CHD, also known as 

ischemic heart disease or coronary artery disease (CAD), is the most common cause of 

premature death, particularly in industrialized countries. It was the leading cause of 

disability-adjusted life years worldwide in 2010, and stroke was ranked in third place in a 

recent review measuring the global burden of disease (Murray and Lopez 2013). CAD 

results from atherosclerotic, blood-flow reducing plaques, which narrow the arteries of 

the heart. Coronary angiography and other modern imaging techniques are utilized in the 

diagnosis of the disease. 

 

Atherosclerosis is characterized by the formation of lipid-rich plaques within the artery 

walls. Persistently high levels of LDL, IDL, and VLDL particles lead to their accumulation in 

the vessel walls, which consist of three layers: the intima, media, and adventitia. The 

intima is the innermost layer with the endothelium on the luminal side, a basement 

membrane, and sub-endothelial connective tissue. The media consists of smooth muscle 

cells, and the adventitia is a layer of dense connective tissue, fibroblasts, and smooth 

muscle cells. (Libby et al. 2011) The formation of an atherosclerotic plaque begins when 

the proatherogenic lipoproteins invade the vessel endothelium, which has been damaged, 

for example, by hypertension, smoking, microbial infection, or hemodynamic forces in 

lesion-prone sites of the arteries. In the intima, the lipid and protein components of the 

LDL, IDL, VLDL, and Lp(a) particles become oxidized, which, in addition to other enzymatic 

modifications, leads to an inflammatory response (Hansson and Hermansson 2011). In 

addition, LPS complexed with the lipoproteins may further induce their oxidation. The 

host response to infection may further increase the oxidation of proatherogenic 

lipoproteins complexed with LPS (Memon et al. 2000). The endothelial production of 

adhesion molecules attracts monocytes, which migrate into the intima, differentiate into 

macrophages, and initiate cholesterol uptake by macrophage scavenger receptors such as 

SRA-1, CD36, and CD68 (Kunjathoor et al. 2002). When the blood LDL levels are 

persistently high, the imbalance between the influx and efflux of cholesterol induces the 

transformation of macrophages into foam cells loaded with CE-containing lipid droplets. 

 

An initial atherosclerotic lesion is described as a fatty streak. During the disease 

progression, smooth muscle cells migrate to the intima from the medial layer of the vessel 

wall. In addition to macrophages, smooth muscle cells may also internalize CE and convert 

into foam cells. Macrophages may also became activated via TLRs (Moore et al. 2013), 

followed by an intracellular signaling cascade via NFκВ transcription factor and the 
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secretion of inflammatory cytokines such as TNF-α and IL-6, chemokines, for example 

monocyte chemoattractant protein-1 (MCP-1), and proteases.  Eventually, the recruited T-

lymphocytes trigger a chronic inflammatory response. Smooth muscle cells proliferate in 

the intima, capture and retain proatherogenic lipoproteins, and form a sub-endothelial 

fibrous cap. Excess free cholesterol is cytotoxic, eventually leading to the death of foam 

cells, the release of cholesterol to the extracellular space, the accumulation of cholesterol 

in a necrotic core within the plaque, and even to the formation of cholesterol crystals. As a 

consequence, rupture of the fibrous cap involving the degradation of the extracellular 

matrix by MMPs may occur and further initiate coagulation of the blood due to the 

recruitment of platelets in the ruptured endothelium. Finally, the formation of a thrombus 

may lead to clinical events referred to as acute coronary syndrome (ACS), including acute 

myocardial infarction (AMI) and unstable angina pectoris. Inflammatory pathways are 

present in all stages of atherosclerosis, from the initiation to the final CVD event. 

 

Endotoxemia has been shown to associate with the risk of incident CVD events 

(Wiedermann et al. 1999). Several previous seroepidemiological, histopathological, and 

microbiological studies, in addition to studies in animal models and clinical trials, have 

implicated the contribution of certain microorganisms, especially C. pneumoniae, 

Helicobacter pylori, cytomegalovirus, and periodontopathogens to the progression of 

atherosclerosis (Chatzidimitriou et al. 2012). Increased levels of antibodies against C. 

pneumoniae in stable CAD or AMI patients compared to healthy controls were already 

reported in the 1980s (Saikku et al. 1988), although some contradictory findings regarding 

C. pneumonia have also subsequently been published (Danesh et al. 2000; Ieven and 

Hoymans 2005). The presence of the intact pathogens or their nucleic acids within 

atherosclerotic lesions has been detected in several studies (Haraszthy et al. 2000; 

Ameriso et al. 2001; Kalayoglu et al. 2002; Kozarov et al. 2005). Various oral bacteria have 

been identified from the plaques since 1999 (Chiu 1999). In addition, other pathogens 

such as hepatitis C virus, herpes simplex virus, human immunodeficiency virus, and 

influenza virus have been detected from plaques (Ibrahim et al. 2005; Reszka et al. 2008; 

Chatzidimitriou et al. 2012). However, these findings per se do not prove a causal 

relationship with the atherosclerosis, since some pathogens may have been found 

stochastically.  

 

Most of the pathogens associated with atherosclerosis are intracellular microbes causing 

long-lasting, persistent infections. Multiple infections together cause an infectious burden, 

which increases the risk of CVDs more than only a single pathogen (Epstein et al. 2000). 

Three different mechanisms for the pathogenic contribution to atherosclerosis have been 

suggested. First, pathogens may cause a local inflammatory reaction, promoting effects 

within the arterial vessel. Second, they may contribute to the progression of the disease 

via immune-mediated effects involving TLR stimulation and molecular mimicry, which 
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generates cross-reactive auto-antibodies. Third, genetic traits in the host response to 

infection and epigenetic factors may play a major role in the predisposition to CVDs. 

(Chatzidimitriou et al. 2012) (Figure 3). 

 

The structure and metabolism of lipoproteins change during the acute phase response 

(Khovidhunkit et al. 2004), characterized by nonspecific host responses against infection, 

inflammation, or injury. In general, plasma TG and VLDL levels increase and HDL levels 

decrease. In addition, VLDL and LDL particles are enriched with sphingolipids, especially 

ceramides, further increasing their uptake by macrophages (Memon et al. 1998), and the 

particle size of LDL diminishes, enhancing the oxidation (Tribble et al. 2001), whereas HDL 

is converted into a proinflammatory molecule called acute-phase HDL (Khovidhunkit et al. 

2004). Regardless, the most evident reaction for the response is a dramatic increase in 

acute phase proteins, e.g. CRP, SAA, LBP, and fibrinogen. Serum LPS levels have been 

shown to correlate positively with CRP levels (c Pussinen et al. 2007; Lassenius et al. 2011). 

Generally, the alterations originating from the acute phase response protect the host from 

pathogens. However, if this state is prolonged, the changes in the composition and 

function of lipoproteins will promote atherogenesis.  

 

1.4.2. Obesity, metabolic syndrome, and diabetes mellitus 

 

Obesity is described as abnormal, excessive fat accumulation in both the subcutaneous 

and visceral space causing a risk to general health. It results from a long-term imbalance 

between the intake and consumption of energy interfered by environmental, genetic, and 

psychosocial factors (Kopelman 2000). Obesity interacts in several health problems both 

independently as well as in association with other diseases, including metabolic syndrome, 

type 2 diabetes mellitus, CHD, certain cancers, respiratory complications, and 

osteoarthritis (Kopelman and Albon 1997; Kopelman 2000). In addition to the level of food 

intake, the quality of the nutrition is relevant in weight gain and related disorders (Malik 

et al. 2006; Barclay et al. 2008; de Koning et al. 2011). There are several ways to measure 

overweight and obesity, including the body mass index (BMI), waist circumference or 

waist–hip ratio, and the body fat percentage. Most studies related to obesity have relied 

on the BMI-based classification by the World Health Organization (WHO) for adult 

overweight (≥25 kg/m2) and obesity (≥30 kg/m2) (World Health Organization 2004), which 

may be considered as the most useful population-level measure for the disorder. 

 

Metabolic syndrome (MetS) is a group of metabolic disturbances, including abdominal 

obesity, hypertension, hyperglycemia, and dyslipidemia, which occur together more often 

than by chance alone and contribute to the development of CVD and diabetes (Lusis et al. 

2008). The pathogenesis of MetS has multiple origins, but obesity, lifestyle, and genetic 

traits clearly interact in causing the syndrome. Over the past decade, several different 
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definitions for MetS have been introduced and a universally accepted definition is still 

lacking. The main difference between the definitions arises from the measure for 

abdominal obesity. The most frequently used definitions have been established by WHO 

(Alberti and Zimmet 1998), the European Group for the Study of Insulin Resistance (Balkau 

and Charles 1999), the US National Cholesterol Education Program Adult Treatment Panel 

III (Grundy et al. 2005), and the International Diabetes Federation (IDF) (Zimmet et al. 

2005; Alberti et al. 2006). In 2009, the IDF, National Lung, Heart and Blood Institute 

(NHLBI), American Heart Association, World Heart Federation, International 

Atherosclerosis Society, and International Association for the Study of Obesity attempted 

to develop one global definition for the clinical criteria of MetS, resulting in a definition in 

which three simultaneous abnormal findings out of five would diagnose a person with the 

MetS: the population- and country-specific definition for elevated waist circumference 

(≥80 cm in females and ≥94 cm in males in Europids), fasting glucose ≥5.6 mmol/l or drug 

treatment for hyperglycemia, TG ≥1.7 mmol/l or drug treatment for hypertriglyceridemia, 

HDL-cholesterol <1.3 mmol/l in females and <1.0 mmol/l in males or drug treatment for 

reduced HDL-cholesterol, systolic blood pressure ≥130 mmHg and/or diastolic blood 

pressure ≥85 mmHg or antihypertensive drug treatment (Alberti et al. 2009). MetS is a 

significant risk factor for type 2 diabetes mellitus (T2DM) and CVD, and it increases 

mortality (Grundy 2005). 

 

Diabetes mellitus (type 1 and type 2) originates from different chronic metabolic disorders 

characterized by disturbed glucose metabolism causing elevated circulating glucose 

concentrations. It results from abnormalities in insulin production or function. As in 

obesity, environmental, genetic predisposition, and psychosocial factors play a role in the 

susceptibility to the disease (Gerich 1998). The prevalence of diabetes is predicted to 

increase to epidemic levels in the coming 15 years (Chapple et al. 2013). The risk factors 

include for example impaired glucose tolerance, elevated fasting glucose, nutrition, 

physical inactivity, and a history of gestational diabetes. T2DM is the most common type 

of the disease and originates from a constant deterioration in the capacity of the 

pancreatic β-cells to secrete insulin. Consequently, defective insulin secretion is detected 

simultaneously with a decreased response of insulin-stimulated glucose uptake in the 

liver, muscle, and adipose tissues in a condition called insulin resistance, and the secreted 

insulin no longer compensates for the demands of the peripheral insulin. (Donath 2014)  
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1.5. Periodontitis and cardiometabolic disorders 

 

1.5.1. Periodontitis and cardiovascular diseases 

 

The first evidence for an association between oral infections and cardiovascular disease 

was already suggested in the late 1980s (Mattila et al. 1989; Syrjänen et al. 1989). Since 

then, numerous studies linking periodontitis and atherosclerosis have been published, 

most of them supporting the role of periodontitis in atherogenesis. Periodontitis and 

atherosclerosis are chronic, multifactorial diseases with a progressive nature, sharing 

various risk factors such as smoking, age, and diabetes mellitus, from which smoking is 

clearly a major risk factor for both diseases. Regardless, the diseases remain associated 

independently of known confounders (Lockhart et al. 2012). Both indirect mechanisms, 

including the effects of oral infection on systemic inflammation, and direct mechanisms, 

including transient bacteremia, endotoxemia, and proatherogenic changes in lipoprotein 

metabolism and vascular infection, have been suggested to promote the association. In 

addition, the effect of periodontal treatment on CVD risk factors has been investigated 

(Buhlin et al. 2009; Teeuw et al. 2014).  

 

Inflammatory markers are important indicators of systemic inflammation. During a 

periodontal infection, proinflammatory cytokines and CRP are locally and systemically 

secreted from inflamed tissue (Page 1998). The inflammatory markers associated with 

periodontitis and CVD, e.g. elevated levels of CRP and IL-6, largely overlap (Loos et al. 

2000; Lockhart et al. 2012). Another indirect mechanism linking periodontitis with 

atherosclerosis is molecular mimicry, which is caused by cross-reactive autoantibodies 

against periodontopathogens and heat shock proteins (Loos 2005; Lockhart et al. 2012). 

Access of oral bacteria or their products to the circulation is considered to be a key 

initiator of systemic events linking oral infections and CVD. In the circulation, infection also 

stimulates the secretion of cytokines, chemokines, and cellular adhesion molecules 

enhancing monocyte adhesion to the endothelium (Weill et al. 1995; Gerszten et al. 1998). 

For example, monocytes infected by P. gingivalis increased the expression of the TNF-α 

and IL-6 (Pollreisz et al. 2010). In addition, LPS induces lipid accumulation in macrophages, 

for example via down-regulation of SR-BI and ABCA1, thereby stimulating their 

transformation into foam cells (Funk et al. 1993; Khovidhunkit et al. 2001; Khovidhunkit et 

al. 2003; Lakio et al. 2006). Various seroepidemiological studies have associated an 

increased level of serum antibodies against periodontopathogens with prevalent CVD and 

an increased risk of future stroke, CHD, and MI (Pussinen et al. 2003; a Pussinen et al. 

2004; Pussinen et al. 2005; Beck et al. 2005; a Pussinen et al. 2007; c Pussinen et al. 2007). 

 

Intact periodontopathogens circulate in the bloodstream extracellularly or intracellularly 

within phagocytic cells, and are further deposited in atherosclerotic plaques. Moreover, 
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periodontopathogens may travel within platelets, resulting in platelet aggregates and the 

formation of thrombi (Iwai 2009), and they have been shown to invade endothelial cells 

(Deshpande et al. 1998; Dorn et al. 1999; Progulske-Fox et al. 1999). The survival and 

replication of pathogens within the cell is determined by the activation of autophagy and 

suppression of apoptosis. So far, periodontopathogen DNA has been found, for example, 

in carotid and coronary artery plaques, abdominal aortic aneurysmal walls and 

intraluminal thrombi, atherosclerotic vessel plaques, and cerebral aneurysms (Haraszthy 

et al. 2000; Okuda et al. 2001; Fiehn et al. 2005; Pyysalo et al. 2013; Pessi et al. 2013; 

Range et al. 2014), and other studies have even managed to demonstrate living bacteria 

within plaques (Kozarov et al. 2005; Rafferty et al. 2011). A potential mechanism linking 

periodontal infection to atherosclerosis and plaque rupture is presented in Figure 3. 

 

Many case-control and animal studies have shown an association between unbalanced 

lipoprotein metabolism and periodontitis (Pussinen and Mattila 2004), which seems to be 

especially strong for apoB-100-containing lipoproteins (Griffiths and Barbour 2010). 

Periodontitis associates positively with total cholesterol, LDL, and TG concentrations, and 

negatively with HDL cholesterol concentrations (Lösche et al. 2000; Katz et al. 2002; 

Fentoglu et al. 2009). In a study by Ramirez-Tortosa et al., increased VLDL cholesterol 

associated with clinically diagnosed periodontitis (Ramirez-Tortosa et al. 2010). An 

increased number of small LDL particles was observed in a study on mice challenged with 

A. actinomycetemcomitans (Tuomainen et al. 2008). These particles are more susceptible 

to oxidation and more easily absorbed by macrophages, which was also shown in a 

treatment study (c Pussinen et al. 2004). Periodontitis may even disturb reverse 

cholesterol transport, since HDL of periodontitis patients appears to have a reduced 

capacity to remove cholesterol from macrophages (b Pussinen et al. 2004). 

  

Most intervention studies have focused on the hypothesized positive effect of periodontal 

treatment on inflammation markers associated with CVD. Conservative periodontal 

therapy including scaling, root planing, and antibiotic treatment has been shown to 

reduce the levels of inflammatory mediators such as CRP, TNFα, and IL-6 (Iwamoto et al. 

2003; D'Aiuto et al. 2004; Montebugnoli et al. 2005; Buhlin et al. 2009). In some other 

studies, periodontal treatment failed to alter to the levels of inflammatory mediators (Ide 

et al. 2003; Yamazaki et al. 2005), and in a meta-analysis, periodontal treatment failed to 

reduce systemic CRP levels (Ioannidou et al. 2006). However, a later systematic review 

concluded that there is modest evidence for the reduction of CRP levels by periodontal 

treatment (Paraskevas et al. 2008). Some studies have shown periodontal therapy to 

improve the lipoprotein profile, for example to reduce total cholesterol, LDL cholesterol, 

and oxidized LDL concentrations (Montebugnoli et al. 2005; Teeuw et al. 2014), but a 

study by Losche et al. detected no changes in serum lipid profiles after periodontal 

treatment (Losche et al. 2005). In addition, the benefits in periodontal health after six 
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months of treatment have been associated with improvement in endothelial function 

(Tonetti et al. 2007). The 2010 European Workshop in Periodontal Health and 

Cardiovascular Disease demonstrated that there is no inclusive evidence that preventive 

periodontal care or therapeutics will have an impact on cardiac health (Bouchard et al. 

2010). Nevertheless, a very recent systematic review and meta-analysis concluded that 

periodontal treatment certainly reduces biomarkers of atherosclerotic disease and 

improves endothelial function, especially in those who are already suffering from CVD 

and/or diabetes (Teeuw et al. 2014). 

 

Overall, there is a consensus that clinical periodontitis is associated with an increased risk 

of cardiovascular diseases through systemic inflammation as the etiopathogenic link 

(Lockhart et al. 2012; Tonetti et al. 2013; Dietrich et al. 2013). Moreover, causality in the 

association of periodontitis with CVD has been advocated (Belstrøm et al. 2012), although 

no studies to date have managed to prove a causative relationship (Lockhart et al. 2012). 

In 2013, Dietrich et al. systematically reviewed 12 strictly selected studies focusing on 

incident atherosclerotic cardiovascular disease including CHD, cerebrovascular disease, 

and peripheral arterial disease and periodontitis defined according to PPD or 

radiographically determined periodontitis (Dietrich et al. 2013). Apart from one study 

(Tuominen et al. 2003), all included studies detected a positive association between 

periodontitis and incident CVD independently of common CVD risk factors. Recently, the 

first prospective study on the relationship between the clinical and microbial periodontal 

profile and the progression of atherosclerosis was published by Desvarieux et al. 

(Desvarieux et al. 2013). They showed that an improvement in the periodontal status and 

a decrease in the amount of etiological periodontopathogen were associated with an 

improvement in carotid atherosclerosis (intima-media thickness as a surrogate marker for 

atherosclerosis) in a population-based sample of 420 participants followed for an average 

3 years. 
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Figure 3. Potential mechanism linking the influence of periodontal infection on atherosclerosis and plaque 

rupture.  Pathogen-mediated in-plaque angiogenesis is characteristic of plaque organization. Denudation of 

the fibrous cap and the release of its pro-thrombotic components occurs after endothelial cell (EC) apoptosis 

mediated by periodontal pathogens or auto-antibodies. Plaque rupture is induced by pathogen-mediated 

extracellular matrix (ECM) degradation by endothelial cells, macrophages, T-cells, and plasma cells. Modified 

from Kebschull et al. (2010) and reprinted with permission from SAGE Publications.  

 

1.5.2. Periodontitis and obesity, MetS, and diabetes 

 

Obesity has been regarded as a chronic condition with low-level systemic inflammation 

(Festa et al. 2001; Cancello and Clement 2006). Various epidemiological studies have 

demonstrated an association between periodontitis and elevated body weight (Genco et 

al. 2005; Linden et al. 2007; Ekuni et al. 2008; Haffajee and Socransky 2009). Furthermore, 

two recently conducted meta-analyses investigated the association between periodontitis 

and increased body weight (Chaffee and Weston 2010; Suvan et al. 2011). All the study 

data supported a positive association between periodontal disease and obesity, although 

the magnitude and causality remained unclear. Again, an important suggested mechanism 

linking the disorders was related to elevated systemic inflammation and the secretion of 

proinflammatory cytokines. For example, TNF-α levels of GCF and plasma were 

significantly correlated with BMI (Lundin et al. 2004; Khanna and Mali 2010), and 

hyperlipidemia has been shown to associate with higher values of periodontal parameters 

(Fentoglu et al. 2009). Recently, plasma levels of the inflammatory marker orosomucoid 

have been suggested as a potential biomarker of the association between periodontitis 

and obesity (Range et al. 2013). Endotoxemia has been reported to associate with energy 

and fat intake (Amar et al. 2008) and also with periodontitis (c Pussinen et al. 2007). Thus, 

elevated LPS concentrations in the circulation may also mediate the assumed connection. 

Interestingly, obese, but periodontally healthy individuals may suffer from overgrowth of 
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T. forsythia, which further predisposes them to periodontitis (Haffajee and Socransky 

2009).  

 

Increased insulin resistance is proposed as another linking mechanism for periodontitis, 

obesity, and MetS (Benguigui et al. 2010), since CAL increases together with insulin 

resistance (Genco et al. 2005). It has been shown that MetS may increase the risk of 

periodontitis (Shimazaki et al. 2007). It especially associates with the severe form of the 

disease (D'Aiuto et al. 2008), and seropositivity for A. actinomycetemcomitans has been 

shown to associate with MetS (Hyvärinen et al. 2014). In addition, a longitudinal study of 

1023 subjects demonstrated that the presence of periodontal pockets was associated with 

the components of MetS during the observation period of 4 years (Morita et al. 2010). 

Oxidative stress and reactive oxygen species may partly explain this relationship, since 

both MetS and periodontitis have been shown to increase the serum levels of oxidative 

stress markers (Marchetti et al. 2012). From the components of MetS, it is presumable 

that obesity, diabetes mellitus, and low HDL levels affect periodontitis, since there is 

strong evidence of an independent association of these components with periodontal 

disease (Genco and Borgnakke 2013).  

 

Diabetes mellitus is an established risk factor for periodontal disease. The relationship 

between the diseases appears to be bidirectional (Lalla and Papapanou 2011), with 

inflammation as an overarching feature. In diabetic patients, elevated levels of 

proinflammatory mediators contribute to the more severe form of periodontitis. Diabetes 

up-regulates inflammation in the periodontal tissues, and a hyperreactive response to 

periodontopathogens has been acknowledged to increase the severity of periodontitis in 

these patients (Genco and Borgnakke 2013). Periodontal inflammation may result in poor 

glycemic control in patients with diabetes, while those with good glycemic control may 

suffer little or no periodontitis. In addition, the patients with severe periodontitis in 

combination with diabetes suffer more often from cardiorenal mortality compared to 

patients with only diabetes (Genco and Borgnakke 2013). Diabetes increases the 

prevalence of periodontitis and affects the severity and progression of periodontal disease 

(Mealey et al. 2006; Taylor and Borgnakke 2008). Previous studies have demonstrated a 

higher prevalence and severity of periodontitis in both type 1 (Hodge et al. 2012) and 

T2DM patients (Fernandes et al. 2009) compared to subjects without diabetes. 

Furthermore, longitudinal studies have supported these findings, strengthening the 

conception of a bidirectional and causal relationship between the diseases (Demmer et al. 

2008; Bandyopadhyay et al. 2010; Morita et al. 2012).  
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2. AIMS OF THE STUDY 

 

The thesis study aimed to investigate whether LPS links periodontitis with cardiometabolic 

disorders. The genetics predisposing to periodontitis and the systemic effects of 

periodontitis-induced endotoxemia were investigated. The hypothesis was that 

triglyceride-enriched lipoproteins may have a role in periodontitis-induced atherosclerosis 

as proatherogenetic lipopolysaccharide carriers promoting systemic inflammation and 

foam cell formation, and that diet may affect the LPS-induced incidence of CHD. 

Therefore, the endotoxemia in patients with periodontitis and cardiometabolic disorders 

associating with periodontal disease were examined. In addition, the impact of 

periodontal treatment on plasma LPS activity and lipoprotein composition was 

investigated.  

 

The specific aims of the thesis were: 

 

1. To investigate whether genetic polymorphisms in the human MHC region are associated 

with periodontitis; 

2. To determine the plasma lipoprotein compositions, including LPS activity, in 

periodontitis patients, and especially to investigate the proatherogenic properties of VLDL 

modified by endogenous LPS, as well as to examine the effect of periodontal treatment on 

LPS activity or its lipoprotein distribution; 

3. To study the association of serum LPS activity with cardiometabolic disorders, and with 

the risk of incident CHD events, taking into account data on energy and macronutrient 

intake.  
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3. STUDY SUBJECTS AND METHODS 

 

3.1. Study subjects and design 

 

Table 5. Summary of the study populations. 

  N (% of men) Mean age (SD)  

Study I Parogene 1 169 (72.2) 62.9 (9.9) Random cohort of 

subjects with an 

indication for coronary 

angiography 

 Parogene 2 339 (61.4) 63.7 (8.8) 

 Health 2000 1420 (46.1) 56.4 (8.1) 

Population-based study 

on health and functional 

capability 

Study II 
Swedish  

periodontitis study 
34 (55.9) 53.3 (8.1) 

Periodontitis treatment 

study 
Study III 

Finnish  

periodontitis study 
30 (53.3) 49.8 (7.4) 

Study IV FINRISK97 2452 (48.7) 52.2 (10.1) 

Population-based study 

on risk factors of chronic 

diseases 

 

 

3.1.1. The Parogene study (I) 

 

The large Corogene study was a prospective cohort study including 5294 patients who 

underwent coronary angiography at Helsinki University Central Hospital between June 

2006 and March 2008 (Vaara et al. 2012). The aim of the Corogene study was to recognize 

coronary disease risk factors and the underlying genetics. Study I consisted of 508 subjects 

of the Parogene study (Buhlin et al. 2011), a random subsample of the Corogene study, 

including extensive clinical and radiographical oral health examinations. Among the 

Parogene study subjects, 123 had no significant CAD (<50% stenosis), 184 had stable CAD 

(≥50% stenosis), 169 had ACS, and 32 had ACS but not CAD. In study I, the ACS patients 

constituted the Parogene 1 population and the rest of the original Parogene patients 

formed the Parogene 2 population. The Parogene study was conducted in accordance with 

the Declaration of Helsinki and approved by the Ethics Committee of Helsinki University 

Central Hospital. All patients signed an informed consent form.  

 

3.1.2. The Health 2000 Survey (I) 

 

The Health 2000 Survey was an extensive nationwide study using a stratified two-stage 

cluster sample of 8028 adult citizens aged at least 30 years (Aromaa and Koskinen 2004; 

Knuuttila and Suominen-Taipale 2008; Heistaro 2008). The general aim of the survey was 
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to provide information on the health and functional capacity of the adult Finnish 

population. The sample, collected between 2000 and 2001 in Finland’s five university 

hospital regions, included structured health interviews, clinical and radiographical oral 

health examinations, and blood sample collection. Study I was based on an age-limited 

subpopulation of 1420 adults (≥45 years) originally selected for a case-control GWAS of 

metabolic syndrome (Kristiansson et al. 2012). The cases had nondiabetic metabolic 

syndrome as defined by the IDF and the controls were age- and sex-matched healthy 

subjects. The Health 2000 Survey was carried out according to the Declaration of Helsinki 

and was approved by the Ethics Committee of the Helsinki University Central Hospital and 

the National Public Health Institute (KTL). The patients signed an informed written consent 

form. 

 

3.1.3. Periodontitis treatment study in Sweden (II) 

 

Study II comprised 34 Swedish patients (mean age 53 years) with periodontitis gravis et 

complicata (Nyman and Lindhe 2003). The exclusion criteria included a known history or 

medication for CVD, on-going infection, or any other chronic disease. The patients 

underwent an extensive periodontal examination including radiographs, and blood 

samples were obtained at baseline and on average six months after entering the study. 

The study was carried out in accordance with the Helsinki Declaration and was approved 

by the Ethics Committee of the Karolinska Institutet. The patients signed an informed 

written consent form. 

 

3.1.4. Periodontitis treatment study in Finland (III) 

 

Study III included 30 Finnish patients (mean age 50 years) with periodontitis (c Pussinen et 

al. 2004). The patients had no diagnosed systemic diseases or infections within two 

months before enrolment in the study, and they had not received antibiotics during the six 

preceding months. The clinical oral health examinations were performed at baseline and 

three months after the periodontal treatment. In addition, blood samples were taken both 

before and three months after the periodontal treatment. The study was conducted in 

accordance with the Helsinki Declaration and the Ethics committee of the Institute of 

Dentistry at the University of Helsinki accepted the research plan. The patients signed an 

informed written consent form. 

 

3.1.5. The FINRISK97 Study (IV) 

 

The National FINRISK 1997 study was a population-based risk factor survey carried out in 

five geographical areas in Finland (Vartiainen et al. 2010), and comprised 8444 

participants aged 25 to 74 years. Study IV was nutrition subsample (n = 2452) of the 
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FINRISK 1997 Study based on the National FINDIET 1997 Survey, which included clinical 

examination with height, weight, and blood pressure measurements, and blood samples 

in addition to a self-administered questionnaire. Information on macronutrient intake at 

baseline was collected from the 24-h diet recall interview. Obesity was defined as a BMI-

based classification of adult overweight (≥25 kg/m2) and obesity (≥30 kg/ m2) according to 

the WHO (World Health Organization 2004), and MetS according to the IDF definition for 

Europids (Alberti et al. 2009). Prevalent diabetes and CVD events were defined as a 

doctor-diagnosed disease using the questionnaire, and the register data either as a 

purchase of related drugs or hospitalization with the disease. CHD events included 

subjects with a history of myocardial infarction, revascularizations, or percutaneous 

transluminal coronary angioplasty. In addition, a history of stroke (excluding subarachnoid 

hemorrhage) was included in prevalent CVD. Follow-up for incident CHD events was 

performed for 10 years with the use of record linkage of the FINRISK data with three data 

sources: 1) the National Hospital Discharge Register; 2) the National Causes of Death 

Register; and 3) the National Drug Reimbursement Register. The study was conducted in 

accordance with the Helsinki Declaration and the Ethics Committee of the National Public 

Health Institute (KTL) approved the study plan. The patients signed an informed written 

consent form.  
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3.2. Methods 

 

The methods used in the thesis are listed in alphabetical order in the Table 6. 

 

Table 6. Summary of the methods used in the thesis. 

Method Study Section for details 

Cell culture of human THP-1 monocytes III 3.2.6. 

ELISA   

 ApoA-I II  

 IL-1β II  

 IL-6 II, III  

 LTA I  

 MCP-1 III  

 SAA III  

 TNF-α II, III  

Enzymatic methods   

 Glucose IV  

 GGT IV  

 HDL cholesterol II, III, IV  

 Phospholipids II  

 Total cholesterol II, III, IV  

 Triglycerides II, III, IV  

Genotyping I 3.2.2. 

Gingival tissue biopsy I  

Immunohistochemistry I 3.2.3. 

Immunoturbidimetry   

 ApoA-I II  

 CRP II, IV  

Isolation of lipoproteins II, III 3.2.4. 

Serum LPS activity (LAL  assay) II, III, IV 3.2.5. 

Serum fibrinogen concentration (Clauss method) III  

Periodontal examinations I, II, III 3.2.1. 

Periodontal treatment I, II, III 3.2.1. 

Protein concentration (Lowry method) II, III  

Quantitative real-time PCR III 3.2.7. 

RNA isolation and cDNA synthesis III 3.2.7. 

Statistical analysis I, II, III, IV 3.2.8. 
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3.2.1. Periodontal examination and treatment (I, II, III) 

 

In the Parogene Study (I), a WHO manual periodontal probe was used for periodontal 

examination. PPD was measured from six sites of each tooth, and BOP and suppuration 

from four sites of the tooth, excluding wisdom teeth. The number of sites with a PPD of 4 

to 5 mm and a PPD ≥6 mm were recorded. Digital panoramic radiographs were evaluated 

from both dentate and edentulous patients, and ABL, angular bone defects, and apical 

rarefactions were registered. ABL was classified into no bone loss, ABL in the cervical third 

of the root, ABL in the mid-third of the root, ABL in the apical third of the root, and total 

bone loss. It was calculated by selecting from each dentate sextant the tooth with the 

most severe loss of bone. For each patient, the mean value of these six measurements 

was calculated. 

 

In the Health 2000 Survey (I), the examinations were also performed with a WHO manual 

periodontal probe. PPD was registered from four sites of each tooth, and the highest value 

of the tooth measured was recorded in categories PPD 4 to 5 mm and PPD ≥6mm. The 

wisdom teeth were excluded. BOP was determined by sextants (bleeding or not bleeding). 

ABL and angular bone defects were determined from the panoramic radiographs. ABL was 

classified similarly to the Parogene Study, and angular bone defects were categorized as 

follows: no vertical pocket, vertical pocket exceeding the middle third of the root, and 

vertical pocket exceeding to apical third of the root. The deepest measurement was 

registered. Study I did not include any periodontal treatment. 

 

The Parogene Study and the Health 200 Survey populations were divided according to two 

different periodontitis definitions, advanced and severe periodontitis, as follows: i) 

advanced periodontitis included subjects with ABL in the middle third of the root to total 

bone support loss and two or more sites with a PPD of 4 to 5 mm or one or more sites 

with a PPD of ≥6 mm. The reference group included subjects with no ABL or ABL only in 

the cervical third of the root, but no PPD of ≥6 mm (healthy to mild periodontitis); ii) 

severe periodontitis comprised subjects with ABL in the middle third of the root to total 

bone support loss, a PPD of ≥6 mm at >3 sites, and a PPD of 4 to 5 mm at ≥10 sites. The 

reference group included subjects with no ABL, no PPD of ≥6 mm, and a PPD of 4 to 5 mm 

at <10 sites (healthy to gingivitis). 

 

In study II, patients had been referred to a periodontist due to their severe periodontal 

disease. The comprehensive periodontal examination included radiographs. A WHO 

manual periodontal probe was used in the examinations and PPD was measured from six 

sites and visible dental plaque from four sites of each tooth. BOP was registered as the 

proportion of sites in the dentition that were bleeding. The patients had ≥7 sites with ≥6 

mm CAL, horizontal loss of supporting tissue at least in the cervical third of the root with 
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BOP, furcation lesions in the multirooted teeth and/or angular bone defects with 

suppuration. The periodontal treatment included conventional mechanical periodontal 

therapy (scaling and root planing) and extractions of teeth due to periodontitis, caries 

lesions, endodontic or other reasons. In addition, the patients received oral hygiene 

instructions. The periodontal treatment finished when the patient was free from calculus 

and obtained good, self-contained oral hygiene. Patients were re-examined 3 months 

after the baseline examination. Standardized periodontal flap surgery was performed, if 

the patient still had a PPD of ≥6 mm. Again, the patients were re-examined 6 months after 

the baseline examination. 

 

Study III patients were chosen from among those seeking periodontal treatment in 

Helsinki, Finland. They were selected for the study if they had at least 24 natural teeth, 

clinical (distance from the cementoenamel junction to the bottom of periodontal pocket 

exceeding 1 mm at approximal sites) and radiographical (distance from the 

cementoenamel junction to the alveolar bone margin exceeding 3 mm) attachment loss at 

more than 6 teeth, inflamed periodontal tissues, and they had had no periodontal 

treatment during the 6 preceding months. The clinical examination was performed at 

baseline and three months after the periodontal treatment.  Radiographic examination at 

baseline included panorama radiographs with peri-apical radiographs if needed. The PPD, 

BOP, and suppuration were measured from six sites of each tooth. The periodontal 

treatment included traditional mechanical periodontal therapy as well as gingivoplasty 

and antibiotics according to the odontological needs of the patients (n = 7). Except for 

improved oral hygiene, the patients were not advised to change their daily habits, i.e. 

smoking or eating during the study. 

 

3.2.2. Genotyping (I) 

 

In Parogene 1, Parogene 2, and the Health 2000 Survey samples, DNA was isolated using 

standard salt precipitation protocols. The subjects in the Parogene 1 and the Health 2000 

Survey were genotyped for SNPs with an Illumina 610K genotyping chip (Illumina 

HumanHap 610-Quad SNP array, San Diego, CA) at the Wellcome Trust Sanger Institute 

(Hinxton, Cambridge, UK). The subjects in the Parogene 2 were genotyped with Sequenom 

platform (iPlex MassARRAY, San Diego, CA) at the Institute for Molecular Medicine Finland 

(FIMM, Helsinki, Finland). 

 

Altogether, 13,245 SNPs of the MHC region (6p21.3) with locations from 25749179 

(rs932316) to 33473618 (rs6910741) were analyzed in the Parogene 1 sample. From these, 

3,692 were genotyped SNPs. The quality control was conducted according to Anderson et 

al. (Anderson et al. 2010). In addition, before the genotype imputation, SNPs with a low 

call rate (<95%), low minor allele frequency, and low Hardy-Weinberg disequilibrium p-
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value (<1×10-6) were excluded. The quality control was performed using PLINK software 

(Purcell et al. 2007). The cleaned dataset was imputed with MACH 1.16 using HapMap 2, 

release 22 CEU reference (http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2007-

08_rel22/phased/). From the univariate analysis of the Parogene 1, 18 SNPs associating 

with periodontal parameters (p ≤0.001) were selected for replication studies with the 

Parogene 2 and the Health 2000 Survey. 

 

3.2.3. Histological analysis and immunohistochemistry (I) 

 

Gingival tissue samples were obtained from healthy subjects (n = 2) and patients with 

chronic periodontitis (n = 2) via the collaboration with a Chilean research group. The 

samples were fixed in 4% buffered paraformaldehyde, embedded in paraffin, cut into 5-

µm sections by a microtome, deparaffinized, and rehydrated. Antigen retrieval was 

performed by microwaving the samples in citric buffer (10 mM citric acid, pH 6, 0.05% 

Tween 20). The endogenous peroxidase activity was intercepted with a solution of 30% 

H2O2 in methanol, and the samples were subsequently blocked with goat normal serum 

and incubated with polyclonal antibody for LTA (HPA007729, 1:20 dilution, Sigma). 

Thereafter, the samples were incubated with biotinylated goat-anti-rabbit IgG as the 

secondary antibody (1:200 dilution, Vector Laboratories), and the antibody binding was 

visualized using an avidin-biotin-peroxidase complex and 3-amino-9-ethylcarbazole 

substrate (AEC, Sigma). Finally, the samples were counterstained with Mayer’s 

hematoxylin and mounted with glycergel mounting medium (Dako). 

 

3.2.4. Isolation of lipoproteins (II, III) 

 

In study II, VLDL-IDL, LDL, HDL2, HDL3, and lipoprotein-deficient plasma (LPDP) were 

isolated from serum samples of all patients before and after periodontal treatment by 

sequential ultracentrifugation at an increasing density of solution (Havel et al. 1955). The 

density of the samples was adjusted with solid potassium bromide (KBr) to 1.006–1.019, 

1.019–1.063, 1.063–1.12, 1.12–1.21, and >1.21 g/ml, for VLDL-IDL, LDL, HDL2, HDL3, and 

LPDP, respectively. The run time was two hours for VLDL-IDL, LDL, and HDL2, and two and 

a half hours for HDL3 with a Beckman Airfuge (running conditions: 160,000 g, +4 °C). HDL3 

and LPDP fractions were dialyzed against TBS (10 mM Tris-HCl, pH 7.3, containing 150 mM 

NaCl) before further determinations. 

 

In study III, VLDL samples (d < 1.006 g/ml) of all patients before and after periodontal 

treatment were isolated by ultracentrifugation using a Beckman Optima Tabletop TL 

Ultracentrifuge with Beckman TLA 100.3 rotor at 424,000 g at +4 °C. The run time was two 

hours. 
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3.2.5. Serum LPS activity determinations (II, III, IV) 

 

In studies II, III, and IV, the LPS activity of lipoprotein or serum samples was determined by 

a Limulus amebocyte lysate (LAL) assay coupled with a chromogenic substrate (HyCult 

Biotechnology B.V., Uden, the Netherlands). All samples were diluted 1:5 v/v in endotoxin-

free water. After 45 minutes, the intensity of the substrate reaction generating a yellow 

color was spectophotometrically measured at 405 nm to reveal the amount of active 

clotting enzyme present in the sample, which correlates with the sample endotoxin 

concentration. Endotoxin activity is mainly reported as endotoxin units (EUs): an activity of 

1 EU corresponds to 100 pg of E. coli lipopolysaccharide according to the WHO 

international standard (NIBSC code 94/580). The detection limit of the assay is 0.1 pg/ml 

and the interassay coefficient of variation was 9.2% (n = 75) (b Pussinen et al. 2011). 

 

3.2.6. Cell culture (III) 

 

Human THP-1 monocytes were purchased from the American Type Culture Collection 

(ATT, Manassas, VA, catalogue no. TIB-202). The cells were grown in complete RPMI 1640 

medium, which contained 10% (v/v) fetal bovine serum, 10 mM HEPES, pH 7.4, 100 U/ml 

penicillin, and 100 µg/ml streptomycin, and maintained at + 37 °C under 5% CO2 and 95% 

air. The monocytes were differentiated into macrophages with 30 ng/ml phorbol 12-

myristate 13-acetate (Sigma-Aldrich, St. Louis, MO) for 24 h before the experiments. The 

differentiated macrophages were washed with phosphate-buffered saline (PBS), 

transferred to serum-free growth medium, and incubated for 18 h in the presence of VLDL 

(30 µg/ml as VLDL total protein) derived from periodontitis patients (n = 30) before and 

after periodontal treatment. The appropriate conditions for the cell experiments were 

optimized in a pilot study. Macrophages incubated in the absence of VLDL were used as 

control cells (n = 10). The growth media were collected after the incubation, centrifuged 

at 2000 rpm for 4 minutes, and supernatants were frozen at -70 °C. Finally, the 

macrophages were washed twice with PBS. 

 

The lipid extract of the macrophages was collected by the addition of 0.5 ml of hexane/2-

propanol (3:2, v/v) for 30 min at +4 °C, and dried under nitrogen. FC and CE were 

fractionated by high-performance thin layer chromatography and the spots quantified 

with an automatic plate scanner (CAMAG TLC). The remaining cellular residue was lysed in 

0.3 N NaOH for 1 h at +4 °C. Furthermore, the protein content was measured by the Lowry 

method (Lowry et al. 1951). 
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3.2.7. cDNA synthesis and quantitative real-time PCR (III) 

 

The extractions of total RNA from the macrophages were performed using an RNeasy® 

Mini Kit (Qiagen). Genomic DNA contamination was removed by a DNA-free™ Kit 

(Ambion). The concentrations of RNA were measured with an ND-100 (NanoDrop 

Technologies, Thermo Scientific). Synthesis of cDNA from total RNA was performed using 

ImProm-II™ Reverse Transcription system (Promega). 

 

Primers for TNF-α, MCP-1, CD14, ABCA1, and glyceraldehyde-3-phosphate-dehydrogenase 

(GAPDH) were designed by Beacon Designire (Premier Biosoft International), and primers 

for IL-6, nCEH, ABCG1, SR-BI, ACAT1, CD36, and CD68 were designed by the National 

Center for Biotechnology Information Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/), and were tested for homology with 

unrelated sequences using the Basic Local Alignment Search Tool 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The relative mRNA expression levels were 

measured with quantitative real-time PCR (qPCR) using an Mx3005 Real-Time QPCR 

System (Stratagene). The expression of GAPDH (a widely used house-keeping gene) was 

used for data normalization. 

 

For TNF-α, MCP-1, CD14, ABCA1, IL-6, and nCEH, duplicate samples were analyzed in 25 μl 

reaction mixture containing 2 μl of template DNA, 12.5 μl Brilliant® SYBR Green Master 

Mix (Stratagene), 0.375 μl ROX reference dye (final concentration 30 nM; Stratagene), 

optimized primer concentrations (described in publication III), and an appropriate volume 

of water (Sigma-Aldrich Co.) to adjust the reaction volume. The thermocycling program 

was as follows: initial denaturation at 95 °C for 1 min, 40 cycles of 1 min at 95 °C and 1 min 

at 60 °C, followed by the melting curve analysis: 1 min at 95 °C, a gradual decrease to 

60 °C, 30 s at 60 °C, a gradual increase to 95 °C, and 30 s at 95 °C.  

 

For ABCG1, SR-BI, ACAT1, CD36, and CD68, duplicate samples were analyzed in 20 μl 

reaction mixture containing 2 μl of template DNA, 10 μl Brilliant III Ultra Fast SYBR® Green 

QPCR Master Mix (Agilent Technologies), 0.3 μl ROX reference dye (Agilent Technologies), 

optimized primer concentrations (described in publication III), and an appropriate volume 

of water (Sigma-Aldrich Co.) to adjust the reaction volume. The thermocycling program 

was as follows: 95 °C for 3 min, 40 cycles of 10 s at 95 °C and 20 s at 60 °C, followed by 

melting curve analysis: 1 min at 95 °C, a gradual decrease to 60 °C, 30 s at 60 °C, a gradual 

increase to 95 °C, and 30 s at 95 °C.  

 

Analysis of the results was performed using Mx3005 Real-Time QPCR System (Stratagene) 

software. The relative expression levels were calculated by a mathematical model for 

relative quantification in real-time reverse transcription PCR (Pfaffl 2001) and expressed as 
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the fold change compared to the control cells incubated in the absence of VLDL. The 

control cell level was set to one in the analysis.  

 

3.2.8. Statistical analysis (I, II, III, IV) 

 

In all studies, p-values <0.05 were considered to be statistically significant. 

 

In study I, the Hardy–Weinberg equilibrium (HWE) was tested for each SNP with the χ²-

test, and the SNPs showing deviation from the HWE with a p-value of <0.01 or a minor 

allele frequency <1% were excluded. In the Parogene 1 population univariate analyses, 18 

SNPs associated with periodontal parameters (p ≤ 0.001), and these SNPs were selected 

for further analyses. The threshold for significance was set to 0.05/18 = 0.0028 (Bonferroni 

correction). Three different categories were used for smoking habits (never, former, and 

current). Logistic regression models were used to analyze the association between gene 

polymorphisms, risk haplotype, and periodontal parameters. These models were adjusted 

for age, sex, smoking, BMI, and diabetes, and the significance was assessed by the Wald 

test. In addition, in the analysis of the Health 2000 Survey population, the diagnosis of 

MetS and CVD, and a regional factor based on the University Hospital Areas in Finland 

were taken into account in the logistic models. PLINK software (Purcell et al. 2007) was 

used to analyze the associations in the Parogene 1 and 2 populations, and the Health 2000 

Survey was analyzed using the ProbABEL package (Aulchenko et al. 2010). Linkage 

disequilibrium analysis was performed with Haploview software (version 3.32) (Barrett et 

al. 2005) and the haplotype reconstruction with FAMHAP (version 08/2008) (Herold and 

Becker 2009) and PHASE (version 2.1) (Stephens et al. 2001). The risk haplotype 

associating with periodontal parameters was constructed from SNPs with an r² value >0.9 

according to the results from the Parogene 1 population. Conditional regression analysis 

was performed among the 6 associated SNPs in order to identify independent genetic 

markers. The analysis was not able to separate the effect of a single SNP due to the very 

high linkage disequilibrium. Therefore, further analyses were performed for the 

haplotype. Two-tailed Spearman correlation was used to analyze whether the serum LTA 

concentration had a correlation with other parameters, and the significances of 

differences between LTA concentrations and the LTA allotypes were analyzed by the non-

parametric Mann–Whitney U Two-Independent-Samples test and the χ²-test. The analyses 

were performed with IBM SPSS Statistics 20 Statistical Package for the Social Sciences. 

 

In studies II and III, the non-parametric Wilcoxon signed-ranks test and Mann–Whitney U-

test were used to test the statistical significance of differences between pre- and post-

treatment samples, the subgroups, and the genders or smokers and non-smokers. 

Correlation analysis was performed by two-tailed Spearman correlation. For the analysis, 

we divided the patients into two groups according to medians of three clinical periodontal 
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variables: number of deepened periodontal pockets, BOP, and suppuration. In addition, to 

analyze the differences between patients with low and high systemic inflammation, the 

patients were divided into two groups according to the medians of CRP and fibrinogen 

concentrations. The analyses were performed with the Statistical Package for the Social 

Sciences (v.12.0. and v.15.0). 

 

In study IV, the t-test or χ2-test was used to analyze the differences between the subjects 

with and without cardiometabolic disorders. Serum TG, gamma-glutamyltransferase 

(GGT), and CRP values had skewed distributions and were logarithmically transformed 

before comparisons. Three categories were used for smoking habits (never, former, and 

current). Subjects were excluded from further analysis if the reported intake of total 

energy was less or greater than 3 x SD from the mean energy intake of the population 

(Missmer et al. 2002). A linear regression model was used to analyze the association 

between LPS and total energy or nutrient intake, first unadjusted, followed by a 

multivariate model including age, sex, education years, BMI, current smoking, and serum 

GGT, CRP, and cholesterol concentrations. The differences in LPS concentrations between 

lean, overweight, and obese subjects (BMI <25, 25–29.99, and ≥30 kg/m², respectively) 

were determined by the one-way analysis of variance. A logistic regression model was 

used to analyze the association of prevalent cardiometabolic disorders with the serum LPS 

activity. 

 

In the models, the dependent variables were obesity, MetS, diabetes, or CHD, and the 

covariates included age, sex, education years, current smoking, hypertension (except the 

MetS model), cholesterol and CRP concentrations, and energy intake. Thereafter, the 

logistic regression models were further analyzed adjusting for protein, fat, and fiber intake 

instead of total energy. The subjects with prevalent CVD (n = 151) were excluded from the 

prospective analyses. The association of incident CHD events with the serum LPS activity 

was analyzed using Cox regression models adjusting for age, sex, years of education, 

current smoking, hypertension (except the MetS models), cholesterol, and CRP 

concentrations, and further for total energy or macronutrient intake. The analyses were 

performed with the IBM SPSS Statistics 21 Statistical Package for Social Sciences. 
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4. RESULTS 

 

4.1. Genetics predisposing to periodontitis (I) 

 

In total, the major histocompatibility class region comprised 18 SNPs, which were 

associated with periodontal parameters in the Parogene 1 population. From these, 10 

SNPs remained significantly associated with periodontal parameters after adjustment for 

covariates. The strongest associations arose from the parameters BOP and PPD ≥6 mm 

with the genes BAT1 (encoding HLA-B-associated transcript 1), NFKBIL1 (encoding nuclear 

factor of κ light chain gene enhancer in B cells inhibitor-like 1), and LTA (lymphotoxin-α) 

locating in the MHC Class III region. A schematic diagram of the BAT1-NFKBIL1-LTA region 

is presented in Figure 4. 

 

 

 
 
Figure 4. A schematic diagram of the BAT1-NFKBIL1-LTA region of major histocompatibility complex class 

III in chromosome 6. BAT1, encoding HLA-B-associated transcript 1; NFKBIL1, encoding nuclear factor of κ 

light chain gene enhancer in B cells inhibitor-like 1; LTA, lymphotoxin-α. 

 

 

We tested the degree of pairwise linkage disequilibrium in 18 candidate SNPs associated 

with periodontal parameters by using r2 statistics. The six SNPs, rs11796, rs3130059, 

rs2239527, rs2071591, rs909253, and rs1041981, with r2 ≥0.92 constructed the risk 

haplotype. It was associated with BOP, PPD 4–5mm, and PPD ≥6 mm, but not with the 

number of teeth, ABL, or angular bone defects. In the Parogene 1 population, the 

strongest association emerged with BOP and PPD ≥6 mm, with an odds ratio (OR) 2.63 
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(95% CI 2.21–3.20, p = 0.00056) and 2.90 (2.37–3.52, p = 0.00042), respectively (Table 7). 

In the Parogene 2 and the Health 2000 Survey populations, the risk haplotype also 

significantly associated with the parameters BOP and PPD ≥6 mm. The ORs were 1.35 

(1.10–1.72, p = 0.0097) and 1.49 (1.18–2.01, p = 0.0099), respectively, in the Parogene 2 

population, and 1.38 (1.05–1.79, p = 0.0105) and 1.31 (1.06–1.61, p = 0.007), respectively, 

in the Health 2000 Survey population. The rest of the SNPs studied (n = 12) were not 

associated with the periodontal parameters in the replication populations. 

 

 

Table 7. Associations between BOP(%) and PPD ≥6 mm and the SNPs comprising the risk 

haplotype in the Parogene 1 population. 

   
BOP (%) PPD ≥6 mm 

Gene SNP 
Risk 

Allele 

Odds Ratio 

(95% CI) 

p-

value 

Haplotype 

p-value 

Odds Ratio 

(95% CI) 

p-

value 

Haplotype 

p-value 

BAT1 intron rs11796 A 2.5 (2.3–2.6) 0.0008 

0.00056 

2.7 (2.3–3.2) 0.0008 

0.00042 

BAT1 intron rs3130059 G 2.5 (2.3–2.6) 0.0008 2.7 (2.3–3.2) 0.0008 

BAT1 5’ UTR rs2239527 C 2.6 (2.2–3.1) 0.0003 2.9 (2.4–3.5) 0.0004 

NFKBIL1 intron rs2071591 G 2.6 (2.2–3.1) 0.0003 2.9 (2.4–3.5) 0.0004 

LTA intron rs909253 A 2.5 (2.1–3.1) 0.0006 2.8 (2.4–3.4) 0.0007 

LTA exon 

[Thr] →[Asn] 
rs1041981 C 2.5 (2.1–3.1) 0.0006 2.8 (2.4–3.4) 0.0007 

P-values obtained from the Wald statistic of the logistic regression model adjusting for age, sex, smoking, 

BMI, and diabetes. BOP, bleeding on probing; PPD, probing pocket depth; UTR, untranslated region; CI, 

confidence interval. 

 

 

After analyzing the single periodontal parameters, we studied the association of the risk 

haplotype with advanced and severe periodontitis. Advanced periodontitis was 

significantly associated with the risk haplotype in the Parogene 1 population with an OR 

1.69 (1.25–2.24, p = 0.041) compared to healthy and mild periodontitis. This finding was 

not replicated in the other populations. However, severe periodontitis was significantly 

associated with the risk haplotype in the Parogene 1, Parogene 2, and Health 2000 Survey 

populations compared to healthy and gingivitis subjects (Figure 5).  

 

Since 5 of the 18 SNPs studied in the Parogene 1 population were located in the LTA gene 

and two of the SNPs belonged to the risk haplotype, serum LTA concentrations were 

measured in the Parogene 1 and 2 populations. The results showed that higher serum LTA 

concentrations were significantly associated with the risk alleles of the LTA SNPs rs909253 

and rs1041981 when the homozygous subjects for these alleles were compared. The 



53 
 

median (interquartile range) LTA concentrations were as follows: AA 32.4 (13.1–68.8) 

pg/ml and GG 27.4 (15.3–164) pg/ml for rs909253 (p = 0.001), and CC 32.4 (13.1–86.8) 

pg/ml and AA 26.6 (13.8–273) pg/ml for rs1041981 (p = 0.001). In addition, LTA cytokine 

was localized in the inflamed gingival tissue in periodontitis, since connective tissue of the 

periodontal patient stained positive for LTA when compared to samples derived from the 

periodontally healthy subjects showing no LTA immunostaining. The immunostaining was 

seen in the surrounding stroma and on the surface of cells with apparent lymphocyte 

morphology.  

 

 
Figure 5. Association of the risk haplotype with severe periodontitis. Severe periodontitis was defined as 

follows: ABL in the middle third of the root to total bone support loss, a PPD of ≥6 mm at >3 sites, and a PPD 

of 4 to 5 mm at ≥10 sites. The reference group included healthy and gingivitis subjects with no ABL, no PPD 

of ≥6 mm, and a PPD of 4 to 5 mm at <10 sites. The logistic regression model was adjusted for age, sex, 

smoking, BMI, and diabetes in the Parogene, and additionally for regional factor, CVD, and metabolic 

syndrome in the Health 2000 Survey. The OR (▪) and the 95% confidence interval (CI). ***p < 0.001; *p < 

0.05. 
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4.2. Endotoxemia in patients with periodontitis (II, III) 

 

4.2.1. Plasma LPS activity and lipoprotein distribution in periodontitis patients before 

and after periodontal treatment (II) 

 

In the treatment study conducted in Sweden, periodontal therapy was successful 

according to all registered clinical parameters. Among the plasma parameters, HDL 

cholesterol, apoA-1, and TG concentrations increased significantly after periodontal 

treatment, but changes in total and LDL cholesterol concentrations were not statistically 

significant. Furthermore, the inflammatory markers, CRP, TNF-α, IL-1β, and IL-6, remained 

unchanged after periodontal treatment.  

 

The post-treatment plasma LPS activity was modestly, but significantly higher compared 

to pre-treatment values (55.7 ± 24.2 vs. 44.0 ± 17.0 EU/ml, p = 0.006). However, post-

treatment plasma LPS levels decreased in 22 subjects (50.0 ± 18.8 to 41.4 ±17.1 EU/ml, p = 

0.002). These patients had also higher pre-treatment HDL cholesterol (1.47 ± 0.47 vs. 1.24 

± 0.43 mmol/l, p = 0.044) and apoA-1 levels (1.68 ± 0.27 vs. 1.48 ± 0.32 g/l, p = 0.044), and 

lower CRP (1.16 ± 1.26 vs. 2.64 ± 3.11 mg/l, p = 0.028) and IL-6 concentrations (1.77 ± 1.61 

vs. 3.44 ± 2.71 pg/ml, p = 0.011) compared to the 12 patients whose LPS levels were 

elevated. No clinical parameters, sex, age, or smoking habits explained the difference 

observed in LPS activities between the groups of 12 patients and 22 patients. 

 

The LPS activity was distributed among the main lipoprotein classes as follows: VLDL-IDL 

41.3 ± 12.1%, LPDP 25.0 ± 7.0%, HDL3 13.1 ± 5.2%, LDL 11.5 ± 3.7%, and HDL2 9.2 ± 2.8% 

(Figure 6). There were no significant differences in the LPS distribution between 

lipoprotein classes when comparing the pre-treatment and post-treatment values. Plasma 

LPS activity and VLDL-associated LPS activity correlated positively with depth of 

pathologically deepened periodontal pockets (r = 0.390; r = 0.345) and mobile teeth (r = 

0.399; r = 0.484), and with CRP (r = 0.328; r = 0.367) and TG concentrations (r = 0.703, r = 

0.427) (p < 0.05 in all cases). In addition, VLDL-LPS correlated positively with serum TNF-α 

concentration (r = 0.436, p < 0.05). 

 

In addition, we determined the mass compositions of the lipoprotein classes before and 

after periodontal treatment. However, there were no significant changes in the 

compositions, except a minor decrease in the PL content of the VLDL-IDL fraction (29.0 ± 

4.2% vs. 27.7 ± 3.6%, p = 0.049). The pre-treatment lipoprotein compositions are 

presented in Table 8. The cholesterol content of the VLDL-IDL fraction was surprisingly 

high at the cost of TG when compared to the expected composition in literature (Table 4). 
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Figure 6. LPS distribution between lipoprotein classes before periodontal treatment. The lipoprotein 

fractions were isolated by sequential ultracentrifugation from 34 patients with periodontitis. LPS activity was 

measured using the Limulus amebocyte lysate assay. VLDL, very low-density lipoprotein; IDL, intermediate-

density lipoprotein; LDL, low-density lipoprotein; HDL, high-density lipoprotein; LPDP, lipoprotein-deficient 

plasma. Mean (SD) levels are shown. 

 

 

Table 8. Lipoprotein compositions before periodontal treatment 

 Mean mass composition (SD) 

 VLDL-IDL LDL HDL2 HDL3 

Cholesterol (%) 40.9 (5.8) 36.1 (4.3) 21.7 (2.2) 17.0 (3.1) 

Triglycerides (%) 16.0 (5.1) 9.1 (3.0) 5.2 (2.0) 3.5 (1.5) 

Phospholipids (%) 29.0 (4.2) 40.0 (4.7) 33.4 (4.8) 34.4 (10.2) 

Proteins (%) 14.0 (2.0) 14.9 (1.8) 39.7 (4.0) 45.1 (8.1) 

*Wilcoxon signed-rank test 

 

 

4.2.2. Proatherogenic properties of VLDL isolated from periodontitis patients before 

and after periodontal treatment (III) 

 

The results from the study II prompted us to further investigate certain proatherogenic 

properties of VLDL-associated LPS. In the treatment study carried out in Finland, 

periodontal therapy appeared successful according to all clinical parameters registered. 

Compared to the baseline, the proportion of teeth with deepened periodontal pockets 

and the number of bleeding or suppurating periodontal pockets were significantly lower (p 

< 0.001) after periodontal treatment.  
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We determined the mass composition of the isolated VLDL before (Figure 7) and after 

periodontal treatment. There were no significant changes in the mean mass composition 

values. Additionally, the apoE content and LPS activities in the VLDL preparations and 

serum triglycerides, CRP, fibrinogen, and SAA did not differ significantly before vs. after 

treatment. However, serum HDL cholesterol, LDL cholesterol, and total cholesterol 

concentrations were higher after periodontal treatment. 

 

 

 
 

The macrophages were incubated in the presence of pre- and post-treatment VLDL, and 

the cellular cholesterol content and expression of selected genes were measured. The 

contents of total, esterified, and free cholesterol in the macrophages incubated with VLDL 

preparations did not differ between pre- and post-treatment results. However, the uptake 

of VLDL measured as the cholesterol ester/total cholesterol ratio was nearly 2-fold higher 

(p < 0.001) compared to control LPS-free VLDL, and the uptake of pre-treatment VLDL 

correlated positively with the VLDL-associated LPS activity (r = 0.436, p = 0.016) and apoE 

content (r = 0.374, p = 0.046).  

 

Periodontal treatment did not affect the potential of VLDL to alter the expression of the 

pro-inflammatory genes (TNF-α, MCP-1, IL-6, and CD14), or genes involved in cholesterol 

uptake and transport (nCEH, ABCA1, ABCG1, SR-B1, ACAT1, CD36, CD68). In addition, 

periodontal treatment did not affect cell culture media concentrations of the secreted 

pro-inflammatory cytokines (TNF-α, MPC-1, IL-6).  

 

To further analyze whether the clinical symptoms had an effect on VLDL and macrophage 

inflammatory status, and on cholesterol metabolism, we divided the patients into two 

groups indicating moderate and severe periodontitis based on median levels of clinical 

symptoms. Before the treatment, the VLDL of the patients with more severe periodontitis 

induced higher mRNA expression of TNF-α (p = 0.009) and MCP-1 (p = 0.0067) than VLDL 

derived from the patients with moderate periodontitis (Figure 8). In addition, the VLDL of 

patients with severe periodontitis with pus formation had higher LPS activity (p = 0.017) 

Figure 7. The mass compositions of VLDL before 

periodontal treatment. The mass composition data 

between the pre- and post-treatment VLDL particles did 

not differ significantly. In addition, there were no changes 

in apoE/total protein ratios or LPS activities in the pre- 

and post-treatment VLDL particles. PROT, total protein; 

CHOL, cholesterol; TG, triglyceride; PL, phospholipid. The 

mean mass percentages are presented. 
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and caused on average 18% higher cholesterol uptake (cholesterol ester/total cholesterol, 

p = 0.014) by the macrophages (Figure 9).  

 

The mRNA expression of TNF-α in macrophages incubated in the presence of pre-

treatment VLDL correlated positively with other gene expression levels as follows: MCP-1 

(r = 0.902, p < 0.001), CD14 (r = 0.887, p < 0.001), and IL-6 (r = 0.921, p < 0.001). There was 

a positive correlation between the TNF-α protein concentration in the culture media and 

mRNA expression of the 4 studied pro-inflammatory genes. In addition, a positive 

correlation of ABCA1 with nCEH and ABCG1 mRNA expression levels was demonstrated. 

 

When macrophages were treated with pre-treatment VLDL preparations, the macrophage 

free cholesterol/total cholesterol ratio correlated significantly with the VLDL composition: 

VLDL-triglycerides (r = 0.487, p = 0.007) and VLDL-phospholipids (r = -0.368, p = 0.045). 

 

 
Figure 8. Macrophage gene expression levels and clinical symptoms of the periodontitis patients. Patients 

were divided into two groups (moderate and severe periodontitis) based on the median levels of clinical 

symptoms: periodontal pockets, bleeding on probing (BOP) and suppuration. The macrophage mean (SD) 

gene expression levels after incubation in the presence of VLDL preparations derived from the patients are 

shown for TNF-α (A) and MCP-1 (B). 
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Figure 9. VLDL-associated LPS (A) and VLDL-induced cholesterol uptake by macrophages (B) in patients 

with different degree of inflammation in the periodontium. Suppuration is divided into two groups 

according to the median level observed in the population. Mean (SD) levels are shown. 
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4.3. Endotoxemia and nutrition in patients with cardiometabolic disorders (IV) 

 

Prevalences of cardiometabolic disorders in the FINRISK 1997 nutrition cohort (n = 2452) 

at baseline are presented in Figure 10. During the follow-up of 10 years, altogether 137 

incident CHD events appeared among the subjects with no history of CVD (n = 2301). At 

baseline, the majority of the established risk factors for cardiometabolic disorders differed 

significantly, as expected, when comparing the subjects with and without such disorders. 

The risk factors included age, sex, smoking, education years, serum total cholesterol, HDL 

cholesterol, TG, GGT, glucose, and CRP concentrations, and BMI, blood pressure, and 

prevalent MetS, diabetes, and CHD.   

 
Figure 10. Percentage values of the cardiometabolic disorders in the FINRISK 1997 nutrition cohort (n = 

2452). MetS, metabolic syndrome; CHD, coronary heart disease. 

 

 

In a univariate linear regression models, there was no significant correlation between 

serum LPS activity and total energy, carbohydrate, or fat intake. In a multivariate model, 

however, LPS activity was directly associated with total energy intake, with 

unstandardized regression coefficients / 100 kcal (SE) of 0.84 (0.43, p = 0.050), and 

indirectly with the carbohydrate intake, -0.056 (0.02, p = 0.026). The associations were 

only seen in lean, healthy subjects, and not in subjects with obesity, MetS, diabetes, or 

CHD.  

 

Subjects with prevalent obesity, MetS, and diabetes had significantly higher serum 

endotoxin activity compared to healthy subjects, but there was no statistically significant 

difference between those with and without prevalent CHD (Table 9). However, after 10 

years of follow up, the mean (SD) serum endotoxin activity was significantly higher in 

subjects with CHD events compared to subjects without: 71.7 (39.1) vs. 62.8 (37.1) pg/ml 

(p = 0.006).   
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Table 9. Serum endotoxin activities in the prevalent cardiometabolic disorders. 

 Obesity*** MetS*** Diabetes* CHD 

 No Yes No Yes No Yes No Yes 

LPS activity 

(pg/ml) 

54.2 

(29.4) 

68.5 

(39.8) 

56.6 

(31.0) 

79.6 

(44.8) 

63.2 

(37.0) 

68.9 

(39.7) 

63.4 

(37.3) 

68.0 

(37.2) 

Mean (SD) levels are shown. MetS, metabolic syndrome; CHD, coronary heart disease. ***p < 0.001; *p ≤ 

0.05. 

 

 

In the logistic regression models, high LPS activity was defined as follows: quartiles 2–4 

compared to quartile 1 for obesity, Mets, and CHD, and pg/ml increase in the LPS activity 

for diabetes. High LPS activity significantly associated with prevalent obesity, MetS, 

diabetes, and CHD with the ORs (95% CI) of 1.49 (1.21–1.85, p < 0.001), 2.56 (1.97–3.32, p 

< 0.001), 1.01 (1.00–1.01, p = 0.032), and 1.94 (1.06–3.52, p = 0.031), respectively, when 

adjusted for total energy. The associations were independent of cardiometabolic risk 

factors, CRP, and total energy or macronutrient (protein, fat, and fiber) intake. Table 10 

presents the associations between risk factors and prevalent CHD (adjusted for total 

energy).  

 

 

Table 10. Associations between risk factors and CHD 

 
Prevalent CHD

1
 Incident CHD

2
 

 
OR (95%CI) p-value HR (95%CI) p-value 

Age (year) 1.12 (1.09–1.16) <0.001 1.08 (1.06–1.10) <0.001 

Sex (male) 3.33 (1.94–5.71) <0.001 2.80 (1.87–4.21) <0.001 

Education (year) 0.94 (0.87–1.0) 0.049 0.93 (0.87–0.98) 0.007 

Current smoking 1.29 (0.75–2.21) 0.360 1.63 (1.11–2.41) 0.013 

Hypertension 1.10 (0.67–1.81) 0.719 1.37 (0.91–2.06) 0.137 

Chol (mmol/l) 0.63 (0.49–0.79) <0.001 1.01 (0.86–1.20) 0.875 

CRP (mg/l) 0.99 (0.95–1.03) 0.557 1.03 (1.01–1.06) 0.01 

Energy (kcal) 1.00 (1.00–1.00) 0.371 1.00 (1.00–1.00) 0.196 

High LPS* 1.94 (1.06–3.52) 0.031 1.88 (1.13–3.12) 0.015 

1
Logistic regression model 

2
Cox regression model  

*Q2–4 vs. Q1 

 



61 
 

During the follow-up of 10 years, altogether 137 incident CHD events appeared among the 

subjects with no history of CVD at baseline (n = 2301) (Table 11). Figure 11 presents the 

Kaplan-Meier analysis for incident CHD events in LPS quartiles. Finally, discrimination of 

LPS activity for incident CHD events in the 10-year follow-up is presented in Table 12. 

 

 

Table 11. Incident CHD events in LPS quartiles in the 10-year follow-up. 

LPS quartiles No. of subjects No. of CHD events Mean survival time (SEM) HR (95% CI)* p-value* 

Q1 564 18 10.85 (0.037) . 0.004 

Q2 566 34 10.73 (0.050) 1.89 (1.06–3.35) 0.029 

Q3 600 37 10.65 (0.065) 1.96 (1.11–3.43) 0.020 

Q4 571 48 10.56 (0.029) 2.72 (1.58–4.67) <0.001 

*Cox regression model. LPS, lipopolysaccharide; CHD, coronary heart disease; SEM, standard error of mean; 

HR, hazard ratio; 95% CI, 95% confidence interval.  

 

 

 

 
Figure 11. Kaplan-Meier analysis for incident CHD events in LPS quartiles (Q) in the 10-year follow-up. CHD 
events included subjects with myocardial infarction, coronary death, coronary bypass surgery, or 
percutaneous transluminal coronary angioplasty. 
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Table 12. Discrimination of LPS activity for incident CHD events in the 10-year follow-up. 
 

 Reference risk score c-statistic Extended risk score c-statistic p-value 

CHD events 0.565 ± 0.026 0.573 ± 0.026 0.996 
Area under curve values ± standard errors are shown. The reference risk model included age, sex, education 

years, current smoking, cholesterol, and CRP concentrations, hypertension, and energy intake in the follow-

up of ten years. The risk prediction model was extended with serum LPS activity (Q2–4 vs. Q1). 

 

 

High LPS was significantly associated with incident CHD events in the multivariate analysis, 

with a hazard ratio of 1.88 (1.13–3.12, p = 0.015) (Table 9). The result did not change even 

if the model was adjusted for macronutrient intake instead of total energy, or further for 

prevalent obesity, MetS, or diabetes.  
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5. DISCUSSION 

 

5.1. Genetic basis of periodontitis  

 

Periodontitis is a complex inflammatory disease in which numerous causal factors 

simultaneously play a role (Laine et al. 2012). The chronic oral infection is mainly initiated 

by Gram-negative bacteria, but the subgingival biofilm alone is insufficient to induce the 

disease. Therefore, the destruction of the periodontal tissue is not caused by 

periodontopathogens per se, but rather by the inflammatory response of the host. Among 

the other environmental and risk factors for periodontal disease, genetic variations, 

mainly SNPs, have been suggested to associate with the susceptibility to periodontitis 

(Vaithilingam et al. 2014).  

 

To date, only three GWA studies in relation to chronic periodontitis have been conducted, 

and the study results remain diffuse (Table 2). Hypothesis-free and unbiased analysis of 

GWA studies requires large sample sizes comprising thousands of cases to be able to 

confirm the risk variants involved (with the generally accepted significance level of p 

< 5 x 10-8) (Manolio 2010; Thompson et al. 2011), and rare variants strongly contributing 

to the genetic risk of a disease may not reach statistical significance at the genome-wide 

level. Therefore, haplotype analysis may turn out to be a promising approach in studies 

concerning the association between genetic polymorphism and periodontitis (Laine et al. 

2012), as the findings of this thesis also demonstrate. Study I established a novel 

haplotype, which showed an association with the risk of periodontitis.  

 

The risk haplotype was located on the MHC class III region and comprised six SNPs of the 

BAT1, NFKBIL1, and LTA genes with very high linkage disequilibrium (r2 ≈ 1). Since the 

Parogene 1 and 2 populations together formed the cohort and were strongly related to 

each other, the results were further replicated in an independent population, the Health 

2000 Survey. The analysis revealed that the risk haplotype was common in the study 

population, with the lowest frequency of 42% in controls to the highest of 81% in cases. 

Interestingly, the BAT1-NFKBIL1-LTA region has been cited in studies concerning other 

inflammatory diseases, including CVD, suggesting that periodontitis and CVD may share 

genetic polymorphisms. It has been reported that there is at least a moderate genetic 

effect of the BAT1-NFKBIL1-LTA region in the modulation of risk for MI in Europeans and 

Japanese (Ozaki et al. 2002; Koch et al. 2007).  In addition, a recent GWAS studying CAD 

found an association with 6p21 loci (Takeuchi et al. 2012), the same region where our 

haplotype located. Further investigations are still needed to improve understanding of the 

genetic factors interacting in periodontitis. In the future, the identification of novel 

polymorphisms associated with periodontitis may open new possibilities for diagnostics 

and prevention of the disease. 
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5.2. Periodontal parameters and definition of periodontitis  

 

The symptoms of periodontitis include gingival bleeding, increased periodontal pocket 

depth, and destruction of periodontal ligaments and alveolar bone. Finally, the disease 

may lead to the loss of teeth. In study I, periodontitis was not among the original selection 

criteria for the study populations, since Parogene 1 and 2 included middle-aged or older 

symptomatic patients who underwent coronary angiography, and the Health 2000 Survey 

was a population-based sample with an age limitation of ≥ 45 years. Therefore, the idea 

was first to study the registered clinical signs of periodontitis: the number of teeth, BOP, 

PPD, ABL, and angular bone defects. The results indicated that the risk haplotype had the 

strongest association with the periodontal parameters PPD ≥ 6 mm and BOP. Although the 

investigation of single periodontal parameters may reduce the misclassification of 

subjects, the association of genetic polymorphisms with periodontitis itself as a disease 

was further examined. In particular, it was of interest to compare the healthy subjects 

with those having severe periodontitis, the so-called periodontitis extremes. The risk 

haplotype was significantly associated with severe periodontitis compared to healthy 

subjects and subjects with gingivitis. 

 

PPD and BOP have been considered indicators of the current pathology of periodontitis, 

whereas CAL is a cumulative measure of the loss of support caused by the aggregate 

effects of pathogenic factors such as periodontitis and trauma (Lockhart et al. 2012). In 

addition, the number of teeth and ABL describe the history of periodontal disease. The 

definition of periodontitis is usually a combination of pocket formation and ABL, as also in 

the analysis in study I for advanced and severe periodontitis. The aim was to combine the 

different states of periodontitis by using the parameters PPD and ABL. However, together 

with PPD, CAL is regarded as a major parameter in the definition of a “periodontitis case” 

according to current European and American criteria (Table 3). It was not possible to 

determine CAL in study I, since the cementoenamel junction of the teeth was not 

registered, and therefore our definitions for periodontitis are not directly based on those 

given by the EFP or the CDC-AAP. Neither was the cementoenamel junction of the teeth 

registered in studies II or III. 

 

In dentistry, different definitions and classifications typically have a minor significance for 

the clinical practitioner, since the screening of cases in need of treatment is the first 

priority. This thesis research comprised study populations with a distinct periodontal 

status and general health. In study I, the periodontal status of patients with cardiologic 

problems and subjects from the population-based study was investigated. Patients in 

studies II and III were generally healthy, but diagnosed to have periodontitis and to be in 

need of periodontal treatment. Therefore, the criteria for a “periodontitis case” in these 

studies were more exclusive than the criteria for advanced periodontitis in study I. In 



65 
 

study II, patients were included if they had at least seven sites with at least 6 mm loss of 

clinical attachment. In addition to the periodontal parameters examined in study I, visible 

plaque, teeth with furcation lesions, and number of mobile teeth were investigated in 

study II before and after periodontal treatment. Furthermore, in study III the patients had 

to have more than 6 teeth with clinical and radiographical attachment loss and inflamed 

periodontal tissues. The lack of an ideal classification system for a “periodontitis case” 

remains the major limiting factor in determining and comparing results across periodontal 

research. 

 

5.3. Proinflammatory mediators  

 

The innate immune system is dependent on pathogen recognition by certain receptors, 

such as TLRs, to initiate an immune response. The NFκB family of transcription factors is 

an important activator of genes associated with innate and adaptive immunity, 

inflammatory responses and the development and maintenance of the immune system 

(Bonizzi and Karin 2004). The NFκB pathway has been recognized as responsible for 

mediating many functions of proinflammatory cytokines, which may be a multidirectional 

link among periodontitis and cardiometabolic disorders. In the circulation, LPS binds to a 

pathogen-sensing system and induces the release of various inflammatory cytokines, 

which play an important role in different metabolic processes. In the present thesis, 

cytokines LTA, TNF-α, MCP-1, and IL-6 were especially investigated. 

 

LTA expression by lymphocytes (T, B, and natural killer cells) is critical to various 

inflammatory processes (Vassalli 1992). In study I, 5 of the 18 significant SNPs associating 

with periodontal parameters were located in the LTA gene. Interestingly, LTA 

polymorphism has also been associated with the susceptibility to periodontitis in some 

previous studies (Holla et al. 2001; Fassmann et al. 2003; Palikhe et al. 2008; Vasconcelos 

et al. 2012). Our risk haplotype further comprised two LTA SNPs, from which the SNP 

rs1041981 is exonic with a threonine-to-asparagine change (Posch et al. 2003). The other 

SNP, rs909253, has previously been associated with periodontitis (Fassmann et al. 2003; 

Vasconcelos et al. 2012), but also with other chronic diseases and MI (Ozaki et al. 2002). 

Indeed, previous studies indicate that LTA and the immune system are also involved in 

lipid homeostasis, and the role of LTA in lipid-associated diseases such as MI and 

atherosclerosis has been investigated. Schreyer et al. demonstrated that a loss of LTA but 

not TNF-α reduced atherosclerosis in mice (Schreyer et al. 2002). In addition, LTA may 

induce the expression of various adhesion molecules and other genes in human 

endothelial cells, thereby promoting atherosclerosis (Suna et al. 2008). A recent meta-

analysis concluded that SNP rs1041981 may be associated with susceptibility to MI, 

whereas SNP rs909253 may increase susceptibility to MI only in Asians (Li et al. 2014). In 

study I, all Parogene patients but only a few among the Health 2000 Survey subjects 
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suffered from cardiologic problems. Therefore, the association of the risk haplotype with 

CVD was not reasonable to investigate in our study. 

 

In study I, LTA SNPs were associated with the presence of periodontitis, and the 

homozygous subjects had higher serum LTA concentrations. This clearly prompted us to 

consider whether LTA is expressed in periodontitis-affected gingival tissue. Since gingival 

biopsy samples were not available from Parogene 1 and 2 patients, from whom serum 

samples were available, a limited number of samples available from random periodontitis 

patients and healthy controls were decided to use. LTA was localized in the inflamed 

gingiva, suggesting that LTA polymorphisms may contribute to the regulation of 

inflammatory processes in periodontitis. LTA has the potential to be a new target 

molecule in periodontal research.  

 

LTA polymorphisms have been shown to influence TNF-α production, and the effect is 

induced by the stimulus of LPS or Gram-negative bacteria (Temple et al. 2003). In study II, 

VLDL-bound LPS activity from periodontitis patients correlated positively with serum TNF-

α concentrations, and in study III, the VLDL derived from periodontitis patients induced 

the gene expression and protein secretion of TNF-α and MCP-1 in macrophages, thereby 

potentiating their inflammatory activation. Although in study I no association of serum 

LTA with LPS levels was detected, periodontitis as a source of LPS may induce elevated 

serum LTA levels in the risk allele carriers. Thereby, LTA may play a significant role in 

mediating the systemic effects of periodontitis.  

 

In addition, the risk haplotype comprised regions of the BAT1 and NFKBIL1 genes. BAT1 

has been suggested to be a negative regulator of inflammation via the down-regulation of 

acute phase cytokine production (Allcock et al. 2001). NFKBIL1 has also been considered 

as an inhibitor of NFκB, and a lower expression of NFKBIL1 has been detected in 

periodontal ligament fibroblasts of periodontitis patients compared to control subjects 

(Scheres et al. 2011). This may suggest that NFκB is more easily activated in periodontitis 

patients. Furthermore, polymorphisms in the NFKBIL1 gene have also been linked to other 

inflammatory diseases, e.g. rheumatoid arthritis (Lin et al. 2006). The role of BAT1 and 

NFKBIL1 polymorphisms in periodontitis needs to be further examined. 

 

5.4. The effects of periodontitis-induced endotoxemia on lipoproteins 

 

Periodontal pathogens and their LPS may continuously have access to the systemic 

circulation via inflamed periodontal pockets or saliva through gastrointestinal tract, 

thereby inducing systemic inflammation as LPS responses (Wahaidi et al. 2011; Erridge 

2011). In addition, periodontitis may induce proatherogenic alterations in lipoproteins 

(Pussinen and Mattila 2004), since up to 80–96% of plasma LPS is carried by lipoprotein 
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particles (Levels et al. 2001; Harris et al. 2002). The key finding of study II was that the 

majority of serum LPS activity (41%) was associated with the pro-atherogenic VLDL-IDL 

fraction in periodontitis patients. In addition, this fraction was highly enriched with 

cholesterol. Plasma or VLDL-IDL-associated LPS correlated positively with the severity of 

periodontitis measured as the depth of deepened periodontal pockets, as well as CRP, and 

the plasma TG concentration, and negatively with plasma HDL cholesterol. There was a 

significant increase in plasma TG levels after periodontal treatment, which is in 

concordance with the modest increase in LPS. This may also be due to variance in fasting 

time. 

 

Indeed, the association between periodontitis and disturbances in lipoprotein metabolism 

appears to be most distinct for apoB-100 containing lipoproteins (Griffiths and Barbour 

2010). In addition to increased LDL cholesterol and TG levels, and decreased HDL 

cholesterol concentrations (Buhlin et al. 2003; b Pussinen et al. 2004; c Pussinen et al. 

2004), periodontitis associates with an elevated VLDL cholesterol concentration (Ramirez-

Tortosa et al. 2010). Although VLDL has been shown to be independently associated with 

the presence and progression of atherosclerosis (Tatami et al. 1981; Rutledge et al. 2000), 

it has rarely been characterized in periodontitis patients. In study II, we fractionated all 

the main lipoprotein classes. The isolated VLDL-IDL fraction was highly enriched with 

cholesterol, which supports a previous study on VLDL (Ramirez-Tortosa et al. 2010). It has 

been suggested that LDL and VLDL lipoproteins may replace HDL as the dominant LPS 

carrier during acute infection and inflammation, since HDL levels are low (Kitchens et al. 

2003). After demonstrating in study II that a substantial portion of LPS activity is found in 

the VLDL fraction, the next target was to examine the effect of periodontal treatment on 

the proatherogenic properties of VLDL in study III.   

 

In study III, it was observed that the VLDL of patients with severe periodontitis induced 

higher mRNA expression and protein secretion of TNF-α and MCP-1 in macrophages when 

compared with the VLDL derived from the patients with moderate periodontitis. LPS 

challenge induces the expression of inflammatory genes in macrophages, and it has been 

shown that VLDL potentiates LPS-induced TNF-α expression in macrophages (Stollenwerk 

et al. 2005). This inflammatory activation of macrophages was also uniquely evident in 

study III with endogenous VLDL-LPS. In addition, the VLDL of patients with severe 

periodontitis with pus formation contained more LPS and caused higher cholesterol 

uptake by macrophages. Small-sized VLDL may be taken up by macrophages to produce 

foam cells (Gianturco et al. 1982), while large VLDL with a diameter exceeding about 75 

nm are excluded from the intima (Nordestgaard and Zilversmit 1988). As a limitation, 

there was no opportunity to measure VLDL particle sizes in studies II and III. However, 

VLDL cholesterol uptake by macrophages was associated with the LPS content of the VLDL 

particles, and the macrophage cholesterol content correlated positively with the VLDL 
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triglycerides and negatively with the phospholipids in study III. This suggests that the 

cholesterol uptake process in macrophages favored triglyceride-rich particles with high 

LPS activity. Thus, LPS associated with VLDL particles may promote macrophage 

inflammatory gene expression, foam cell formation, and eventually atherogenesis. 

 

5.5. Local and systemic effects of periodontal treatment 

 

In both treatment studies (studies II and III), the periodontal treatment was successful 

according to all periodontal parameters registered. Although local healing of the 

periodontium was accomplished, the systemic inflammation status and the lipoprotein 

profile failed to improve. In study II, the mean LPS activity increased after periodontal 

treatment due to 12 patients, while in 22 patients the LPS activity in fact decreased. This 

may be more or less explained by the preferable systemic inflammation status of the 22 

patients: they had higher HDL cholesterol and lower CRP and IL-6 serum levels before 

treatment compared to the other 12 patients. In study III, periodontal treatment affected 

neither the VLDL composition, including its LPS content, nor cholesterol uptake by 

macrophages. The association of LPS with VLDL may further increase the proatherogenic 

function of circulating LPS due to the chronic nature of periodontitis. In addition, the 

results indicate that these proatherogenic properties associated with VLDL metabolism 

are dependent on the severity of the disease and are refractory to periodontal treatment. 

 

A recent systematic review and meta-analysis concluded that CRP, IL-6, TNF-α, and total 

cholesterol significantly decreased, and HDL cholesterol increased after periodontal 

treatment (Teeuw et al. 2014). In particular, patients with co-morbidities, such as CVD and 

diabetes, benefitted most from periodontal therapy. In studies II and III, the inflammation-

associated markers did not decrease after periodontal treatment (3-month and 6-month 

follow-up). This reflects the complexity and persistence of the disease, whereby a short 

follow-up time may complicate the observation of major improvements in the systemic 

inflammatory status.  However, the study populations were relatively small (n = 34 and n = 

30) to detect statistically significant changes in the inflammation status before and after 

treatment. In addition, patients expressed notable heterogeneity, including their age and 

diverse characteristics of the periodontal disease, which evidently affected the differences 

observed in treatment responses. Particularly in study III, the standard deviations and 

ranges were wide when analyzing the whole study population. Therefore, some of the 

results are based on subgroup analyses, i.e. subjects with moderate and severe 

periodontitis and subjects with low and high systemic inflammation markers. Studies with 

longer follow-up times may be needed to further analyze the systemic effects of 

periodontal treatment. Moreover, the role of genetics in the treatment outcome remains 

to be investigated. 
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5.6. Endotoxemia, cardiometabolic disorders, and diet  

 

A number of epidemiological studies have demonstrated that periodontitis is a risk factor 

for many chronic systemic diseases and conditions, such as CVD, obesity, MetS, and T2DM 

(Lalla and Papapanou 2011; Lockhart et al. 2012; Genco and Borgnakke 2013). The most 

likely sources of circulating LPS levels are chronic infections by Gram-negative microbes, 

such as periodontal pathogens. In addition to the dissemination of periodontopathogens 

and LPS from the inflamed periodontium to the systemic circulation, they may be 

transported to the gut via saliva. It has been shown in mice that periodontopathogens 

may associate with elevated blood endotoxin levels by decreasing the gene expression of 

tight junction proteins in the gut epithelium (Arimatsu et al. 2014). Furthermore, LPS 

translocation from the gut to the circulation benefits from a high-fat diet, because this 

may increase the permeability of the gut epithelium and elevate the chylomicron levels 

(Cani et al. 2007; Musso et al. 2011). Relatively small intervention studies in humans in a 

controlled environment have reported an influence of the diet on circulating LPS levels: a 

high-fat and energy-rich diet may induce endotoxemia and thereby low-grade 

inflammation (Erridge et al. 2007; Ghanim et al. 2009). Also, it has been hypothesized that 

genetic factors and other dietary components, such as pH or salt content, might play a 

role in LPS translocation from the gut (Neves et al. 2013). Lifestyle, dietary habits, and the 

use of antimicrobial agents may affect the variety of bacterial species and the microbial 

load, modulating the composition of commensal microbiota and resulting in metabolic 

endotoxemia, which may also exist in apparently healthy subjects (Cani et al. 2007; Neves 

et al. 2013). However, the lack of clinical oral health examination in studies investigating 

endotoxemia complicates the interpretation of results. 

 

Study IV of this thesis demonstrated that endotoxemia was strongly associated with 

prevalent obesity, MetS, diabetes, and CHD independently of established cardiometabolic 

risk factors, factors affecting serum LPS activity, and most importantly, energy or 

macronutrient intake. In addition, high serum endotoxin activity was associated with an 

elevated risk of incident CHD events in a ten-year follow-up. A direct association between 

endotoxemia and energy intake, and an indirect association with carbohydrate intake 

were detected, but these associations were only observed in healthy, lean subjects. 

Interestingly, obesity modifies the long-term associations between systemic inflammation 

and periodontitis. It has been shown that periodontitis affects systemic inflammation in a 

significant dose-dependent manner in lean subjects, but not in obese subjects (Gocke et 

al. 2014). This may suggest that endotoxemia and low-grade inflammation resulting from 

obesity and other cardiometabolic disorders is a persistent state, wherein periodontitis 

and a high-fat diet play only a minor role. In contrast to some previous studies (Erridge et 

al. 2007; Ghanim et al. 2009), no association between endotoxemia and fat intake was 

observed in this thesis. These results are in agreement with a very recent feeding trial, 
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which demonstrated no significant impact of fat intake on serum LPS activity in healthy 

subjects or patients with type 1 diabetes (Lassenius et al. 2014). However, our study 

design differed from feeding trials, since the fasting state serum LPS activity was analyzed 

instead of postprandial endotoxemia. In study IV, the nutrition information was based on 

24-h dietary recall, which may be skewed due to random diet variations preceding the 

blood sampling. Long-term follow-up data on nutrition are needed to further analyze the 

systemic effects of nutrition on endotoxemia. 

 

It has been shown that periodontitis is associated with body weight (Saxlin et al. 2011), 

and a dose-response relationship between BMI and the incidence of periodontitis has 

been reported (Morita et al. 2011). In mice, periodontitis itself could be potentiated by 

obesity induced by a high-fat diet via systemic inflammation (Blasco-Baque et al. 2012). 

The lack of clinical oral health examination is an important limitation of study IV. A 

detailed periodontal examination would have further enlightened the relationship 

between periodontitis and cardiometabolic disorders. However, only information on the 

missing teeth at the baseline was collected from the present population-based cohort. 

Intriguingly, the number of missing teeth as a marker for the history of periodontitis was 

shown to be associated with an increased risk of incident CVD events, incident diabetes, 

and all-cause mortality (Liljestrand et al. 2014).  

 

5.7. Challenges in the determination of LPS activity 

 

Serum endotoxin activity levels are widely measured by the use of the commercially 

available Limulus amebocyte lysate assay, which is the method of choice out of three basic 

LAL test methodologies available for the detection of endotoxin (Hurley 1995). LAL is an 

aqueous extract of blood cells called amoebocytes from the horseshoe crab (Limulus 

Polyphemus), which is extremely sensitive to the presence of endotoxin. However, there 

are some challenges in measuring LPS activities with the LAL assay. One needs to 

appreciate that the measurement itself demands exhaustive care, since the contamination 

of environmental endotoxin in any solution or vessel is a common cause of experimental 

error. 

 

It has been shown in vitro that LPS is able to activate leukocytes in the circulation in the 

pg/ml range (Nakagawa et al. 2002). The mean (SD) LPS activities measured from the 

thesis study populations were 44.0 (17.0) EU/ml in study II and 63.6 (37.2) EU/ml in study 

IV. These activities were in the same range as activities determined, for example, from 

Finnish healthy blood donors (35.9 EU/ml) (Pradhan-Palikhe et al. 2010) and middle-aged 

subjects (122.8 EU/ml) (c Pussinen et al. 2007). Furthermore, Goto et al. reported an LPS 

concentration of 6.7 pg/ml in healthy elderly subjects (Goto et al. 1994), and Pearson et al. 

determined an LPS concentration of 850 pg/ml in patients with Gram-negative sepsis 

http://en.wikipedia.org/wiki/Amoebocyte
http://en.wikipedia.org/wiki/Atlantic_horseshoe_crab


71 
 

(Pearson et al. 1985). In addition to the variety of units reported and selection of assay kits 

and standardization available, there are even differences among the assay lots. Therefore, 

it is complicated to compare the results of LPS measurements between studies. 

 

There is a lack of techniques to determine the serum LPS activity derived from specific 

periodotopathogens, since the LAL assay is not species-specific for any bacteria. LPS 

originates from Gram-negative bacteria from various sources via several routes, including 

commensal microbiota, the diet, and different bacterial infections, and the LAL assay 

measures the mixture of LPS in the sample. Therefore, the true origin of serum endotoxin 

activity in the studies remains unidentified. It has been shown that periodontitis patients 

suffer from endotoxemia (Silver et al. 1977; Geerts et al. 2002; c Pussinen et al. 2004), but 

a specific technique to measure LPS concentrations derived from periodontopathogens 

needs still to be established.   
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6. CONCLUSIONS 

 

The aim of the thesis research was to investigate whether LPS links periodontitis with 

cardiometabolic disorders. The following topics were examined: the genetics predisposing 

to periodontitis (I), the systemic effects of endotoxemia induced by periodontitis (II, III) 

and cardiometabolic disorders (IV), as well as the influence of periodontal treatment on 

plasma LPS activity and lipoprotein composition (II, III). 

 

It was demonstrated that a haplotype comprising six SNPs of the BAT1, NFKBIL1, and LTA 

genes was associated with the risk of periodontitis. The risk haplotype showed an 

association with BOP, PPD ≥6 mm, and severe periodontitis, and this discovery was 

replicated in two different study populations with concordance. To study the systemic 

effects of the polymorphisms, the serum LTA concentrations were measured. High serum 

LTA concentrations were associated with the LTA SNPs of the risk haplotype in 

homozygous patients. In addition, LTA was expressed in the inflamed periodontal tissue. 

The human MHC region has been shown to be significant in both innate and adaptive 

immunity, wherein LTA, stimulated by LPS, may further potentiate the systemic effects of 

periodontitis.  Therefore, genetic variation in the MHC class III region may be important in 

the pathogenesis of periodontitis.  

 

In periodontitis patients, LPS was associated with the proatherogenic VLDL-IDL fraction. 

Although local healing of the periodontium was successful after periodontal treatment, 

the systemic inflammation status failed to improve in all periodontitis patients, reflecting 

the persistence of the disease. There were no significant changes in plasma LPS activity or 

its distribution among lipoprotein classes after the periodontal treatment. However, the 

VLDL of the patients with severe periodontitis induced higher expression of 

proinflammatory cytokines in macrophages when compared with VLDL derived from the 

patients with moderate periodontitis. In addition, VLDL isolated from patients with severe 

periodontitis with suppuration contained more LPS and induced higher cholesterol uptake 

in macrophages in vitro. Endotoxemia and low-grade inflammation originating from 

periodontitis may promote the proatherogenic properties of VLDL particles to induce 

macrophage activation and foam cell formation. Thus, the thesis results suggest that LPS is 

involved in periodontitis-induced atherogenesis.    

 

The study with a large, population-based cohort indicated that endotoxemia is strongly 

associated with prevalent cardiometabolic disorders, i.e. obesity, MetS, diabetes, and 

CHD. In addition, high serum LPS activity is associated with an increased risk of future CHD 

events. The results support the role of bacterial infections and the immune response in 

the etiology of cardiometabolic disorders. Even though energy intake was correlated with 

LPS activity in lean, healthy subjects, these associations were generally independent of 
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energy or macronutrient intake, emphasizing other LPS sources in addition to the gut. 

Since endotoxemia triggers low-grade inflammation, the findings of the present thesis 

support the role of LPS acting as a link between periodontitis and cardiometabolic 

disorders (Figure 12). In the future, better understanding of the molecular mechanisms 

related to LPS-mediated pathways may provide novel information for estimating the 

individual risk of cardiometabolic disorders.  
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Figure 12. Schematic representation of lipopolysaccharide acting as a link between periodontitis and 

cardiometabolic disorders. LPS, lipopolysaccharide; HDL, high-density lipoprotein; VLDL, very low-density 

lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; CRP, C-reactive protein; SAA, 

serum amyloid A; LTA, lymphotoxin-α; TNF-α, tumor necrosis factor α; MCP-1, monocyte chemoattractant 

protein-1.    
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