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Abstract 

Hearing is a versatile sense allowing us, among other things, to avoid danger and engage 

in pleasurable discussions. The ease with which we follow a conversation in a noisy 

environment is astonishing. Study I in this thesis used functional magnetic resonance 

imaging to explore the large-scale organization of speech and non-speech sound 

processing during a naturalistic stimulus comprised of an audio drama. Two large-scale 

functional networks processed the audio drama; one processed only speech, the other 

processed both speech and non-speech sounds. 

Hearing is essential for blind subjects. Anatomical and functional changes in the brains 

of blind people allow them to experience a detailed auditory world, compensating for the 

lack of vision. Therefore, comparing early-blind subjects’ brains to those of sighted people 

during naturalistic stimuli reveals fundamental differences in brain organization. In Study 

II, naturalistic stimuli were employed to explore whether one of the most distinguishing 

traits of the auditory system—the left-lateralized responses to speech—changes following 

blindness. As expected, in sighted subjects, speech processing was left-hemisphere 

dominant. Curiously, the left-hemisphere dominance for speech was absent or even 

reversed in blind subjects. 

In early-blind people, the senses beyond vision are strained as they try to compensate 

for the loss of sight; on the other hand, the occipital cortices are devoid of normal visual 

information flow. Interestingly, in blind people, senses other than vision recruit the 

occipital cortex. Additional to changes in the occipital cortex, the sensory cortices devoted 

to touch and hearing change. Data presented here suggested more inter-subject variability 

in auditory and parietal areas in blind subjects compared with sighted subjects. The study 

suggested that the greater the inter-subject variability of the network, the greater the 

experience-dependent plasticity of that network. 

As the prefrontal areas display large inter-subject spatial variability, the activation of 

the prefrontal cortex varies greatly. The variable activation might partly explain why the 

top-down influences of the prefrontal cortex on tactile discrimination are not well 

understood. In the fourth study, anatomical variability was assessed on an individual level, 

and transcranial magnetic stimulation was targeted at individually-chosen prefrontal 

locations indicated in tactile processing. Stimulation of one out of two prefrontal cortex 

locations impaired the subjects’ ability to distinguish a single tactile pulse from paired 

pulses. Thus, the study suggested that tactile information is regulated by functionally 

specialized prefrontal subareas. 
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1. Introduction 

In a utopian (or dystopian) not-too-distant future, brain activity is measured while subjects 

freely interact with the environment. For now, naturalistic settings during brain scanning 

are best mimicked when subjects engage in conversation (Stephens et al., 2010), play 

games (Kätsyri et al., 2013; Montague et al., 2002), or view movies (Hasson et al., 2004; 

Lankinen et al., 2014). The first brain-scanning experiments employing naturalistic stimuli 

explored inter-subject similarities of brain activity in subjects viewing a movie (Bartels & 

Zeki, 2004; Hasson et al., 2004). Thereafter, researchers employed naturalistic stimuli to 

gather information about how senses, such as hearing, function (Wilson et al., 2008). 

Since hearing helps us to shift our attention to a potentially harmful stimulus, avoid 

danger, and communicate, hearing is arguably our most important sense. One of the 

marvelous traits of our auditory system is how it manages to segregate speech from other 

sounds continuously surrounding us. Study I in this thesis explored the large-scale 

organization of speech and non-speech sound processing during a naturalistic stimulus 

derived from an audio drama.  

Naturally, people with impaired vision are very dependent on hearing. Anatomical and 

functional changes in the brains of blind people reflect the coping strategies adopted by 

blind people to manage life in the dark. Therefore, comparing early-blind subjects’ brains 

to those of sighted people during naturalistic stimuli can reveal instructive differences in 

brain organization. Accordingly, earlier studies suggest that listening to speech activates 

the right hemisphere more in blind than in sighted subjects (Röder et al., 2000; Röder et 

al., 2002). In Study II, naturalistic stimuli were employed to explore whether one of the 

most distinguishing traits of the auditory system—the mostly left-lateralized responses to 

speech—changes following blindness. 

In early-blind people, the senses beyond vision are strained as they try to compensate 

for the loss of sight; on the other hand, the occipital cortices are devoid of normal visual 

information flow. Interestingly, in blind people, senses other than vision recruit the 

occipital cortex (Bavelier & Neville, 2002; Pascual-Leone et al., 2005). Additionally, the 

sensory cortices devoted to touch (Sterr et al., 1998) and hearing (Elbert et al., 2002) 

expand. In fact, the areas responding to sound in blind people are described as an 

“extended network”. This extended network seems to react less strongly to sounds than 

the auditory areas of sighted subjects (Gougoux et al., 2009; Watkins et al., 2013).  

The wiring of brain networks is both congenitally determined (Glahn et al., 2010; 

Jamadar et al., 2013) and shaped by experience (Jang et al., 2011; Thompson et al., 2001). 

The brain networks of infants are quite similar (Fransson et al., 2007), but inter-subject 

differences accumulate with age (Fair et al., 2009; Satterthwaite et al., 2013). Thus, it is 

credible that compensatory changes following sensory loss affects the brain networks 

uniquely in each subject (Lee et al., 2012). We hypothesized that the more experience-

dependent plasticity a brain network undergoes following sensory loss, the more the brain 

network extent is expected to vary between subjects. This hypothesis was explicitly tested 

in Study III by assessing the variability of auditory, occipital and other functional 

networks in blind and sighted subjects.  
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Variability of anatomical and functional connectivity increases noise in group 

measurements (Speelman & McGann, 2013). The large inter-subject variability of frontal 

areas (Mueller et al., 2013) could be one of the reasons why it is hard to segment the 

prefrontal cortex (PFC) into functional subareas. In Study IV, diffusion tensor imaging 

(DTI) and tractography were employed to search for individual anatomical tracts 

connecting the primary sensory cortices to prefrontal areas. We then hypothesized that 

prefrontal areas modulate tactile perception by top-down mechanisms. We stimulated 

individually-chosen prefrontal primary somatosensory tracts with transcranial magnetic 

stimulation (TMS) while subjects performed a tactile discrimination task. Our aim was to 

find out whether we could influence tactile processing by TMS-induced top-down 

modulation of the primary sensory cortex. 
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2. Literature review 

2.1 The auditory system 

2.1.1 Anatomy and physiology of the auditory system 

Hearing is the process of translating sound into a meaningful auditory signal. Figure 1 

shows the structures that convey sound waves to the auditory cortex. Changes in air 

pressure (sounds) push the eardrum, a thin membrane at the transition between the outer 

and middle ear. Three small bones, together called the ossicles are located in the air-filled 

middle ear and convey the vibrations of the eardrum to the inner ear’s oval window. The 

vibrations of the oval window are transferred to the fluid located in the spirally-formed 

cochlea (Hudspeth, 1989). The ossicles amplify the movement of the eardrum twentyfold. 

This amplification is important since the resistance to movement is larger in the fluid-

filled cochlea compared with that of the air-filled middle ear. The pressure applied at the 

oval window moves the round window at the other end of the cochlea. The cochlea of the 

inner ear contains a tonotopically organized basilar membrane. The movement of the oval 

window produces vibratory movements in the basilar membrane. Since the basilar 

membrane is narrow and stiff at the base but wide and floppy at the apex, low-frequency 

vibrations move the apex, while high frequencies move the base of the basilar membrane 

(Bear et al., 2001). Motion of the basilar membrane causes movement of hair cells in the 

organ of Corti, contained in proximity to the basilar membrane. Bending of cilia, at the top 

of the hair cells, results in the release of neurotransmitters that in turn gives rise to an 

action potential propagating along the auditory nerve. The resulting action potential 

encodes the auditory signal’s frequency, intensity and time-course (Hudspeth, 1989). The 

action potentials move along the auditory nerve to the ventral cochlear nucleus and the 

superior olive of the brainstem. From here, the signal continues to the inferior colliculus, 

medial geniculate nucleus of the thalamus and finally to the primary auditory cortex 

(Hudspeth, 1997). The primary auditory cortex, comprising parts of the superior temporal 

gyrus and Heschl’s gyrus (Morosan et al., 2001), is tonotopically organized (Merzenich & 

Brugge, 1973; Moerel et al., 2012). Additionally, some neurons are intensity-tuned (Bear 

et al., 2001). Both hemispheres receive input from both ears; thus, in the case of unilateral 

cortical lesion, auditory functions are preserved (Bear et al., 2001). 
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Figure 1 Anatomy of hearing. First, sound waves enter the outer ear. The eardrum in the 

middle ear transforms the sound waves into vibrations that are amplified by the 

ossicles. The cochlea of the inner ear transforms the signal into action potentials that 

are conveyed by the auditory nerve to the brainstem, thalamus, and finally to the 

primary auditory cortex. Source Wikimedia Commons. Credit: Zina Deretsky, 

National Science Foundation. 

2.1.2 Speech and non-speech sound perception 

Papua-New Guinea strikingly emphasizes how naturally languages evolve for humans. In 

Papua-New Guinea, a population of 3.9 million people speak 832 languages—that is, on 

average, one language for every 4500 people (Anderson, 2004). Apparently, language is 

so innate to humans that a speechless tribe has yet to be found (Bear et al., 2001)!  

Studies of speech impairments resulted in the functional specialization hypothesis, 

suggesting specialization of brain areas for specific tasks. Franz Joseph Gall was one of 

the first to suggest that lesions to specific areas of the brain cause selective speech 

impairments. Therefore, he reasoned, some brain areas must be specifically used for 

speech (Bear et al., 2001). During the 19th century, Paul Broca and Carl Wernicke 

provided further evidence that different brain areas had different roles in speech 



 

 

 

 

12 

production and language processing. Broca studied several aphasic subjects with left-sided 

frontal lobe lesions and reasoned that the left hemisphere controls language. Carl 

Wernicke described deficits in speech processing after lesions to the left posterior superior 

temporal gyrus and suggested that this area is responsible for giving speech a meaning 

while Broca’s area controls speech production. Extending the findings of Wernicke, 

Norman Geshwind proposed a theory of language processing and production, called the 

Wernicke-Geschwind model (Bear et al., 2001; Geschwind, 1970). According to the 

model, describing the process of mimicking a word, a word is first processed in the 

auditory cortex. Meaning to the word is then supplied in Wernicke’s area and the angular 

gyrus. From there, the neural signal representing the word proceeds through the arcuate 

fasciculus to Broca’s area where ‘the word’ is transformed to the muscular movements 

required for speech production. The motor cortex is responsible for coordinating the 

movements of the articulate organs to produce speech. The Wernicke-Geschwind model 

is—according to current science—outdated, but the longevity of the model is striking 

evidence of its explanatory power (Poeppel et al., 2012).  

A recent dual stream model explaining speech perception proposes that speech 

processing follows a ventral stream for speech comprehension and a dorsal stream for 

controlling articulation (Hickok & Poeppel, 2007). Both streams start with a spectro-

temporal analysis carried out bilaterally in the supratemporal cortex. The ventral stream 

involves the temporal lobes, the middle temporal gyrus (MTG) and the inferior temporal 

sulcus, while the dorsal stream encompasses parietal and frontal areas along with Broca’s 

area. According to the dual stream model, the parietal-temporal boundary works as a hub 

for input from other modalities and sensorimotor integration. The dorsal stream is thought 

to be very left-lateralized while the ventral stream is weakly left-lateralized (Hickok & 

Poeppel, 2007).  

The motor theory of speech suggests the involvement of motor networks in both 

speech comprehension and perception. The theory proposes that speech is perceived rather 

as corresponding vocal tract gestures than as sound patterns (Liberman & Mattingly, 

1985). As speech comprehension probably includes several specialized streams integrating 

large portions of the cortex (Poeppel et al., 2012), one theory of speech perception does 

not necessarily exclude other theories. Importantly, speech comprehension benefits from 

distributed connectivity (Obleser et al., 2007), and even perceiving meaning to words and 

sentences probably involves a distributed network (Poeppel et al., 2012). Several temporal 

processing windows are involved during naturalistic listening and speech processing 

(Stephens et al., 2013). Low-level areas process speech on a timescale of seconds, whereas 

higher brain areas, such as the parietal and frontal areas, integrate information needed to 

understand a full narrative (Lerner et al., 2011). 

The temporal information conveyed by speech is important for speech comprehension. 

Naturalistic speech perception probably relies on continuous chunking of speech into 

~200-ms frames. Thus, speech perception is probably dependent on syllable flow, since 

syllable duration is approximately in this range (Luo & Poeppel, 2007). Speech 

comprehension is not only a bottom-up process but relies equally on top-down control. 

For instance, predictable words are easier to understand than unexpected words 

(Schwanenflugel & Shoben, 1985). In fact, in some brain areas, the speaker’s brain 



 

 

 

 

13 

activation is preceded by the listener’s brain activation (Stephens et al., 2010). The better 

the anticipatory coupling of the speaker-listener, the better the understanding is (Stephens 

et al., 2010). 

Language and handedness are both often lateralized to the left. The left-hemisphere 

dominance for speech, suggested first by Paul Broca, is supported by studies using the 

invasive Wada procedure to show that in 96% of right-handed subjects, speech is 

represented in the left hemisphere. In contrast, only 70% of the left-handed have speech 

represented in the left hemisphere (Rasmussen & Milner, 1977). The Wada procedure 

requires an injection of barbiturate to one hemisphere at a time through the internal carotid 

artery and is thus invasive. Functional magnetic resonance imaging (fMRI) might be an 

equally reliable but non-invasive alternative to the Wada procedure for studying 

hemispheric language representation (Binder et al., 1996; Dym et al., 2011). The gross 

anatomy of the brain mirrors the hemispheric differences: the left planum temporal, which 

is involved in language processing, is bigger than the right (Geschwind & Levitsky, 1968). 

Interestingly, hemispheric asymmetry is already present in infants’ brains and could thus 

be congenital (Witelson & Pallie, 1973). Genetic models are, however, insufficient to 

explain why speech is left-lateralized, so experience-driven plasticity could partly 

contribute to the development of left-dominant responses to speech (Günter, 2006). 

Music perception involves parts of the speech processing network (Koelsch, 2011; 

Koelsch et al., 2002). Although speech and music perception might activate the same 

regions, it seems that the brain responses to music are more right-lateralized than 

responses to speech (Tervaniemi & Hugdahl, 2003). The same goes for recognizing 

voices, which mainly activate a right hemispheric network (Formisano et al., 2008). The 

differences in lateralization between speech and music might be due to different temporal 

and spectral characteristics and demands contained in speech compared with music 

(Koelsch, 2011). During naturalistic stimuli, the brain processes non-speech sounds 

differently and in distinct areas from speech sound processing (Lahnakoski et al., 2012). 

As presented above for speech processing, a dual-pathway model has also been proposed 

for non-speech sound processing in both humans and animals. According to the model, the 

ventral stream processes object identification and the dorsal stream processes localization 

of sounds in space (Lewis et al., 2004; Rauschecker, 2011; Romanski et al., 1999). It is 

unclear if speech and non-speech sound processing conform to these streams 

(Rauschecker, 2011).  

2.2 Anatomy and physiology of the somatosensory system 

Although we traditionally refer to touch as one sense, it is comprised of at least four 

different modalities: proprioceptive, thermal, pain, and tactile somatic sensation (Tortora 

& Derrickson, 2009). The skin contains many types of receptors reacting to these different 

aspects of touch. The most prevalent touch receptors are mechanoreceptors that react to 

physical distortion of the skin, resulting in action potentials that spread through the 

primary afferent axons to the dorsal root ganglion of the spinal cord or brain stem. The 

dorsal column-medial lemniscus pathway conducts the sensation of touch, pressure, 
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vibration and conscious proprioception to the brain (Tortora & Derrickson, 2009). This 

pathway leads from the entry point in the spinal cord along the dorsal column to the dorsal 

column nuclei in the medulla. The medulla is the termination point of the first-order 

neuron that started at the mechanoreceptor. Here, the neuron synapses with the second-

order neuron that then crosses the midline. The second-order neuron then continues 

through the medulla, pons, and midbrain, and synapses with the third-order neuron in the 

ventral posterior nucleus of the thalamus, which is the end point of the second-order 

neuron. From here onwards, the thalamic third-order neuron projects to the primary 

somatosensory cortex positioned in the central sulcus and the postcentral gyrus of the 

parietal lobe. A lesion to the primary sensory cortex impairs somatic sensations (Bear et 

al., 2001). 

The primary somatosensory cortex has a somatotopic arrangement with specific parts 

of the body represented in distinct areas. The size of the area representing the different 

parts of the body is proportional to the density, frequency of usage, and the importance of 

the sensory input received from the skin area. In the 1980s, the plasticity of the 

somatosensory cortex was addressed by surgically removing a finger of the owl monkey. 

Remapping of the cortex revealed that the area of the cortex initially devoted to the 

removed finger subsequently reacted to sensory stimulation of the adjacent fingers 

(Merzenich et al., 1984). With prolonged deprivation, the cortical remapping increased 

(Pons et al., 1991). Interestingly, to influence the cortical representation of the skin of a 

finger, it is enough to stimulate the finger more than the other fingers. Increased useage 

increase the fingers representation in the cortex (Elbert et al., 1995; Jenkins et al., 1990). 

Similarly, reorganization of the motor cortex happens surprisingly fast when subjects train 

for instance finger opposition sequences (Karni et al., 1995; Karni et al., 1998).  

The encoding of complex tactile patterns, such as recognizing the keys in your pocket, 

requires large cortical receptive fields and likely involve the posterior parietal cortex. The 

Gerstmann syndrome reveals the importance of the posterior parietal cortex for more than 

just tactile perception. Gerstmann syndrome resulting in finger agnosia, writing disability, 

difficulty in learning or understanding arithmitic, and left-right disorientation, follows 

from a lesion to the inferior parietal lobule (Rusconi et al., 2010). 

Perhaps the simplest test of tactile spatial resolution is the two-point discrimination 

threshold. Discrimination thresholds vary throughout the body, with the fingertips being 

the most sensitive parts. Since the fingertips have a disproportionally large representation 

in the cortex, much computational power is devoted to the fingertips. Perhaps this is the 

reason blind people read Braille with their fingertips rather than their elbow (Bear et al., 

2001). Both spatial and temporal tactile discrimination tasks activate several cortical and 

subcortical areas. Functional magnetic resonance imaging reveals that the supplementary 

motor area and the anterior cingular gyri are activated bilaterally during tactile temporal 

discrimination (Pastor et al., 2004). 

Tracing studies in non-human primates indicate that the primary sensory cortex has 

cortical connections with the PFC (Preuss & Goldman‐Rakic, 1989), but the specific roles 

of these connections are unknown. However, it seems plausible that the PFC gates 

irrelevant information, thus aiding the performance of working memory tasks (Carlson et 

al., 1997; Hannula et al., 2010; Yamaguchi & Knight, 1990). Subjects with lesions in the 
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PFC perform poorly in working memory tasks including distractors (Chao & Knight, 

1995). 

2.3 Anatomy and physiology of the visual system 

Vision not only transforms wavelengths of light to sensory perception, but allows us to 

deduct information from far-away scenes in the fastest possible way. When a photon 

enters the eye, it projects through the lens and the vitreous humor of the corpus to the 

retina. The retina consists of photoreceptor cells containing rods and cones. Rods provide 

night vision, whereas the three types of cones permit color vision since they react to 

different wavelengths of light. The photoreceptors are responsible for turning light into 

electrical signals, a process called phototransduction (Arshavsky et al., 2002). Photocell 

receptors synapse with bipolar cells that in turn project to ganglion cells conducting action 

potentials through the optic nerve to different parts of the brain (Bear et al., 2001). 

The optic nerve conducts signals from the retina to the lateral geniculate nucleus in the 

thalamus through three different pathways: the parvocellular, magnocellular, and 

konicocellular pathways. Signals from the retina are also conducted to the superior 

colliculus of the midbrain, the basal optic system, and the pretectum. The superior 

colliculus and the basal optic system control eye movement. The pretectum controls the 

papillary size and circadian rhythm (Bear et al., 2001). Although still debated, brain tissue 

possibly responds directly to light. An fMRI experiment revealed changes in brain 

function when light was directed directly onto the brain through the ear canals (Starck et 

al., 2012). 

From the thalamus, the optic radiation projects to the visual cortex in the occipital 

lobe. The visual cortex consists of a myriad of areas responsive to different parts of visual 

scenes. Orientation tuning emerges in the primary visual cortex (Hubel & Wiesel, 1959). 

The primary visual cortex also contains ocular dominance columns (Wiesel et al., 1974) 

and retinotopic maps (Daniel & Whitteridge, 1961). Occipital visual areas other than the 

primary and secondary visual cortex are referred to as extrastriate visual areas. These 

include visual areas V3, V4 and V5/MT which process various stimulus attributes. For 

instance, area MT reacts to moving stimuli (Zeki et al., 1991). Monkey studies suggest 

that at least 32 separate visual areas exist (Felleman & Van Essen, 1991). The receptive 

field sizes of the visual cortex seem to increase when moving from lower to higher visual 

areas (Nurminen, 2013). 

A visual scene is usually rich in information. Thus, mechanisms guiding attention are 

necessary (Ungerleider & Leslie, 2000). The visual areas are arranged hierarchically, with 

increasingly complex information processed in areas positioned higher in the visual 

hierarchy. The dual stream hypothesis suggests that the dorsal and ventral stream project 

from the primary visual areas. The dorsal stream processes spatial attention; the ventral 

stream aids in recognition, identification and categorization of visual stimuli (Goodale & 

Milner, 1992; Milner & Goodale, 2008). The streams project to different parts of the brain, 

but interact with each other richly (Farivar, 2009). In addition to the occipital areas, frontal 

and parietal areas control visual attention (Ungerleider & Leslie, 2000). 
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In the visual system, genetic mechanisms as well as innate retinal firing shape the brain 

connections during fetal development (Goodman & Shatz, 1993). However, visual 

experience is necessary for the maintenance and full development of visual connections 

(Wiesel, 1982). An experiment involving newborn cats showed that, if one eyelid is 

sutured shut (monocular visual deprivation) for three months, the visual cortical cells 

became unresponsive to visual stimulation through the deprived eye. Most of the cortical 

cells normally responding to the deprived eye responded to visual stimulation of the non-

deprived eye (Wiesel & Hubel, 1963). The non-deprived eye recruited the ipsilateral 

visual cortex at the expense of the deprived eye, and after a critical period, this change was 

permanent even after removing the sutures of the deprived eye. After suturation of both 

eyes (binocular visual deprivation) of a newborn cat for 3 months few active visual cortex 

cells, without tuned orientation preferences, remained (Hubel & Wiesel, 1963; Wiesel & 

Hubel, 1965a; Wiesel & Hubel, 1965b). Surprisingly, the cats with binocular visual 

deprivation had rather normal visual cortex structure, although cell shrinkage was 

prevalent; however, after the eyes were re-opened, the cats behaved as if blind. Wiesel and 

Hubel were awarded the Nobel Prize in 1981 for their discoveries concerning the plasticity 

of information processing in the visual system (Nobelprize.org). 

2.4 Effects of early blindness on the brain 

In all sensory systems, experience-driven synaptic plasticity is the last step of neuronal 

pathway formation and takes place mainly after birth. This experience-dependent 

refinement of the congenitally-wired brain is instrumental for the function of the human 

brain (Fagiolini & Hensch, 2000). After birth, all sensory systems are very sensitive to 

experience—this is the critical period. After this initial critical period, the brain remains 

plastic throughout life, but the sensitivity is decreased, and the mechanisms are different 

(Hensch, 2005). 

As discussed in the previous chapter, cats with bilaterally sutured eyelids have rather 

normal structure of the visual cortex; however, although eyes are reopened after the 

deprivation period, the cats act as if blind. Considering that the visual cortex develops 

despite binocular visual deprivation, but is functionally inoperative, the ability of the 

nervous system to change following experience may be the basic mechanism that adapts 

us to our environment (Wiesel, 1982). The critical period refers to the time during which 

the brain retains its strong ability to rewire its neural connections into their final networks. 

It is thought that the critical period allows experiences to prune the neural networks, 

choosing the best neural connections available among several competing inputs (Hensch, 

2005). The duration of the early critical period is specific for different brain areas but is 

quite limited in adulthood. However, after the critical period has ended, the brain remains 

plastic (Fagiolini & Hensch, 2000). 

Both genetics (Brun et al., 2009; Glahn et al., 2010; Jamadar et al., 2013), practice 

(Jang et al., 2011) and disease (Greicius et al., 2004) influence the brain’s function and 

structure. However, the effect of genes and environment on brain structure and function 

depends on the brain area, with strong genetic influences on sensory areas such as 
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occipital areas, and strong environmental effects on prefrontal areas (Brun et al., 2009). 

After damage to sensory organs, the central nervous system reorganizes as discussed 

previously. Learning new skills and extensive training also change the structure 

(Draganski et al., 2004; Maguire et al., 2000) and function (Herdener et al., 2010; Karni et 

al., 1995; Karni et al., 1998) of the brain. 

In blind people, the somatosensory cortical area representing the Braille reading finger 

expands following reading practices (Pascual-Leone & Torres, 1993). Interestingly, 

disturbing the somatosensory system with TMS in blind subjects reading Braille does not 

result in more mistakes in Braille reading, while TMS to the occipital cortices of blind 

subjects does (Cohen et al., 1997). The occipital lobe usage in blind people during Braille 

reading is an example of cross-modal plasticity. Tactile sensations activate the primary 

visual cortex in early blind subjects. However, the critical period regulates this activation, 

and subjects who became blind after age 16 do not activate V1 during tactile 

discrimination tasks (Sadato et al., 2002). 

In addition to cross-modal plasticity, intra-modal plasticity is present following early 

blindness. Subjects reading Braille with three fingers and at least some subjects who read 

Braille with one finger exhibit disorganization of the normal pattern of finger 

representation in the primary sensory cortex (Sterr et al., 1998). Furthermore, the subjects 

who use three fingers to read Braille misidentify the fingers following a brief touch to the 

fingers more often than do sighted control subjects, indicating smearing of the 

representation areas of the fingers in the blind (Sterr et al., 1998). 

Cross-modal plasticity had intrigued people since the 17th century, when Molyneux 

proposed the following thought-experiment: 

“Suppose a man born blind, and now adult, and taught by his touch to distinguish between 

a cube and a sphere of the same metal, and nighly of the same bigness, so as to tell, when 

he felt one and the other, which is the cube, which the sphere. Suppose then the cube and 

sphere placed on a table, and the blind man be made to see: quaere, whether by his sight, 

before he touched them, he could now distinguish and tell which is the globe, which the 

cube?” 

-Question by William Molyneux to John Locke (Locke, 1700) 

Molyneux and Locke were of the opinion that a cross-modal transformation of noumenal 

information derived with the sense of touch to the visual sense is impossible. On the other 

hand, we know that the entire cortex is highly interconnected. Pascual-Leone et al. (2005) 

suggested two types of plasticity, in the brains of blind people: compensatory plasticity or 

general loss. These two broad types of plasticity either aid the blind subject and are 

compensatory, or lead to maladjustments as e.g. the inability to tell fingers apart (Sterr et 

al., 1998) or impairing localization of certain sounds (Gori et al., 2014; Zwiers et al., 

2001). Functional connectivity studies in blind people show evidence for both the general 

loss hypothesis and compensatory plasticity. For instance, connectivity within the 

occipital cortex is reduced, whereas connectivity between language regions, frontoparietal 

regions and the occipital cortex are strengthened (Liu et al., 2007; Wang et al., 2014). 

Furthermore, blind people display superior verbal memory compared with the sighted, 
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possibly explained by the recruitment of primary visual areas during verbal memory tasks 

(Amedi et al., 2003). Today, we now know the answer to Molyneux’s problem: if vision is 

restored with modern surgical methods after years of blindness, subjects will not (at least 

quickly) learn to visually recognize objects introduced to them by touch (Held et al., 

2011). 

Countless figures of speech that stir from visual perception demonstrate that vision 

influences our spoken language. 

"Love is a smoke raised with the fume of sighs."  

-Romeo and Juliet. Act I. Scene I. William Shakespeare 

Such grasping figures of speech makes you assume that speech networks are affected by 

vision. Figures of speech such as idioms (Rapp et al., 2012) and metaphors (Bohrn et al., 

2012) activate a left-lateralized network. Naturally, the influence of vision on speech 

networks would be absent in blind subjects. 

2.5 Functional magnetic resonance imaging 

Atoms are the building blocks of matter. Atomic nuclei are defined by their spin and 

magnetic moment. Spin and magnetic moment can only possess discretely distributed 

values. Thus, magnetic fields affect atomic nuclei in a predictable manner. A magnetic 

resonance imaging (MRI) scanner utilizes the magnetic properties of the hydrogen ions of 

water to construct a high-resolution image of an object of interest. The MRI machine 

consists of: (i) a continuous static longitudinal magnetic field; (ii) an intermittent 

resonating magnetic field delivering radio frequency pulses; and (iii) gradient coils used 

for spatial encoding of the proton positions. If the resonating magnetic field sends radio 

frequency pulses at a particular frequency (the resonance frequency), it excites the 

hydrogen ions of water. When the radio frequency pulse is turned off, several signals can 

be detected from the hydrogen ions (Huettel et al., 2004). The measurable signals 

discussed here are: (i) the T1 recovery, (ii) the T2 decay, and (iii) the T2* decay.  

Wolfgang Pauli suggested in the 1920s that atomic nuclei have magnetic properties 

that could be manipulated experimentally (Huettel et al., 2004). Isidor Rabi received the 

Nobel prize in physics in 1944 for demonstrating magnetic resonance effects in lithium 

atoms (Nobelprize.org). Felix Bloch and Edward Purcell shared the Nobel price in 1952 

for independent discoveries of magnetic resonance in solid materials (Nobelprize.org). In 

1971, Raymond Damadian distinguished cancerous tissue from healthy tissue with 

magnetic resonance effects (Damadian, 1971); the experiment fueled an increased interest 

in MRI of biological tissues. Paul Lauterbur reported the first magnetic resonance images 

of a pair of water-filled tubes sitting in a bath of heavy water in 1973 (Lauterbur, 1973). 

Echo-planar imaging (EPI), introduced by Peter Mansfield in 1976, reduced the time 

needed to collect an image by introducing gradient fields (Mansfield, 1977; Mansfield & 

Maudsley, 1976). Raymond Damadian created the first human MRI-scanner in 1977. 
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Lauterbur and Mansfield shared the Nobel prize in physiology and medicine in 2003 

(Nobelprize.org). In the 1990s, Seiji Ogawa and colleagues discovered the blood-oxygen-

level-dependent (BOLD) effect, which is now widely used to study brain function (Ogawa 

et al., 1990; Ogawa et al., 1992).  

The majority of the human body consists of water. In a static longitudinal magnetic 

field, the spin axis of the water protons aligns with the direction of the longitudinal field. 

If, however, the spin axis is tipped away from the longitudinal direction, it starts to precess 

at the Larmor frequency, a rate that is proportional to the strength of the main magnetic 

field. The spin axis can be tipped by a radio frequency pulse oscillating at the resonance 

frequency of hydrogen protons (~128 Hz at 3T). The radio frequency pulse flips the net 

magnetization vector of the protons into the transverse plane, and the protons start 

spinning in phase. The flip angle describes the number of degrees the spin axis of the 

protons is tipped from the main magnetic field. When the resonating magnetic field is 

turned off, the protons start to realign to the static field. T1 recovery describes the 

realignment of the net magnetization vector to the initial equilibrium state. The T1 

recovery can be measured as a change in the protons’ net magnetization, leading to a 

change of magnetic flux, which sensors can measure as a change in voltage. Protons of 

different tissues take a different amount of time to return to the static magnetic field, thus 

leading to T1 contrast. The T1 signal is suitable for measuring contrast between tissues, 

such as the grey and white matter (Huettel et al., 2004). At 3 tesla grey and white matter 

have T1 values of 1331 and 832 ms, respectively (Wansapura et al., 1999). 

When the radiofrequency pulse is turned off, the excited protons return to an 

equilibrium state. Meanwhile, the net movement in the transverse plane becomes less 

coherent and, thus, the transverse net magnetization will decay over time. This is the basis 

for the T2 decay, the time constant measuring loss of coherence (accumulated phase 

difference) in the transverse plane. Both the T1 and T2 relaxation times can be described 

by the Bloch equations, characterizing the change in longitudinal and transverse 

magnetization over time (Bloch, 1946; Huettel et al., 2004). 

For functional brain imaging, fast collection of brain images can be achieved by echo-

planar imaging. When performing EPI, each radio frequency pulse is followed by gradient 

echoes providing spatial encoding. As the static magnetic field is shifted with gradients, 

different image orientations are obtained. It is the gradient coils that make noise during 

MRI imaging. The gradient coils allow several slices to be imaged during one repetition of 

the oscillating magnetic field (Huettel et al., 2004). Thus, the gain in imaging speed is 

achieved by selectively exciting layers of spins (Mansfield, 1977). Using EPI and 3-mm 

voxels, a scanner can sample a whole brain in 2–3 seconds, which is fast enough for 

BOLD imaging (see next paragraph). If, however, one would like to explore MRI contrast 

mechanisms measuring direct neuronal activation, faster imaging is compulsory. Dynamic 

inverse imaging can achieve temporal resolution in the range of milliseconds by deriving 

spatial information from detectors rather than encoding the spatial location with gradients 

such as in EPI (Lin et al., 2006). 

Since brain cells have little energy storage capacity, blood must continuously supply 

glucose and oxygen to them. Although the mechanisms underlying this delivery are not 

completely understood, areas with increased neuronal activity receive increased amounts 
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of oxygenated blood flow and volume. Thus, increased rather than decreased amounts of 

oxygenated blood in a local brain area seems to indicate neuronal activity within that area 

(Huettel et al., 2004). Blood contains hemoglobin that has two different magnetic states. 

Fully oxygenated hemoglobin is diamagnetic, so it has zero magnetic moment. However, 

deoxygenated hemoglobin is paramagnetic and, thus, it distorts the magnetic field and 

introduces inhomogeneous T2* decay in areas where oxygen is sparse. Therefore, the 

signal in the transverse plane becomes less coherent (decays faster) in areas where large 

quantities of deoxygenated hemoglobin is present. Thus, the BOLD signal originates from 

the different magnetic properties of oxygenated and deoxygenated hemoglobin and is the 

basis of fMRI. Since fMRI measures changes in blood volume and flow, the fMRI signal 

is indirectly correlated to neural activity (Logothetis, 2003; Logothetis et al., 2001). The 

theoretical spatial resolution of fMRI is very good, ~1 mm, but the temporal resolution is 

in the range of seconds owing to the slow hemodynamic response (Logothetis, 2008). The 

hemodynamic response function models the shape of the hemodynamic response as 

measured by fMRI (Friston et al., 1994). The hemodynamic response function is often 

used in block and event-related design to transform the stimulus regressor into a shape 

theoretically resembling the hemodynamic response.  

2.5.1 Functionally connected networks 

 

The functional specialization theory, proposing a relationship between brain function and 

location, was first suggested by Franz Joseph Gall and Johann Gaspar Spurzheim in the 

19th century (Bear et al., 2001). The functional specialization theory was supported by 

case studies of patients such as Phineas Gage whose behavior was altered by brain lesions 

(Damasio et al., 1994). Since the early 20th century, Brodmann and others proposed that 

the brain is divided into subregions (Bear et al., 2001). The Brodmann areas are one of the 

earliest examples of histological divisions in the brain (Brodmann, 2007; Zilles & 

Amunts, 2010). However, the division of the brain based on the Brodmann areas 

corresponds at times poorly with specific functions. Perhaps the biggest drawback of the 

early cytoarchitectonic maps was that they were not registered to a stereotactic standard 

space and did not take individual variations into account (Toga et al., 2006; Zilles & 

Amunts, 2010). However, cytological maps are important when studying brain areas, as 

the demarcation of brain areas cannot be inferred based on macroscopic brain anatomy 

alone (Toga et al., 2006; Tomaiuolo et al., 1999; Zilles et al., 1997).  

Functionally connected networks are comprised of temporally-correlated regions and 

were first shown using fMRI in the bilateral motor cortices (Biswal et al., 1995). 

Functionally connected regions are apparent even in the resting brain; such networks are 

called resting-state networks (Deco et al., 2011). Some of the most consistent resting-state 

networks are: the default-mode network, the sensorimotor network comprising the pre- 

and post-central gyri, some vision-related networks and a superior temporal gyrus network 

comprising auditory areas (Damoiseaux et al., 2006). The default-mode network is 

inactivated during task performance and might be related to innate processes (Raichle et 
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al., 2001). The functional significance of the default-mode network is still debated, but 

activity in this network has been related to e.g. mind wandering (Christoff et al., 2009) and 

introspection (Raichle et al., 2001). The connectivity of at least the default-mode network 

persists despite light sedation of subjects (Greicius et al., 2008).  

A currently popular analysis method for estimating functionally connected networks is 

independent component analysis (ICA) which decomposes brain activity into maximally 

spatially independent networks (Calhoun & Adali, 2006; Calhoun & Adali, 2012; Calhoun 

et al., 2001; Kiviniemi et al., 2003). ICA has many advantages over seed-based correlation 

methods as it reliably reveals comparable resting-state and task networks, despite 

coactivation of distinct networks during tasks (Di et al., 2013; Smith et al., 2009). 

Measuring distributed connections by investigating connectivity between ICA-derived 

functional networks is a promising tool for studying whole-brain connectivity 

(Abou‐Elseoud et al., 2010; Allen et al., 2014; Jafri et al., 2008; McKeown et al., 1998; 

McKeown et al., 1997; McKeown & Sejnowski, 1998). 

Many brain areas show considerable inter-subject differences, limiting the accuracy of 

functional localization (Brett et al., 2002). However, functional connectivity studies can 

also address the inter-subject variability of brain areas. Voxelwise whole-brain analyzes 

reveal that the inter-subject variance is largest in brain areas that have expanded the most 

during evolution, such as frontal and parietal association areas (Mueller et al., 2013). As 

sensory and motor networks are mainly rearranged during childhood, while association 

areas rearrange throughout adulthood (Littow et al., 2010), experience-dependent changes 

could explain why the association areas of adults show larger inter-subject differences 

than sensory networks. 

2.5.2 Naturalistic stimuli during fMRI recordings 

Uri Hasson pioneered the use of naturalistic stimuli during fMRI recordings (Hasson et al., 

2004). Naturalistic stimuli have also been combined with imaging modalities such as 

electroencephalography (Whittingstall et al., 2010) and magnetoencephalography 

(Lankinen et al., 2014). Inter-subject correlation (ISC) is one of the successful techniques 

used for examining brain responses to naturalistic stimuli (Brennan et al., 2012; Hasson et 

al., 2004; Nummenmaa et al., 2012; Wilson et al., 2008). It is especially suitable for 

complex stimuli as it neither requires an assumption about which parts of the stimulus are 

processed by the brain nor in which area the brain processes the stimulus. ICA is also a 

useful tool for analyzing brain imaging data collected during presentation of naturalistic 

stimuli since it can subdivide the brain into functionally coherent networks (Malinen & 

Hari, 2011; Malinen et al., 2007). Studies using naturalistic stimuli can also help to 

validate findings based on simple stimuli (Rust & Movshon, 2005). Additionally, rich 

naturalistic stimuli activates more brain areas than simple stimuli (Bartels & Zeki, 2005). 

It is also more pleasant for a subject to attend to e.g. an audio drama than to listen to beeps 

or tones. 
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2.6 Diffusion weighted magnetic resonance imaging 

Brownian motion, the basis of DTI, was first described 60 BC by the Roman poet 

Lucretius (99 BC–55 BC), but was named after botanist Robert Brown (1773–1858) 

(Tóthová et al., 2011). In one of the Annus Mirabilis papers, Albert Einstein proposed that 

a macroscopic structure can move in a random fashion under the influence of the thermal 

motion of molecules (Einstein, 1905). The distance moved by a particle in pure liquid is 

proportional to the thermal energy of the molecules and is randomly distributed if 

molecules are not hindered by any structures; such movement is called isotropic. In brain 

tissue, however, the diffusion of water molecules is hindered by various structures such as 

cell membranes and fibers, and the diffusion is anisotropic. Diffusion weighted MRI is 

based on the effect Brownian movement of water molecules exerts on the T2 signal. If the 

MRI scanner employs a gradient pulse intended to rephase the spins, the gradient pulse is 

unsuccessful in rephasing protons that have moved by diffusion. Thus, the signal decay is 

related to the amount of diffusion. Since the magnetization changes if diffusion is present, 

the Bloch equations discussed in the fMRI section must be coupled with diffusion tensor 

vectors (Torrey, 1956). These equations are called the Bloch-Torrey equations. If many 

diffusion directions are estimated, an image of the likelihood of different diffusion 

directions emerges (Jones, 2010).  

The first paper on diffusion imaging was fueled by a desire to understand better the 

anatomy of the human brain (Basser et al., 1994a; Basser et al., 1994b). DTI tract maps 

coincide with earlier invasive work (Catani et al., 2002; Lawes et al., 2008). Diffusion 

imaging reveals anatomical connectivity, whereas fMRI reveals functional connectivity. It 

is useful to look at both anatomical and functional connectivity since they are predictive of 

each other but also reveal unique connections (Greicius et al., 2009; Honey et al., 2009). 

2.7 Transcranial magnetic stimulation 

Arsenne d’Arsonval conducted the first known TMS experiment in 1896 by placing the 

subject’s head inside a coil with a pulsating 42 Hz field (Cowey, 2005). TMS is a 

noninvasive way to excite the brain and has gained widespread use and interest (Hallett, 

2000). When using single pulse TMS, the coil is placed on the scalp and a brief electrical 

current is passed through the coil. The current gives rise to a brief, strong magnetic field 

that penetrates the skin and the skull and induces, through electromagnetic induction, an 

electromotive force in the brain tissue underneath the coil. According to the Maxwell-

Faraday equations, the magnetic field produces a change in the electrical potential across 

the cell membrane of the neurons in the targeted areas. This can produce either 

hyperpolarization or depolarization of the neurons. A single TMS pulse usually causes 

depolarization of the neural cell membrane, which in turn results in an action potential 

(Wasserman, 2007). 

Many different TMS pulse sequences exist, ranging from single pulse TMS to 

repetitive TMS. In a monophasic pulse the current travels in one direction, while in a 

biphasic pulse the current reverses, traveling through the coil in both directions. Biphasic 
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stimulation produces more powerful motor evoked potentials than monophasic 

stimulation. Repetitive TMS causes frequency-dependent effects on e.g. motor excitability 

and inhibition. Low-frequency stimulation causes a transient reduction in motor evoked 

potentials; high-frequency stimulation increases motor evoked potentials and reduces 

cortical inhibition (Fitzgerald et al., 2006). Repetitive TMS can also cause prolonged 

effects (Lefaucheur, 2009) and can be used for testing subjects after the TMS stimulation. 

However, a single monophasic stimulation pulse provides spatially more restricted 

stimulation than biphasic stimulation (Hannula et al., 2010), and temporally more 

restricted stimulation than repetitive stimulation. High-frequency repetitive TMS might 

induce epileptic seizures in susceptible patients, but otherwise TMS is considered safe. 

Possible clinical uses for TMS includes determining the hemisphere dominance for 

language in patients previous to brain surgery (Hallett, 2000; Wasserman, 2007)  

TMS has some major advantages over fMRI. While fMRI shows the brain areas that 

are involved with the experimental task, TMS can transiently introduce a virtual lesion and 

interfere with the task (Cowey, 2005). Thus, TMS can be used to infer whether a particular 

area is causally involved with the performance of a task (Bona et al., 2014). Combining 

TMS with MRI measurements such as fMRI and DTI has many beneficial applications. 

Combining the TMS coil with an optical tracking system and MR images of the subject, as 

seen in Figure 2, allows exact targeting of brain areas. The resolution of TMS can be as 

good as 8−13 mm (Hannula et al., 2005). As the monophasic pulse duration is only ~1 ms, 

the trigger system usually imposes the temporal limit of TMS experiments. Thus, TMS 

allows reasonable spatial resolution and excellent temporal resolution. 

Diffusion weighted images and tractography can enable stimulation of specific nerve 

bundles at an individual level, and improve the spatial specificity and efficacy of TMS 

(Nummenmaa et al., 2014). Moreover, TMS-DTI experiments can be used to explore the 

functions of areas with large inter-subject spatial variability, such as the PFC (Hannula et 

al., 2010; Savolainen et al., 2011). 
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Figure 2 Screenshot of the Nexstim TMS computer interface. Optical tracking of the subject’s 

head combined with a 3D model of the head constructed from the subject’s structural 

MR images allows the TMS pulses to be targeted at specific brain areas. The TMS 

targets are saved; thus, one can repeat stimulation of targets used in an earlier 

session. The circle pictured in the right bottom corner provides information about the 

current coil position and orientation compared with a repeated target. The red 

arrows indicate the direction of the current. 
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3. Aims of the thesis 

Of the four publications included in this thesis, two explored the processing of a 

naturalistic auditory stimulus (I and II). Two of the publications addressed functional and 

anatomical connectivity at an individual level (III and IV). Studies I and IV included only 

neurotypical subjects; studies II and III compared neurotypical and early-blind subjects. 

 

The overall goal was to investigate functional and anatomical brain networks:  

 

More specifically: 

1. Exploration of speech and non-speech sound processing networks during audio-

drama listening in sighted and early-blind subjects (I and II). 

2. Investigation of spatial variability in functional brain networks of sighted and 

early-blind subjects (III). 

3. Investigation of how TMS of the individually variable connection between the 

prefrontal cortex and primary somatosensory cortex influences tactile processing 

(IV). 
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4. Methods 

4.1 Subjects (I−IV) 

The subjects of studies I–IV participated after signing an informed consent. For all four 

studies, we received approval from the ethics committee of the Helsinki and Uusimaa 

Hospital District. Table 1 gives an overview of the subjects included in each study. 

Table 1. Overview of the subjects included in studies I−IV. 

Study Number of subjects Age range (years) Method 

 Blind Sighted Blind Sighted  

I n/a 13 n/a 19–30 fMRI during naturalistic auditory 

stimuli 

II 7 16* 19–43 19–37 fMRI during naturalistic auditory 

stimuli 

III 7** 7*** 19–43 19–37 fMRI data collected during rest and 

naturalistic auditory stimuli 

IV n/a 8 n/a 23–31 DTI and tractography to find tracts 

combining the PFC and S1; TMS of 

the tracts during a tactile 

discrimination task 

* Included 13 subjects from study I 

** The same subjects as in Study II 

*** Sampled from the 16 subjects in Study II 

 

Fifteen healthy right-handed adults participated in Study I. However, since we excluded 

one subject because of excessive movements during audio-drama scanning and another 

because the subject could not recall the storyline, we included 13 subjects (six women, 

seven men) in the analysis.  

Studies II and III included seven early-blind subjects (four women, three men; six 

right-handed, one ambidextrous by report; see Table 2 for the causes and durations of the 

blindness), and seven age- and gender-matched sighted subjects (four women, three men; 

all right-handed by report). We were unable to attain the Edinburgh Inventory score for 

one sighted subject. The means of the Edinburgh Inventory scores were similar between 

the groups (two-sample t-test, p = 0.58): the mean for the blind group was 61.4 (range 

−35–100), and for the sighted group the mean was 71.3 (range 45–100). All blind subjects 

read Braille (4.9 ± 2.6 hours/week, mean ± standard deviation; range 2–8 hours). The 

resting-state data of 16 sighted subjects (seven women, nine men; all right-handed by 

report) were used to compute the reference distribution in Study II. All subjects were 

native Finns and fluent in Finnish.  
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Table 2.  Causes and duration of the blindness of the early-blind subjects 

Age when blind Cause of blindness 

Since birth Norrie's disease, no other neurological deficits 

Since 3 years of age Cataract, aniridia 

Since birth Leber's congenital amaurosis 

Since birth Leber optic atrophy 

Since 6 months of age Retinopathy of prematurity 

Since 3 years of age Retinopathy of prematurity 

Since birth Retinopathy of prematurity 

 

Eight healthy right-handed volunteers participated in Study IV (three women and five 

men). Five of the subjects participated in all three main experiments; three subjects 

participated in two experiments.  

 

4.2 Audio drama stimulus, data acquisition and preprocessing 
(I−III) 

The stimulus used for studies I, II and III was derived from a Finnish movie called 

“Letters to Father Jaakob” (Postia Pappi Jaakobille, director Klaus Härö, Production 

company: KinotarOy, Finland, 2009). The stimulus duration was 18 min 51 s. Speech 

played mostly in the foreground and was on average 3.9 dB louder than the non-speech 

sounds, although non-speech sounds occurred more frequently, for roughly 65% of the 

stimulus duration compared with speech that occurred for 60%.  

In the movie, a woman released from prison is employed at an old dilapidated clergy 

house; her task is to help an old blind priest read and write letters. The audio drama 

included sounds from the original movie and a narration describing the surroundings and 

the actors’ actions. The scenes that were used for the stimulus included a dialogue 

between the employed woman and the priest, and between the priest and a mailman. The 

soundscape consisted of music and natural outdoor and indoor sounds, such as birdsong 

and creaking doors. 

For Study I, MIRtoolbox was used to extract envelopes showing sound power over 

time, with a sampling rate of 3000 Hz, from the original soundtrack of the movie. The 

dialogue and the narration were extracted into one amplitude envelope and all other 
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sounds into another amplitude envelope. These amplitude envelopes were used as the 

speech (dialogue and narration) and non-speech (mostly music) regressors in Study I and 

were convolved with a hemodynamic response function, then down-sampled to the fMRI 

sampling rate (0.4 Hz) (Brennan et al., 2012). The resampling steps contained anti-aliasing 

filters. 

The dialogues were recorded while the scenes were acted; thus, some non-speech 

sounds such as steps and the clatter of coffee cups were part of the speech regressor. Since 

such sounds might be more meaningful for blind than sighted subjects, and it was 

especially important to address speech processing in Study II, the soundtrack was 

manually annotated using 1-s frames. Frames containing speech were labeled as one and 

the other frames as zero. The resulting boxcar model was convolved with a hemodynamic 

response function and resampled to the fMRI sampling rate (Lahnakoski et al., 2012). 

For studies I, II and III, we obtained the MRI data with identical parameters using a 

Signa VH/i 3.0 T MRI scanner (General Electric, Milwaukee, WI, USA). We collected the 

anatomical images with a T1-weighted 3D-MPRAGE sequence with repetition time (TR) 

= 10 ms, echo time (TE) = 30 ms, preparation time = 300 ms, flip angle = 15°, field of 

view = 25.6 cm, matrix = 256 × 256, slice thickness = 1 mm, voxel size = 1 × 1 × 1 mm3, 

and number of axial slices = 178. Next, we collected fMRI data during ~10-min (240 

volumes) resting-state and ~19-min (456 volumes) audio drama scans using gradient EPI 

sequences with the following parameters: TR = 2.5 s, TE = 30 ms, flip angle = 75°, field 

of view = 22.0 cm, matrix = 64×64, slice thickness = 3.5 mm, voxel size = 3.4 × 3.4 × 3.5 

mm3 and number of oblique axial slices = 43. We instructed the subjects to lie still with 

eyes closed during scanning, and to listen attentively when presented with the audio 

drama. 

Before brain imaging, subjects listened to a 9-min introduction about the main 

characters and the scenery, to induce a similar mindset across subjects. Next, crude 

hearing thresholds were determined with a method-of-limits approach. A sound (5 

sinusoidal tones of 300, 700, 1000, 1350, and 1850 Hz; duration 50 ms) was presented 

binaurally in descending and ascending order with 5 dB steps, and the process was 

repeated until we found a threshold measure where the subject reported hearing ≥ 70% of 

the sounds. During scanning, subjects heard the stimulus binaurally through a UNIDES 

ADU2a audio system (Unides Design, Helsinki, Finland) from a PC with an audio 

amplifier (Denon AVR-1802) and a power amplifier (Lab.gruppeniP 900). Eartips 

(Etymotic Research, ER3, IL, USA) were inserted into the subjects' ear canals and 

connected to plastic tubes that delivered the sounds. Earmuffs provided further hearing 

protection from the scanner background noise. 

In studies I–III, the following steps were taken to preprocess the fMRI data:  

realignment, slice timing correction (not in Study I), coregistration of the functional 

images to the anatomical images, normalization to Montreal Neurological Institute (MNI) 

space, and smoothing with a full-width-at-half-maximum (FWHM) Gaussian kernel. In 

Study I and II, the images were normalized into 3.5-mm isotropic voxels using SPM8. In 

Study III, the data were preprocessed using the freesurfer FS-FAST pipeline, and 

normalized into 2-mm isotropic voxels. A 8-mm FWHM Gaussian kernel was used for 

smoothing the data in Study I, and a 12-mm kernel was used for smoothing the data in 
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Study II and III. A larger smoothing kernel was chosen for Study II and III in order to 

adequately estimate the individual subjects’ independent components (Allen et al., 2012) 

and to achieve better alignment between the blind and sighted subjects. 

4.3 Independent component analysis, and measuring 
connectivity and inter-subject variability of independent 
components (I, III) 

For studies I and III, the Infomax algorithm (Lee et al., 1999) implemented in the group 

ICA toolbox GIFT v1.3 (http://icatb.sourceforge.net/) was used to estimate the spatial 

maps and time-courses corresponding to the independent components. A minimum-

description-length algorithm estimated the mean number of sources in the audio-drama 

data as 51 (I), and 53 in the resting-state data (III) (Li et al., 2007). The ICASSO method 

was used to assess the replicability of the independent components in studies I and III 

(Himberg et al., 2004). The toolbox performed back-reconstruction to individual 

components with the GICA3 algorithm (Erhardt et al., 2011).  

In Study III, independent components located in the gray matter (Stevens et al., 2007) 

were identified. Gray matter components were considered as those that had substantial 

overlap (> 67%) with a binarized gray matter SPM8 MNI-template.  

In Study III, the aim was to determine whether inter-subject spatial variability of some 

functional networks differed between blind and sighted subjects. The assumption was that, 

congenitally, functional networks are rather similar (Fransson et al., 2007), but 

experience-dependent plasticity is more likely to increase than decrease the inter-subject 

spatial variability of functional networks. Thus, functional networks undergoing strong 

plasticity following early-onset blindness should be less correlated between blind than 

sighted subjects. In contrast, functional networks that are used less following early-onset 

blindness should have less inter-subject spatial variability in the group of blind than in the 

group of sighted subjects. To test this assumption, pairwise Pearson's correlations were 

calculated between all pairs of subjects, separately for the blind and sighted subjects, for 

each ICA-derived unthresholded spatial map. Next, we compared the resulting 21 pairwise 

correlation values between the groups with a Mann-Whitney test resulting in a U-value. 

The analysis was done both for the resting-state data and the first ten minutes of the data 

collected during the audio drama.  

The p-values were estimated using a reference distribution based on real data of all 16 

normally-sighted subjects. The reference distribution was estimated in the following 

manner: a sample of 14 subjects was taken without replacement from the 16 subjects and 

then randomly divided into two groups of seven subjects. The computer ran the ICA for 

the sample with the same parameters as in the blind versus sighted comparison and 

computed the inter-subject correlations for all pairwise comparisons for each spatial map 

in both groups. A Mann-Whitney test compared the resulting pairwise correlation values 

between the groups. The computer repeated the process for all 120 possible combinations 

of selecting 14 subjects out of 16, resulting in a total of 6,360 values in the reference 

distribution. The frequencies of the reference distribution values were then used to 

http://icatb.sourceforge.net/
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compute FDR-corrected p-values corresponding to the U-value gathered for the spatial 

maps. 

Although the maps derived from spatial ICA are spatially independent, their time-

courses can exhibit temporal dependencies, providing information about functional 

network connectivity (FNC) (Jafri et al., 2008). In both Study I and III, FNC was assessed 

by correlating—within each subject—the time-courses of chosen independent components 

with the time-courses of the other independent components. After determining the 

Pearson's correlation coefficient, a Fisher transformation was applied, and a two-tailed 

one-sample t-test was used to identify significant correlations at the group level (I, III), or 

a two-sample t-test to identify differences in FNC between the groups of sighted and blind 

subjects (III). 

4.4 Computing the inter-subject correlation map and sorting the 
independent components with the ISC map and the speech and 
non-speech sound regressors (I, II) 

In Study I and Study II, an inter-subject correlation (ISC) map (Hasson et al., 2004) was 

computed to find cortical areas related to audio-drama listening (Malinen & Hari, 2011). 

For the ISC calculation, the effects of the six realignment parameters, linear drift, and the 

global mean signal were removed from the data. Then, the correlation images of all 

subject pairs were computed by first determining the Pearson's voxel-by-voxel correlation 

coefficients followed by a Fisher transformation to convert the correlation coefficients to 

normally-distributed values. In Study I and II, correlation images for all subject pairs were 

used to search for statistically significant correlations within the groups (one sample t-

test), and in Study II, between the groups (two-sample t-test). Clusters exceeding the 

threshold p < 0.01 (family wise error (FWE)-corrected) and the extent of 20 voxels were 

considered to be statistically significant. No values in a distribution computed for the 

resting-state data (see section 4.2) exceeded these thresholds. 

In Study I, independent components with stimulus-related characteristics were 

identified with the GIFT software by sorting the ICA-derived spatial maps according to 

their spatial correlations with the thresholded ISC map (Malinen & Hari, 2011). Spatial 

maps with > 0.3 correlation and > 50% overlap with the ISC map were considered task-

related. Additionally, to estimate the reactivity to speech and non-speech sounds, the time-

courses of the task-related independent components were entered in a multiple regression 

analysis comparing them with the speech and non-speech regressors. 

4.5 Measuring hemisphere dominance for speech sounds using a 
whole-brain and regions of interest approach (II) 

For Study II, the LI-toolbox was used to estimate whole-brain lateralization indices (Wilke 

& Lidzba, 2007; Wilke & Schmithorst, 2006). The lateralization index compares the 
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amount of activation in one hemisphere to the other hemisphere; the lateralization index 

ranges from 1 (right-sided) to 1 (left-sided). First, for each subject, correlations with the 

speech regressor were assessed by performing a general linear model analysis. The 

influence of the regressors of no interest was removed, namely, the non-speech regressor, 

a constant, the mean white-matter signal, the mean cerebrospinal fluid signal, the 6 

rotation regressors, a full wavelength sine and cosine waveform, and a linear drift term. 

The individual speech sound t-maps were entered into the LI-toolbox and were used to 

subtract the sum of the activation values in the right hemisphere from those in the left 

hemisphere, and then divided by the sum of the whole-brain activation. The procedure was 

repeated using several bootstraps and different t-map thresholds (Wilke & Lidzba, 2007; 

Wilke & Schmithorst, 2006), resulting in weighted means which were compared between 

the groups with a two-sample t-test (two-sided). 

For the region of interest (ROI) approach in Study II, the histological probability maps 

provided in the Anatomy toolbox (Eickhoff et al., 2005) were used to construct four ROIs 

depicted in Figure 3. The histological maps of the primary auditory areas labeled Te1.0, 

Te1.1, and Te1.2 (Morosan et al., 2001) were sampled with the marsbar toolbox to a left- 

and right-sided mask of the auditory cortex. Additionally, a bilateral ROI was constructed 

encompassing the posterior two-thirds of the superior temporal gyrus, labeled Te3 

(Morosan et al., 2005). The Te3 is functionally defined by strong reactivity to narratives, 

especially in the left hemisphere (Schmithorst et al., 2006). Since the primary visual areas 

display activation during verbal memory tasks (Amedi et al., 2003), the primary visual 

areas were defined as another ROI (Amunts et al., 2000). Furthermore, the Anatomy 

toolbox provided an ROI encompassing the lateral aspects of the anterior occipital lobe, 

named hOC5 (Malikovic et al., 2007). This area corresponds to the motion-sensitive visual 

area (Wilms et al., 2005) known to react to speech (Burton et al., 2003; Burton et al., 

2002b) and tones (Watkins et al., 2013) in blind subjects. 

 

 

Figure 3 The four regions of interest (ROIs) used in Study II provided by the Anatomy toolbox 

(Eickhoff et al., 2005). The blue ROI is composed of the TE1.1, TE1.2 and TE1.3 

areas and represents the primary auditory cortex. The green ROI, composed of the 

TE3, encompasses the posterior two-thirds of the lateral superior temporal gyrus. The 

purple ROI encompasses the primary visual areas (V1). The red ROI consists of the 

Hoc5, encompassing the lateral anterior occipital gyrus, and is functionally 

equivalent to the motion-sensitive visual area (MT). The numbers indicate the MNI z-

coordinates. L = left 
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To estimate whether the hemispheres of blind and sighted subjects could be discriminated 

by their reactivity to speech or non-speech sound, the following analysis was performed: 

first, the time-course of each voxel in the three ROIs was averaged in both hemispheres 

separately. A partial correlation analysis comparing the resulting six time-courses with 

either the speech or non-speech regressor was performed. The effect of the nuisance 

regressors was removed from the data, namely, a constant, the global mean signal of the 

white matter and the cerebrospinal fluid, the 6 rotation regressors, a full wavelength sine 

and cosine waveform, a linear drift term and either the speech or non-speech regressor. 

Next, a two-way repeated measures ANOVA was performed to investigate the main 

effects of hemisphere (left or right) and group (blind or sighted). Post hoc tests (t-tests) 

were performed when appropriate with Bonferroni correction of the resulting p-values. 

4.6 Diffusion tensor imaging, tractography, and transcranial 
magnetic stimulation to assess the role of the prefrontal cortex in 
tactile discrimination (IV) 

Study IV consisted of four stages. First, subjects underwent DTI. Next, TMS was used to 

determine the location of the thenar skin representation area in the primary sensory cortex 

(S1). In the third stage, we assessed tracts from the S1 area to the prefrontal cortices with 

tractography. In the main experiment, subjects performed a tactile temporal discrimination 

task while we stimulated the DTI- and tractography-informed S1-PFC links with TMS. 

The MRI data were obtained with the Signa VH/i 3.0 T MRI scanner (General Electric, 

Milwaukee, WI, USA) used for studies I–III. First, a structural image set was acquired 

using a T1-weighted 3D anatomical volume with a field of view = 240 mm, matrix = 256 

 256, voxel dimensions = 0.9  0.9  1.0 mm3, TE = 1.9 ms, TR = 9.1 ms, IT = 300 ms, 

flip angle = 15° and NEX = 2, and number of axial slices = 162. We acquired the DTI data 

with an 8-channel high-resolution brain array head coil (GE Signa Excite, GE Healthcare, 

Chalfont St.Giles, UK). The DTI scheme consisted of acquiring a set of 60 diffusion-

weighted images with non-collinear diffusion gradients (1000 s/mm2, Δ = 30 ms, δ = 24 

ms) and four non-diffusion-weighted images. A set of 54 slices was acquired using a 

matrix of 128  128 and voxel dimensions of 1.9  1.9  3.0 mm3, rectangular FOV = 240 

mm, TE = 79 ms, and TR = 10,000 ms. A manually-adjusted higher-order shim procedure 

was performed prior to the acquisition of the DTI data. The imaging was performed twice, 

resulting in a data set consisting of 128 volumes. 

The data were processed with the FSL software (www.fmrib.ox.ac.uk/analysis/). The 

FMRIB’s diffusion toolbox (FDT) corrected the DTI dataset for subject motion and eddy 

currents using the non-diffusion-weighted volume as a reference. Next, to allow 

probabilistic tractography, the BEDPOSTX tool was used to obtain a Bayesian estimation 

of the diffusion parameters (Behrens et al., 2003a; Behrens et al., 2003b). The skull-

stripped non-diffusion and anatomical T1-weighted volumes were coregistered with each 

other. 

After functional determination of the somatosensory cortex hotspot (S1hs), located at 

the coordinates where TMS blocked a tactile sensation from the thenar area (see below), 

http://www.fmrib.ox.ac.uk/analysis/
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the connections from the S1hs to the PFC were probed in the following manner: the 

coordinates for the S1hs were transferred to the anatomical T1 image, registered to the 

diffusion space. A mask corresponding to the S1hs, with a diameter of approximately 10 

mm, was used as a seed for tractography. Tracts starting from the seed mask (step length = 

0.5; number of steps = 2000; number of particles = 5000; curvature threshold = 0.2) were 

computed; thus, each voxel attained a connectivity value corresponding to the number of 

streamlines passing from the seed region through the voxel. We first adjusted the 

threshold to a connectivity value > 100 (Ciccarelli et al., 2006), but had to reduce it in one 

subject to 48 to find a solid tract to the superior frontal gyrus (SFG), and in another 

subject to 30 to find a solid tract to the middle frontal gyrus (MFG). Here, MFGhs and 

SFGhs refer to the most anterior PFC sites in the MFG and SFG, respectively, with a 

tractography-informed connection with the S1hs. 

The experiments employing TMS consisted of three parts: (i) determining the TMS 

motor threshold, (ii) finding the thenar representation site in S1, and (iii) the tactile 

temporal discrimination task. We delivered monophasic TMS pulses with the eXimia NBS 

system (Nexstim Ltd. Helsinki, Finland), employing an optical tracking system and 

displaying the location of the TMS coil on the individual MR images. TMS pulses were 

applied to the left hemisphere, i.e. contralateral to the tactile stimuli. TMS intensity was 

determined by mapping the primary motor cortex to find a location producing a motor 

response from the relaxed abductor pollicis brevis muscle. First, the coil position 

producing a motor response was determined while measuring motor evoked potentials 

with continuous on-line surface electromyography. After determination of the optimal coil 

position, the primary motor cortex was stimulated with sets of 10 TMS pulses; the 

stimulation strength was adjusted between sets. The resting-motor threshold was defined 

as the lowest TMS intensity at which ≥ 5 out of 10 pulses produced a motor evoked 

potential of ≥ 50 μV. We applied TMS at 120 % of the resting motor threshold during the 

tactile discrimination tasks. The stimulation strength was on average 65 % ± 12.4 % of the 

maximal output of the stimulator. 

For both the S1 blocking and the tactile discrimination task, two Ag-AgCl skin 

electrodes (Ambu, Ballerup, Denmark) were attached to the thenar or hypothenar area of 

the dominant hand. A Grass PSIU6 constant-current stimulator (Grass Instruments, 

Quincy, MA) delivered 0.2-ms electrical stimuli at threshold intensity. The subjects’ 

tactile threshold for single pulses was determined by the method of limits, and was defined 

as the intensity the subjects felt in at least 90% of the trials.  

The thenar representation site in S1 was determined using a blocking experiment 

(Hannula et al., 2005). The Grass stimulator delivered electrical test stimuli at threshold 

intensity to the thenar skin of the right hand while applying single TMS pulses at 120% of 

the motor threshold with a 20-ms delay after delivering the cutaneous test pulse. Subjects 

answered ‘yes’ after each TMS pulse if they felt a tactile stimulus, ‘no’ if not, and ‘maybe’ 

if they were uncertain. We probed the S1 cortical area with TMS until the S1hs was found, 

i.e., the location at which TMS stimulation blocked at least 75% of the cutaneous test 

pulses. 

In the tactile temporal discrimination task, cutaneous single or twin test stimuli were 

applied to the thenar or hypothenar area of the dominant hand at double the threshold 
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intensity. The interstimulus interval of the twin pulses was determined individually based 

on a preliminary study on how subjects discriminate a single pulse from a twin pulse in 

about 90% of stimulus presentations (Pastor et al., 2004). This interstimulus interval was 

most often 90 ms. During the tactile temporal discrimination task, subjects indicated with 

a button press of a computer mouse, and verbally, whether they felt a single pulse or a 

pulse pair, while a single TMS pulse was applied to the MFGhs, SFGhs or approximately 

5 cm above the head (sham TMS).  

Three main experiments were performed: first, the effect of temporal delay between 

tactile stimulation and TMS on temporal discrimination was assessed using three different 

delays (0 ms, 20 ms or 50 ms from the second pulse). Secondly, the role of the PFC 

subregions in top-down modulation of tactile processing was assessed by comparing the 

temporal discrimination ability during TMS of the MFGhs, SFGhs, and the sham TMS. 

Thirdly, the effect of TMS on tactile discrimination ability in the hypothenar area was 

determined during stimulation of the MFGhs-S1 link previously probed for the thenar 

S1hs. The delay from the delivery of the second cutaneous test pulse to the delivery of the 

TMS pulse was 0 ms in the two latter experiments.  

Within one experimental condition, the tactile pulse was delivered to either the thenar 

or hypothenar skin area. TMS pulses were delivered to MFGhs, SFGhs or five centimeters 

above the head (sham). Every experimental condition consisted of presenting both the 

cutaneous single pulse and the twin pulses eight times. The experimental conditions were 

counter-balanced between and within subjects and lasted 2−3 min; the subjects had the 

possibility to rest between conditions. The tactile threshold was measured once in a while 

to exclude the possibility that a change in the threshold contributed to the results. 

To assess the subject's capacity to discriminate between single and twin pulses, we 

performed a receiver operating characteristics (ROC) curve analysis (Swets, 1973) using 

MedCalc (Mariakerke, Belgium) software. Reporting one pulse when the stimulus was a 

single pulse was considered a hit, but reporting two pulses was a false alarm. Similarly, 

reporting two pulses for a twin pulse was considered a hit, but reporting one pulse was a 

false alarm. For each condition, a ROC curve was created by comparing responses to 

single and twin pulses. The area under the curve (AUC) was used as an index of the 

subject’s discriminative capacity. In the ROC analysis, the AUC value varies from 0.5 to 

1.0: the value 0.5 indicates that the subject’s discrimination of a single pulse within a twin 

pulse is at chance level, whereas the value 1.0 indicates no false alarms. The AUC values 

were entered into a one- or two-way repeated measures ANOVA. Post hoc Tukey’s tests 

were used when appropriate.  
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5. Results and discussion 

5.1 Study I 

Study I used naturalistic stimuli derived from an audio drama to search for speech and 

non-speech sound processing areas in the brain. The ISC map, shown in Figure 4, revealed 

the areas where the subjects’ brains showed similar temporal fluctuation during the audio 

drama. The ISC map was employed to find task-related independent components. The ISC 

map consisted mainly of four independent components: IC1, centered on Brodmann area 

22 and included Heschl’s gyrus, the superior temporal gyrus (STG), the Rolandic 

operculum, and the posterior insula (correlation with ISC map = 0.67, overlap with ISC 

map = 97%). IC2, located medially from IC1, encompassed bilaterally the primary 

auditory cortices including the STG (correlation with ISC map = 0.52, overlap with ISC 

map = 87%). IC3 encompassed the middle temporal gyrus, STG, angular gyrus, inferior 

temporal pole and orbital part of the inferior frontal gyrus (IFG) in the left hemisphere 

(correlation with ISC map = 0.40, overlap with ISC map 70%). IC4 encompassed the right 

MTG, STG and inferior temporal pole (correlation with ISC map = 0.40, overlap with ISC 

map 90%). Comparing these four independent components with the speech and non-

speech sound regressors revealed that IC1 and IC2 reacted to both speech (partial r = 0.47 

and 0.22) and non-speech (r = 0.10 and 0.12) sounds, and were named the all sounds 

components. The two other components (IC3 and IC4) reacted only to speech sounds (r = 

0.28 and 0.23), and were, therefore, called the speech components.  
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Figure 4 Results from Study I. a) The first row shows the GLM-derived maps, the second row 

the ISC map and the third to sixth rows show the ICA-derived spatial maps. 

Independent components IC1–IC4 overlapped with the ISC map, while IC5–IC8 

showed little overlap with the ISC map. Here, IC1, IC2, IC5 and IC6 appear to 

compose a network reacting to all sounds while IC3, IC4, IC7 and IC8 compose a 

network reacting only to speech. b) Despite little reactivity to either speech or non-

speech sounds, IC5 and IC6 correlated with IC1 and IC2, while IC7 and IC8 

correlated with IC3 and IC4. Thus, IC5–IC8, which did not overlap with the ISC map, 

seemed stimulus-related, but the relationship to the stimulus was unique in each 

subject. This picture is modified from (Boldt et al., 2013). The CCAL license applies 

to the material. N = 13. 

The independent components overlapping with the ISC map showed rich connectivity 

with the independent components not overlapping with the ISC map. The FNC analysis 

revealed connectivity between the all sounds components (IC1 and IC2) and two 

components not overlapping with the ISC map: i) IC5 (correlation with ISC map = 0.10), 

which encompassed the supramarginal gyrus; and ii) IC6 (correlation with ISC map = 

0.13), encompassing the STG bilaterally and extending to the Rolandic operculum, 

superior TP, putamen and insula. Both of these components encompassed areas involved 

in shifting attention based on auditory cues (Baumann & Greenlee, 2007; Cauda et al., 

2011). The FNC analysis also indicated connectivity between the speech components (IC3 

and IC4) and two other independent components not overlapping with the ISC map: i) the 

precuneus/cuneus (IC7, correlation with ISC map = 0.01) and ii) the middle and superior 

frontal gyrus (IC8, correlation with ISC map = 0.02). These two components encompassed 

areas participating in semantic processing (Wilson et al., 2008), and might integrate 

speech on a time-scale > 30 seconds (Lerner et al., 2011).  

The independent components overlapping with the ISC map showed a strong 

relationship to the stimuli, while the four components (described in the previous 

paragraph) which did not overlap with the ISC map were weakly or not at all stimulus-

related. The anatomical distribution of the components that overlapped with the ISC map 

and the stimulus-related components that did not overlap with the ISC map coincided with 

the proposed division of the brain into two large-scale networks. One of these networks is 

considered to react to external stimuli, the other is considered to process internal thoughts 

(Golland  2007; Golland  2008). Interestingly, the present results suggest that networks 

reacting to external stimuli are perhaps functionally connected with the networks 

processing internal thoughts, but in a unique manner for each subject. 

The results suggested that two distinct large-scale networks process naturalistic 

sounds, one network processing speech, the other processing both speech and non-speech 

sounds. The stimulus-related networks seemed to encompass areas that reacted to stimuli 

in a similar manner in each subject, but also areas with high temporal variability between 

subjects. 
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5.2 Study II 

Previous findings suggest that the right hemisphere reacts more intensely to speech sounds 

in blind than in sighted subjects (Röder et al., 2000; Röder et al., 2002). Study II asked 

whether the difference in hemispheric reactivity is coupled with a different amount of 

lateralization to speech and non-speech sounds in blind and sighted subjects. We used a 

naturalistic audio drama to explore the lateralization of both speech and non-speech 

sounds in a group of blind and sighted subjects. The whole-brain analysis revealed left-

lateralized responses to naturalistic speech sounds in sighted subjects (mean LI = 0.49). 

The responses were on average slightly right-lateralized in the blind subjects (mean LI = 

0.11); the mean LI was significantly different between the groups (p = 0.0016). 

The ISC map, shown in Figure 5, revealed the areas where the subjects’ brains showed 

similar temporal fluctuation during the audio drama. The ISC map encompassed fewer 

areas than the ISC map in Study I, presumably because of fewer subjects in Study II. In 

blind compared with sighted subjects, the ISC was significantly stronger in the junction of 

the superior and middle temporal gyrus in the right hemisphere. In the sighted compared 

with blind subjects, the ISC was significantly stronger in the left primary auditory areas. 

In sighted subjects, the ROI analysis showed stronger left than right hemisphere 

responses to speech sounds both in the primary auditory cortices (rleft = 0.56, rright = 0.48) 

and the lateral temporal gyrus (rleft = 0.65, rright = 0.55). In blind subjects, the hemispheric 

reactivity was similar on the right and on the left both in the primary auditory cortex (rleft = 

0.37, rright = 0.45) and the lateral temporal gyrus (rleft = 0.52, rright = 0.52). A significant 

group × hemisphere interaction effect suggested different left and right hemisphere 

responses to naturalistic speech sounds in blind compared with sighted subjects. The 

interaction effect was significant both in the primary auditory cortex (F(1,12) = 13.21, p = 

0.0034) and in the lateral temporal gyrus (F(1,12) = 7.9, p = 0.016). A main effect of 

group emerged in the primary auditory cortex (F(1,12) = 5.75, p = 0.034), and of 

hemisphere in the lateral temporal gyrus (F(1,12) = 8.22, p = 0.014). The responses to 

speech were overall stronger in the left primary auditory cortex of sighted than blind 

subjects. Furthermore, the lateral surface of the anterior occipital lobe reacted to speech 

more vigorously in the blind (rleft = 0.20, rright = 0.21) than in the sighted subjects (rleft = 

−0.08, rright = −0.03; F (1, 12) = 56.18, p < 0.0001).  

In sighted subjects, the ROI analysis showed similar left and right hemisphere 

responses to non-speech sounds, both in the primary auditory cortex (rleft = 0.09, rright = 

0.13) and the lateral temporal gyrus (rleft = −0.0028, rright = 0.08). In blind subjects, the 

hemispheric reactivity was similar on the right and left in the primary auditory cortex (rleft 

= 0.18, rright = 0.14), and in the lateral temporal gyrus (rleft = 0.21, rright = 0.20). A 

significant effect of group emerged in the lateral temporal gyrus (F(1,12) = 5.63, p = 

0.035). A significant group × hemisphere interaction effect emerged in the primary 

auditory cortex (F(1,12) = 8.66, p = 0.012). The lateral surface of the anterior occipital 

lobe was unresponsive to non-speech sounds in both the blind (rleft = 0.045, rright = 

0.021) and sighted (rleft = 0.0081, rright = 0.048) subjects, with no significant effects 

revealed by the ANOVA. In blind and in sighted subjects the primary visual cortex reacted 

neither to speech or non-speech sounds. 
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Figure 5 a) The whole-brain lateralization index revealed that speech responses were more 

left-lateralized in the sighted subjects than in the blind subjects. * = 0.0016. b) The 

ISC analysis revealed that the left auditory cortex fluctuated more similarly in sighted 

than in blind subjects (peak voxel MNI-coordinates 46, 21, 10). A cluster between 

the junction of the right middle and superior temporal gyrus (MNI-coordinates 55, 

38, 10) reacted more similarly in blind than in sighted subjects. No areas survived 

FWE-correction in the GLM analysis. c) and d): A two-way ANOVA showed a 

significant group  hemisphere interaction in the primary auditory cortex and lateral 

superior temporal gyrus for speech (c) and in the primary auditory cortex for non-

speech sounds (d). In blind subjects the lateral occipital cortex responded to speech 

in both the left and right hemisphere, but remained unresponsive to non-speech 

sounds. Furthermore, the sighted subjects reacted stronger to speech in the left 

primary auditory cortex. Both groups consisted of seven subjects. P-values were 

corrected for multiple comparisons.× = 0.062, *p<0.05, **p<0.01, ***p<0.001. 
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The reasons for the left-lateralized speech responses in most right-handed, sighted 

subjects remain unknown. The hemodynamic fluctuations in the right auditory cortex 

respond primarily to 3−6 Hz cortical oscillations, whereas the left auditory cortex 

responds mainly to 28−40 Hz oscillations (Giraud et al., 2007). Thus, the difference in 

hemispheric reactivity could emerge from the left hemisphere being better equipped to 

extract rapid temporal information from speech signals. Perhaps the strong responses in 

the right hemisphere of blind subjects result from a preserved ability to extract rapid 

temporal information with both hemispheres. 

In conclusion, Study II showed that naturalistic speech elicits differently lateralized 

responses in sighted subjects compared to early-blind subjects. Both the whole-brain 

analysis and the ROI analysis revealed similar patterns of lateralization. Furthermore, 

different hemispheric reactivity to non-speech sounds in the blind compared with sighted 

subjects were found. These results suggest that blindness affects the development of 

lateralized responses to speech and non-speech sounds. 

5.3 Study III 

The human brain structure and function is influenced by both genetic and environmental 

factors (Brun et al., 2009; Glahn et al., 2010). The environmental factors seem to increase 

the variability of functional networks (Mueller et al., 2013). As blind people experience a 

world without vision, we wanted to know what parts of the brain have changed the most in 

blind compared with sighted subjects. Study III compared differences in inter-subject 

spatial variability of ICA-derived spatial maps between early-blind and sighted subjects, 

the search was limited to the 25 resting-state and 24 audio-drama gray-matter independent 

components. Here I focus on the most correlated pairs of independent components that 

displayed significant spatial variability differences between the groups during both the 

resting-state and audio-drama scan. Three gray-matter components exhibited different 

amount of variability between the sighted group and the blind group in the resting-state 

and audio-drama data; these components are shown in Figure 6. Two of the components 

were less variable in the sighted than in the blind subjects. These were (i) an auditory 

component located in the superior temporal and Heschl’s gyri, supramarginal and post-

central gyri, the Rolandic operculum and insula (during rest, rsighted = 0.72, rblind = 0.64, p = 

0.0016; during audio drama, rsighted = 0.76, rblind = 0.65, p = 0.0016, correlation between 

the resting-state and audio-drama components = 0.65), and (ii) a language component 

found in the inferior parietal gyrus, left precuneus, and the angular gyrus bilaterally 

(during rest, rsighted = 0.68, rblind = 0.58, p = 0.0006; during audio drama, rsighted = 0.61, rblind 

= 0.53, p < 0.0006, correlation between the resting-state and audio-drama components = 

0.43). Additionally, one component located in the superior, medial and inferior occipital 

gyri was more variable in the sighted than the blind subjects (during rest, rsighted = 0.55, 

rblind =0.71, p = 0.0022; during audio drama, rsighted = 0.56, rblind = 0.72, p = 0.0009, 

correlation between the resting-state and audio-drama components = 0.62). A previous 

experiment comparing the spatial distribution of functional rest and task networks showed 



 

 

 

 

41 

similar correlations between resting-state and task-related networks (Smith et al., 2009) as 

found here between the resting-state and audio-drama components. 

 

Figure 6 Results from Study III showing the ICA-derived spatial maps that displayed inter-

subject spatial variability differences between the sighted and blind subjects. The 

spatial maps are separately shown for the resting-state (rest) and audio-drama data. 

The auditory component (red) and the parietal component (blue) showed larger inter-

subject variability in the blind compared with the sighted subjects. The left-lateralized 

lateral occipital component (green) showed less spatial variability in the blind 

compared with the sighted subjects. Seven subjects are included in each group. 

Threshold, FWE-corrected, p < 0.01, cluster size > 100 voxels. 

Early-blind subjects are more dependent on hearing than sighted subjects; thus, it is 

surprising that blind subjects perform poorly in some auditory localization tasks. These 

tasks thus, benefit from calibration of an intact visual system (Gori et al., 2014; Zwiers et 

al., 2001). However, blind people have sharper auditory spatial tuning (Röder et al., 1999) 

and can locate some sounds better than sighted subjects (Lessard et al., 1998), supporting 

the notion that compensatory changes occur in the auditory system of the blind (Bavelier 

& Neville, 2002). Thus, it seems plausible that the large variability in the auditory 

component of blind subjects reflects individual experience-dependent compensatory 

changes. 

The angular gyrus is involved in heard (Schmithorst et al., 2006) and read (Segal & 

Petrides, 2013) language processing (Seghier, 2013), and, in the blind, in Braille reading 

(Burton et al., 2002a; Sadato et al., 1998). Perhaps the large inter-subject variability in the 

blind subjects could be related to reading Braille, or to the possible differences in language 

processing known to exist between blind and sighted subjects (Gougoux et al., 2009; 

Röder et al., 2000; Röder et al., 2002; Watkins et al., 2012; Watkins et al., 2003). 
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Since the dorsal and ventral streams (Goodale & Milner, 1992; Milner & Goodale, 

2008) exist in congenitally blind subjects, it is proposed that the development of visual 

streams is experience-independent (Striem-Amit et al., 2012). On the other hand, it is the 

synaptic pruning through Hebbian reinforcement that drives visual learning (Elston et al., 

2009). The relatively small spatial variability that we found in the occipital component of 

the blind subjects is probably due to the lack of visual information flow in the visual 

pathways, resulting in reduced experience-dependent synaptic pruning (Jiang et al., 2009). 

The occipital component also differed in the FNC between the groups. This component 

showed enhanced connectivity with frontal language areas (rblind = 0.35, rsighted = 0.17, p 

= 0.004) and another occipital component (rblind = 0.38, rsighted = 0.01, p = 0.033). 

Therefore, a plausible explanation for increase in functional network variability between 

the blind and sighted subjects is intra-modal plasticity, rather than cross-modal 

recruitment. We propose that, in blind subjects, functional networks related to hearing 

(including language processing) and touch undergo the most experience-dependent 

changes, whereas occipital networks that are normally related to vision—although 

recruited by other senses in the blind—undergo little intra-modal experience-dependent 

changes. 

In conclusion, the inter-subject variability of functional networks differs between the 

groups of early-blind and sighted subjects. The differences might be due to developmental 

experience-dependent plasticity in the networks of these two groups. 

5.4 Study IV 

One explanation for why it is hard to segregate the PFC into functional areas might be the 

large inter-subject variability in this area. The aim of Study IV was to explore the 

functional subdivision of the PFC by exploring whether stimulating individually-chosen 

DTI- informed targets in the PFC with TMS could affect tactile processing.  

A single TMS pulse applied to the MFG-S1 link impaired the subjects’ ability to 

discriminate a double pulse from a single pulse (F(1, 6) = 9.94, p = 0.02). Similarly, the 

confidence ratings were reduced (F(1, 6) = 13.15, p = 0.001), though the response times 

were not significantly different (F(1, 6) = 4.42, p = 0.080). Additionally, the suppression 

of the tactile discrimination ability varied with the TMS stimulation site (whether MFG, 

SFG or sham; F(2, 10) = 6.52, p = 0.015). TMS stimulation of the MFG-S1 link impaired 

the discrimination ability more than stimulation of the SGF-S1 link (Post-hoc Tukey’s 

test, p < 0.05). The subjects’ performance revealed that a 0-ms delay between the 

cutaneous test pulse and the TMS stimulation pulse impaired tactile discrimination the 

most; the subjects’ performance was less impaired when the delay was prolonged to 20 or 

50 ms; (F(2, 12) = 5.89, p = 0.017). Since the most effective stimulation delay was shorter 

than the time taken for a tactile stimulus to reach S1, the TMS effect was most likely 

mediated through top-down modulation of the S1 cortex (Hannula et al., 2005). Moreover, 

tactile processing in the hypothenar area was not impaired when stimulating the MFG-

S1thenar hotspot link (F(1,7) = 9.14, p = 0.019). Figure 7 shows the hotspots overlaid on 
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MR images (a) and bar plots (b) of the area under the ROC curves for different stimulation 

delays, cutaneous test sites and TMS sites (one subject). 

 

Figure 7 a) MRI scans of one subject showing the middle frontal gyrus (MFGhs) and the 

superior frontal gyrus (SFGhs) hotspots with a tractography-informed link to the 

primary somatosensory cortex representation of the thenar skin area (S1hs). The S1hs 

was determined by blocking a tactile sensation with TMS and was used as a seed for 

diffusion tensor imaging tractography. b) First panel: TMS applied to the MFGhs 

impaired tactile discrimination ability more with decreasing delay between the 

cutaneous test pulse and the TMS stimulation. Second panel: TMS of the MFGhs 

impaired tactile discrimination more in the thenar area of the hand than in the 

hypothenar area (0-ms delay between the cutaneous stimulation and TMS). Third 

panel: tactile discrimination in the thenar area of the hand was impaired more by 

TMS of the MFGhs than of the SFGhs (0-ms delay between the cutaneous stimulation 

and TMS). ROC [AUC] = the area under the receiver operating characteristics curve 

(1 indicates perfect discrimination, 0.5 chance level discrimination). Bars show mean 

+ standard error of the mean. * p< 0.05, ** p < 0.01 (Tukey’s test; the reference is 

the corresponding sham group, unless specified).This picture is modified from 

Gogulski et al., 2013 with permission from Oxford University Press. 

TMS of the MFG-S1 link impaired discrimination of a single pulse from paired tactile 

pulses, whereas stimulation of the SFG-S1 link had no effect. These results support 

previous findings suggesting that one of the functions of the PFC is sensory gating 

(Hannula et al., 2010; Savolainen et al., 2011). Thus, the TMS effect could be explained in 

the following manner: the TMS pulse activates the MFG and the signal propagates to the 

S1 cortex before or simultaneously with the tactile signal from the thenar area. The MFG 
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activation suppresses the “distracting” temporal signal from the thenar area. The 

distraction results in an impaired discrimination between paired pulses and single pulses.  

Figure 8 reveals that the location of the individually determined MFGhs showed 

considerable variation between subjects. Thus, TMS to the PFC site of the individually 

determined tractography-informed S1-MFGhs connection impaired performance in a 

tactile discrimination task even though the locations of the targeted areas showed large 

variability. The S1-SFG link is not involved in the described effect; thus, our findings 

suggest functional specialization of PFC subareas in the regulation of tactile information. 

In conclusion, TMS of the MFG-S1 link impaired the subjects’ ability to discriminate 

between single and paired pulses. Additionally, TMS stimulation of the individually 

chosen tracts suppressed the discrimination of single pulses from paired pulses despite the 

relatively large inter-subject variability of targeted areas. The effectiveness of the TMS 

stimulation highlighted the advantage of using DTI-informed tracts as TMS stimulation 

targets.  

 

Figure 8 The individually-normalized MFGhs locations from Study IV overlaid on an MNI 

template. TMS to the PFC site of the individually determined tractography-informed 

S1-MFGhs connection impaired performance in a tactile discrimination task even 

though the location showed considerable variation between subjects. The normalized 

coordinates of the MFGhs stimulation site can be found in supplementary tables 

(Gogulski et al., 2013). 

5.5 The effect of functional primary auditory cortex border 
variability on speech reactivity (unpublished data) 

Study II showed that the auditory cortex of blind people reacted less intensively to 

speech than the auditory cortex of sighted subjects. Study III implicated larger inter-

subject variability in the primary auditory cortex of blind than of sighted subjects. 

Therefore, it is plausible that, in blind subjects, the auditory cortex ROI captured the 

actual extent of the primary auditory cortex poorly. Thus, in blind people, the larger inter-

subject variability of the auditory cortex extent could diminish reactivity to auditory 

sounds.  

Here, I present unpublished data investigating whether increased inter-subject 

variability of the primary auditory cortex diminishes reactivity towards speech sounds. I 
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used the methods introduced for studies I, II and III. The ICA analysis was well-suited for 

the data-driven exploration of variability in functional networks (III). However, in this 

section, I focus on the histologically-delineated primary auditory cortex (Morosan et al., 

2001). Therefore, I conducted a five-step voxel-by-voxel analysis of the inter-subject 

variability in the blind and sighted subjects’ resting-state data (Mueller et al., 2013). 1) 

First, the effect of linear drift, white matter and cerebrospinal fluid, along with head 

movement, was removed from the data. 2) The time-course of each voxel within the 

primary auditory cortex was correlated with all other gray-matter voxels within subjects. 

The computation resulted in a whole-brain connectivity map for each primary auditory 

cortex voxel. 3) I then computed an estimate of the inter-subject variability for each 

primary auditory cortex voxel’s connectivity maps by correlating the connectivity maps, 

pairwise for each voxel, between the subjects in each group. Thus, the resting-state 

variability could be extracted for the voxels making up the primary auditory cortex ROI. 

4) Next, I computed an estimate for each subjects’ variability by taking the mean of the 

pairwise comparison for each subject. 5) I then computed the correlations between the 

speech sound and primary auditory cortex time-course during audio-drama listening and 

assessed the relationship between the correlation with speech sounds and the mean 

variability for each subject’s primary auditory cortex. The analysis indicated that the 

greater the spatial variability of the primary auditory cortex, the weaker the correlation of 

the primary auditory cortex with speech sounds (r = 0.56; p = 0.036, Figure 9).  
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Figure 9 The relationship between spatial variability and speech reactivity of the primary 

auditory cortex (PAC). The blue circles represent sighted subjects; red circles 

represent blind subjects. The x-axis represents the mean of the pairwise connectivity 

map correlations of each voxel for each subject. Less correlation represents more 

variability. The mean PAC correlation of each subject is correlated, within subjects, 

with the PAC reactivity to speech. The measures show a linear relationship (r = 0.56, 

p = 0.036, N = 14). 

I estimated the spatial variability from the resting-state data so that the measurements 

of reactivity to speech sounds and inter-subject variability were independent (Kriegeskorte 

et al., 2009). The result shown above needs further confirmation. However, weak 

activation of the auditory cortex in the blind subjects (as reported in Study II) could be 

explained by large functional variability of this area in the blind (as reported in Study III). 
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6. General discussion 

Below, I summarize how the studies included in this thesis contributed to scientific 

knowledge. In addition, I discuss whether inter-subject spatial variability affects group-

level responses. Furthermore, I suggest that, in the blind, the high inter-subject spatial 

variability of the primary auditory cortex explains the low correlations between the 

primary auditory cortex and speech sounds. I discuss attempts to overcome the problems 

caused by spatial inter-subject variability in general, and suggest that the methods used in 

Study IV for functional explorations of the PFC are beneficial in areas with high spatial 

inter-subject variability.  

Study I showed that many areas of the brain responded in a similar manner in each 

subject to an audio drama. Stimulus-related brain responses were divided into two main 

networks: one reacting to both speech and non-speech sounds, the other reacting only to 

speech sounds. Additionally, the FNC analysis seemed to imply that some areas that are 

thought of as stimulus-independent (Golland et al., 2008) were responsive to the stimulus, 

although in a unique way in each subject. Thus, when exploring how the brain is 

functionally integrated to process a stimulus, functional connectivity and other related 

techniques contribute substantially to our understanding (Smith, 2012).  

In Study II, it was shown that the left hemisphere dominance to naturalistic speech 

sounds is different in blind compared to sighted subjects. As expected, the left hemisphere 

of sighted subjects reacted more to speech than the right hemisphere. In contrast, the left 

hemisphere dominance to speech was not pronounced in the blind subjects. Likewise, for 

non-speech sounds, the hemispheres reacted differently in sighted compared to blind 

subjects. The left superior temporal cortex seems to support audio-visual speech 

integration (Calvert et al., 2001; Nath & Beauchamp, 2012; Sams et al., 1991; Szycik et 

al., 2012); thus, multi-sensory interaction could facilitate speech lateralization to the left 

hemisphere through reinforcement learning. Lack of audio-visual integration could 

perhaps impair the development of left-lateralized speech responses in blind subjects and 

explain why responses to speech sounds are bilateral, or right-lateralized, in the blind. 

Alternatively, supposing that left-lateralized responses are hard-wired during fetal 

development, multisensory integration during Braille reading could reinforce right 

hemisphere responses to speech in blind subjects (Nava et al., 2013; Röder et al., 2002). A 

voice recognition task reported stronger activation in the left hemisphere of blind 

compared with sighted subjects (Gougoux et al., 2009). In contrast to speech perception, 

voice recognition typically activates the right hemisphere more vigorously (Formisano et 

al., 2008). Thus, the hemispheric responses to voice recognition are perhaps also reversed 

in blind subjects. 

Study III suggested that the spatial variability of an auditory and a parietal network is 

smaller in sighted than in early-blind subjects. In contrast, an occipital network showed 

larger spatial variability in sighted than in early-blind subjects. These findings supported 

the hypothesis that experience-dependent plasticity increases inter-subject variability of 

networks, compensating for the loss of sight. Morphological changes are apparent in the 

cortex of early-blind subjects. The visual cortex is thick, while the somatosensory and 

auditory cortex is thin (Jiang et al., 2009; Park et al., 2009). Cortical thickness is, 
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however, not correlated with functional network variability (Mueller et al., 2013). On the 

other hand, some unknown difference in the anatomy of sighted and blind subjects could 

cause between-group differences in functional variability. We measured the spatial inter-

subject variability of functional networks with ICA since this technique can reveal similar 

networks during rest and tasks (Joel et al., 2011; Smith et al., 2009). With ICA, we could 

infer which networks had differences in group variability in both the resting-state and 

audio-drama data. The GICA3 back-reconstruction method used here was recommended 

by the group providing the GIFT toolbox used for ICA (Erhardt et al., 2011). For the 

variability analysis performed in Study III, the statistical independence of the back-

reconstructed individual networks was important. Although GICA3 produces spatial 

networks with similar between-subject independence as dual regression, recent methods 

provide better between-subject independence (Du & Fan, 2013). In Study III, sampling the 

p-values from a real-data reference distribution should solve problems related to non-

independence, however. Repeating the finding in two data sets was reassuring, since the 

sample size used in Study III was small (N = 7 in each group). 

Study IV explored individual neural connections from the thenar skin representation 

area in the somatosensory cortex to the PFC with DTI and tractography. There is poor 

understanding of how the PFC gates sensory information or what the functional role of the 

gating is. One reason experimental information about the functional organization of the 

PFC is scarce might be the large inter-subject variability of the PFC (Mueller et al., 2013). 

Therefore, TMS combined with tractography might be an effective way to explore the 

functional organization of the PFC. Stimulating the prefrontal end of the MFG-S1 link 

with TMS while subjects discriminated single pulses from pulse pairs delivered to the 

thenar skin area impaired tactile discrimination. Single TMS pulses delivered to the SFG-

S1 link did not impair tactile temporal processing. Together, these findings suggested that 

the PFC consists of functionally-specialized subareas regulating information processing. 

In Study II, the auditory cortex ROI reacted less strongly to speech in the left 

hemisphere of blind vs. sighted subjects. High spatial inter-subject variability of the 

BOLD responses reduces the likelihood of obtaining a significant mean response at the 

group level (Speelman & McGann, 2013). Thus, as Study III suggested, higher functional 

variability of auditory cortex areas in blind vs. sighted subjects could explain why primary 

auditory areas react less strongly in blind vs. sighted subjects (Gougoux et al., 2009). The 

unpublished data presented in section 5.5 suggested that the weaker activation of the 

auditory cortex in the blind compared with the sighted subjects is proportional to larger 

functional variability of this area. 

If individual variability weakens group-level findings, large sample sizes are required 

to get meaningful activation in areas with large inter-subject variability such as the PFC 

(Mueller et al., 2013; Speelman & McGann, 2013). Modern brain research methods 

provide some possible ways to overcome the problems that spatial variability exerts on the 

reliability of group results. Using macroanatomical landmarks to coregister the subject’s 

anatomical images to a standard anatomical template during the normalization step helps 

to overcome problems related to brain shape variability. This approach improves network 

estimation in primary sensory areas, but not in prefrontal areas (Frost et al., 2014; Frost & 

Goebel, 2012). Additionally, realignment based on anatomy is insensitive to the 
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histological network variability (Zilles et al., 1997), and thus probably also insensitive to 

functional network variability. Thus, the use of ROIs based on individual histology 

(determined post-mortem and reported in standard space) and then sampled to MNI space 

would be beneficial for certain types of analysis (Eickhoff et al., 2005; Sugiura et al., 

2007; Toga et al., 2006; Zilles & Amunts, 2013; Zilles et al., 2011). However, this 

approach requires that we have templates with probability estimates for the histological 

distribution of the area of interest. Even if the histological probability mapping is extended 

to the whole brain, different patient groups and non-neurotypical subjects could have 

dramatically different networks than neurotypical subjects.  

ICA and related techniques could perhaps identify networks despite large inter-subject 

differences, and thus help in investigating areas with high spatial inter-subject variability 

such as prefrontal areas. Therefore, approaches using functional connectivity to aid in the 

normalization and alignment procedure are promising tools (Conroy et al., 2013). 

However, even if the underlying networks are perfectly aligned, fMRI experiments face 

some limitations: (i) task-related fMRI experiments only reveal the brain areas that change 

their level of activity during a task, not how the underlying neurons function during that 

task, and (ii) fMRI shows the brain areas that have a relationship with the given task; 

however, the causal relationship to the task remains unknown.  

In contrast to fMRI, TMS can transiently disrupt activation of an area and thus 

interfere with the task at hand (Cowey, 2005). Thus, TMS can be used to infer whether a 

specific area is causally involved with the performance of a task (Bona et al., 2014). 

Combining TMS with MRI measurements such as fMRI and DTI has many benefits. 

Diffusion weighted images and tractography can enable stimulation of specific nerve 

bundles at an individual level, and thus improve spatial specificity and efficacy 

(Nummenmaa et al., 2014). Furthermore, TMS combined with tractography allows 

assessing causal roles of brain areas in cognitive functions. Since individual anatomy can 

be accounted for with structural MR images when using TMS (Bijsterbosch et al., 2012), 

and fMRI can be used to localize functionally active areas (Bona et al., 2014), MRI is 

beneficial for TMS experiments. In addition, TMS combined with individual perturbation 

of anatomical connectivity reveals individual anatomy even in areas with high inter-

subject spatial variability such as the PFC (Hannula et al., 2010; Savolainen et al., 2011).  

In summary, TMS combined with DTI and tractography has the following advantages: 

TMS efficiently interferes with the performance of a tactile discrimination task even when 

targeted areas have large inter-subject spatial variability, such as the PFC. TMS permits 

investigations of the causal relationship between the stimulated area and cognitive 

processing. Finally, TMS has excellent temporal resolution. Therefore, navigated TMS 

combined with imaging techniques such as DTI is a promising tool for future 

investigations. 
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7. Conclusion 

In this thesis, I presented the following original contributions to neuroscience. Study I 

demonstrated involvement of two main networks while subjects listened to naturalistic 

stimuli; one reacted to both speech and non-speech sounds and the other reacted only to 

speech. Study II revealed different hemispheric reactivity to naturalistic speech in sighted 

compared with blind subjects. The blind subjects exhibited less left lateralization to speech 

sounds than sighted subjects. Study III showed that early-blind people have larger spatial 

variability than sighted subjects in a functional auditory and parietal network, but less 

variability in an occipital network. Moreover, unpublished data reported here suggested 

that larger functional variability of the primary auditory cortex in blind subjects led to 

weaker activation of the auditory cortex in the blind than in sighted subjects. Study IV 

revealed that TMS stimulation of the prefrontal end of DTI-informed tracts between MFG 

and S1 impaired tactile temporal processing. Even in the PFC, an area with high inter-

subject spatial variability, TMS combined with DTI and tractography revealed functional 

subnetworks. Thus, TMS combined with DTI and tractography can reveal neural 

mechanisms despite large inter-subject spatial variability. 
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8. Suggestions for further work 

Both studies I and II suggested that many auditory areas reacted more vigorously to 

speech than non-speech sounds. It would be interesting to know whether stronger 

reactivity to speech than non-speech sounds is a general attribute of auditory areas. In 

Studies I and II, the speech sounds might have evoked more reliable responses in auditory 

areas because the stimulus included louder speech sounds than non-speech sounds. The 

stimulus could be improved by controlling the attributes and ratio of the speech and non-

speech sounds so that the reactivity to these sounds could be directly compared. 

In Study III, it was proposed that the variability of functional networks is proportional 

to the degree of experience-dependent plasticity driven by the sense normally attributed to 

the network. Whether this is a general attribute of experience-dependent plasticity could 

be easily verified. I expect that the auditory cortices of deaf subjects display little spatial 

inter-subject variability while their occipital lobe networks might show large variability. 

An increased regional homogeneity occurs in the occipital cortex of blind subjects (Liu et 

al., 2011). Whether the difference in regional homogeneity explains the differences in 

inter-subject spatial variability could be addressed by measuring regional homogeneity of 

ICA-derived functional networks (Paakki et al., 2010). 

The spatial variability differences could explain differences in auditory cortex 

responses, not only in the blind subjects, but also among sighted subjects. As there are 

many large depositories with good quality fMRI data, it should be rather easy to verify or 

reject this hypothesis. In data sets containing resting-state and task data, the resting-state 

data could be used to measure inter-subject variability in networks activated in the task-

condition. Next, the degree of individual variability in a specific area could be compared 

with the strength of the task-related responses in the same area. 

Combining TMS and tractography has limitless applications. For instance, it would be 

interesting to explore the role of the S1-SFG link. Additionally, since DTI studies have 

revealed interesting changes in blind subjects anatomy (Shu et al., 2009; Yu et al., 2007), 

TMS-DTI studies could reveal the functional roles of these anatomical changes. 
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