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Proportionate adaptive filters can improve the convergence speed for the identification of sparse systems as compared to their
conventional counterparts. In this paper, the idea of proportionate adaptation is combined with the framework of set-membership
filtering (SMF) in an attempt to derive novel computationally efficient algorithms. The resulting algorithms attain an attractive
faster converge for both situations of sparse and dispersive channels while decreasing the average computational complexity due to
the data discerning feature of the SMF approach. In addition, we propose a rule that allows us to automatically adjust the number
of past data pairs employed in the update. This leads to a set-membership proportionate affine projection algorithm (SM-PAPA)
having a variable data-reuse factor allowing a significant reduction in the overall complexity when compared with a fixed data-
reuse factor. Reduced-complexity implementations of the proposed algorithms are also considered that reduce the dimensions of
the matrix inversions involved in the update. Simulations show good results in terms of reduced number of updates, speed of
convergence, and final mean-squared error.
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1. INTRODUCTION

Frequently used adaptive filtering algorithms like the least
mean square (LMS) and the normalized LMS (NLMS) al-
gorithms share the features of low computational complex-
ity and proven robustness. The LMS and the NLMS algo-
rithms have in common that the adaptive filter is updated
in the direction of the input vector without favoring any
particular direction. In other words, they are well suited for
dispersive-type systems where the energy is uniformly dis-
tributed among the coefficients in the impulse response. On
the other hand, if the system to be identified is sparse, that
is, the impulse response is characterized by a few dominant
coefficients (see [1] for a definition of a measure of sparsity),
using different step sizes for each adaptive filter coefficient
can improve the initial convergence of the NLMS algorithm.
This basic concept is explored in proportionate adaptive filters
[2–10], which incorporates the importance of the individual
components by assigning weights proportional to the mag-
nitude of the coefficients.

The conventional proportionate NLMS (PNLMS) algo-
rithm [2] experiences fast initial adaptation for the dominant
coefficients followed by a slower second transient for the re-
maining coefficients. Therefore, the slow convergence of the

PNLMS algorithm after the initial transient can be circum-
vented by switching to the NLMS algorithm [11].

Another problem related to the conventional PNLMS
algorithm is the poor performance in dispersive or semi-
dispersive channels [3]. Refinements of the PNLMS have
been proposed [3, 4] to improve performance in a dispersive
medium and to combat the slowdown after the initial
adaptation. The PNLMS++ algorithm in [3] approaches the
problem by alternating the NLMS update with a PNLMS
update. The improved PNLMS (IPNLMS) algorithm [4]
combines the NLMS and PNLMS algorithms into one
single updating expression. The main idea of the IPNLMS
algorithm was to establish a rule for automatically switching
from one algorithm to the other. It was further shown in
[6] that the IPNLMS algorithm is a good approximation of
the exponentiated gradient algorithm [1, 12]. Extension of
the proportionate adaptation concept to affine projection
(AP) type algorithms, proportionate affine projection (PAP)
algorithms, can be found in [13, 14].

Using the PNLMS algorithm instead of the NLMS al-
gorithm leads to 50% increase in the computational com-
plexity. An efficient approach to reduce computations is to
employ set-membership filtering (SMF) techniques [15, 16],
where the filter is designed such that the output estimation
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error is upper bounded by a predetermined threshold.1 Set-
membership adaptive filters (SMAF) feature data-selective
(sparse in time) updating, and a time-varying data-
dependent step size that provides fast convergence as well
as low steady-state error. SMAFs with low computational
complexity per update are the set-membership NLMS (SM-
NLMS) [15], the set-membership binormalized data-reusing
(SM-BNDRLMS) [16], and the set-membership affine pro-
jection (SM-AP) [17] algorithms. In the following, we com-
bine the frameworks of proportionate adaptation and SMF.
A set-membership proportionate NLMS (SM-PNLMS) algo-
rithm is proposed as a viable alternative to the SM-NLMS al-
gorithm [15] for operation in sparse scenarios. Following the
ideas of the IPNLMS algorithm, an efficient weight-scaling
assignment is proposed that utilizes the information pro-
vided by the data-dependent step size. Thereafter, we propose
a more general algorithm, the set-membership proportionate
affine projection algorithm (SM-PAPA) that generalizes the
ideas of the SM-PNLMS to reuse constraint sets from a fixed
number of past input and desired signal pairs in the same way
as the SM-AP algorithm [17]. The resulting algorithm can
be seen as a set-membership version of the PAP algorithm
[13, 14] with an optimized step size. As with the PAP algo-
rithm, a faster convergence of the SM-PAPA algorithm may
come at the expense of a slight increase in the computational
complexity per update that is directly linked to the amount
of reuses employed, or data-reuse factor. To lower the over-
all complexity, we propose to use a time-varying data-reuse
factor. The introduction of the variable data-reuse factor re-
sults in an algorithm that close to convergence takes the form
of the simple SM-PNLMS algorithm. Thereafter, we consider
an efficient implementation of the new SM-PAPA algorithm
that reduces the dimensions of the matrices involved in the
update.

The paper is organized as follows. Section 2 reviews the
concept of SMF while the SM-PNLMS algorithm is proposed
in Section 3. Section 4 derives the general SM-PAPA algo-
rithm where both cases of fixed and time-varying data-reuse
factor are studied. Section 5 provides the details of an SM-
PAPA implementation using reduced matrix dimensions. In
Section 6, the performances of the proposed algorithms are
evaluated through simulations which are followed by con-
clusions.

2. SET-MEMBERSHIP FILTERING

This section reviews the basic concepts of set-membership
filtering (SMF). For a more detailed introduction to the con-
cept of SMF, the reader is referred to [18]. Set-membership
filtering is a framework applicable to filtering problems that
are linear in parameters.2 A specification on the filter param-
eters w ∈ CN is achieved by constraining the magnitude of
the output estimation error, e(k) = d(k) − wHx(k), to be

1 For other reduced-complexity solutions, see, for example, [11] where the
concept of partial updating is applied.

2 This includes nonlinear problems like Volterra modeling, see, for exam-
ple, [19].

smaller than a deterministic threshold γ, where x(k) ∈ CN

and d(k) ∈ C denote the input vector and the desired out-
put signal, respectively. As a result of the bounded error con-
straint, there will exist a set of filters rather than a single esti-
mate.

Let S denote the set of all possible input-desired data
pairs (x,d) of interest. Let Θ denote the set of all possible
vectors w that result in an output error bounded by γ when-
ever (x,d) ∈ S. The set Θ referred to as the feasibility set is
given by

Θ =
⋂

(x,d)∈S

{
w ∈ CN :

∣∣d −wHx
∣∣ ≤ γ

}
. (1)

Adaptive SMF algorithms seek solutions that belong to the
exact membership set ψ(k) constructed by input-signal and
desired-signal pairs,

ψ(k) =
k⋂

i=1

H(i), (2)

where H(k) is referred to as the constraint set containing all
vectors w for which the associated output error at time in-
stant k is upper bounded in magnitude by γ:

H(k) = {w ∈ CN :
∣∣d(k)−wHx(k)

∣∣ ≤ γ
}
. (3)

It can be seen that the feasibility set Θ is a subset of the exact
membership set ψk at any given time instant. The feasibility set
is also the limiting set of the exact membership set, that is, the
two sets will be equal if the training signal traverses all signal
pairs belonging to S. The idea of set-membership adaptive
filters (SMAF) is to find adaptively an estimate that belongs
to the feasibility set or to one of its members. Since ψ(k) in
(2) is not easily computed, one approach is to apply one of
the many optimal bounding ellipsoid (OBE) algorithms [18,
20–24], which tries to approximate the exact membership set
ψ(k) by tightly outer bounding it with ellipsoids. Adaptive
approaches leading to algorithms with low peak complexity,
O(N), compute a point estimate through projections using
information provided by past constraint sets [15–17, 25–27].
In this paper, we are interested in algorithms derived from
the latter approach.

3. THE SET-MEMBERSHIP PROPORTIONATE
NLMS ALGORITHM

In this section, the idea of proportionate adaptation is ap-
plied to SMF in order to derive a data-selective algorithm,
the set-membership proportionate normalized LMS (SM-
PNLMS), suitable for sparse environments.

3.1. Algorithm derivation

The SM-PNLMS algorithm uses the information provided by
the constraint set H(k) and the coefficient updating to solve
the optimization problem employing the criterion

w(k + 1)=arg min
w

∥∥w −w(k)
∥∥2

G−1(k) subject to: w∈H(k),

(4)
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where the norm employed is defined as ‖b‖2
A = bHAb. Ma-

trix G(k) is here chosen as a diagonal weighting matrix of the
form

G(k) = diag
{
g1(k), . . . , gN (k)

}
. (5)

The elements values of G(k) will be discussed in Section 3.2.
The optimization criterion in (4) states that if the previous
estimate already belongs to the constraint set, w(k) ∈ H(k),
it is a feasible solution and no update is needed. However, if
w(k) �∈H(k), an update is required. Following the principle
of minimal disturbance, a feasible update is made such that
w(k + 1) lies up on the nearest boundary of H(k). In this
case the updating equation is given by

w(k + 1) = w(k) + α(k)
e∗(k)G(k)x(k)
xH(k)G(k)x(k)

, (6)

where

α(k) =
⎧
⎪⎨
⎪⎩

1− γ∣∣e(k)
∣∣ if

∣∣e(k)
∣∣ > γ

0 otherwise
(7)

is a time-varying data-dependent step size, and e(k) is the a
priori error given by

e(k) = d(k)−wH(k)x(k). (8)

For the proportionate algorithms considered in this paper,
matrix G(k) will be diagonal. However, for other choices of
G(k), it is possible to identify from (6) different types of
SMAF available in literature. For example, choosing G(k) = I
gives the SM-NLMS algorithm [15], setting G(k) equal to a
weighted covariance matrix will result in the BEACON re-
cursions [28], and choosing G(k) such that it extracts the
P ≤ N elements in x(k) of largest magnitude gives a partial-
updating SMF [26]. Next we consider the weighting matrix
used with the SM-PNLMS algorithm.

3.2. Choice of weighting matrix G(k)

This section proposes a weighting matrix G(k) suitable for
operation in sparse environments.

Following the same line of thought as in the IPNLMS
algorithm, the diagonal elements of G(k) are computed to
provide a good balance between the SM-NLMS algorithm
and a solution for sparse systems. The goal is to reduce the
length of the initial transient for estimating the dominant
peaks in the impulse response and, thereafter, to emphasize
the input-signal direction to avoid a slow second transient.
Furthermore, the solution should not be sensitive to the as-
sumption of a sparse system. From the expression for α(k)
in (7), we observe that, if the solution is far from the con-
straint set, we have α(k) → 1, whereas close to the steady
state α(k) → 0. Therefore, a suitable weight assignment rule
emphasizes dominant peaks when α(k) → 1 and the input-
signal direction (SM-PNLMS update) when α(k) → 0. As
α(k) is a good indicator of how close a steady-state solution
is, we propose to use

gi(k) = 1− κα(k)
N

+
κα(k)

∣∣wi(k)
∣∣

∥∥w(k)
∥∥

1

, (9)

where κ ∈ [0, 1] and ‖w(k)‖1 =
∑

i |wi(k)| denotes the l1
norm [2, 4]. The constant κ is included to increase the ro-
bustness for estimation errors in w(k), and from the simu-
lations provided in Section 6, κ = 0.5 shows good perfor-
mance for both sparse and dispersive systems. For κ = 1,
the algorithm will converge faster but will be more sensitive
to the sparse assumption. The IPNLMS algorithm uses sim-
ilar strategy, see [4] for details. The updating expressions in
(9) and (6) resemble those of the IPNLMS algorithm except
for the time-varying step size α(k). From (9) we can observe
the following: (1) during initial adaptation (i.e., during tran-
sient) the solution is far from the steady-state solution, and
consequently α(k) is large, and more weight will be placed
at the stronger components of the adaptive filter impulse re-
sponse; (2) as the error decreases, α(k) gets smaller, all the
coefficients become equally important, and the algorithm be-
haves as the SM-NLMS algorithm.

4. THE SET-MEMBERSHIP PROPORTIONATE
AFFINE-PROJECTION ALGORITHM

In this section, we extend the results from the previous sec-
tion to derive an algorithm that utilizes the L(k) most re-
cent constraint sets {H(i)}ki=k−L(k)+1. The algorithm deriva-
tion will treat the most general case where L(k) is allowed to
vary from one updating instant to another, that is, the case of
a variable data reuse factor. Thereafter, we provide algorithm
implementations for the case of fixed number of data-reuses
(i.e., L(k) = L), and the case of L(k) ≤ Lmax (i.e., L(k) is up-
per bounded but allowed to vary). The proposed algorithm,
SM-PAPA, includes the SM-AP algorithm [17, 29] as a spe-
cial case and is particularly useful whenever the input signal
is highly correlated. As with the SM-PNLMS algorithm, the
main idea is to allocate different weights to the filter coeffi-
cients using a weighting matrix G(k).

4.1. General algorithm derivation

The SM-PAPA is derived so that its coefficient vector after
updating belongs to the set ψL(k)(k) corresponding to the in-
tersection of L(k) < N past constraint sets, that is,

ψL(k)(k) =
k⋂

i=k−L(k)+1

H(i). (10)

The number of data-reuses L(k) employed at time instant k is
allowed to vary with time. If the previous estimate belongs to
the L(k) past constraint sets, that is, w(k) ∈ ψL(k)(k), no coef-
ficient update is required. Otherwise, the SM-PAPA performs
an update according to the following optimization criterion:

w(k + 1) = arg min
w

∥∥w −w(k)
∥∥2

G−1(k)

subject to: d(k)−XT(k)w∗ = p(k),
(11)

where vector d(k) ∈ CL(k) contains the desired outputs re-
lated to the L(k) last time instants, vector p(k) ∈ CL(k) has
components that obey |pi(k)| < γ and so specify a point



4 EURASIP Journal on Audio, Speech, and Music Processing

in ψL(k)(k), and matrix X(k) ∈ CN×L(k) contains the corre-
sponding input vectors, that is,

p(k) = [p1(k)p2(k) · · · pL(k)(k)
]T

,

d(k) = [d(k)d(k − 1) · · ·d(k − L(k) + 1
)]T

,

X(k) = [x(k)x(k − 1) · · · x
(
k − L(k) + 1

)]
.

(12)

Applying the method of Lagrange multipliers for solving the
minimization problem of (11), the update equation of the
most general SM-PAPA version is obtained as

w(k + 1)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

w(k) + G(k)X(k)
[

XH(k)G(k)X(k)
]−1

×[e∗(k)− p∗(k)
]
, if

∣∣e(k)
∣∣ > γ

w(k) otherwise,
(13)

where e(k) = d(k) − XT(k)w∗(k). The recursion above re-
quires that matrix XH(k)X(k), needed for solving the vector
of Lagrange multipliers, is nonsingular. To avoid problems, a
regularization factor can be included in the inverse (common
in conventional AP algorithms), that is, [XH(k)X(k) + δI]−1

with δ� 1. The choice of pi(k) can fit each problem at hand.

4.2. SM-PAPA with fixed number of
data reuses, L(k) = L

Following the ideas of [17], a particularly simple SM-PAPA
version is obtained if pi(k) for i �= 1 corresponds to the a
posteriori error ε(k− i+ 1) = d(k− i+ 1)−wH(k)x(k− i+ 1)
and p1(k) = γe(k)/|e(k)|. The simplified SM-PAPA version
has recursion given by

w(k + 1) = w(k) + G(k)X(k)

×[XH(k)G(k)X(k)
]−1

α(k)e∗(k)u1,
(14)

where u1 = [10 · · · 0]T and α(k) is given by (7).
Due to the special solution involving the L × 1 vector u1

in (14), a computationally efficient expression for the coeffi-
cient update is obtained by partitioning the input signal ma-
trix as3

X(k) = [x(k)U(k)
]
, (15)

where U(k) = [x(k − 1) · · · x(k − L + 1)]. Substituting the
partitioned input matrix in (14) and carrying out the mul-
tiplications, we get after some algebraic manipulations (see
[9])

w(k + 1) = w(k) +
α(k)e∗(k)

φH(k)G(k)φ(k)
G(k)φ(k), (16)

3 The same approach can be used to reduce the complexity of the Ozeki
Umeda’s AP algorithm for the case of unit step size [30].

SM-PAPA

for each k

{
e(k) = d(k)−wH(k)x(k)

if
∣∣e(k)

∣∣ > γ

{
α(k) = 1− γ/∣∣e(k)

∣∣

gi(k) = 1− κα(k)
N

+
κα(k)

∣∣wi(k)
∣∣

∑N
i=1

∣∣wi(k)
∣∣ , i = 1, . . . ,N

G(k) = diag
[
g1(k) · · · gN (k)

]

X(k) = [x(k)U(k)
]

φ(k) = x(k)−U(k)
[

UH(k)G(k)U(k)
]−1

UH(k)G(k)x(k)

w(k + 1) = w(k) + α(k)e∗(k)
1

φH(k)G(k)φ(k)
G(k)φ(k)

}
else

{
w(k + 1) = w(k)

}
}

Algorithm 1: Set-membership proportionate affine-projection al-
gorithm with a fixed number of data reuses.

where vector φ(k) is defined as

φ(k) = x(k)−U(k)
[

UH(k)G(k)U(k)
]−1

UH(k)G(k)x(k).
(17)

This representation of the SM-PAPA is computationally at-
tractive as the dimension of the matrix to be inverted is re-
duced from L×L to (L−1)×(L−1). As with the SM-PNLMS
algorithms, G(k) is a diagonal matrix whose elements are
computed according to (9). Algorithm 1 shows the recur-
sions for the SM-PAPA.

The peak computational complexity of the SM-PAPA of
Algorithm 1 is similar to that of the conventional PAP algo-
rithm for the case of unity step size (such that the reduced
dimension strategy can be employed). However, one impor-
tant gain of using the SM-PAPA as well as any other SM algo-
rithm, is the reduced number of computations for those time
instants where no updates are required. The lower average
complexity due to the sparse updating in time can provide
substantial computational savings, that is, lower power con-
sumption. Taking into account that the matrix inversion used
in the proposed algorithm needs O([L− 1]3) complex oper-
ations and that N 	 L, the cost of the SM-PAPA is O(NL2)
operations per update. Furthermore, the variable data-reuse
scheme used by the algorithm proposed in the following, the
SM-REDPAPA, reduces even more the computational load
by varying the complexity from the SM-PAPA to the SM-
PNLMS.
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4.3. SM-PAPA with variable data reuse

For the particular case when the data-reuse factor L(k) is
time varying, the simplified SM-PAPA version in (14) no
longer guarantees that the a posteriori error is such that
|ε(k − i + 1)| ≤ γ for i �= 1. This is the case, for example,
when the number of data reuses is increased from one up-
date instant to another, that is, L(k) > L(k − 1).

In order to provide an algorithm that belongs to the set
ψL(k)(k) in (10), we can choose the elements of vector p(k) to
be

pi(k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

γ
ε(k − i + 1)∣∣ε(k − i + 1)

∣∣ if
∣∣ε(k − i + 1)

∣∣ > γ

ε(k − i + 1) otherwise

(18)

for i = 1, . . . ,L(k) with ε(k) = e(k). With the above choice
of p(k), the SM-AP recursions become

w(k + 1) = w(k) + G(k)X(k)

× [XH(k)G(k)X(k)
]−1

Λ∗(k)1L(k)×1,
(19)

where matrix Λ(k) is a diagonal matrix whose diagonal ele-
ments [Λ(k)]ii are specified by
[
Λ(k)

]
ii = αi(k)ε(k − i + 1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− γ∣∣ε(k − i + 1)

∣∣

)

×ε(k − i + 1) if
∣∣ε(k − i + 1)

∣∣ > γ

0 otherwise
(20)

and 1L(k)×1 = [1, . . . , 1]T.
Another feature of the above algorithm is the possibility

to correct previous solutions that for some reason did not
satisfy the constraint |ε(k− i+ 1)| ≤ γ for i �= 1. At this point
|ε(k− i+ 1)| > γ for i �= 1 could originate from a finite preci-
sion implementation or the introduction of a regularization
parameter in the inverse in (19).

As can be seen from (20), the amount of zero entries can
be significant if L(k) is large. In Section 5, this fact is ex-
ploited in order to obtain a more computationally efficient
version of the SM-AP algorithm. Next we consider how to
assign a proper data-reuse factor at each time instant.

4.4. Variable data-reuse factor

This section proposes a rule for selecting the number of data-
reuses L(k) to be used at each coefficient update. It can be ob-
served that the main difference in performance between the
SM-PAPA and the SM-PNLMS algorithms is in the transient.
Generally, the SM-PAPA algorithm has faster convergence
than the SM-NLMS algorithm in colored environments. On
the other hand, close to the steady state solution, their per-
formances are comparable in terms of excess of MSE. There-
fore, a suitable assignment rule increases the data-reuse fac-
tor when the solution is far from steady state and reduces to
one when close to steady-state (i.e., the SM-PNLMS update).

Table 1: Quantization levels for Lmax = 5.

L(k) Uniform quantizer Using (24)

1 α1(k) ≤ 0.2 α1(k) ≤ 0.2019

2 0.2 < α1(k) ≤ 0.4 0.2019 < α1(k) ≤ 0.3012

3 0.4 < α1(k) ≤ 0.6 0.3012 < α1(k) ≤ 0.4493

4 0.6 < α1(k) ≤ 0.8 0.4493 < α1(k) ≤ 0.6703

5 0.8 < α1(k) ≤ 1 0.6703 < α1(k) ≤ 1.0000

As discussed previously, α1(k) in (20) is a good indica-
tor of how close to steady-state solution is. If α1(k) → 1, the
solution is far from the current constraint set which would
suggest that the data-reuse factor L(k) should be increased
toward a predefined maximum value Lmax. If α1(k) → 0, then
L(k) should approach one resulting in an SM-PNLMS up-
date. Therefore, we propose to use a variable data-reuse fac-
tor of the form

L(k) = f
[
α1(k)

]
, (21)

where the function f (·) should satisfy f (0) = 1 and f (1) =
Lmax with Lmax denoting the maximum number of data
reuses allowed. In other words, the above expression should
quantize α1(k) into Lmax regions

Ip =
{
lp−1 < α1(k) ≤ lp

}
, p = 1, . . . ,Lmax (22)

defined by the decision levels lp. The variable data-reuse fac-
tor is then given by the relation

L(k) = p if α1(k) ∈ Ip. (23)

Indeed, there are many ways in which we could choose
the decision variables lp. In the simulations provided in
Section 6, we consider two choices for lp. The first approach
consists of uniformly quantizing α1(k) into Lmax regions. The
second approach is to use lp = e−β(Pmax−p)/Pmax and l0 = 0,
where β is a positive constant [29]. This latter choice leads to
a variable data-reuse factor on the form

L(k) = max

{
1,

⌈
Lmax

(
1
β

lnα1(k) + 1

)⌉}
, (24)

where the operator 
(·)� rounds the element (·) to the near-
est integer. Table 1 shows the resulting values of α1(k) for
both approaches in which the number of reuses should be
changed for a maximum of five reuses, usually the most prac-
tical case. The values of the decision variables of the sec-
ond approach provided in the table were calculated with the
above expression using β = 2.

5. REDUCED COMPLEXITY VERSION OF THE
VARIABLE DATA-REUSE ALGORITHM

This section presents an alternative implementation of the
SM-PAPA in (19) that properly reduces the dimensions of
the matrices in the recursions.

Assume that, at time instant k, the diagonal of Λ(k) spec-
ified by (20) has P(k) nonzero entries (i.e., L(k) − P(k) zero
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entries). Let T(k) ∈ RL(k)×L(k) denote the permutation ma-
trix that permutes the columns of X(k) such that the result-
ing input vectors corresponding to nonzero values in Λ(k)
are shifted to the left, that is, we have

X(k) = X(k)T(k) = [X̃(k)U(k)
]
, (25)

where matrices X̃(k) ∈ CN×P(k) and U(k) ∈ CN×[L(k)−P(k)]

contain the vectors giving nonzero and zero values on the di-
agonal of Λ(k), respectively. Matrix T(k) is constructed such
that the column vectors of matrices X̃(k) and U(k) are or-
dered according to their time index.

Using the relation T(k)TT(k) = IL(k)×L(k), we can rewrite
the SM-PAPA recursion as

w(k + 1)

= w(k) + G(k)X(k)

×[T(k)TT(k)XH(k)G(k)X(k)T(k)TT(k)
]−1

Λ∗(k)1L(k)×1

= w(k) + G(k)X(k)

× [T(k)X
H

(k)G(k)X(k)TT(k)
]−1

Λ∗(k)1L(k)×1

= w(k) + G(k)X(k)
[

X
H

(k)G(k)X(k)
]−1

λ∗(k),
(26)

where vector λ(k) ∈ CL(k)×1 contains the P(k) nonzero adap-
tive step sizes of Λ(k) as the first elements (ordered in time)
followed by L(k)− P(k) zero entries, that is,

λ(k) =
[

λ(k)

0[L(k)−P(k)]×1

]
, (27)

where the elements of λ(k) are the P(k) nonzero adaptive step
sizes (ordered in time) of the form λi(k) = (1−γ/|ε(k)|)ε(k).

Due to the special solution involving λ(k) in (27), the
following computationally efficient expression for the coef-
ficient update is obtained using the partition in (25) (see the
appendix)

w(k + 1) = w(k) + G(k)Φ(k)
[
ΦH(k)G(k)Φ(k)

]−1
λ
∗

(k),
(28)

where matrix Φ(k) ∈ CN×P(k) is defined as

Φ(k) = X̃(k)−U(k)
[

UH(k)G(k)U(k)
]−1

UH(k)G(k)X̃(k).
(29)

This representation of the SM-PAPA is computationally at-
tractive as the dimension of the matrices involved is lower
than that of the version described by (19)-(20). Algorithm 2
shows the recursion for the reduced-complexity SM-PAPA,
where the L(k) can be chosen as described in the previous
section.

6. SIMULATION RESULTS

In this section, the performances of the SM-PNLMS algo-
rithm and the SM-PAPA are evaluated in a system iden-
tification experiment. The performance of the NLMS, the
IPNLMS, the SM-NLMS, and the SM-AP algorithms are also
compared.

SM-REDPAPA

for each k

{
ε(k) = d(k)−wH(k)x(k)

if
∣∣ε(k)

∣∣ > γ

{
X̃(k) = [x(k)

]
; U(k) = []; λ = [];

α1(k) = 1− γ(k)/
∣∣ε(k)

∣∣

gi(k) = 1− κα1(k)
N

+
κα(k)

∣∣wi(k)
∣∣

∑N
i=1

∣∣wi(k)
∣∣ , i = 1, . . . ,N

G(k) = diag
[
g1(k) · · · gN (k)

]

L(k) = f
[
α1(k)

]

for i = 1 to L(k)− 1

{
if
∣∣ε(k − i)∣∣ > γ

{
X̃(k) = [X̃(k)x(k − i)] % Expand matrix

λ(k) = [λT
(k)αi+1(k)ε(k − i)]T % Expand vector

}
else

{
U(k) = [U(k)x(k − i)] % Expand matrix

}
Φ(k) = X̃(k)−U(k)

[
UH(k)G(k)U(k)

]−1
UH(k)G(k)X̃(k)

w(k + 1) = w(k) + G(k)Φ(k)
[
ΦH(k)G(k)Φ(k)

]−1
λ
∗

(k)

}
else

{
w(k + 1) = w(k)

}
}

Algorithm 2: Reduced-complexity set-membership proportionate
affine-projection algorithm with variable data reuse.

6.1. Fixed number of data reuses

The first experiment was carried out with an unknown plant
with sparse impulse response that consisted of an N = 50
truncated FIR model from a digital microwave radio chan-
nel.4 Thereafter, the algorithms were tested for a dispersive
channel, where the plant was a complex FIR filter whose co-

4 The coefficients of this complex-valued baseband channel model can be
downloaded from http://spib.rice.edu/spib/microwave.html.

http://spib.rice.edu/spib/microwave.html
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Figure 1: The amplitude of two impulse responses used in the simulations: (a) sparse microwave channel (see Footnote 4), (b) dispersive
channel.

efficients were generated randomly. Figure 1 depicts the ab-
solute values of the channel impulse responses used in the
simulations. For the simulation experiments, we have used
the following parameters: μ = 0.4 for the NLMS and the

PAP algorithms, γ =
√

2σ2
n for all SMAF, and κ = 0.5 for

all proportionate algorithms. Note that for the IPNLMS and
the PAP algorithms, gi(k) = (1 − κ)/N + κ|wi(k)|/‖w(k)‖−1

corresponds to the same updating as in [4] when κ ∈ [0, 1].
The parameters were set in order to have fair comparison in
terms of final steady-state error. The input signal x(k) was a
complex-valued noise sequence, colored by filtering a zero-
mean white complex-valued Gaussian noise sequence nx(k)
through the fourth-order IIR filter x(k) = nx(k) + 0.95x(k −
1) + 0.19x(k − 2) + 0.09x(k − 3)− 0.5x(k − 4), and the SNR
was set to 40 dB.

The learning curves shown in Figures 2 and 3 are the re-
sult of 500 independent runs and smoothed by a low pass
filter. From the learning curves in Figure 2 for the sparse sys-
tem, it can be seen that the SMF algorithms converge slightly
faster than their conventional counterparts to the same level
of MSE. In addition to the faster convergence, the SMF al-
gorithms will have a reduced numbers of updates. In 20000
iterations, the number of times an update took place for
the SM-PNLMS, the SM-PAPA, and the SM-AP algorithms
were 7730 (39%), 6000 (30%), and 6330 (32%), respectively.
This should be compared with 20000 updates required by the
IPNLMS and PAP algorithms. From Figure 2, we also observe
that the proportionate SMF algorithms converge faster than
those without proportionate adaptation.

Figure 3 shows the learning curves for the dispersive
channel identification, where it can be observed that the

M
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Figure 2: Learning curves in a sparse system for the SM-PNLMS, the
SM-PAPA (L = 2), the SM-NLMS, the NLMS, the IPNLMS, and the
PAP (L = 2) algorithms. SNR = 40 dB, γ = √2σn, and μ = 0.4.

performances of the SM-PNLMS and SM-PAPA algorithms
are very close to the SM-AP and SM-NLMS algorithms, re-
spectively. In other words, the SM-PNLMS algorithm and the
SM-PAPA are not sensitive to the assumption of having a
sparse impulse response. In 20000 iterations, the SM-PAPA
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Figure 3: Learning curves in a dispersive system for the SM-PNLMS,
the SM-PAPA (L = 2), the SM-NLMS, the NLMS, the IPNLMS, and
the PAP (L = 2) algorithms. SNR = 40 dB, γ = √2σn, and μ = 0.4.

and the SM-PNLMS algorithms updated 32% and 50%, re-
spectively, while the SM-AP and SM-NLMS algorithms up-
dated 32% and 49%, respectively.

6.2. Variable data-reuse factor

The SM-PAPA algorithm with variable data-reuse factor was
applied to the sparse system example of the previous section.
Figures 4 and 5 show the learning curves averaged over 500
simulations for the SM-PAPA for L = 2 to L = 5, and SM-
REDPAPA for Lmax = 2 to Lmax = 5. Figure 4 shows the
results obtained with a uniformly quantized α1(k), whereas
Figure 5 shows the results obtained using (24) with β = 2.
It can be seen that the SM-REDPAPA not only achieves a
similar convergence speed, but is also able to reach a lower
steady state using fewer updates. The approach of (24) per-
forms slightly better than the one using a uniformly quan-
tized α1(k), which slows down during the second part of the
transient. On the other hand, the latter approach has the ad-
vantage that no parameter tuning is required. Tables 2 and
3 show the number of data-reuses employed for each ap-
proach. As can be inferred from the tables, the use of variable
data-reuse factor can significantly reduce the overall com-
plexity as compared with the case of keeping it fixed.

7. CONCLUSIONS

This paper presented novel set-membership filtering (SMF)
algorithms suitable for applications in sparse environments.
The set-membership proportionate NLMS (SM-PNLMS) al-
gorithm and the set-membership proportionate affine pro-
jection algorithm (SM-PAPA) were proposed as viable alter-
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Figure 4: Learning curves in a sparse system for the SM-PAPA (L =
2 to 5), and the SM-REDPAPA (Lmax = 2 to 5) based on a uniformly
quantized α1(k). SNR = 40 dB, γ = √2σn.
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Figure 5: Learning curves in a sparse system for the SM-PAPA (L =
2 to 5), and the SM-REDPAPA (Lmax = 2 to 5) based on (24). SNR =
40 dB, γ = √2σn.

natives to the SM-NLMS and SM-AP algorithms. The algo-
rithms benefit from the reduced average computational com-
plexity from the SMF strategy and fast convergence for sparse
scenarios resulting from proportionate updating. Simula-
tions were presented for both sparse and dispersive impulse
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Table 2: Distribution of the variable data-reuse factor L(k) used in
the SM-PAPA for the case when α1(k) is uniformly quantized.

Lmax L(k) = 1 L(k) = 2 L(k) = 3 L(k) = 4 L(k) = 5

1 100% — — — —

2 54.10% 45.90% — — —

3 36.55% 45.80% 17.65% — —

4 28.80% 36.90% 26.55% 7.75% —

5 23.95% 29.95% 28.45% 13.50% 4.15%

Table 3: Distribution of the variable data-reuse factor L(k) used in
the SM-PAPA for the case when α1(k) is quantized according to (24),
β = 2.

Lmax L(k) = 1 L(k) = 2 L(k) = 3 L(k) = 4 L(k) = 5

1 100% — — — —

2 37.90% 62.90% — — —

3 28.90% 35.45% 35.65% — —

4 28.86% 21.37% 33.51% 18.26% —

5 25.71% 15.03% 23.53% 25.82% 9.91%

responses. It was verified that not only the proposed SMF
algorithms can further reduce the computational complex-
ity when compared with their conventional counterparts, the
IPNLMS and PAP algorithms, but they also present faster
convergence to the same level of MSE when compared with
the SM-NLMS and the SM-AP algorithms. The weight as-
signment of the proposed algorithms utilizes the informa-
tion provided by a time-varying step size typical for SMF al-
gorithms and is robust to the assumption of sparse impulse
response. In order to reduce the overall complexity of the
SM-PAPA we proposed to employ a variable data reuse fac-
tor. The introduction of a variable data-reuse factor allows
significant reduction in the overall complexity as compared
to fixed data-reuse factor. Simulations showed that the pro-
posed algorithm could outperform the SM-PAPA with fixed
number of data-reuses in terms of computational complexity
and final mean-squared error.

APPENDIX

The inverse in (26) can be partitioned as

[
X

H
(k)G(k)X(k)

]−1 =
([

X̃(k)U(k)
]H

G(k)
[

X̃(k)U(k)
])−1

=
[

A BH

B C

]
,

(A.1)

where

A = [ΦH(k)G(k)Φ(k)
]−1

,

B = −[U(k)HG(k)U(k)
]−1

UH(k)G(k)X̃(k)A,
(A.2)

with Φ(k) defined as in (29). Therefore,

X(k)
[

X
H

(k)G(k)X(k)
]−1

λ∗(k)

= X(k)

[
A

B

]
λ
∗

(k)

=
[

X̃(k)− {UH(k)G(k)U(k)
}−1

UH(k)G(k)X̃(k)
]

× [ΦH(k)G(k)Φ(k)
]−1

λ∗(k)

= Φ(k)
[
ΦH(k)G(k)Φ(k)

]−1
λ∗(k).

(A.3)
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