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ABSTRACT 

  

Adequate rest and periods of activity are important for maintaining physiological 

homeostasis, for the adaptive functioning of the stress-response systems, and they 

promote psychological well-being. However, knowledge on the associations of sleep 

and physical activity with stress system functioning, and of physical activity with 

psychiatric problems is limited especially in children and youth.  

This study was designed to address three research questions, (1) whether sleep is 

associated with cardiovascular function in 8-year-old children, (2) whether physical 

activity is associated with psychiatric problems in 8-year-old children, and (3) whether 

physical activity is associated with hypothalamic-pituitary-adrenocortical axis (HPAA) 

function in 8- and 12-year-old children. 

The participants came from an urban community-based cohort originally comprising 

1049 infants born in 1998 in Helsinki, Finland. Sleep and physical activity were 

objectively measured using accelerometers. Sleep was also assessed using parent-

reported questionnaire-based data.  

Of the 413 children invited to a follow-up, 321 participated at a mean age of 8.1 

years. Of these, 231 to 274 were included in the analyses of sleep and ambulatory blood 

pressure, or cardiovascular reactivity to the Trier Social Stress Test for Children (TSST-

C). The children’s mothers and teachers filled in a questionnaire reporting common 

childhood psychiatric problems, and 199 children had valid data on physical activity 

and psychiatric problems from both observers. HPAA activity was measured via 

salivary cortisol concentrations, 252 of the children with valid data on physical activity 

had data on diurnal salivary cortisol, and 248 had data on salivary cortisol responses to 

the TSST-C.  

Later, of the 920 adolescents invited to a further follow-up, 451 participated at a 

mean age of 12.3 years. Of these, 283 adolescents with valid physical activity data 

provided data on diurnal salivary cortisol, and 272 adolescents provided data on salivary 

cortisol responses to a low-dose overnight dexamethasone suppression test (DST), a 

method used to study the individual physiological variation in HPAA feedback 

inhibition. 
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In contrast with a wealth of evidence especially from adults, the results showed that 

sleep in healthy children was not associated with an unhealthy cardiovascular 

phenotype. Higher physical activity levels were associated with a lower probability for 

psychiatric problems in children as well as lower HPAA reactivity to psychosocial 

stress at 8 years of age. In addition, in early adolescence (12 years of age) physical 

activity was associated with lower morning cortisol levels in girls and higher HPAA 

suppression in response to the DST in boys. 

 These results provide evidence on the health-related associations of sleep and 

physical activity in a community-based cohort of children. These findings offer insight 

into the influence of physical activity on physical and mental well-being, by suggesting 

that physical activity could promote health by moderating HPAA function. As the 

results are correlational in nature, further research using a prospective controlled 

methodology is called for. This study emphasizes the importance of sustaining and 

supporting high physical activity levels throughout childhood and adolescence. 
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TIIVISTELMÄ 

 

Riittävä lepo ja fyysinen aktiivisuus ovat keskeisiä fysiologisen tasapainon ja 

stressijärjestelmien toiminnan kannalta. Molemmat tekijät myös tukevat psyykkistä 

hyvinvointia. Erityisesti lapsia ja nuoria koskeva tieteellinen tieto unen ja fyysisen 

aktiivisuuden yhteyksistä stressijärjestelmien toimintaan, ja fyysisen aktiivisuuden 

yhteyksistä psykiatriseen oireiluun, on kuitenkin vielä vähäistä. Tämä väitöskirja vastaa 

kolmeen tutkimuskysymykseen: (1) onko unen laatu ja määrä yhteydessä 

kardiovaskulaarijärjestelmän aktiivisuuteen 8-vuoden iässä, (2) onko fyysinen 

aktiivisuus yhteydessä psykiatristen oireiden esiintyvyyteen 8-vuoden iässä, ja (3) onko 

fyysinen aktiivisuus yhteydessä hypotalamus–aivolisäke–lisämunuaiskuori-akselin 

(HPA-akseli) toimintaan 8- ja 12-vuoden iässä. 

Tutkimuksen osallistujat ovat osa kaupunkilaisväestöön pohjautuvaa 

seurantatutkimusta, johon osallistui alun perin 1049 vuonna 1998 Helsingissä 

syntynyttä lasta. Unta ja fyysistä aktiivisuutta mitattiin objektiivisesti 

kiihtyvyysantureilla. Unta arvioitiin myös vanhempien täyttämän kyselylomakkeen 

avulla. 

Kutsutuista 413 lapsesta 321 osallistui jatkotutkimukseen keskimäärin 8.1-vuoden 

iässä. Näistä lapsista 231–274 osallistui analyyseihin unen ja vuorokausiverenpaineen 

yhteyksistä tai unen yhteyksistä kardiovaskulaariseen reaktiivisuuteen 

psykososiaalisessa stressitestissä (lapsille muokattu Trierin Sosiaalinen Stressikoe, 

TSST-C). Lasten äidit ja opettajat täyttivät yleisimpiä lasten psykiatrisia oireita 

koskevan kyselyn. Käyttökelpoista tutkimusaineistoa sekä fyysisestä aktiivisuudesta 

että psykiatrisista oireista molemmilta havainnoitsijoilta saatiin 199 lapselta. HPA-

akselin toimintaa arvioitiin syljestä mitattujen kortisolitasojen avulla. Käyttökelpoista 

aineistoa sekä fyysisestä aktiivisuudesta että vuorokausikortisolista saatiin 252 lapselta 

ja käyttökelpoista aineistoa fyysisestä aktiivisuudesta ja kortisolitasoista TSST-C:n 

jälkeen saatiin 248 lapselta. 

Myöhemmin 920 nuorta kutsuttiin uuteen jatkotutkimukseen keskimäärin 12.3-

vuoden iässä, ja heistä 451 osallistui. Käyttökelpoista aineistoa sekä fyysisestä 

aktiivisuudesta että vuorokausikortisolista saatiin 283 nuorelta. Lisäksi 248 nuorelta 

saatiin käyttökelpoista aineistoa fyysisestä aktiivisuudesta ja kortisolitasoista yön yli 
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tehdyn matala-annoksisen deksametasonisuppressiotestin (DST) jälkeen, jonka avulla 

tutkittiin yksilöllistä fysiologista vaihtelua HPA-akselin negatiivisen 

palautejärjestelmän toiminnassa. 

Useista aikaisemmista tutkimustuloksista poiketen terveillä 8-vuotiailla lapsilla uni ei 

ollut yhteydessä sydän- ja verisuonitautien riskiä lisäävään kardiovaskulaariseen 

fenotyyppiin. 8-vuoden iässä fyysisesti aktiivisemmilla lapsilla oli matalampi riski 

kärsiä psykiatrisista oireista. Lisäksi aktiivisten lasten HPA-akselin reaktiivisuus 

psykososiaaliseen stressiin oli vähän liikkuvia lapsia matalampi. Varhaisessa 

murrosiässä (12-vuotiaana) tyttöjen korkeampi fyysinen aktiivisuus oli yhteydessä 

matalampiin kortisolitasoihin aamulla, kun taas aktiivisemmilla pojilla HPA-akselin 

suppressio DST:n jälkeen oli suurempaa. 

Nämä tulokset lisäävät tieteellistä näyttöä unen ja fyysisen aktiivisuuden yhteyksistä 

hyvinvointiin lapsilla ja nuorilla. Tulokset saattavat myös tuoda lisää ymmärrystä 

fyysisen aktiivisuuden ja psyykkisen hyvinvoinnin yhteyksiä selittäviin malleihin 

näyttämällä, että liikunta saattaa tukea hyvinvointia säätelemällä HPA-akselin 

toimintaa.  Koska tämän tutkimuksen löydökset ovat korrelatiivisia, tarvitaan jatkossa 

myös kokeellisia pitkittäistutkimuksia, jotta voitaisiin perehtyä löydösten syy–seuraus -

suhteisiin. Tämän tutkielman löydökset korostavat erityisesti liikuntaan kannustamisen 

ja liikunnan määrän ylläpitämisen tärkeyttä lapsuudesta varhaiseen murrosikään.  
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1 INTRODUCTION 

 

Both regular sleep and physical activity patterns are key factors in sustaining healthy 

circadian rhythms and for the adaptive functioning of the stress systems. Poor sleep and 

low levels of physical activity, in children and adolescents, are associated with negative 

physical and mental health outcomes. 

Up to 40% of all children are estimated to suffer from sleep problems and the 

problems persist in approximately half of those affected (Fricke-Oerkermann et al., 

2007). In addition, sedentary lifestyle is common in children and adolescents (Hallal, 

Wells, Reichert, Anselmi, & Victora, 2006), and with age, children become less likely 

to meet the recommendations for daily physical activity (Currie et al., 2012; Nader, 

Bradley, Houts, McRitchie, & O'Brien, 2008).  

 The transition from childhood to adolescence marks a period of increased 

vulnerability to mental disorders (Dekker et al., 2007). Supporting sufficient sleep and 

higher physical activity levels in youth are among the life-style interventions that should 

be considered in order to prevent stress-related illnesses. However, there is a need for 

further scientific understanding of the associations of sleep, physical activity, and health 

from a developmental perspective. 

 

1.1 Sleep and physical activity in stress and well-being 

1.1.1 Circadian rhythms 

Biological and psychological functioning, as well as social interactions, are determined 

by circadian rhythmicity (Czeisler & Gooley, 2007). Disruptions and desynchrony of 

these rhythms may lead to compromised physical (Golombek et al., 2013) and mental 

health (Germain & Kupfer, 2008). Varying sleep and activity periods are one of the 

most visible manifestations of the diurnal rhythms. They are also considered as 

important environmental factors entraining the body’s biological clocks (Borbély & 

Achermann, 1999; Dijk & von Schantz, 2005). 

Changes in the functioning of the hypothalamic-pituitary-adrenocortical-axis 

(HPAA), a major neuroendocrine stress system, as well as physiological changes in the 
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cardiovascular system functioning are crucial for maintaining the body’s homeostasis 

(internal stability) throughout the day. Both follow similar diurnal fluctuations with 

increased activity during daytime and lowered activation at night (Hermida, Ayala, & 

Portaluppi, 2007; Weitzman et al., 1971), increasing alertness and promoting rest. In 

addition to the maintenance of balanced diurnal functions, the activity of these systems 

is needed for an adequate response to different stressors (McEwen, 1998). 

1.1.2 Stress and allostatic load 

Definitions of stress are varied in literature and have been developed over an extended 

time period (Chrousos & Gold, 1992). In a broad sense, stress can be viewed as any 

actual or perceived threat to the individual’s physical or psychological balance. 

Contemporary theories have also emphasized the importance of unpredictability to the 

concept of stress (Koolhaas et al., 2011).  

The demands of physical stress to the body’s homeostasis are met with a process 

referred as allostasis “regaining stability through change” (Sterling & Eyer, 1988). 

Allostatic processes include a network of various humoral and neuronal mechanisms 

responding to the changes in the environment (Sterling & Eyer, 1988) affecting, for 

example, the cardiovascular system to increase blood pressure in response to the 

individual’s different activities throughout the day (James, 2007). 

In addition to the beneficial adaptation to stressors, however, a prolonged activation 

of the stress response systems is known to be detrimental for health (Lupien, McEwen, 

Gunnar, & Heim, 2009; McEwen, 1998). The concept of “allostatic load” introduced by 

McEwen and Stellar (1993) refers to the prolonged negative effects “the wear and tear” 

of the stress system activity on the body, which can lead to a higher susceptibility to 

various psychological and physiological health risks (McEwen, 2008). 

1.1.3 The role of sleep and physical activity 

As it is known that allostatic load sensitizes the body to negative health outcomes, 

knowledge on the factors possibly moderating the stress systems’ activity and 

alleviating stress is important for promoting health. 

Both sleep (Pace-Schott & Hobson, 2002) and physical activity (Hughes & Piggins, 

2012) play a crucial role in maintaining the body’s biological rhythms. In addition, both 
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are known to be associated with beneficial outcomes regarding cardiovascular function 

(Ayas et al., 2003; Eguchi et al., 2008; Gangwisch et al., 2006; Gottlieb et al., 2006; 

Javaheri, Storfer-Isser, Rosen, & Redline, 2008; Mezick, Hall, & Matthews, 2012) and 

HPAA activity (Buckley & Schatzberg, 2005; Klaperski, 2013; Pesonen et al., 2012; 

Räikkönen et al., 2010; Rimmele et al., 2007; Rimmele et al., 2009; Traustadottir, 

Bosch, & Matt, 2005).  

Better sleep and higher amounts of physical activity are also associated with fewer 

psychiatric problems (DeVincent, Gadow, Delosh, & Geller, 2007; Johnson et al., 2008; 

Parfitt, Pavey, & Rowlands, 2009; Pesonen et al., 2010; Strauss, Rodzilsky, Burack, & 

Colin, 2001) and better health in general (Kantomaa, Tammelin, Ebeling, & Taanila, 

2008; Physical Activity Guidelines Advisory Committee, 2008; Riddoch et al., 2009; 

Strong et al., 2005).  

Sleep and physical activity can be considered as important factors for sustaining 

homeostasis, alleviating stress, and promoting both physical and mental well-being. 

However, the associations between physical activity, sleep, and health, are still poorly 

understood especially during childhood and adolescence, and further scientific 

knowledge is warranted. The proceeding chapters will outline the functioning of the 

cardiovascular system and the HPAA, and how their prolonged hyper- or hypoactivity 

may relate to individual’s well-being. Further, the development and changes in sleep 

and physical activity and current knowledge of their health related associations are 

discussed, especially from the viewpoint of HPAA activity and cardiovascular function. 

 

1.2 The cardiovascular system 

1.2.1 Functioning  

The cardiovascular system is responsible for the circulation of blood, providing oxygen 

and nutrients throughout the body. Blood circulation is maintained by the cardiac output 

(CO) (the volume of blood pumped by the heart) and constriction of the arteries 

(peripheral resistance). The rate of blood flow in the arteries is measured by blood 

pressure, which represents the maximum (systolic) and minimum (diastolic) of the pulse 

wave created by the rhythmic pumping of the heart (James, 2007). 
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The main regulator of the cardiovascular system is the autonomic nervous system, 

separated into sympathetic and parasympathetic branches. Parasympathetic 

(cholinergic) activity is dominant during rest periods, whereas sympathetic 

(andrenergic) activity dominates in alert states and in response to stress. The 

sympathetic adrenal medullary system (SAMS) activity leads to the release of 

catecholamines epinephrine and norepinephrine, affecting the increase in heart rate and 

blood pressure (McEwen, 2003).  

Changes in the cardiovascular function accommodate the body to its changing needs 

during rest and activity periods as well as in response to stress. As discussed earlier, 

cardiovascular function follows a diurnal cycle. Blood pressure decreases nocturnally 

during sleep (nocturnal dipping), rises sharply after awakening and typically reaches its 

highest levels during the first hours after awakening (Hermida et al., 2007). 

1.2.2 Measuring cardiovascular system activity 

Systolic and diastolic blood pressure (SBP and DBP) can be measured by the use of 

auscultatory and oscillometric techniques. Auscultatory method is based on detecting 

the Korotkoff’s sounds (created by occluding the brachial artery by an inflatable cuff) 

using a stethoscope. The oscillometric method uses a pressure sensor to detect the mean 

arterial pressure (MAP) and SBP (by occluding blood flow from the arm or finger). In 

this method DBP is estimated by the use of device specific algorithms (Lurbe, Sorof, & 

Daniels, 2004). In addition to these methods blood pressure can also be assessed via 

tonometry, where the arterial pressure is measured by compressing the radial artery of 

the wrist, this method can provide semi-continuous measures of blood pressure for 

approximately once in every 12 to 15 heart beat intervals, the Vasotrac blood pressure 

measurement device uses this technique (Cua, Thomas, Zurakowski, & Laussen, 2005; 

Feldt et al., 2011). 

As blood pressure levels change over the course of the day and during different 

activities, the 24-hour ambulatory blood pressure (ABP) measurement has been 

considered to better characterize the individual’s BP level when compared to a single 

blood pressure measurement. In the 24-hour ABP method, blood pressure is typically 

measured at 15 to 30 minute intervals during the daytime and 20 to 60 minutes at night 

over a 24-hour period (Urbina et al., 2008). Using this method day and night specific 
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mean values for blood pressure can be assessed. Additionally the percentage of 

measurements exceeding sex and height (or age) specific 95
th

 percentile limits, referred 

as the ABP load (%), can be calculated. 24-hour ABP is also useful in eliminating the 

so-called ‘white-coat’ effect, referring to the increased blood pressure values associated 

with clinic measurements (Wühl, Hadtstein, Mehls, Schaefer, & Escape Trial Group, 

2004). 

In addition to measuring blood pressure, CO can be measured using impedance 

cardiography, an electrical measure of blood flow in the thorax. Using blood pressure 

and CO data, the total peripheral resistance (TPR) can be calculated as (MAP / CO) × 

80 (Feldt et al., 2011). 

Additionally, by assessing the changes in the heart’s electrical activity over each 

heart beat interval with electrocardiogram, the autonomic nervous system activity, 

including pre-ejection period (PEP) and high frequency heart rate variability (HF HRV), 

can be detected. PEP represents the time interval between the beginning of the electrical 

stimulation of the heart to the ejection of blood from the heart’s left ventricle, and it is 

considered as an index of cardiac sympathetic activation (Berntson et al., 1994). HF 

HRV is an index of parasympathetic activity (reflecting the variation in the vagal 

control of the heart), and it represents the high frequency component of the variability in 

heart beat intervals that can be identified from the heart rate data using Fast Fourier 

Transformation technique (Berntson et al., 1997). 

1.2.3 Development and health implications 

Normative levels of blood pressure increase throughout childhood into adolescence, and 

they are sex and age specific (Wühl, Witte, Soergel, Mehls, Schaefer, & German 

Working Group on Pediatric Hypertension, 2002). Men have higher blood pressure 

levels than women, and boys are at risk to develop high blood pressure levels when 

reaching adulthood more commonly than girls (Dasgupta et al., 2006). 

Identifying hypertension in pediatric populations is based on age or height specific 

reference values calculated separately for girls and boys (Wühl et al., 2002). When the 

24-hour ABP protocol is used, mean BP below the 95
th

 percentile of sex and age or 

height specific reference values, and blood pressure load below 25% are considered as 

normal (Lurbe et al., 2004). For example in 8-year-olds the 95
th

 percentile upper limits 
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for normal daytime ambulatory SBP and DBP are 124.3 mmHg and 81.8 mmHg for 

girls and 125.3 mmHg and 81.8 mmHg for boys, whereas in 16-year-olds the upper 

limits are 130.9 mmHg and 82.1 mmHg for girls and 143.9 mmHg and 83.5 mmHg for 

boys (Urbina et al., 2008). 

High blood pressure levels pose multiple health risks. Longitudinal data show that 

elevated blood pressure levels in childhood are associated with hypertension (W. Bao, 

Threefoot, Srinivasan, & Berenson, 1995), manifestations of carotid atherosclerosis 

(Raitakari et al., 2003) and coronary heart disease (Erlingsdottir, Indridason, 

Thorvaldsson, & Edvardsson, 2010) in adulthood.  

In addition to resting levels, also cardiovascular reactivity to both physical and 

psychological stressors has various health implications. It has been shown that 

cardiovascular reactivity to stress predicts risks of subsequent stroke (Everson et al., 

2001), coronary calcification (Matthews, Zhu, Tucker, & Whooley, 2006), increased left 

ventricular mass (Treiber et al., 2003), and hypertension (Matthews et al., 2004), 

beyond that of resting blood pressure. 

High blood pressure and hypertension in pediatric populations are more commonly 

recognized nowadays than in the past (Lurbe et al., 2009). Furthermore blood pressure 

tracks over time from childhood to adulthood (Chen & Wang, 2008) making early 

identification and prevention important.  

 

1.3 The HPAA 

1.3.1 Functioning 

HPAA activation (e.g., in response to stress) is initiated by the secretion of corticotropin 

releasing hormone from the paraventricular nucleus of hypothalamus, leading to the 

release of adrenocorticotropic hormone from the pituitary gland, and finally to the 

secretion of glucocorticoids (cortisol in humans) from the adrenal cortex. Cortisol itself 

then exerts negative feedback inhibition within the HPAA by binding to the 

glucocorticoid and mineralocorticoid receptors in different levels of the axis, including 

the hypothalamus and the pituitary, and in different brain regions, leading to the shut-

down of the system (Lupien et al., 2009). 
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HPAA activity follows a diurnal cycle. Cortisol secretion is pulsatile, and the lowest 

cortisol concentrations have been found in the period of 4 hours before and 2 hours after 

bed time, after which cortisol secretion increases and reaches its peak during 

approximately one hour after awakening to decline again towards the nocturnal nadir 

(Weitzman et al., 1971). 

The secretion of cortisol initiated by HPAA activation is important for adequate 

stress responses, repressing inflammation, and enhancing the effects of catecholamines, 

as well as leading to an increase in appetite, changes in metabolism to release energy, 

and improved consolidation of emotionally important stimuli (McEwen, 2003). When 

compared to the fast and relatively short lived responses of the autonomic nervous 

system to stress, the HPAA response is slower and takes a longer time in returning to its 

initial state.  

1.3.2 Measuring HPAA activity 

HPAA activity can be noninvasively measured by assessing the cortisol concentrations 

from saliva samples, which represent the biologically active proportion of cortisol (“free 

cortisol”) unbound to circulating proteins (such as corticosteroid-binding globulin) as in 

blood (Kudielka, Gierens, Hellhammer, Wust, & Schlotz, 2012). Salivary cortisol 

samples are typically collected at varying time intervals over the course of the day to 

indicate the diurnal cortisol pattern and cortisol awakening response (Kudielka et al., 

2012). 

In addition to assessing the diurnal pattern of HPAA activation, the HPAA reactivity 

to stressors can be measured by the use of different stress tests. Social-evaluative stress 

tests, such the Trier Social Stress Test (TSST) (Kirschbaum, Pirke, & Hellhammer, 

1993), are considered to be the best ways to experimentally induce stress for the 

assessment of individual differences in HPAA reactivity (Dickerson & Kemeny, 2004).  

Furthermore, the individual physiological variation in the HPAA feedback inhibition 

can be assessed by measuring cortisol levels after a low-dose overnight dexamethasone 

suppression test (DST). Similarly as cortisol, dexamethasone also binds to the 

glucocorticoid receptors, inducing HPAA feedback inhibition (Best, Nelson, & Walker, 

1997; Kajantie et al., 2003; Reynolds et al., 2001). 
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1.3.3 Development and health implications 

The diurnal pattern of HPAA functioning is already evident in 3-month-old infants 

(Price, Close, & Fielding, 1983). However, the era of early childhood, starting towards 

the end of the first year, is often considered as a “stress hyporesponsive period”, when 

cortisol responses to stress are relatively low (Lupien et al., 2009). 

HPAA activity increases along with age and pubertal maturation (Gunnar, Wewerka, 

Frenn, Long, & Griggs, 2009). More adult-like response patterns of the HPAA become 

evident around mid-adolescence, showing an increased sex-specificity (Ordaz & Luna, 

2012). In adults, women are reported to have lower cortisol responses to stress than men 

(Kajantie & Phillips, 2006; Kudielka & Kirschbaum, 2005), which is likely to be 

mediated by hormonal changes (A. M. Bao, Hestiantoro, Van Someren, Swaab, & 

Zhou, 2005). The lower cortisol levels found in women are hypothesized to be adaptive 

in order to protect the fetus from excessive exposure to maternal glucocorticoids during 

pregnancy (Kajantie & Phillips, 2006). 

In adolescents, however, findings on the direction of the sex-differences are 

contradictory, showing both higher and lower levels of activity in girls as compared to 

boys (Adam et al., 2010; Bouma, Riese, Ormel, Verhulst, & Oldehinkel, 2009; Gunnar, 

et al., 2009; Reynolds et al., 2013). The sex-specific differences in HPAA function 

might also have health implications. The sex-specific changes in the occurrence of 

psychopathology, such as depression, which is more prevalent in adolescent girls than 

boys (Dekker et al., 2007), could partly relate to the emerging differences in HPAA 

functioning during adolescence (Lupien et al., 2009; Ordaz & Luna, 2012). 

Normal functioning of the HPAA is important for health, and both hypo- and 

hyperactivity of the HPAA have been linked with adversity. For example, major 

depressive disorder has been consistently associated with elevated cortisol levels 

(Brown, Varghese, & McEwen, 2004; Pariante & Miller, 2001), nonsuppression of 

cortisol levels after the DST has been found in patients with affective disorders, 

supporting a hypothesis that the feedback inhibition of HPAA is compromised (Brown 

et al., 2004; Newell-Price, Trainer, Besser, & Grossman, 1998; Pariante & Miller, 

2001). In contrast to the findings on depressed patients, post-traumatic stress disorder 

(resulting from severe traumatic experiences) has been associated with attenuated 

cortisol levels and increased suppression of cortisol in response to the DST (Yehuda, 
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2002). According to Yehuda (2002), this pattern might result from cortisol 

hyporeactivity during the traumatic experience leading to a process of negative 

physiological and psychological alterations impairing recovery and coping in the future.  

Stress is known to have negative effects on the developing brain (Lupien et al., 

2009). Different hypotheses have been formed to explain these effects; the neurotoxicity 

hypothesis states that increased glucocorticoid levels leads to suboptimal resistance of 

the neurons to subsequent health hazards, whereas the vulnerability hypothesis expects 

that alterations in brain structures precede the development of e.g. depression or post-

traumatic stress disorder increasing the individual’s susceptibility to them (Lupien et al., 

2009).  

 

1.4 Sleep 

1.4.1 Definition 

Sleep is a state of unresponsiveness to the surroundings characterized with behavioral 

attributes such as inertness, closed eyes, and physical inactivity (Carskadon & Dement, 

2011). The sleep-wake cycle is regulated by homeostatic processes (accumulation of 

neurochemicals) as well as a circadian process entrained by environmental factors (e.g., 

light exposure, physical activity, and eating behaviors) (Borbély & Achermann, 1999; 

Dijk & von Schantz, 2005). 

The electroencephalograph (EEG) patterns during sleep have special characteristics 

showing cycles of changing sleep stages occurring overnight (sleep architecture). A 

typical sleep cycle starts with a progression through 4 stages of non-rapid eye 

movement (NREM) sleep and ends in rapid eye movement (REM) sleep. The duration 

of a typical sleep cycle in adults is approximately 90 minutes (Carskadon & Dement, 

2011). The depth of sleep increases in every NREM stage, and stages 3 and 4 are 

considered as slow wave sleep with synchronized low frequency and high amplitude 

EEG waveforms (Pace-Schott & Hobson, 2002). REM sleep is characterized with a 

nonsynchronous EEG close to the awake pattern, a decrease in muscular tone, and 

periods of rapid eye movements (Hobson, 2009), as well as a high incidence of dream 

recall if awakened (Dement & Kleitman, 1957). 
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 The functions of sleep are still a matter of debate. Sleep undoubtedly serves for 

various purposes, such as memory consolidation (Marshall, L. & Born, 2007; Stickgold, 

2006), and promoting synaptic and cellular homeostasis (Tononi & Cirelli, 2014). An 

interesting new theory has proposed that sleep functions as a time period when brain 

metabolites can be cleared from the central nervous system, thus protecting the nervous 

system from the effects of toxins (Xie et al., 2013).  

1.4.2 Measuring sleep 

Most common measures of sleep include polysomnography, actigraphy, and 

questionnaire based assessment. Polysomnography includes simultaneous measures of 

EEG, muscle tone, and eye movement (Carskadon & Dement, 2011). As it is the only 

measure by which specific sleep stages can be reliably identified, it is often considered 

as “the gold standard” in sleep assessment.  

However, due to their cost-efficiency and ease of use for the participants, actigraphic 

measures of sleep duration and quality are often carried out. Actigraphs, or 

accelerometers, are small motion detectors, typically worn on the wrist or hip, assessing 

acceleration by activity counts during a selected epoch of time (e.g., counts per minute, 

cpm). Based on a predetermined sleep algorithm, the raw accelerometer data on the 

wearer’s movements is used to differentiate sleep from wake states (The Actiwatch User 

Manual, 2008). In addition to the estimation of sleep duration, accelerometers can 

provide data on sleep quality, such as sleep efficiency (“actual time spent asleep / time 

in bed”), sleep fragmentation (“number of minutes moving / assumed sleep period” + 

“the number of immobile phases lasting one minute / the total number of immobile 

phases”), and sleep latency (“The latency before sleep onset following bed time”) (The 

Actiwatch User Manual, 2008). 

Actigraphy is considered valid in determining sleep especially in healthy subjects, 

but also regarding certain sleep problems (e.g., circadian rhythm sleep disorders) 

(Morgenthaler et al., 2007). An average correlation of total sleep time measured by 

actigraphy and polysomnography has been found to be 0.71 (Morgenthaler et al., 2007). 

An epoch-by-epoch comparison in 3- to 18-year-olds between polysomnography and 

two different accelerometers revealed sensitivity from 0.89 to 0.97, specificity from 
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0.54 to 0.77, and accuracy from 0.87 to 0.90 in detecting sleep from wake states 

(Meltzer, Walsh, Traylor, & Westin, 2012). 

 In addition to polysomnography and actigraphy, questionnaire based measures are 

also often preferred due to their high cost-efficiency. Participants typically answer 

questions on sleep duration or keep a sleep diary on their bed times and awakening 

times. However, diaries and questionnaire based sleep assessment in children have been 

estimated inadequate as sole measures of sleep, especially when parental reports are 

used (Werner, Molinari, Guyer, & Jenni, 2008). Particularly, the estimates of sleep 

duration based on diaries are longer than accelerometer based estimates (Werner et al., 

2008), which should be considered when comparing studies using actigraphy and self-

reports. As a strength, questionnaires can be used to assess the occurrence of specific 

sleep problems and complaints (such as nightmares or daytime sleepiness) (Bruni et al., 

1996), which cannot be detected by polysomnography or accelerometer based measures. 

1.4.3 Sleep from childhood to adolescence 

Sleep quantity and quality as well as sleep architecture change over the lifespan. Most 

significant changes occur during childhood and adolescence. 

The development of sleep patterns in childhood begins with the consolidation of the 

sleep-wake cycle during the first months of infancy (Sadeh, Mindell, Luedtke, & 

Wiegand, 2009). It has been estimated from parental reports that newborns sleep 14.3 

hours in average, of which 8.5 hours is night-time sleep, although the individual 

variability is high (Sadeh et al., 2009). The slow wave stages of NREM sleep become 

present as the brain develops during the first months of life, and after reaching its peak 

in young childhood the proportion of slow wave sleep starts declining (Carskadon & 

Dement, 2011). Childhood sleep duration decreases steadily with age, which is 

especially due to later bedtimes, rather than changes in get up times (Blair et al., 2012).  

An analysis based on seven different European studies, using questionnaire or diary 

based data, provided an equation estimating that 9-year-olds sleep 10.1 hours on school 

days and 11.0 hours on non-school days, whereas for 18-year-olds the times were 8.3 

and 9.8 hours, respectively (Olds, Blunden, Petkov, & Forchino, 2010). Regional 

variability in sleep duration was found high with European children sleeping (on school 

days) 60 to 120 minutes more than Asian children, and 20 to 60 minutes more than 



25 

 

children from the U.S. (Olds et al., 2010). Genetic factors and cultural differences (e.g., 

studying late at night) as well as factors related to data collection, such as differences in 

reporting daytime napping or underreporting the total sleep time, have been suggested 

to explain these differences (Matricciani, Blunden, Rigney, Williams, & Olds, 2013; 

Olds et al., 2010). 

As discussed earlier, actigraphic estimates of sleep duration are lower than 

questionnaire-based reports. We have recently shown in Finnish children (Pesonen et 

al., 2014), at 8 years of age, the mean of both week and weekend sleep duration was 8.5 

and 8.2 hours for girls and boys. Later, at 12 years of age, a mean of 7.8 hours was 

found for both boys and girls on weekdays, whereas the duration of weekend sleep was 

8.5 hours for girls and 8.3 hours for boys (Pesonen et al., 2014). 

One of the most remarkable changes in sleep occurs during the transition to 

adolescence. These changes include delayed sleep phase (Carskadon, Vieira, & Acebo, 

1993) and changes in sleep architecture (decrease in EEG power), which might reflect 

cortical restructuring (synaptic pruning) during this phase of development (Tarokh, Van 

Reen, LeBourgeois, Seifer, & Carskadon, 2011). It has been reported that changes in 

sleep precede the bodily pubertal changes, indicating that cortical development could 

affect sleep even before the secondary pubertal signs can be detected (Sadeh, Dahl, 

Shahar, & Rosenblat-Stein, 2009). 

1.4.4 Poor sleep and sleep problems 

According to the International Classification of Sleep Disorders (American Academy of 

Sleep Medicine, 2001) sleep disorders are categorized into four groups, (1) dyssomnias, 

relating to problems in initiating and maintaining sleep, or excessive sleepiness (e.g., 

insomnia and obstructive sleep apnea) (2) parasomnias, relating to behavioral or 

physiological problems during sleep (e.g., nightmares and sleepwalking) (3) sleep 

disorders associated with mental, neurologic, or other medical disorders, reflecting 

secondary sleep problems (related to e.g., mood or anxiety disorders) and (4) proposed 

sleep disorders, of which scientific evidence is limited (e.g., sleep hyperhidrosis). 

In healthy children, the occurrence of sleep problems varies depending on the 

disorder and measure used. For instance, 36.9% of parents reported their 6- to 13-year-

old children as having problems of excessive sleepiness at least three times per week, 
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whereas, only 4.1% reported frequent problems related to sleep breathing disorders 

(Spruyt, O'Brien, Cluydts, Verleye, & Ferri, 2005). A study by Fricke-Oerkermann et al. 

(2007) reported that up to 40% of 9-year-old children suffered from problems in 

initiating sleep and the problems persisted in approximately half of the children when 

followed one year later. 

When studying the health related associations of sleep duration, it is common to use 

sleep as a continuous measure and/or focus on the dichotomized indices, for example 

representing the children with the lowest sleep quantity or quality (e.g., below the 10
th

 

percentile of the study participants) (Pesonen et al., 2009; Räikkönen et al., 2010). 

Estimating appropriate sleep duration is, however, problematic due to the high 

individual variation in sleep, as discussed earlier, and thus there is no clear evidence for 

cutoff points for sufficient sleep duration in different age-groups (Matricciani et al., 

2013). A high deviance from age, sex and region specific sleep duration, a large 

difference between weekend and weekday sleep, as well as reports of daytime 

somnolence could be considered as possible markers of insufficient sleep duration.  

 

1.5 Sleep and cardiovascular function in children 

In children and youth, poor sleep has been associated with various negative health 

outcomes, including psychiatric problems (Pesonen et al., 2010; Sadeh, Gruber, & 

Raviv, 2002), attentional problems (Paavonen et al., 2009), cognitive problems 

(Paavonen et al., 2010; Sadeh et al., 2002), obesity (Bayer, Rosario, Wabitsch, & von 

Kries, 2009), as well as increased cortisol levels at awakening and in response to stress 

(Räikkönen et al., 2010). 

One commonly reported health association with sleep relates to the increased 

cardiovascular risks. There is evidence from studies in adults that poor sleep is 

associated with hypertension (Gangwisch et al., 2006; Gottlieb et al., 2006) and 

cardiovascular disease (Ayas et al., 2003; Eguchi et al., 2008). However, further 

research into these associations in children is warranted. The studies that have addressed 

the associations between poor sleep and cardiovascular function in children are 

inconclusive, differ in their target populations and measures of sleep, and have produced 

contradictory results, as reviewed below. 
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1.5.1 Sleep quantity and quality, and cardiovascular function 

In multiethnic samples from the U.S., actigraphic measures of poor sleep efficiency 

have been associated with elevated daytime measures of SBP, DBP, and hypertension in 

13- to 16-year-olds (Javaheri et al., 2008). Furthermore, short sleep duration has been 

associated with elevated 24-hour SBP, DBP, and prehypertension in 14- to 19-year-olds 

(Mezick et al., 2012). 

Other studies have relied upon parent- or teacher-reports to assess sleep duration 

indirectly. In these studies, longer sleep has been associated variously with increased 

blood pressure (Sampei, Dakeishi, Wood, & Murata, 2006), decreased blood pressure 

(Sung et al., 2008), and no change in blood pressure (Bayer, Neuhauser, & von Kries, 

2009) in groups that differed by age and ethnicity, with sample sizes ranging from 117 

(Sampei et al., 2006) to 12 680 (Sung et al., 2008). In many of these studies, measures 

of resting cardiovascular function have been limited to occasional blood pressure 

measurements. Furthermore, cardiovascular reactivity to stressors has not been 

addressed, which may be important in addition to resting blood pressure (Everson et al., 

2001; Matthews et al., 2004; Matthews et al., 2006; Treiber et al., 2003).   

1.5.2 Sleep problems and cardiovascular function 

Regarding sleep problems and cardiovascular function, previous studies in children, 

with ages ranging from 3 to 17 years, have focused on sleep apnea and parent-reported 

snoring. Children diagnosed with sleep disordered breathing had higher than normal 

ambulatory SBP and DBP during wakefulness and sleep (Amin et al., 2008; Kohyama, 

Ohinata, & Hasegawa, 2003; Leung et al., 2006; Li et al., 2008), an increase in basal 

sympathetic activity during wakefulness, and impaired autonomic reaction in response 

to breathing tests and to a head-up tilt test (Montesano et al., 2010), as well as increased 

sympathetic vascular reactivity during sight manoeuvres and in response to a cold-

pressor test (L. M. O'Brien & Gozal, 2005).  

High polysomnographic apnea-hypopnea index (> 3) in children who snored 

according to their parents was associated with higher ambulatory night-time SBP and 

DBP, and daytime DBP. Normal apnea-hypopnea index in children who snored was 

associated with higher DBP levels while asleep, but it was not associated with the other 

ABP measures (Li, Au, Ho, Fok, & Wing, 2009). Another study found no associations 
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between parent-reported snoring and SBP and DBP measured on one occasion in the 

morning (Kaditis et al., 2005). Although high cardiovascular reactivity to psychosocial 

stress is a strong predictor of later cardiovascular disease (Everson et al., 2001; 

Matthews et al., 2004; Matthews et al., 2006), as discussed earlier, its relationships with 

sleep problems in children has not been studied. 

 

1.6 Physical activity 

1.6.1 Definition 

According to the Physical Activity and Health report by the U.S. Department of Health 

and Human Services (1996, p. 20) physical activity is defined as “bodily movement 

produced by the contraction of skeletal muscle that increases energy expenditure above 

the basal level”. Different categorizations of physical activity focus on its intensity as 

well as on its type and purpose, as described below. 

 The intensity of physical activity describes the amount of energy needed to carry out 

a specific task. Metabolic equivalents (METs) are commonly used to describe physical 

activity intensity. An intensity of one MET describes the oxygen consumption while at 

rest (3.5 ml O2 × kg
-1

 × min
-1

) (U.S. Department of Health and Human Services, 1996).   

Intensities lower than 1.5 METs refer to sedentary time, intensities between 1.5 and 3 

or 4 METs refer to light physical activity, and higher intensities refer to moderate (3 or 

4 to 6 METs) or vigorous (above 6 METs) physical activities. All activities with at least 

moderate intensity can also be referred to as moderate to vigorous physical activity 

(MVPA). Both 3 and 4 METs have been used as cutoff points for moderate intensity 

activities, although 3 METs might be considered as a too low cutoff in discriminating 

moderate physical activity from lower intensity activities (Mattocks et al., 2007) 

 Physical activity can be divided into different types based on the aims of the activity. 

Physical exercise includes activities that are aimed at increasing physical fitness, which 

includes various abilities such as muscular strength and endurance, body composition, 

and cardiorespiratory fitness (the ability to provide oxygen to the body). All these 

abilities are vital for surviving daily challenges and carrying out different everyday 
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tasks with necessary energy and without extreme strain (U.S. Department of Health and 

Human Services, 1996). 

1.6.2 Measuring physical activity 

Physical activity measures are typically based on questionnaire data, motion counters 

(accelerometers and pedometers), heart rate measurements, and direct observation 

(Rowlands, Ingledew, & Eston, 2000). In a meta-analysis by Rowlands et al. (2000) 

direct observation and motion counters were found to be the most valid measures of 

physical activity.  

As described earlier regarding sleep, accelerometers (or actigraphs) are small motion 

counters. They are typically worn on the wrist or hip over at least over a four day period 

when used to assess physical activity (Trost, Pate, Freedson, Sallis, & Taylor, 2000). 

They can provide data on very short bursts of activity and are not dependent on how 

well the participants remember their daily activities. Accelerometers are superior to 

pedometers as they can also be used to measure the intensity of a specific activity. 

Both self-reports and parental reports of physical activity may fail to describe the 

characteristic level of typical physical activity. This is noteworthy especially in younger 

children, among whom the usual activity pattern consists of different levels of very 

short bursts of intense physical activity scattered among varying intervals of low and 

moderate intensity during the day (Bailey et al., 1995). In addition parents may not 

always be aware of all of their child’s activities. However, questionnaires can provide 

data on some aspects of physical activity that cannot be measured by objective devices 

(Syväoja et al., 2013), such as the specific types of physical activity (e.g. participating 

in organized sports, swimming, riding a bicycle, etc.) during the measurement period. 

1.6.3 Continuity and change of physical activity 

The amount and emphasis of physical activity changes as children grow older (Strong et 

al., 2005). In 8-year-olds and younger, the emphasis of physical activity is on the motor 

skill development, whereas in older children the emphasis shifts towards practicing 

specific physical skills, increasing physical fitness, and participating in organized sports 

(Strong et al., 2005). 
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 Approximately 30 to 40% of 2- to 18-year-old youth are considered to be sufficiently 

physically active depending on the measurement protocol used (Ekelund, Tomkinson, & 

Armstrong, 2011). The rank-order stability of physical activity over time from 

childhood to adolescence is moderate (Kristensen et al., 2008), but the overall level of 

physical activity decreases accompanied by an increase in sedentary time (Basterfield et 

al., 2011; Ortega et al., 2013).  

The latest World Health Organization’s Health Behaviour in School-Aged Children 

Report stated, using questionnaire-based data, that among 11-year-old Finnish children 

25% of girls and 38% of boys took part in at least one hour of MVPA daily, whereas 

among 15-year-olds the percentages were 10% for girls and 17% for boys (Currie et al., 

2012). In Finnish children the decrease in physical activity from childhood to 

adolescence was pronounced. When 39 countries where compared to each other, 

Finnish children ranked 4
th

 in the amount of MVPA at the age of 11 years, whereas at 

the age of 15 they had fallen to the 22
nd

 place (Currie et al., 2012). 

 

1.7 Physical activity and health 

1.7.1 Physical activity and psychological well-being 

Physical activity is acknowledged as beneficial for both mental and physical well-being 

(Physical Activity Guidelines Committee, 2008). In school-aged children and youth, 

physical activity has been found to be associated with at least modest beneficial health 

outcomes regarding cholesterol, depression, bone density, blood pressure, obesity, and 

metabolic syndrome, whereas as a downside, physically active children do seem to have 

a higher likelihood for medically treated physical injuries (Janssen & Leblanc, 2010).  

There is a growing evidence from recent studies that children who engage in higher 

levels of physical activity enjoy better psychological well-being, including higher self-

esteem, and are less likely to suffer from psychiatric problems (Griffiths, Dowda, 

Dezateux, & Pate, 2010; Hamer, Stamatakis, & Mishra, 2009; Kantomaa et al., 2008; 

Parfitt & Eston, 2005; Parfitt et al., 2009; Sagatun, Sogaard, Bjertness, Selmer, & 

Heyerdahl, 2007). However, when studying physical activity and psychiatric problems 

in children various studies have focused on self-reports (Kantomaa et al., 2008; Sagatun 
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et al., 2007) or parent-reports (Griffiths et al., 2010; Hamer et al., 2009) on physical 

activity. In addition, studies have focused on internalizing problems (such as anxiety 

and depression) and to a lesser extent to externalizing problems (such as aggression and 

conflict with others) (Strong et al., 2005).  

Results on the associations between children’s psychiatric problems and physical 

activity, measured with objective devices over a period of several consecutive days, are 

few and restricted to symptoms of depression and anxiety with contradictory findings. 

In two studies on 10-year-olds (Parfitt & Eston, 2005) and 9- to 10-year-olds (Parfitt et 

al., 2009), a higher level of physical activity was associated with fewer symptoms of 

depression and anxiety. By contrast, a study of 10- to 16-year-olds did not find any 

association between the amount of vigorous physical activity and symptoms of anxiety 

(Strauss et al., 2001). Also, a study of 12-year-old girls found no associations between 

physical activity and depressive symptoms (Johnson et al., 2008).  

Apart from methodological differences relating to the definition and measurement of 

daytime physical activity, the different age-ranges between the samples may contribute 

to the contradictory findings, as aging affects physical activity and the expression of 

psychiatric problems (Nyberg, Nordenfelt, Ekelund, & Marcus, 2009; Oldehinkel, 

Verhulst, & Ormel, 2011). 

Consequently, the previous studies have been limited by relatively small sample 

sizes (Parfitt & Eston, 2005; Parfitt et al., 2009; Strauss et al., 2001), assessment of only 

a few aspects of psychiatric problems (Johnson et al., 2008; Parfitt & Eston, 2005; 

Parfitt et al., 2009; Strauss et al., 2001), inclusion of both pubertal children and children 

near puberty (Johnson et al., 2008; Parfitt & Eston, 2005; Parfitt et al., 2009; Strauss et 

al., 2001), and using self- or parent-reported measurement of physical activity (Griffiths 

et al., 2010; Hamer et al., 2009; Kantomaa et al., 2008; Sagatun et al., 2007). Further 

research using objective measurement of physical activity and assessing a wide range of 

psychiatric problems is warranted. 

1.7.2 Physical activity and the HPAA 

Stress system activity is one of the potential mechanisms that could link physical 

activity with favorable health effects. The associations between physical activity and the 

HPAA are multifaceted. It has been suggested that physical activity could serve as both 
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a stressor and a modifier of stress; the adaptation of the HPAA, caused by physical 

activity might generalize to other stressors as well, including psychosocial ones 

(Hackney, 2006).  

Studies in adults have found that physically trained men exhibit lower cortisol 

responses to acute physical exercise, when compared to moderately trained or sedentary 

men (Luger et al., 1987). Trained men also showed significantly lower cortisol 

responses to a psychosocial stress test (TSST) when compared to their untrained 

counterparts (Rimmele et al., 2007). In another study, older (51- to 81-year-old) 

physically fit women showed lower cortisol responses to a different psychosocial stress 

test (Matt Stress Reactivity Protocol) when compared to unfit women of same age 

(Traustadottir et al., 2005). The same study also found that younger (19- to 36-year-old) 

fit and unfit women did not show differences in cortisol responses to stress when 

compared to each other (Traustadottir et al., 2005). However, a more recent study found 

that also among 18- to 23-year-old women, self-reported physical activity levels were 

associated with lower cortisol responses to a TSST for groups protocol (Klaperski, 

2013). 

In addition to assessing HPAA responses to stress, very few studies have examined 

the associations of daily physical activity levels and diurnal HPAA activity. In 46 young 

adult men and women, higher VPA was associated with higher hair cortisol 

concentrations (Gerber et al., 2013), presumably reflecting the long term accumulation 

of higher levels of cortisol after bouts of intense physical activity. In another study of 

491 adult men and women, higher overall levels of self-reported physical activity were 

associated with elevated morning cortisol, steeper diurnal cortisol decline, and greater 

cortisol suppression after the DST (Vreeburg et al., 2009), suggesting a more dynamic 

HPAA. 

As HPAA function (Kajantie & Phillips, 2006) and the quantity and quality of 

physical activity (Strauss et al., 2001) change by age and pubertal maturation, the 

generalization of the previous results to youth is precluded and studies examining these 

associations in both children and adolescents are needed. Only one study has examined 

these associations in youth. In a cohort study of 8- to 13-year-olds, parent-reported 

levels of physical activity were not associated with salivary cortisol responses to a 

psychosocial stress test (Trier Social Stress Test for Children, TSST-C) (Dockray, 
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Susman, & Dorn, 2009). However, as this study has a wide age-range, including both 

prepubertal and pubertal children (Dockray et al., 2009), the generalization of the results 

is precluded. Also the use of parental reports in assessing physical activity can be 

considered as a limitation.  

Consequently, further research investigating the associations between physical 

activity and HPAA function in groups of children and youth with a narrower age-range 

(both prepubertal and pubertal), and using objective measurement of physical activity is 

warranted. Furthermore, it is necessary to study the associations of physical activity and 

HPAA activity separately in adolescent girls and boys as HPAA activity is closely 

interlinked with sex steroid production, and sex-specific differences in HPAA activity 

emerge during adolescence (Adam et al., 2010; Bouma et al., 2009; Gunnar et al., 2009; 

Reynolds et al., 2013). Further, boys often lag behind girls in pubertal maturation (e.g., 

Pesonen et al., 2014), which might be another source of sex-related variation in HPAA 

activity and function in adolescence.  
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2 AIMS OF THE STUDY 

 

1. To study the associations between sleep and cardiovascular function in 8-year-old 

children (Studies I and II) 

 

2. To study the associations between physical activity and psychiatric problems in 8-

year-old children (Study III) 

 

3. To study the associations between physical activity and HPAA function in 8-year-old 

and 12-year-old children (Studies IV and V) 
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3 METHODS 

 

3.1 Participants 

The participants came from an urban community-based cohort comprising 1049 infants 

born between March and November 1998 in Helsinki, Finland (Strandberg, Vanhanen, 

& McKeigue, 2001). The study design and selection of participants for Studies I to V is 

presented in Figure 1. 

The Ethical Committee of the City of Helsinki Health Department and the Ethical 

Committee of the Helsinki University Hospital for Children and Adolescents at Helsinki 

and the Uusimaa Hospital District approved the project. Parents/caregivers and children 

gave informed, written consent. 

3.1.1 Selection of participants at 8 years of age 

In 2006, a subsample of the cohort was invited to a follow-up. Of the 413 children 

invited, 321 (77.7%) participated in the follow-up at the mean age of 8.1 years (standard 

deviation (SD) = 0.3, range 7.4 to 8.9 years) (Pesonen et al., 2009; Räikkönen et al., 

2010). Because the primary objective of the initial study was to examine the effects of 

maternal licorice consumption during pregnancy on their offspring’s developmental 

outcomes, participants at 8 years of age were recruited to over-represent children whose 

mothers consumed higher amounts of licorice. Apart from the less frequent maternal 

smoking during pregnancy (P = 0.022), the participants did not differ from the invited 

nonparticipants. 

In Study I, complete data on sleep, blood pressure, and cardiovascular function were 

available for 231 (72.0%) and 265 (82.6) children, without sleep breathing disorders, 

respectively. In Study II, data on sleep problems, blood pressure, and cardiovascular 

function were available for 241 (75.1%) and 274 (85.4%) children respectively. In 

Study III, data on physical activity and mother- and teacher-reported psychiatric 

problems were available for 199 (62.0%) children. In Study IV, data on physical 

activity and HPAA function were available for 252 (78.5%) and 248 (77.3%) children 

regarding diurnal salivary cortisol and salivary cortisol levels in response to 

psychosocial stress. 
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3.1.2 Selection of participants at 12 years of age 

Between 2009 and 2011, all initial cohort members who had given permission to be 

contacted and whose addresses were traceable were invited to a further follow-up. An 

invitation letter was sent to 920 adolescents and their parents (87.7% of the original 

cohort), of which 692 (75.2%) could be contacted by phone. Of them 451 (65.2% of the 

contacted) participated in a follow-up at a mean age of 12.3 years (SD = 0.5, range 

11.0–13.2 years). Non-participation was related to younger maternal age at the 

participant’s birth (P = 0.022), less frequent consumption of any alcohol (P = 0.011) and 

lower consumption of glycyrrhizin in licorice during pregnancy (P = 0.044). 

In Study V, complete data on physical activity and diurnal salivary cortisol were 

available for 283 adolescents (62.7%), and on physical activity and salivary cortisol 

after the DST for 272 adolescents (60.5%). 
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Figure 1. Study design and selection of the participants in 2006 (at 8 years of age) and 2009-2011 (at 12 years of age).  
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3.2 Sleep at 8 years of age 

3.2.1 Objective measures of sleep 

Sleep was objectively measured using accelerometers (Actiwatch AW4 and AW7, 

Cambridge Neurotechnology Ltd., UK) worn on the non-dominant wrist. The children 

and their caregivers were instructed to keep a sleep diary on bed times (lights off) and 

get up times and to press a button/event marker on the device at those times. The data 

were visually inspected for any discrepancies between the sleep diary, event markers, 

and physical activity data. Discrepancies (of more than 5 min) in one to two of the 

analyzed nights were found for 21% of the participants and in discrepancies in three or 

more nights for 8% of the participants.  

Following details led to the exclusion of the specific night from the data: the device 

was not used, no information on bedtimes was given, the child was already sleeping at 

reported bedtime according to the data, information on wake up time was not given and 

was not interpretable from the physical activity data, or there were changes to normal 

routines due to, for example, illness or travel, as reported by the parents (Pesonen et al., 

2009). Only children with more than two nights of valid data were included in the 

analyses. Following these criteria, the sleep data were analyzed for an average duration 

of 6.1 nights (SD = 1.2, range 3–13) per participant.   

Data were scored using Actiwatch Activity & Sleep Analysis software (v.5.42) with 

medium sensitivity and 1-minute epochs. We used the validated Actiwatch algorithm 

(Meltzer et al., 2012), which defines “sleep start” as the first ten minutes of continuous 

immobility. Sleep duration refers to the actual sleeping time. Sleep efficiency was 

defined as the percentage of time in bed that was spent asleep. The number of minutes 

spent moving as a percentage of time spent in bed and the percentage of immobility 

phases lasting less than one minute were summed to yield the fragmentation index (an 

indicator of restlessness). Sleep latency was defined as the delay between reported 

bedtime and sleep onset. 
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3.2.2 Parent-reported sleep problems 

The parents filled in a 26-item Sleep Disturbance Scale for Children (SDSC) (Bruni et 

al., 1996). Each item describes sleep-related behavior during the past 6 months and is 

rated on a 5-point scale. The SDSC yields six subscales representing the most common 

areas of sleep problems in childhood and adolescence (examples of the scales are given 

in Table 1).  

Following Spruyt et al. (2005), a sleep disorder was classified to be present if any of 

the items on the sleep disorder subscale were occurring at least three nights per week 

during the past 6 months, with the exception of the items belonging to the disorders of 

arousal and disorders of excessive daytime somnolence. These had to be present at least 

one or two nights per week. Based on this classification, having any sleep disorder (1 = 

yes, 0 = no) was defined as having at least one sleep problem on any of the 6 sleep 

disturbance subscales. Children with a specific sleep disorder were contrasted against 

the comparison-group of 159 children who were free of any sleep problems based on 

this classification.  

 

Table 1. Description of the sleep problems, measured by the SDSC (Bruni et al., 1996). 

Subscale Examples of items 

Dyssomnias   

Disorder of initiating and 

maintaining sleep 

The child goes to bed reluctantly 

After waking up in the night, the child has difficulty to fall asleep again 

Sleep breathing disorders The child has difficulty in breathing during the night 

The child snores 

Disorders of excessive 

somnolence 

The child awakes in the morning feeling tired 

The child falls asleep suddenly in inappropriate situations 

Parasomnias  

Sleep-wake transition 

disorders 

The child shows repetitive actions such as rocking or head banging while 

falling asleep 

The child startles or jerks parts of the body while 

falling a sleep 

Disorders of 

arousal/nighmares 

You have observed the child sleepwalking 

The child has nightmares which he/she does not remember the next day 

Other  

Sleep hyperhidrosis The child sweats excessively while falling asleep 

The child sweats excessively during the night 
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3.3 Physical activity at 8 and 12 years of age 

Physical activity was objectively measured by the same omnidirectional accelerometers 

used in the sleep assessment (Actiwatch AW4 and AW7, Cambridge Neurotechnology 

Ltd., UK), using 1-minute epochs. All periods with no detected movement during ten 

consecutive epochs (10 min) were recorded as missing values. Physical activity was 

calculated daily over 12 hours from 9:00 h onwards. Only days with data available for 

at least 10 hours were included in the analyses. 

The overall physical activity described as cpm is an indicator of the total volume of 

physical activity. This variable was calculated by dividing total counts by monitoring 

time (min) per day and averaged over the measurement period.  

The amount of minutes spent daily in different physical activity intensity categories 

was calculated for the participants and averaged over the measurement period. For 

Study III, a prediction equation by Heil et al. was used (Heil, 2006) to define MVPA 

(above 4 METs, 2297 cpm) from lower intensity activity. For Studies IV and V, a more 

recently published prediction equation by Ekblom et al. (2012) was used to define 

sedentary time (below 1.5 METs, 320 cpm), light physical activity (between 1.5 and 3 

METs, 1048 cpm), MVPA (above 3 METs, 1048 cpm), and vigorous physical activity 

(VPA) (above 6 METs, 1624 cpm), with markedly lower cutoff points.  

The analyses using the 3 METs cutoff point (light physical activity and MVPA) were 

considered as supplementary (used in Study V only), because 4 METs cutoff was not 

provided by Ekblom et al. (2012) and the 3 METs threshold may be considered too low 

in discriminating moderate physical activity from lower intensity activities (Mattocks et 

al., 2007).  

For the statistical analyses, to calculate the percentage of time spent in a specific 

physical activity intensity, the number of minutes accumulated in that intensity were 

divided by the monitoring time and averaged over the measurement period. 
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3.4 Psychosocial stress protocol at 8 years of age 

At the age of 8 years the children’s reactivity to psychosocial stress was measured using 

the TSST-C protocol (Buske-Kirschbaum et al., 1997; Feldt et al., 2011; Jones et al., 

2006) during which salivary cortisol, blood pressure, electrocardiography and thoracic 

impedance were recorded. 

 The children were scheduled to arrive in the clinic at 10:00 h, 12:00 h, or at 14:00 h 

and were asked to abstain from eating for 2 hours before arrival. After the child and 

parent/caregiver had signed an informed consent, a saliva sample, termed “arrival” 

hereafter, was obtained and weight and height of the child were measured.  

 For the cardiovascular measurements, a baseline recording of 5 minutes was 

conducted prior to the stress test in a standing position watching a comforting movie 

with the parent/caregiver present. Also the baseline saliva sample was obtained (mean = 

36.5; SD = 6.2 min after the arrival sample).  

 After the baseline measurement, the child was taken to another room, without the 

parent/caregiver, and introduced to a panel of two “judges” (Figure 2). The child was 

told that the panel would evaluate his/her performance in the upcoming tasks. The child 

was presented with different options of toys, of which she/he could choose the second 

favorite and the favorite one to be given to him/her as an award for excellent 

performance. The two toys were placed on a visible place during the completion of the 

tasks. The stress protocol consisted of a story-telling task, where the child had to 

complete a story after hearing its beginning played to him/her (the child prepared the 

story in the baseline room supported by the research nurse), right after the 5 minute 

story-telling task a 5 minute arithmetic task was conducted, both in front of a tape 

recorder and the panel. Recording of cardiovascular function was carried out during 

both tasks.  

When the tasks were completed, each child was awarded with their favorite toy and 

taken back to the other room to continue watching the same movie as in the baseline 

period. After 13 minutes of watching the movie the child was asked to stand up and 

after 7 minutes a 5 minute recovery cardiovascular recording was conducted. Salivary 
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cortisol samples were obtained at arrival and at baseline, as described above, and 0, 10, 

20, 30, and 45 minutes after the stress protocol. 

 

 

Figure 2. Trier Social Stress Test for Children. 

 

3.5 Cardiovascular function at 8 years of age 

3.5.1 Ambulatory blood pressure 

ABP was measured every 30 minutes between 8:00 and 10:00 h, and every hour 

between 22:00 and 8:00 h the following morning (41% on non-school days) using an 

oscillometric device (Spacelabs 90207, Spacelabs Healthcare, Washington, US), with an 

appropriate cuff size. The monitors met the standards of the Association for the 

Advancement of Medical Instrumentation and the British Hypertension Society for ABP 

measurement (E. O'Brien, Mee, Atkins, & O'Malley, 1992). Blood pressure cuffs were 

sited on the non-dominant upper arm.  

Measurements were rejected for systolic ABP > 220 or < 60 mmHg, diastolic ABP > 

120 or < 35 mmHg (Urbina et al., 2008), pulse pressure > 120 or < 20 mmHg, or heart 
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rate > 180 or < 40 beats/minute (Lurbe et al., 1999). On average, this yielded 24.8 (SD 

= 3.7, range 10 to 31) valid day and 9.8 (SD = 1.4, range 4 to 13) valid night readings. If 

data were available for less than 30% of the night or day, the recordings were excluded. 

Average 24-hour ABP level was calculated as the mean of average day and average 

night values. ABP load was calculated as the percentage of ABP values over a given 

period that exceeded the pediatric 95
th

 percentiles (Wühl et al., 2002). 

3.5.2 Cardiovascular reactivity to psychosocial stress 

To assess cardiovascular reactivity to psychosocial stress, the children underwent the 

TSST-C protocol, as described above. This has been shown to produce strong and 

reliable autonomic responses in children of the same age (Jones et al., 2008). In a clinic 

setting, impedance cardiograph electrodes and a non-invasive Vasotrac® APM205A 

(MedWave Inc, MN) blood pressure monitor were attached and data were recorded for 

5-minute epochs: with the children in a standing position; then during the speech and 

maths tasks of the TSST-C. 

CO, PEP, and heart rate were measured using a BIOPAC MP150 (BIOPAC Systems 

Inc., Santa Barbara, CA) with impedance cardiography (NICO100C) and 

electrocardiography (ECG100C) modules, following published methodological 

guidelines (Sherwood et al., 1990). Signals were sampled at 1000 Hz and devices were 

calibrated according to manufacturer’s instructions using Biopac AcqKnowledge 

software (v.3.8.1). Data were analysed using WinCPRS® 1.160 software (Absolute 

Aliens, Turku, Finland). HF HRV was determined according to current guidelines 

(Berntson et al., 1997). TPR was calculated as (mean arterial pressure/CO) × 80 and 

expressed in dynes × s × cm
-5

 (Feldt et al., 2011). 

For each cardiovascular measure, the mental stress responses were calculated as the 

difference between means of the ten minutes of stress and the first five-minute baseline 

rest period, in accordance with established approaches (Jones et al., 2008; Kamarck & 

Lovallo, 2003). Because thoracic impedance cardiography may track stroke volume 

with acceptable accuracy, but requires calibration to an invasive standard for absolute 

accuracy, we used the ratio of mean stress and rest values as a measure of stress 

response in impedance-derived measures, as has been previously suggested (Sherwood 

et al., 1990). 
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3.6 HPAA activity at 8 and 12 years of age 

Salivary cortisol (Salivette, Sarstedt, Nümbrecht, Germany) was measured at both 8 

years of age (diurnal salivary cortisol and the TSST-C) and 12 years of age (diurnal 

salivary cortisol and the DST). Children and their parents/caregivers were shown how to 

collect salivary samples for determination of diurnal cortisol using the Salivette cotton 

swabs. 

 Salivary cortisol concentrations were determined by the use of a competitive solid-

phase, time-resolved fluorescence immunoassay with fluorometric end point detection 

(DELFIA; Wallac, Turku, Finland) (Dressendorfer, Kirschbaum, Rohde, Stahl, & 

Strasburger, 1992). 

3.6.1 Salivary cortisol sampling and biochemical analyses at 8 years of 

age 

At 8 years of age, diurnal salivary samples were obtained during a 1 day period, at 

awakening (mean = 07:53 h; SD = 50 min), 15 and 30 minutes thereafter, and at 10:30 

h, 12:00 h, 17:30 h, and at bedtime (mean = 9:15 h; SD = 75 min). 81% of the children 

underwent the cortisol sampling during the physical activity assessment. The range of 

time between sampling and measurement of physical activity varied from 0 to 151 days. 

 The TSST-C protocol was used to measure HPAA responses to stress at 8 years of 

age. As described above, the salivary samples were obtained at arrival and at baseline 

and 0, 10, 20, 30, and 45 minutes after the TSST-C. 

All saliva samples were collected between January 2006 and December 2006. The 

samples were stored at -20°C and were analyzed in August 2007. The intra-assay 

coefficient of variation was between 4.0 and 6.7%, and the interassay coefficients of 

variation were between 7.1 and 9.0%. Cortisol concentrations were measured in 

duplicate, and the mean coefficient of variation between duplicate analyses was 5.0%. 
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3.6.2 Salivary cortisol sampling and biochemical analyses at 12 years of 

age 

At 12 years of age, salivary samples were obtained during two consecutive days, 

hereafter labeled as day A and day B. On both days, samples were collected upon 

awakening (day A: mean = 08:27 h, SD = 65 min; day B: mean = 08:26 h, SD = 71 min) 

and on day A also at 15, 30, 45 and 60 minutes after awakening, at 12:00 h, 17:00 h, 

and at bedtime (mean = 21:48 h, SD = 64 min). 30.7% of the children underwent the 

cortisol sampling during the physical activity assessment. The range of time between 

sampling and measurement of physical activity varied from 0 to 74 days. 

Dexamethasone was administered after the bedtime saliva sample on day A (mean = 

21:58 h, SD = 65 min) and a saliva sample was given at awakening the next morning 

(mean = 8:26 h, SD = 71 min). A low-dose of dexamethasone (3 µg/kg of weight) was 

used to detect the individual variation in HPAA suppression. We used a much lower 

dose of dexamethasone (3 µg/kg of weight) than used in standard clinical endocrine 

practice to exclude Cushing’s disease (e.g., 1 mg, or 20 µg/kg). The low-dose 

administered in this study has been used in population-based studies (e.g., Kajantie et 

al., 2003) to detect individual variation in HPAA suppression, within the normal range 

of the function of the axis, as it aims for ~50% HPAA suppression. 

At 12 years of age, the saliva samples were collected between September 2009 and 

December 2011. The samples were stored at -20°C and analyzed in January 2012. The 

intra-assay coefficient of variation was between 4.0% and 6.7%. The inter-assay 

coefficients of variation were between 6.5% for low (3.7 nmol/l), 7.7% for medium (7.7 

nmol/l) 6.9% for high concentration (18.4 nmol/l) control samples. Cortisol 

concentrations were measured in duplicate, and the mean coefficient of variation 

between duplicate analyses was 5.9%. 

3.6.3 Cortisol parameters 

Cortisol concentrations were log-transformed to attain normality. At 8 years of age 

diurnal variables were cortisol peak value after awakening (peak of values 15 and 30 

min after awakening), cortisol awakening response (peak value after awakening minus 

value at awakening), awakening time-weighted area under the curve (AUC of 0, 15, and 

30 min after awakening, calculated as the AUC above zero under trapezoidal rule), 
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awakening AUC increment (AUC minus awakening value), and nadir (minimum of 

diurnal values). TSST-C stressor variables were baseline, peak value after stress, 

increment (peak value after stress minus baseline value), time-weighted AUC 

(calculated as the AUC above zero under trapezoidal rule), and AUC increment (AUC 

minus baseline value).  

 At 12 years of age the following parameters were used: cortisol upon awakening, 

awakening time-weighted area under the curve (AUC) (AUC of 15, 30, 45, and 60 min 

after awakening, calculated as the AUC above zero under trapezoidal rule), and cortisol 

at bedtime, all from values on day A. Salivary cortisol response to the DST was the 

arithmetic difference between the log-transformed variables upon awakening (day A-

day B), back-transformed after analyses to indicate the ratio day A/day B. 

 

3.7 Psychiatric problems at 8 years of age 

Mothers completed the Child Behavior Checklist 4–18 (CBCL) (Achenbach, 1991a) 

and teachers completed the Teacher’s Report Form (TRF) (Achenbach, 1991b). Both 

questionnaires contain 120 symptom items assessed on a three-point scale ("not true," 

"somewhat true," and "often true"). We used the Achenbach software to obtain age- and 

sex-adjusted T-values for eight narrowband scales (anxious/depressed, 

withdrawn/depressed, somatic complaints, social problems, thought problems, attention 

problems, rule breaking behavior, aggressive behavior) and three broadband scales. The 

broadband scales are composites of the narrowband scales, of which internalizing refers 

to problems within the self (anxious/depressed, withdrawn/depressed, and somatic 

complaints); externalizing indicates conflict with others (rule breaking behavior and 

aggressive behavior); and the total problems scale is a composite of all eight 

narrowband scales (Achenbach, 1991a). 

In addition, we used six Diagnostic and Statistical Manual of Mental Disorders 

(DSM-IV)-oriented scales (DOS) aimed at covering common symptoms of childhood 

mental disorders (Krol, De Bruyn, Coolen, & van Aarle, 2006; Spatola et al., 2007). The 

DOS are based on 22 clinicians' ratings on the degree of consistency of CBCL or TRF 

items with corresponding DSM-IV criteria; items that were considered "very consistent" 

by at least 64% of the clinicians were then grouped into six separate DOS (affective 
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problems, anxiety problems, somatic problems, attention deficit/hyperactivity problems, 

oppositional defiant problems, and conduct problems). We used cutoffs at the 82
nd

 

percentile for all scales to indicate borderline clinically significant problems (0 = no 

problem, 1 = borderline clinically significant problem). The 82
nd

 percentile cutoff has 

been reported to provide the most efficient discrimination in emotional, behavioral, and 

social problems in normative samples (Achenbach, 1991a). 

 

3.8 Statistical analyses 

Continuous outcome measures (Studies I, II, IV, and V) were tested with multiple linear 

regression analyses and dichotomized outcome measures with logistic regression 

analyses (Study III). All analyses were adjusted for the child’s sex (when girls and boys 

were analyzed together), age, and body mass index (BMI; weight in kilograms divided 

by height in meters squared). Further study specific analyses are presented below. 

3.8.1 Studies I and II 

Associations of sleep measures with 24-hour ABP and cardiovascular stress response 

variables were tested with multiple linear regression analyses. In Study I, to test for the 

threshold effects, analyses were repeated with the sleep variables categorized (sleep 

duration was categorized into three groups contrasting the top and the bottom 10% with 

the middle 80% of the sample; sleep latency and fragmentation were dichotomized 

contrasting the top 10% with the rest of the sample; and sleep efficiency was 

dichotomized contrasting the bottom 10% with the rest of the sample).  

Analyses were adjusted for the child’s sex, age, height, BMI, maternal licorice 

consumption during pregnancy, and parental education (highest of either parent). To test 

whether the results differed between boys and girls, an interaction-term ‘sex × sleep 

variable’ was entered into the regression equation followed by the main effects. If an 

interaction was found to be significant, separate analyses were carried out for girls and 

boys to test for the sex-specific associations. Multiple statistical tests were accounted 

for by using Bonferroni-correction.  

In Study II, additional adjustments were made for the start time of the baseline 

recording (in TSST-C analyses). Furthermore, a correction for body surface area (BSA, 
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[(cm × kg)/3600]
1/2

 was carried out in the analyses of TPR and CO (TPR × BSA, 

CO/BSA); a separate analysis was carried out where BMI replaced the BSA correction. 

3.8.2 Study III 

Overall physical activity was used as a continuous variable. MVPA was categorized 

into three groups, comparing the children with the highest amount of MVPA to the 

children with the lowest amount of MVPA.  

The associations were adjusted for the child’s sex, age, height, BMI, maternal 

licorice consumption during pregnancy, parental education (the highest of either parent), 

and sleep duration. 

3.8.3 Studies IV and V 

The salivary cortisol patterns in relation to physical activity were first analyzed by 

mixed random effects regression analysis (Kajantie et al., 2007). This analysis is 

designed for analyzing all available data and hence can handle missing data. It also 

takes into account that the repeated measures on the same individual are correlated. To 

test whether the salivary cortisol patterns varied according to physical activity, we 

included an interaction term ‘physical activity × sampling time’, into the regression 

equation, followed by the main effects. In Study IV, physical activity was categorized 

into thirds by sex. In Study V, physical activity variables were used as continuous, and 

to facilitate the interpretation of the results, both physical activity and cortisol variables 

were standardized (mean = 0, SD = 1) in girls and boys separately. 

In Study IV, analyses were adjusted for time at awakening, sex, age at testing, BMI, 

sleep duration, maternal occupational status, and maternal licorice consumption during 

pregnancy. Since obesity might be associated with physical activity and HPAA 

function, all analyses were also performed after excluding children with obesity (n = 10) 

(T. J. Cole, Bellizzi, Flegal, & Dietz, 2000). However, as this did not affect any of the 

results, they are presented with these children included. Finally, because associations 

with salivary cortisol may vary according to sex (Kajantie & Phillips, 2006), we tested 

if sex moderated any of the associations. 

As sex-specific differences in HPAA function are known to increase towards 

adolescence (Ordaz & Luna, 2012), all analyses in Study V were studied in girls and 
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boys separately. In Study V, all associations were adjusted for the time at awakening 

(on day A for the analyses of diurnal salivary cortisol, and on days A and B for the 

analyses of salivary cortisol in response to DST) and for the time difference from taking 

dexamethasone on day A to awakening on day B (for analyses of salivary cortisol in 

response to DST), for age at testing, BMI, and pubertal status (model 1), and further for 

sleep duration, maternal occupational status, and maternal licorice consumption during 

pregnancy (model 2). 

 Level of pubertal maturation was measured in two different ways: by using the 

Pubertal Development Scale (PDS, a 5-item self-report scale: body hair, growth spurt, 

skin changes, and menarche and breast development for girls, and facial hair and voice 

change for boys rated on a scale of no changes yet (1) to clear changes (3) (Petersen, 

Crockett, Richards, & Boxer, 1988) and by drawing-based pubic hair development scale 

of Tanner staging  (Tanner 1, prepubertal, to Tanner 5, postpubertal) (Marshall, W., A. 

& Tanner, 1969; Marshall, W., A. & Tanner, 1970). The model 2 analyses were first 

adjusted for the PDS scale, and then rerun by replacing the PDS by the Tanner pubic 

hair development scale.  
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4 RESULTS 

 

4.1 Sleep and cardiovascular function 

4.1.1 Objectively measured sleep and 24-hour ABP and cardiovascular 

reactivity to the TSST-C (Study I) 

There were no significant associations between any measure of sleep quality and any 

parameter of ABP, when the sleep measures were treated as categorical variables or as 

continuous variables. 

In response to the TSST-C, children with short in comparison to average sleep 

duration had almost significantly lower SBP (mean difference (MD), 3.0 mmHg; 95% 

confidence interval (CI), 6.0 to 0.0; P = 0.051). They also had lower TPR (MD, 11.5%; 

95% CI, -18.3 to -4.6; P = 0.001), longer PEP (MD, 1.5 ms; 95% CI, 0.2 to 2.9; P = 

0.023) (lower sympathetic activity), and higher CO (MD, 6.5%, 95% CI, 2.2 to 10.7; P 

= 0.003) reactivity to the TSST-C. However, when sleep quantity and quality were 

analyzed as continuous variables, none of these associations were significant. After 

correction for multiple testing, no association remained significant (P-values > 0.07), 

and there was no evidence that the associations differed by sex. Adjustment of PEP for 

heart rate made no difference to the results. 

4.1.2 Parent-reported sleep problems and 24-hour ABP and cardiovascular 

reactivity to the TSST-C (Study II) 

There were no significant associations between sleep problems and 24-hour ABP 

variables. In comparison to the children who were free from sleep problems, children 

with sleep breathing disorders had higher baseline TPR (MD, 416.6 dynes × sec × cm
-5

; 

95% CI, 85.4 to 747.8; P = 0.014), as well as higher CO (11.0%; MD; 95% CI, 1.0 to 

21; P = 0.031) and heart rate (MD, 5.7 beats/min; 95% CI, 0.2 to 11.2; P = 0.044) 

reactivity to the TSST-C. Children with disorders of excessive somnolence had 47.7% 

higher baseline HF HRV (95% CI, 7.3 to 103.4; P = 0.016). 

There were no significant ‘sex × sleep problem’ interactions in associations between 

sleep problems and 24-hour ABP variables. Significant ‘sex × sleep problem’ 

interactions in associations between sleep problems and cardiovascular baseline values 
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and reactivity to the TSST-C were found (P-values for significant interaction terms 

were between 0.006 and 0.027) and sex-specific associations were analyzed. Based on 

these analyses girls with disorders of excessive somnolence had lower baseline SBP 

(MD, -4.2 mmHg; 95% CI, -8.3 to -0.1; P = 0.047), and DBP (MD, -3.3 mmHg; 95% CI 

= -6.4 to -0.3; P = 0.033), lower baseline TPR (MD, -141.6 dynes × sec × cm
-5

; 95% CI 

-279.4 to -3.8; P = 0.044), higher TPR reactivity (MD, 11.3%; 95% CI, 3.8 to 18.7; P = 

0.003), and lower CO reactivity to the TSST-C (MD, -6.0%; 95% CI, -10.8 to -1.1; P = 

0.016) than girls in the comparison group. Girls with sleep hyperhidrosis had lower 

baseline heart rate (MD, -15.3 beats/min; 95% CI, -25.6 to -4.9; P = 0.004) than girls in 

the comparison group. Boys with disorders of excessive somnolence had lower TPR 

reactivity to stress than boys in the comparison group (MD, -9.9%; 95% CI = -19.6 to -

0.3; P = 0.044). All other associations were not significant in boys (P-values > 0.092). 

Finally, we tested if any of the significant associations changed after adjusting for 

being diagnosed with any medical disorders, based on parental reports, and receiving 

medication. The results that were statistically significant remained so after these 

adjustments (P < 0.050), except for one: the difference in TPR reactivity among boys 

with disorders of excessive somnolence no longer reached our pre-determined 

significance level (P = 0.054). Similarly, when the BSA correction for CO and TPR was 

replaced by adjustment for BMI the results that were significant remained so. After the 

Bonferroni-correction was applied, all associations or interaction terms were no longer 

significant (corrected P-values > 0.071). 

 

4.2 Physical activity and psychiatric problems (Study III) 

All correlations between teacher- and mother-reported age and sex adjusted T-values of 

CBCL and TRF were significant (P-values < 0.03) with Pearson rs ranging from 0.15 

for DOS-based affective problems to 0.46 for DOS-based attention deficit/hyperactivity 

problems. Figure 3 shows the adjusted odds ratios (ORs) and 95% CIs for borderline 

clinically significant problems per each 100 cpm increase in overall physical activity 

across the measurement days as rated by the mothers and teachers.  

A higher overall physical activity was associated with lower odds for exhibiting 

withdrawn/depressed problems, somatic complaints, social, thought, attention, and 
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aggressive behavior problems; internalizing, externalizing, and total behavior problems; 

and DOS-based oppositional defiant and conduct problems as rated by the teachers (P-

values < 0.049). A higher overall level of physical activity across the measurement days 

was associated with lower odds for aggressive behavior problems and DOS-based 

affective problems as rated by the mothers (P-values < 0.045). There were no other 

significant associations with maternal ratings. 

 

 

Figure 3. Associations between overall physical activity and psychiatric problems. 

 

ORs indicate the change in the probability for borderline clinically significant psychiatric problems by 

every 100 cpm increase in physical activity, * P < 0.05; ** P < 0.01; * P < 0.001. 

 

(Martikainen et al., 2012. Physical activity and psychiatric problems in children. Journal of Pediatrics. 

161, 160–162, reprinted with permission) 

 

OR 
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Table 2 shows that when compared to the children who spent the least amount of 

time in MVPA (the bottom tertile), the children who spent the most time in MVPA (the 

top tertile) had almost significantly lower odds for exhibiting withdrawn/depressed 

problems (P = 0.050), they also had significantly lower odds for aggressive behavior 

problems; internalizing, externalizing, and total behavior problems; and DOS-based 

oppositional defiant problems as rated by the teachers (P-values < 0.023). Regarding the 

maternal reports, they had lower odds for anxious/depressed, thought, and aggressive 

behavior problems; externalizing and total problems; and DOS-based affective, anxiety, 

and attention deficit/hyperactivity problems (P-values < 0.036). The children spending 

intermediate time in MVPA did not differ significantly from those spending the least 

amount of time in MVPA (P-values > 0.060).  

 When we reran our analyses by replacing the initial 2297 cutoff for MVPA (Heil, 

2006) by the 1624 cutoff suggested for VPA (Ekblom, Nyberg, Ekblom Bak, Ekelund, 

& Marcus, 2012) the results remained essentially identical to those from the earlier 

analyses. Few differences emerged: when comparing the children in the highest third to 

the bottom third in VPA, the odds for teacher-reported somatic complaints became 

significant (OR, 0.2; 95% CI, 0.1 to 0.7), whereas the associations between VPA and 

mother-reported anxiety problems (OR, 0.3; 95% CI, 0.1 to 1.1), internalizing problems 

(OR, 0.4; 95% CI, 0.1 to 1.6), and anxious/depressed problems (OR, 0.3 95%; CI 0.1 to 

1.0) declined to non-significant. No other differences between these two approaches 

were found. 
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4.3 Physical activity and the HPAA 

4.3.1. Physical activity and HPAA function at 8 years of age (Study IV) 

Figure 4 shows that the overall physical activity level and time spent in VPA were not 

associated with the diurnal salivary cortisol level or pattern at 8 years of age (P-values > 

0.07). There were no differences between groups in the traditional indices of diurnal 

Table 2. ORs for teacher- and mother-rated psychiatric problems by the level of MVPA. 

 High vs. Low level of MVPA 

 Teacher-rated problems Mother-rated problems 

Variable OR 95% CI P OR 95% CI P 

Narrowband scales       

Anxious/depressed 0.7 0.2, 2.3 0.58 0.2 0.1, 0.9 0.036 

Withdrawn/depressed 0.3 0.1, 1.0 0.051 0.4 0.1, 1.5 0.20 

Somatic complaints 0.3 0.1, 1.1 0.062 0.5 0.2, 1.7 0.26 

Social problems 0.4 0.1, 1.4 0.16 0.7 0.2, 2.1 0.53 

Thought problems 0.3 0.1, 1.1 0.072 0.1 0.0, 0.4 0.002 

Attention problems 0.8 0.2, 2.5 0.69 0.4 0.1, 1.3 0.12 

Rule breaking behavior 0.8 0.2, 2.5 0.66 0.6 0.2, 2.1 0.46 

Aggressive behavior 0.2 0.1, 0.7 0.010 0.2 0.0, 0.6 0.009 

Broadband scales         

Internalizing 0.2 0.1, 0.8 0.022 0.4 0.1, 1.8 0.24 

Externalizing 0.2 0.1, 0.7 0.011 0.3 0.1, 1.0 0.054 

Total problems 0.2 0.1, 0.8 0.019 0.3 0.1, 0.9 0.027 

DSM-IV based scales         

Affective problems 0.8 0.2, 3.0 0.80 0.1 0.0, 0.5 0.003 

Anxiety problems 0.4 0.1, 1.6 0.20 0.1 0.0, 0.6 0.007 

Somatic problems 0.4 0.1, 1.7 0.23 0.6 0.2, 2.3 0.47 

Attention/deficit hyperactivity 

problems 0.6 0.2, 2.0 0.45 0.3 0.1, 0.9 0.033 

Oppositional defiant problems 0.2 0.1, 0.8 0.015 0.3 0.1, 1.1 0.080 

Conduct problems 0.5 0.2, 1.6 0.26 0.5 0.1, 1.6 0.24 

An OR below 1 indicates lower probability of problems for children in the top third of MVPA when 

compared to the bottom third. 

The associations are adjusted for the child’s sex, age, height, BMI, sleep duration, maternal licorice 

consumption during pregnancy, and parental education (highest of either parent). 
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salivary cortisol (P-values > 0.10). Sex did not moderate the associations of overall 

physical activity and VPA with diurnal salivary cortisol levels (P-values > 0.06). 

 

 

 

Figure 4. Diurnal salivary cortisol values in children by (A) thirds of mean overall physical activity and 

(B) thirds of time spent in VPA.  

 

Values are geometric means, and error bars are 95% CIs adjusted for the time at awakening, sex, age, 

BMI, sleep duration, mother's occupational status, and licorice use during pregnancy. 

** P < 0.01 for quadratic trend. 

 

(Martikainen et al., 2013. Higher levels of physical activity are associated with lower hypothalamic-

pituitary-adrenocortical axis reactivity to psychosocial stress in children. Journal of Clinical 

Endocrinology and Metabolism. 98, 619–627, reprinted with permission) 

 

When the salivary cortisol responses to stress were assessed, overall physical activity 

interacted significantly with sampling time (‘physical activity × sampling time’, P = 

0.013). Figure 5A shows that children belonging to the lowest and intermediate thirds in 

overall physical activity showed a significant increase in salivary cortisol in response to 

stress (P-values < 0.001 for time). Children belonging to the highest third in overall 

physical activity did not show a significant increase in salivary cortisol in response to 

stress (P = 0.10 for time). In addition, salivary cortisol increment and AUC increment 

were lower in children with higher physical activity (P-values for linear trend < 0.017, 

Table 3). 
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VPA also interacted significantly with sampling time (‘VPA × sampling time’, P = 

0.003). Figure 5B shows that salivary cortisol in response to stress increased 

significantly in children belonging to the lowest (P = 0.002) and intermediate (P < 

0.001) thirds in VPA. While salivary cortisol also increased in children belonging to the 

highest third in VPA, the increase was smaller (P = 0.034).  In addition, salivary cortisol 

increment and AUC increment were lower in children with higher VPA (P-values for 

linear trend < 0.025, Table 3).  

Sex did not moderate the associations of overall physical activity and VPA with 

salivary cortisol responses to stress (P-values > 0.10 for ‘sex × overall physical activity’ 

/’sex × VPA’ -interactions). 

 

 

 

Figure 5. Salivary cortisol responses to TSST-C by (A) thirds of mean overall physical activity and (B) 

thirds of VPA. 

 

Values are geometric means, and error bars are 95% CIs adjusted for the time at baseline, sex, age, BMI, 

sleep duration, mother's occupational status, and licorice use during pregnancy. 

* P < 0.05 for linear trend. 

 

(Martikainen et al., 2013. Higher levels of physical activity are associated with lower hypothalamic-

pituitary-adrenocortical axis reactivity to psychosocial stress in children. Journal of Clinical 

Endocrinology and Metabolism. 98, 619–627, reprinted with permission) 
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Table 3. Geometric means and 95% CIs of salivary cortisol during the TSST-C according to the 

amount of overall physical activity and VPA. 

 Overall physical activity, thirds   

Salivary cortisol 

(nmol/l) 

lowest  intermediate highest 
P-linear

1
 

mean 95% CI mean 95% CI mean 95% CI 

Baseline 2.3 2.0, 2.7 2.3 2.0, 2.6 2.5 2.1, 2.9 0.57 

Peak after stress 4.8 4.0, 5.9 3.5 3.0, 4.2 3.7 3.0, 4.4 0.090 

Increment 2.1 1.7, 2.5 1.5 1.3, 1.8 1.5 1.2, 1.7 0.016 

AUC 3.1 2.6, 3.6 2.4 2.1, 2.8 2.5 2.1, 2.9 0.12 

AUC increment 1.3 1.2, 1.5 1.1 0.9, 1.2 1.0 0.9, 1.1 0.014 

 Vigorous physical activity, thirds  

Salivary cortisol 

(nmol/l) 

lowest intermediate highest 
P-linear

1
 

mean 95% CI mean 95% CI mean 95% CI 

Baseline 2.2 1.9, 2.6 2.1 1.9, 2.5 2.7 2.3, 3.2 0.089 

Peak after stress 4.3 3.5, 5.2 3.8 3.2, 4.5 3.9 3.2, 4.7 0.56 

Increment 1.9 1.6, 2.3 1.8 1.5, 2.0 1.4 1.2, 1.7 0.024 

AUC 2.8 2.4, 3.3 2.6 2.2, 3.0 2.6 2.2, 3.0 0.59 

AUC increment 1.3 1.1, 1.4 1.2 1.1, 1.4 0.9 0.8, 1.1 0.007 

Associations are adjusted for time at baseline, sex, age, BMI, sleep duration, mother's occupational 

status and licorice use during pregnancy 

1 
P-values are for linear trend, all P-values for quadratic trend were nonsignificant (P-values > .09) 

 

4.3.2. Physical activity and HPAA function at 12 years of age (Study V) 

Figure 6 shows that in girls the interactions between overall physical activity and 

sampling time from awakening to 60 minutes after awakening (Panel A) (‘overall 

physical activity × sampling time’, P = 0.014 in model 1, P = 0.014 in model 2) and 

between VPA and sampling time from awakening to 60 minutes after awakening (Panel 

B) (‘VPA × sampling time’, P = 0.026 in model 1, P = 0.026 in model 2) were 

significant in the analyses of salivary cortisol on day A. Sub-analyses with physical 

activity grouped into thirds showed that while the effect of time on morning salivary 

cortisol concentrations was significant in all three groups, the response was significantly 

greater in girls belonging to the lowest and middle thirds of overall physical activity and 

VPA (P-values < 3.15 × 10
-7

) when compared with girls belonging to the highest third 

in overall physical activity (P = 0.004) and VPA (P = 0.002). 
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In girls the amount of sedentary time did not interact with sampling time from 

awakening to 60 minutes after awakening (Figure 6C) (P-values > 0.097) and overall 

physical activity, VPA and sedentary time did not interact with sampling time from 

noon to bedtime in the analysis of salivary cortisol on day A (P-values > 0.31) (Figure 

6). Table 4 shows that girls with higher overall physical activity and who spent more 

time in VPA had lower salivary cortisol values upon awakening and a lower awakening 

AUC on day A (P-values < 0.039). Girls with less sedentary time had a lower 

awakening AUC on day A (P = 0.035). Associations between overall physical activity 

and sedentary time with awakening AUC were significant in model 2 only. In girls 

physical activity was not associated with the suppression of salivary cortisol after the 

DST on day B (P-values > 0.11).  

 

 

Figure 6. Diurnal salivary cortisol concentrations according to overall physical activity (panel A) and 

time spent in VPA (panel B) and sedentary time (panel C) categorized into thirds in girls.  

 

Values are geometric means  and error bars are 95 % CIs (back-transformed from log transformed values) 

adjusted for time at awakening, age, BMI, stage of pubertal development, sleep duration, maternal 

occupational status, and maternal licorice use during pregnancy. 

 

(Martikainen et al., 2014. Physical activity and hypothalamic-pituitary-adrenocortical axis function in 

adolescents. Psychoneuroendocrinology, 49, 96–105, reprinted with permission) 
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In boys physical activity did not interact with sampling time from awakening to 60 

minutes thereafter (P-values > 0.16) or with sampling time from noon to bedtime in the 

analyses of salivary cortisol on day A (P-values > 0.59) (Figure 6). Table 5 shows that 

in boys physical activity was not associated with the indices of diurnal salivary cortisol 

either (P-values > 0.065). However, boys with higher overall physical activity and who 

had less sedentary time had more suppressed salivary cortisol values upon awakening 

after the DST on day B (P-values < 0.012). 

Finally, we tested if any of the associations changed after adjusting for Tanner stage 

instead of the PDS. The results that were statistically significant remained so after these 

adjustments (P-values<0.047) except for one: in girls the association between overall 

physical activity and salivary cortisol upon awakening was rendered non-significant (P 

= 0.056 and P = 0.055 in models 1 and 2). 

In a series of supplementary analyses we tested if the results changed when time 

spent in VPA was replaced with time spent in MVPA. In girls the results remained the 

same except that more time spent in MVPA was associated with lower awakening AUC 

on day A in model 2 only (-0.13 SD per SD; 95% CI, -0.29 to 0.03; P = 0.11 in model 1 

P = 0.041 in model 2). In boys the association between more time spent in MVPA with 

higher diurnal salivary cortisol upon awakening on day A became significant in model 2 

(0.16 SD per SD; 95% CI, -0.01 to 0.33; P = 0.061 in model 1 P = 0.042 in model 2), 

and it was also associated with more suppressed salivary cortisol values upon 

awakening after the DST on day B  (0.23 SD per SD; 95% CI, 0.05 to 0.40; P = 0.013 in 

model 1 P = 0.022 in model 2). Supplementary analyses on light physical activity 

showed that in boys it was associated with more suppressed cortisol values after the 

DST (0.18 SD per SD; 95% CI, 0.016 to 0.35; P = 0.032 in model 1; P = 0.032 in model 

2). All other associations with light physical activity were nonsignificant (P-values > 

0.12). 
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Table 4. Partially and fully adjusted associations between diurnal salivary cortisol and physical activity in girls.    

  Overall physical activity Sedentary time Vigorous physical activity 

  SD per SD
a
 95% CI P SD per SD

a
 95% CI P SD per SD

a
 95% CI P 

Diurnal salivary cortisol on day A (n=150)           

Upon awakening             

       Model 1 -0.17 -0.34, -0.01 0.038 0.13 -0.02, 0.29 0.086 -0.22 -0.40, -0.04 0.015 

       Model 2 -0.19 -0.38, -0.01 0.036 0.15 -0.02, 0.31 0.085 -0.24 -0.43, -0.05 0.012 

Awakening AUC             

       Model 1 -0.15 -0.31, 0.02 0.081 0.12 -0.03, 0.28 0.12 -0.19 -0.37, -0.01 0.036 

       Model 2 -0.22 -0.40, -0.04 0.018 0.18 0.01, 0.34 0.035 -0.25 -0.44, -0.06 0.009 

Bedtime             

       Model 1 -0.04 -0.21, 0.14 0.67 0.04 -0.13, 0.20 0.67 -0.07 -0.26, 0.11 0.44 

       Model 2 -0.13 -0.31, 0.06 0.18 0.11 -0.06, 0.28 0.21 -0.15 -0.34, 0.05 0.13 

Salivary cortisol in response to DST suppression
b
 (day A-day B) (n = 146)        

Upon awakening              

       Model 1 -0.12 -0.28, 0.03 0.12 0.06 -0.08, 0.21 0.39 -0.13 -0.30, 0.03 0.12 

       Model 2 -0.13 -0.30, 0.04 0.12 0.07 -0.09, 0.22 0.38 -0.14 -0.31, 0.04 0.13 

Physical activity and salivary cortisol variables are standardized (mean = 0, SD = 1). 

a 
Indicates the change (in SD scores) in salivary cortisol for every 1 SD increase in physical activity or sedentary time. 

b 
ln salivary cortisol upon awakening the day before (day A) minus the day after (day B) the DST, higher values indicate more suppression.   

Model 1 refers linear regression analyses adjusted for time at awakening (diurnal cortisol), time at awakening the day before and the day after  and time difference between 

taking dexamethasone on the day before and time at awakening the day after the dexamethasone suppression test, age at testing, BMI, and pubertal status.   

Model 2 refers to Model 1 adjustments and additional adjustments by sleep duration, maternal occupational status at testing, and maternal licorice consumption during 

pregnancy. 
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Table 5. Partially and fully adjusted associations between diurnal salivary cortisol and physical activity in boys.     

  Overall physical activity Sedentary time Vigorous physical activity 

  SD per SD
a
 95% CI P SD per SD

a
 95% CI P SD per SD

a
 95% CI P 

Diurnal salivary cortisol on day A (n=133)           

Upon awakening             

       Model 1 0.14 -0.03, 0.32 0.11 -0.15 -0.32, 0.02 0.081 0.12 -0.05, 0.29 0.16 

       Model 2 0.14 -0.03, 0.31 0.11 -0.16 -0.33, 0.01 0.066 0.14 -0.03, 0.31 0.11 

Awakening AUC             

       Model 1 0.02 -0.13, 0.18 0.75 0.00 -0.14, 0.15 0.95 0.07 -0.07, 0.21 0.34 

       Model 2 0.10 -0.05, 0.24 0.19 -0.02 -0.17, 0.13 0.79 0.10 -0.05, 0.24 0.19 

Bedtime             

       Model 1 -0.06 -0.22, 0.09 0.44 0.06 -0.09, 0.21 0.41 -0.05 -0.19, 0.10 0.53 

       Model 2 -0.03 -0.18, 0.12 0.66 0.04 -0.11, 0.19 0.58 -0.03 -0.18, 0.12 0.66 

Salivary cortisol in response to DST suppression
b
 (day A-day B) (n = 126)        

Upon awakening             

       Model 1 0.25 0.07, 0.43 0.007 -0.27 -0.44, -0.09 0.003 0.17 -0.01, 0.34 0.063 

       Model 2 0.24 0.06, 0.42 0.011 -0.26 -0.44, -0.08 0.004 0.16 -0.02, 0.33 0.086 

Physical activity and salivary cortisol variables are standardized (mean = 0, SD = 1). 

a 
Indicates the change (in SD scores) in salivary cortisol for every 1 SD increase in physical activity or sedentary time. 

b 
ln salivary cortisol upon awakening the day before (day A) minus the day after (day B) the DST, higher values indicate more suppression.   

Model 1 refers to linear regression analyses adjusted for time at awakening (diurnal cortisol), time at awakening the day before and the day after  and time difference 

between taking dexamethasone on the day before and time at awakening the day after the dexamethasone suppression test, age at testing, BMI, and pubertal status.   

Model 2 refers to Model 1 adjustments and additional adjustments by sleep duration, maternal occupational status at testing, and maternal licorice consumption during 

pregnancy. 
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5 DISCUSSION 

 

This study was designed to explore the associations of sleep and physical activity with stress 

system functioning, and the associations of physical activity with psychiatric problems, 

which have received limited attention among children and youth in previous studies 

First, it was shown that poor sleep in healthy prepubertal children (at 8 years of age) was 

not associated with an unhealthy cardiovascular phenotype, although these links have been 

reported in adults (Studies I and II). Second, it was shown that higher levels of physical 

activity were associated with lower odds for psychiatric problems (Study III). And third, it 

was shown that prepubertal children with higher levels of physical activity demonstrated a 

lower HPAA reactivity to psychosocial stress (Study IV). Furthermore, when the children 

reached early adolescence (12 years of age) the associations between physical activity and 

HPAA function were more sex-specific, showing lower morning cortisol levels in girls and 

higher HPAA feedback inhibition in boys (Study V).  

 As further discussed below, the results emphasize the importance of sustaining and 

supporting high physical activity levels throughout childhood and adolescence and also 

provide evidence for possible mechanisms explaining the associations between physical 

activity and well-being in youth. 

 

5.1 Sleep and cardiovascular function in children 

5.1.1 Objectively measured sleep 

Study I showed that sleep quantity and quality, in a community sample of 8-year-old children 

without sleep breathing disorders, treated either as categorical or continuous variables, were 

not associated with ABP. It was also shown that, in comparison to average sleepers, children 

with short sleep duration had almost significantly lower SBP, lower TPR and PEP and higher 

CO responses to the TSST-C. This suggests lower sympathetic nervous system activation and 

higher cardiac activation under stress for children whose sleep is shorter.  

 Other studies using actigraphy are not in agreement with these findings. One study 

reported that low sleep efficiency was associated with elevated SBP and DBP and with 

hypertension and that short sleep duration was associated with hypertension in a sample of 

13- to 16-year-old adolescents (n = 238) (Javaheri et al., 2008). Another study showed that 
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short sleep duration, but not poor sleep efficiency, was associated with elevated 24-hour SBP, 

DBP, and prehypertension in 14- to 19-year-olds (n = 246) (Mezick et al., 2012).  

Possibilities for the differences between these findings are further discussed below (section 

5.1.3). 

5.1.2 Parent-reported sleep problems 

Similarly to the findings on objectively measured sleep, the findings regarding parent-

reported sleep problems in Study II did not form a consistent pattern of expected higher ABP 

level and load, and higher cardiovascular and autonomic reactivity to stress in children with 

sleep problems. The findings indicated higher baseline parasympathetic (HF HRV) activity in 

children with disorders of excessive somnolence and lower SBP and DBP reactivity in 

children with sleep wake transition disorders. Only children with sleep breathing disorders 

had higher baseline vascular sympathetic activity (TPR) and higher cardiac sympathetic 

reactivity to stress (CO), however, the number of these children was low (n = 5), which might 

compromise the external validity of the finding.  

Some of the findings also showed sex-specificity; girls with disorders of excessive 

somnolence had lower baseline SBP and DBP, and lower baseline vascular sympathetic 

activity (TPR), as well as higher vascular sympathetic reactivity (TPR) and lower cardiac 

sympathetic reactivity (CO) to stress. Girls with sleep hyperhidrosis had lower baseline heart 

rate. The possible sex-specific associations between sleep problems and cardiovascular 

function have not been studied extensively in previous research in children.  

These results disagree with previous studies in children with clinically-diagnosed sleep 

disordered breathing (with ages ranging from 3 to 17) who exhibited higher 24h day- and 

night-time ABP levels (Amin et al., 2008; Kohyama et al., 2003; Leung et al., 2006; Li et al., 

2008). These results are also in disagreement with another study in 6- to 13-year-olds who 

displayed higher daytime SBP and night-time SBP and DBP if their parents reported they 

snored and had a higher apnea-hypopnea index, or higher night-time DBP if they snored 

without having high apnea-hypopnea index. These findings, however, agree with one 

community-based study in 4- to 14-year-olds showing that parent-reported habitual snoring 

was not associated with SBP or DBP measured once in the morning (Kaditis et al., 2005).  

The finding that children with sleep breathing disorders had higher baseline vascular 

sympathetic activity (TPR) and higher cardiac sympathetic reactivity to stress (CO) is in line 

with studies showing altered autonomic function in response to various challenges, including 

breathing tests (Montesano et al., 2010; L. M. O'Brien & Gozal, 2005), the head-up tilt test 
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(Montesano et al., 2010), and the cold-pressor test (L. M. O'Brien & Gozal, 2005). However, 

these findings were not significant after correction for multiple testing. 

5.1.3 Potential mechanisms 

Previously, various mechanisms have been proposed to explain the links between sleep 

disturbances and cardiovascular risks. Obstructive sleep apnea has been linked with increased 

blood pressure in children through hypoxemia and recurrent arousals during the night (Li et 

al., 2008), whereas depressive symptomatology and chronic stress have been proposed as 

mechanisms explaining the links between other sleep disturbances and cardiovascular risks in 

adults (Schwartz et al., 1999). For instance, Ogawa et al. (2003) found that sleep deprivation 

causes arterial baroreflex resetting towards an increased blood pressure and hypothesized that 

the same mechanisms within the central nervous system might cause increased blood pressure 

in both sleep deprivation and mental stress states. Also waking after too little sleep can be 

considered as a stressful condition itself, and therefore is associated with a greater 

sympathetic activation (Lusardi et al., 1996). Altogether, associations between sleep and 

stress are expected to be bidirectional, resulting in a self-reinforcing vicious cycle of 

decreased well-being (Garde, Albertsen, Persson, Hansen, & Rugulies, 2011). 

The discrepancy between Study I and the other studies using actigraphy may relate to 

methodological differences. In both of the other studies the participants came from a more 

varied ethnic background (Javaheri et al., 2008; Mezick et al., 2012). Additionally the study 

by Javaheri et al. (2008) was based on participants of whom 57% were born premature, and 

21% were obese at the time of testing. Previously, these characteristics have been associated 

with elevated blood pressure (Hovi et al., 2010; Sorof & Daniels, 2002; Winkleby, Robinson, 

Sundquist, & Kraemer, 1999), thus the risk of confounding is likely to have been greater 

when compared to Study I. 

The participants in the previous studies using parent-reported or actigraphy-based sleep 

measures also differ from the Study I participants in age-range. In the previous studies the 

samples have included both pre-pubertal and pubertal children (Amin et al., 2008; Javaheri et 

al., 2008; Kaditis et al., 2005; Kohyama et al., 2003; Leung et al., 2006; Li et al., 2008; Li et 

al., 2009; Mezick et al., 2012; Montesano et al., 2010; L. M. O'Brien & Gozal, 2005). 

Participants in Study I were pre-pubertal and within a narrow age-range. A wider age-range 

of the previous samples may introduce confounding by sexual maturation as prepubertal and 

pubertal children are known to vary in their biological need for sleep (Sadeh et al., 2009). 
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Furthermore, also blood pressure and cardiovascular function depend on age (Wühl et al., 

2002). 

Most existing studies on specific sleep problems have been carried out in children with a 

clinical diagnosis of sleep disordered breathing. In Study II, we used parental reports of their 

children’s sleep problems and covered a wide range of problems that are relatively common 

even in otherwise healthy children (Spruyt et al., 2005). In healthy children, the occurrence of 

sleep problems varies depending on the disorder (Spruyt et al., 2005). Among the Study II 

participants only 1.8% (n = 5) were reported as having sleep breathing problems occurring at 

least three times per week. In this community-based sample, the association between 

cardiovascular function and sleep breathing disorders might be underestimated because of 

their low prevalence. 

24-hour ABP is regarded as a better approach to the characterization of blood pressure 

status at rest than isolated blood pressure measures due to the highly labile and stress-

responsive ‘white-coat’ nature of the measure (Wühl et al., 2004). In addition to resting blood 

pressure characterization, an extensive approach to characterization of the cardiovascular 

responses to a standardized psychological stressor (TSST-C) was used in studies I and II (Cua 

et al., 2005; Sherwood et al., 1990). This has been shown to elicit significant cardiovascular 

stress responses in pediatric populations (Feldt et al., 2011; Jones et al., 2008).  

Thus, Studies I and II have a number of methodological strengths in comparison to other 

existing studies that have generally relied only upon parent or teacher reports of children’s 

sleep (Bayer et al., 2009; Sampei et al., 2006; Sung et al., 2008), and infrequent or single 

blood pressure measures (Bayer et al., 2009; Javaheri et al., 2008; Sampei et al., 2006; Sung 

et al., 2008). 

When we took into account the possible Type 1 errors, arising from multiple testing and 

applied Bonferroni-correction, none of the associations or interaction terms remained 

statistically significant. Although this could be considered an overly conservative measure, 

possibly increasing the risk of type 2 errors, it weakens the confidence in the validity of our 

positive findings. Therefore, further research is needed to confirm our results and further 

research is also needed to make conclusions about the possible mechanisms behind them. 

In sum, an association between sleep and unhealthy cardiovascular function was not found 

in Studies I and II. However, in line with the hypothesized association between poor sleep 

and increased stress, it has been reported among the same participants that poor sleep is 

associated with altered activity of the endocrine stress systems: the HPAA and the SAMS 

(Pesonen et al., 2012; Räikkönen et al., 2010). It is known that the activation of the HPAA 
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promotes hypertension (Brown et al., 2004). Thus there is a possibility that, if prolonged, the 

elevated HPAA activity might result in increased cardiovascular risks later on in the 

development of these children, which is a question for future studies. 

 

5.2 Physical activity and psychiatric problems 

Study III showed that higher levels of overall daytime physical activity and more time spent 

in more vigorous physical activity were associated with lower odds for psychiatric problems 

in a community-based sample of 8-year-old children.  

In line with the results from Study III, studies using pedometers in 10-year-olds (Parfitt & 

Eston, 2005) (n = 70) and hip-worn accelerometers in 9- to 10-year olds (Parfitt et al., 2009) 

(n = 57) (for a seven-day period) found that higher step count as well as a longer time in 

accumulated vigorous activity were associated with less self-reported symptoms of anxiety 

and depression (Parfitt & Eston, 2005; Parfitt et al., 2009). Apart from anxiety and 

depression, these studies did not measure other psychiatric problems, thus precluding 

comparison with the findings of our study. Findings from Study III are in contrast with those 

of Strauss et al. (2001), who did not find associations between physical activity (measured 

with hip-worn accelerometers for seven days) and anxiety symptoms in 10- to 16-year-olds (n 

= 92) and with those of Johnson et al. (2008), who found no association between physical 

activity (measured with hip-worn accelerometers over six days) and depression in 12-year-

old girls (n = 1397). The older age of the participants in these studies and the wider age-range 

in the sample of Strauss et al. (2001), as compared to ours, may explain the disagreement in 

the findings, since aging is shown to alter physical activity (Nyberg et al., 2009) as well as 

expression of psychiatric problems in children (Oldehinkel et al., 2011). 

As in various prior studies (Achenbach, McConaughy, & Howell, 1987) the correlations 

between the teachers’ and mothers’ ratings of psychiatric problems were modest, albeit 

significant in Study III. It has been suggested that this relates to the different environmental 

contexts in which the child’s behavior is observed (Achenbach et al., 1987). Yet, both 

teachers’ and mothers’ ratings have been shown to predict future maladjustment, independent 

of each other (Verhulst, Dekker, & van der Ende, 1997). And even though there were some 

differences among the associations of physical activity with maternal and teacher’s ratings of 

psychiatric symptoms, the findings between the two observers were convergent.  
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In sum, these findings add to previous knowledge by showing (1) that higher overall 

physical activity and time spent in more vigorous physical activity are not only associated 

with a lower probability for exhibiting emotional problems (anxiety and depression), but are 

also associated with lower likelihood for exhibiting other forms of social and behavioral 

problems; and (2) that the higher level of overall physical activity and not only the higher 

intensity of physical activity is associated with lower likelihood of having psychiatric 

problems.  

While the mechanisms behind the associations of physical activity and psychiatric 

problems are still poorly understood, intervention studies provide some evidence that by 

increasing participation in sports a decrease can be achieved in the level of anxiety and 

depression (Larun, Nordheim, Ekeland, Hagen, & Heian, 2006). It remains unknown, 

however, how stable the potential benefits of such interventions are. There is a need for 

longitudinal controlled studies to tackle the question of causality and to further focus on the 

possible effects of confounding variables such as more supportive parents, higher socio-

economic status or absence of family stressors, which might all encourage children to be 

more physically active as well as account for the absence of psychiatric problems. 

 

5.3 Physical activity and the HPAA  

5.3.1 At 8 years of age 

Study IV showed that physical activity levels in healthy 8-year-old children were associated 

with altered HPAA reactivity to stress. Both the overall habitual level of physical activity as 

well as the amount of VPA associated with HPAA reactivity of our participants. Children 

with the highest levels of objectively measured overall daytime physical activity or VPA 

showed no or only small increases in salivary cortisol levels in response to stress. In contrast, 

children with less physical activity showed a significant increase in salivary cortisol levels 

after stress. This finding was also reflected in the higher levels of salivary cortisol increment 

and AUC increment in response to stress, which suggests that stress reactivity was higher for 

individuals with lower physical activity, although the baseline and peak after stress did not 

vary between the groups. The diurnal salivary cortisol pattern did not differ according to the 

level of overall daytime physical activity and VPA.  
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The association between physical activity and HPAA function was similar in girls and 

boys although the level of their activity differed. This indicates that sex does not moderate the 

association between physical activity and HPAA reactivity at this age. 

As we have reported earlier on the same participants (Räikkönen et al., 2010), the 

children’s salivary cortisol response to the TSST-C stressor was significantly lower than that 

seen in a similarly aged and sized study of healthy children in the UK (Jones et al., 2006). It 

has been recognized recently that many typically developing ‘low-risk’ children have 

relatively low HPAA responses to a variety of stressors, including the TSST-C (Gunnar, 

Frenn, Wewerka, & Van Ryzin, 2009). In some children, salivary cortisol levels may even 

decrease in response to stress (Gunnar et al., 2009). In our cohort, the children with higher 

levels of physical activity might also represent a more optimally developing group of 

children, who demonstrate a hyporesponsivity to stress typically found in the prepubertal 

period of development in both animals and humans (Lupien et al., 2009).  

5.3.2 At 12 years of age 

In Study V, higher levels of overall physical activity and VPA were associated with lower 

morning salivary cortisol values in adolescent girls. Whereas in adolescent boys, higher 

overall physical activity and lower sedentary time were associated with higher HPAA 

feedback inhibition. No associations were found between these physical activity measures 

and HPAA feedback inhibition in girls or the diurnal salivary cortisol pattern in boys. 

The associations between HPAA activity and objectively measured physical activity levels 

have not been studied earlier during the developmental transition to adolescence. Among 8 to 

13-year-olds (n = 111) Dockray et al. (2009) did not detect an association between parent-

reported physical activity and salivary cortisol responses to the TSST-C; however, diurnal 

cortisol patterns were not studied. Study IV showed that both boys and girls with higher 

levels of objectively measured physical activity had lower reactivity to the TSST-C, whereas 

neither boys nor girls had different diurnal cortisol patterns according to physical activity. 

However, the response to DST was not studied at 8 years of age, thus the results are not 

comparable in this respect. 

Additional analyses replaced VPA with MVPA. One difference was found in girls and two 

in boys. In girls, MVPA associated with lower cortisol AUC upon awakening on day A in the 

fully adjusted model only, whereas the association of VPA with cortisol AUC was significant 

in both models. In boys, the association between MVPA with higher cortisol at awakening on 

day A became significant in the partially adjusted model, while it was not significant in either 
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model when we examined VPA. Furthermore, in boys MVPA was associated with more 

suppressed cortisol in response to the DST across partially and fully adjusted models, 

whereas for VPA the associations did not reach conventional levels of significance. The 

findings of MVPA should be interpreted with caution as the threshold of 3 METs for MVPA 

is relatively low. This threshold may not discriminate between moderate and lower level 

physical activity intensities and hence the group may become too heterogeneous (Mattocks et 

al., 2007). Yet, the cpm cutoff for 4 METs, which is recommended to identify moderate 

activities (Mattocks et al., 2007) for wrist-worn Actiwatch, is not available (Ekblom et al., 

2012). 

5.3.3 Potential mechanisms 

These findings contribute to the existing literature on the suggested role of physical activity 

as both a stressor and a modifier of stress (Hackney, 2006). The lower reactivity of HPAA to 

the psychosocial stress protocol in children with a higher level of physical activity in Study 

IV indicates that physical activity might modify the HPAA responses to psychosocial stress.  

This finding is in line with other existing findings from adults, where physically trained 

men exhibited significantly lower cortisol responses to the TSST when compared to their 

untrained counterparts (Rimmele et al., 2007), older physically fit women showed lower 

cortisol responses to another psychosocial stress test when compared to unfit older women 

(Traustadottir et al., 2005) and among 18- to 23-year-old women, self-reported physical 

activity levels were associated with lower cortisol responses to a TSST for groups protocol 

(Klaperski, 2013). Consequently, physical activity might serve as a protective factor in 

stressful day-to-day experiences, which may be one explanatory mechanism behind the 

association of higher physical activity and better psychological well-being in children and 

youth. 

To study the suggestion that physical activity might modify HPAA responses to stress also 

in prepubertal children, future research is needed to answer, whether a lower cortisol 

response to acute physical activity can be found in more active children. At present, the 

results are contradictory. One study has previously found that acute physical activity was not 

associated with later cortisol levels in 53 prepubertal (9-year-old) girls and boys (Budde, 

Windisch, Kudielka, & Voelcker-Rehage, 2010). However, another study on 38 prepubertal 

(10-year-old) boys found this association for highly fit participants, but not for those with 

average fitness (Benitez-Sillero et al., 2009). 



70 

 

The findings at 12 years of age (Study V) were in line with the findings at 8 years of age 

(Study IV) by showing that, in early adolescent boys, higher levels of overall physical 

activity (and lower sedentary time) were associated with higher HPAA suppression in 

response to the DST. This association was not observed in girls, although morning cortisol 

concentrations were lower in girls engaging in higher levels of physical activity, Animal 

models have shown that the DST affects HPAA feedback inhibition especially by increasing 

glucocorticoid receptor activity at the level of the pituitary (M. A. Cole, Kim, Kalman, & 

Spencer, 2000). Thus, physical activity could associate with dissimilar aspects of the HPAA 

in adolescent girls and boys. Future studies with more detailed methods assessing HPAA 

function and feedback inhibition could elaborate the understanding of these differences.  

When compared to girls, the 12-year-old boys’ pubertal development in our study cohort 

was less advanced (Pesonen et al., 2014). As HPAA activity increases with age and pubertal 

development (Gunnar et al., 2009), it is possible that our findings in boys are closer to the 

findings reported in Study IV at the age of 8 years. The sex-specific findings could also result 

from the sex-specific differences in HPAA function emerging towards mid-adolescence 

(Ordaz & Luna, 2012), which are likely to be mediated by hormonal changes (A. M. Bao et 

al., 2005), although especially in youth, the results on the direction of the sex-differences 

have not been consistent (Adam et al., 2010; Bouma et al., 2009; Gunnar et al., 2009; 

Reynolds et al., 2013). 

Together these two studies (Studies IV and V) suggest that physical activity might 

promote well-being by modifying the HPAA activity and reactivity to different stressors in 

children and youth, although sex-differences are likely to advance during adolescence. In 

adolescence, the environmental factors could have different influences on HPAA functioning 

in girls and boys, and also the health impacts of these environmental factors could vary. With 

this in mind, especially prospective experimental studies are still needed to draw a consistent 

picture of the possible influence of physical activity on HPAA functioning in men and 

women at different ages. Also the possible health implications of these findings should be 

tested in further follow-up studies. 

 

5.4 Methodological considerations 

It should be noted that owing to its cross-sectional nature, the causality of the reported effects 

cannot be identified in this study. Prospective controlled studies are needed to answer the 
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questions on causal relationships. Further central methodological considerations are outlined 

below. 

5.4.1 Study population 

The study population has a number of beneficial characteristics. Birth anthropometry, length 

of gestation and health at birth were all within the normal range. Participants were either 

prepubertal (Studies I to IV) or in early adolescence (Study V) and drawn from a narrow age-

range. They had normal body weights and were healthy at the time of testing. They all came 

from an ethnically homogeneous Northern European population and at the age of 8 years 

61% had at least one parent who had completed tertiary education. Although these 

characteristics limit the generalizability of our findings, they also reduce the possibility of 

confounding effects such as ethnicity, birth characteristics, or pubertal status.  

It should be noted that although we did measure the level of the children’s pubertal 

development at 12 years of age, we could not account for the menstrual phase, which can 

affect HPAA function (Kajantie & Phillips, 2006), however only 26% of the girls had 

menstruation. 

5.4.2 Sleep 

The validity of actigraphy is well-established as a method for assessment of sleep quantity 

and quality over multiple consecutive nights (Acebo & LeBourgeois, 2006) with high levels 

of agreement with polysomnography measures (Meltzer et al., 2012; Tonetti, Pasquini, 

Fabbri, Belluzzi, & Natale, 2008). Furthermore, actigraphy has the benefit of being an 

ecologically valid sleep-assessment option for studying sleep patterns over many consecutive 

nights (Morgenthaler et al., 2007; Ohayon, Carskadon, Guilleminault, & Vitiello, 2004). 

Good reliability is reached when the assessment lasts for at least 5 consecutive nights (Acebo 

et al., 1999), as in our study. However, as actigraphy is based on movement data, it is 

possible that sleep duration estimates are exaggerated in more stationary individuals. Also as 

individual variability in sleep duration is high (Matricciani et al., 2013), averaged sleep 

duration values might not provide adequate information on whether the participants are 

receiving adequate amount of sleep. 

The use of parent-reports of their children’s sleep problems in the current study may be 

subject to some criticism. Parent-reports are obviously different from clinically diagnosed 

sleep problems and from a combination of parent- and polysomnography-based 

measurements. The range of parent-reported sleep behaviours that may be considered a 



72 

 

problem is wide and the definitions across studies vary. However, although studies using 

polysomnography are considered as the gold standard in measuring sleep, the questionnaire-

based studies are of practical importance as they can be used in larger populations and are 

easily applicable in clinical practice. The inclusion of various types of sleep problems in a 

community sample of children may, thus, give us a better possibility to unravel the 

developmental pathways that may underlie these associations in adults. Furthermore, the 

literature in adults does show that both clinically-diagnosed sleep disorders and subjective 

sleep complaints are associated with increased risk of hypertension and cardiovascular 

diseases (Foley, Ancoli-Israel, Britz, & Walsh, 2004; Gangwisch et al., 2006; Gottlieb et al., 

2006; Loponen, Hublin, Kalimo, Mänttäri, & Tenkanen, 2010; Phillips & Mannino, 2007). 

To prevent overestimation of sleep problems, we used a strict cutoff in the definition of the 

six sleep problem subscales, which corresponded with previous studies (Spruyt et al., 2005). 

5.4.3 Physical activity 

When measuring physical activity with accelerometers, defining valid cutoff points for 

different physical activity intensities is of crucial importance. However, differences in cutoff 

points are common in the measurement of physical activity. This is shown, for instance, in a 

cross-validation study (Trost, Loprinzi, Moore, & Pfeiffer, 2011), where cutoff points for 

defining MVPA for ActiGraph accelerometer ranged from 2220 (Freedson, Pober, & Janz, 

2005) to 3581 (Mattocks et al., 2007). Moreover, both 3 and 4 METs have been used as 

cutoff points for MVPA, while 4 METs has been considered superior in discriminating 

MVPA from lower intensity activities than 3 METs (Mattocks et al., 2007). 

One clear methodological limitation in Study III is that the physical activity intensity 

cutoff points were derived from a study using Actical accelerometer, which might lead to 

inaccuracies when Actiwatch devices are used. Our study with a cutoff point of 2297 cpm for 

measuring MVPA above 4 metabolic equivalents (METs) also differed from the recent study, 

suggesting cutoff points of 1048 for 3 METs and 1624 for 6 METs  (Ekblom et al., 2012), 

which we used in Studies IV and V.  

The cutoff points by Ekblom et al. (Ekblom et al., 2012) are the only device-specific 

thresholds for the wrist-worn Actiwatch published so far. However, when Study III was 

under preparation, these cutoff points were not yet published. Furthermore, we used 4 METs 

as the cutoff point for MVPA, whereas Ekblom et al. (2012) provided a cutoff point for 6 

METs for VPA, namely 1624 cpm. This indicates that the cutoff used in our study might be 

closer to VPA than MVPA. When the analyses were rerun by replacing the initial 2297 cpm 
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cutoff for MVPA by the 1624 cpm cutoff suggested by Ekblom et al. (5), the results remained 

essentially identical to those from the earlier analyses as discussed in the results section. 

A further limitation in study V is that the calibration study for Actiwatch was conducted in 

8-year-olds (Ekblom et al., 2012). For wrist-worn Actiwatch the study by Ekblom et al. 

(Ekblom et al., 2012) is currently the only calibration study using this device and location, 

and using the same cutoffs increases the comparability of our current findings at 12 years of 

age to our earlier study at 8 years of age. 

In addition, the physical condition of the participants was not assessed. Not being able to 

adjust the data for physical fitness is a limitation as it might affect the cortisol responses of 

the participants. Finally, it would have been beneficial to also collect self-reported 

information on physical exercise, in addition to the accelerometer-based assessment of 

physical activity. This would have clarified whether the amount of exercise per se, as 

separated from habitual physical activity, shows similar associations with psychiatric 

problems. 

 

5.5 Conclusions 

In sum, these studies provide evidence on the associations of sleep and physical activity 

with stress system function and on physical activity with psychiatric problems in children. In 

contrast with a wealth of evidence especially from adults, the results showed that sleep in 

healthy 8-year-old children was not associated with an unhealthy cardiovascular phenotype. 

Higher physical activity levels were associated with a lower probability for psychiatric 

problems in children as well as lower HPAA reactivity to psychosocial stress at 8 years of 

age. In addition, in early adolescence (12 years of age) physical activity was associated with 

lower morning cortisol levels in girls and higher HPAA suppression in response to the DST 

in boys. 

The results support the hypothesis that higher levels of physical activity are associated 

with lower odds for psychiatric problems, and that the adaptation of the HPAA caused by 

physical activity could generalize to psychosocial stressors as well (Hackney, 2006). These 

differences in HPAA function can be considered as one explanatory mechanism behind the 

associations of physical activity and psychological well-being, and furthermore, low physical 

activity levels can be considered as a risk factor increasing vulnerability to different daily 

stressors. 
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These results stress the importance of maintaining adequate physical activity levels in 

childhood and adolescence. Supporting physical activity can be viewed as a cost-efficient 

method of promoting health and possibly preventing stress-related illnesses further on in life. 

In a societal level, practices enhancing physically active lifestyle should be supported. This is 

especially important as it is known that children from different socioeconomic backgrounds 

have unequal possibilities to participate in physical activity (Currie et al., 2012; Kantomaa, 

Tammelin, Näyhä, & Taanila, 2007). Physical exercise and enjoyable physical activities 

should be accessible, and for example schools should be encouraged and financially 

supported in providing these activities to children and youth. 

  



75 

 

REFERENCES 

 

Acebo, C., & LeBourgeois, M. K. (2006). Actigraphy. Respiratory Care Clinics of North America, 12, 23–30. 

Acebo, C., Sadeh, A., Seifer, R., Tzischinsky, O., Wolfson, A. R., Hafer, A., & Carskadon, M. A. (1999). 

Estimating sleep patterns with activity monitoring in children and adolescents: How many nights are 

necessary for reliable measures? Sleep, 22, 95–103.  

Achenbach, T. M. (1991a). Manual for the child behavior checklist/4–18 and 1991 profile. Burlington: 

University of Vermont Department of Psychiatry. 

Achenbach, T. M. (1991b). Manual for the teacher's report form and 1991 profile. Burlington: University of 

Vermont Department of Psychiatry. 

Achenbach, T. M., McConaughy, S. H., & Howell, C. T. (1987). Child/adolescent behavioral and emotional 

problems: Implications of cross-informant correlations for situational specificity. Psychological Bulletin, 

101, 213–232.  

Adam, E. K., Doane, L. D., Zinbarg, R. E., Mineka, S., Craske, M. G., & Griffith, J. W. (2010). Prospective 

prediction of major depressive disorder from cortisol awakening responses in adolescence. 

Psychoneuroendocrinology, 35, 921–931.  

American Academy of Sleep Medicine. (2001). International classification of sleep disorders, revised: 

Diagnostic and coding manual. Chicago, Illinois: American Academy of Sleep Medicine. 

Amin, R., Somers, V. K., McConnell, K., Willging, P., Myer, C., Sherman, M., . . . Daniels, S. (2008). Activity-

adjusted 24-hour ambulatory blood pressure and cardiac remodeling in children with sleep disordered 

breathing. Hypertension, 51, 84–91. 

Ayas, N. T., White, D. P., Manson, J. E., Stampfer, M. J., Speizer, F. E., Malhotra, A., & Hu, F. B. (2003). A 

prospective study of sleep duration and coronary heart disease in women. Archives of Internal Medicine, 

163, 205–209. 

Bailey, R. C., Olson, J., Pepper, S. L., Porszasz, J., Barstow, T. J., & Cooper, D. M. (1995). The level and tempo 

of children's physical activities: An observational study. Medicine and Science in Sports and Exercise, 27, 

1033–1041.  

Bao, A. M., Hestiantoro, A., Van Someren, E. J., Swaab, D. F., & Zhou, J. N. (2005). Colocalization of 

corticotropin-releasing hormone and oestrogen receptor-alpha in the paraventricular nucleus of the 

hypothalamus in mood disorders. Brain: A Journal of Neurology, 128, 1301–1313. 

Bao, W., Threefoot, S. A., Srinivasan, S. R., & Berenson, G. S. (1995). Essential hypertension predicted by 

tracking of elevated blood pressure from childhood to adulthood: The Bogalusa Heart Study. Am J 

Hypertens, 8, 657–665.  

Basterfield, L., Adamson, A. J., Frary, J. K., Parkinson, K. N., Pearce, M. S., Reilly, J. J., & Gateshead 

Millennium Study Core Team. (2011). Longitudinal study of physical activity and sedentary behavior in 

children. Pediatrics, 127, e24–30. 

Bayer, O., Neuhauser, H., & von Kries, R. (2009). Sleep duration and blood pressure in children: A cross-

sectional study. Journal of Hypertension, 27, 1789–1793. 



76 

 

Bayer, O., Rosario, A. S., Wabitsch, M., & von Kries, R. (2009). Sleep duration and obesity in children: Is the 

association dependent on age and choice of the outcome parameter? Sleep, 32, 1183–1189.  

Benitez-Sillero, Jde D., Perez-Navero, J. L., Tasset, I., Guillen-Del Castillo, M., Gil-Campos, M., & Tunez, I. 

(2009). Influence of intense exercise on saliva glutathione in prepubescent and pubescent boys. European 

Journal of Applied Physiology, 106, 181–186. 

Berntson, G. G., Bigger, J. T.,Jr, Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., . . . van der Molen, 

M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 

623–648.  

Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994). 

Autonomic cardiac control. III. Psychological stress and cardiac response in autonomic space as revealed 

by pharmacological blockades. Psychophysiology, 31, 599–608.  

Best, R., Nelson, S. M., & Walker, B. R. (1997). Dexamethasone and 11-dehydrodexamethasone as tools to 

investigate the isozymes of 11 beta-hydroxysteroid dehydrogenase in vitro and in vivo. The Journal of 

Endocrinology, 153, 41–48. 

Blair, P. S., Humphreys, J. S., Gringras, P., Taheri, S., Scott, N., Emond, A., . . . Fleming, P. J. (2012). 

Childhood sleep duration and associated demographic characteristics in an English cohort. Sleep, 35, 353–

360. 

Borbély, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. Journal of 

Biological Rhythms, 14, 557–568.  

Bouma, E. M., Riese, H., Ormel, J., Verhulst, F. C., & Oldehinkel, A. J. (2009). Adolescents' cortisol responses 

to awakening and social stress; effects of gender, menstrual phase and oral contraceptives. the TRAILS 

study. Psychoneuroendocrinology, 34, 884–893. 

Brown, E. S., Varghese, F. P., & McEwen, B. S. (2004). Association of depression with medical illness: Does 

cortisol play a role? Biological Psychiatry, 55, 1–9.  

Bruni, O., Ottaviano, S., Guidetti, V., Romoli, M., Innocenzi, M., Cortesi, F., & Giannotti, F. (1996). The sleep 

disturbance scale for children (SDSC). construction and validation of an instrument to evaluate sleep 

disturbances in childhood and adolescence. Journal of Sleep Research, 5, 251–261.  

Buckley, T. M., & Schatzberg, A. F. (2005). On the interactions of the hypothalamic-pituitary-adrenal (HPA) 

axis and sleep: Normal HPA axis activity and circadian rhythm, exemplary sleep disorders. The Journal of 

Clinical Endocrinology and Metabolism, 90, 3106–3114. 

Budde, H., Windisch, C., Kudielka, B. M., & Voelcker-Rehage, C. (2010). Saliva cortisol in school children 

after acute physical exercise. Neuroscience Letters, 483, 16–19. 

Buske-Kirschbaum, A., Jobst, S., Wustmans, A., Kirschbaum, C., Rauh, W., & Hellhammer, D. (1997). 

Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosomatic 

Medicine, 59, 419–426.  

Carskadon, M.,A., & Dement, W.,C. (2011). Normal human sleep: An overview. In M. Kryger H., T. Roth & 

W. Dement C. (Eds.), Principles and practice of sleep medicine (5th ed., pp. 16–26). Philadelphia, PA: 

Saunders/Elsevier. 

Carskadon, M. A., Vieira, C., & Acebo, C. (1993). Association between puberty and delayed phase preference.  

Sleep, 16, 258–262.  



77 

 

Chen, X., & Wang, Y. (2008). Tracking of blood pressure from childhood to adulthood: A systematic review 

and meta-regression analysis. Circulation, 117, 3171–3180.  

Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical 

and behavioral homeostasis. JAMA : The Journal of the American Medical Association, 267, 1244–1252. 

Cole, M. A., Kim, P. J., Kalman, B. A., & Spencer, R. L. (2000). Dexamethasone suppression of corticosteroid 

secretion: Evaluation of the site of action by receptor measures and functional studies. 

Psychoneuroendocrinology, 25, 151–167.  

Cole, T. J., Bellizzi, M. C., Flegal, K. M., & Dietz, W. H. (2000). Establishing a standard definition for child 

overweight and obesity worldwide: International survey. BMJ (Clinical Research Ed.), 320, 1240–1243.  

Cua, C. L., Thomas, K., Zurakowski, D., & Laussen, P. C. (2005). A comparison of the Vasotrac with invasive 

arterial blood pressure monitoring in children after pediatric cardiac surgery. Anesthesia and Analgesia, 

100, 1289–1294. 

Currie, C., Zanotti, C., Morgan, A., Currie, D., de Looze, M., Roberts, C., . . . (Eds.). (2012). Social 

determinants of health and well-being among young people. health behaviour in school-aged children 

(HBSC) study: International report from the 2009/2010 survey. Copenhagen: WHO Regional Office for 

Europe (Health Policy for Children and Adolescents, No. 6). 

Czeisler, C. A., & Gooley, J. J. (2007). Sleep and circadian rhythms in humans. Cold Spring Harbor Symposia 

on Quantitative Biology, 72, 579–597.  

Dasgupta, K., O'Loughlin, J., Chen, S., Karp, I., Paradis, G., Tremblay, J., . . . Pilote, L. (2006). Emergence of 

sex differences in prevalence of high systolic blood pressure: Analysis of a longitudinal adolescent cohort. 

Circulation, 114, 2663–2670. 

Dekker, M. C., Ferdinand, R. F., van Lang, N. D., Bongers, I. L., van der Ende, J., & Verhulst, F. C. (2007). 

Developmental trajectories of depressive symptoms from early childhood to late adolescence: Gender 

differences and adult outcome. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48, 

657–666. 

Dement, W., & Kleitman, N. (1957). The relation of eye movements during sleep to dream activity: An 

objective method for the study of dreaming. Journal of Experimental Psychology, 53, 339–346.  

DeVincent, C. J., Gadow, K. D., Delosh, D., & Geller, L. (2007). Sleep disturbance and its relation to DSM-IV 

psychiatric symptoms in preschool-age children with pervasive developmental disorder and community 

controls. Journal of Child Neurology, 22, 161–169. 

Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and 

synthesis of laboratory research. Psychological Bulletin, 130, 355–391. 

Dijk, D. J., & von Schantz, M. (2005). Timing and consolidation of human sleep, wakefulness, and performance 

by a symphony of oscillators. Journal of Biological Rhythms, 20, 279–290. 

Dockray, S., Susman, E. J., & Dorn, L. D. (2009). Depression, cortisol reactivity, and obesity in childhood and 

adolescence. The Journal of Adolescent Health: Official Publication of the Society for Adolescent 

Medicine, 45, 344–350.  

Dressendorfer, R. A., Kirschbaum, C., Rohde, W., Stahl, F., & Strasburger, C. J. (1992). Synthesis of a cortisol-

biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement. The 

Journal of Steroid Biochemistry and Molecular Biology, 43, 683–692.  



78 

 

Eguchi, K., Pickering, T.,G., Schwartz, J.,E., Hoshide, S., Ishikawa, J., Ishikawa, S., . . . Kario, K. (2008). Short 

sleep duration as an independent predictor of cardiovascular events in Japanese patients with hypertension. 

Archives of Internal Medicine, 168, 2225–2231. 

Ekblom, O., Nyberg, G., Ekblom Bak, E., Ekelund, U., & Marcus, C. (2012). Validity and comparability of a 

wrist-worn accelerometer in children. Journal of Physical Activity & Health, 9, 389–393.  

Ekelund, U., Tomkinson, G., & Armstrong, N. (2011). What proportion of youth are physically active? 

measurement issues, levels and recent time trends. British Journal of Sports Medicine, 45, 859–865. 

Erlingsdottir, A., Indridason, O., Thorvaldsson, O., & Edvardsson, V. (2010). Blood pressure in children and 

target-organ damage later in life. Pediatric Nephrology, 25, 323–328. 

Everson, S. A., Lynch, J. W., Kaplan, G. A., Lakka, T. A., Sivenius, J., & Salonen, J. T. (2001). Stress-induced 

blood pressure reactivity and incident stroke in middle-aged men. Stroke; a Journal of Cerebral 

Circulation, 32, 1263–1270.  

Feldt, K., Räikkönen, K., Pyhälä, R., Jones, A., Phillips,D,I,W., Eriksson, J.,G., . . . Kajantie, E. (2011). Body 

size at birth and cardiovascular response to and recovery from mental stress in children. J Hum Hypertens, 

25, 231–240.  

Foley, D., Ancoli-Israel, S., Britz, P., & Walsh, J. (2004). Sleep disturbances and chronic disease in older adults: 

Results of the 2003 National Sleep Foundation Sleep in America Survey. Journal of Psychosomatic 

Research, 56, 497–502. 

Freedson, P., Pober, D., & Janz, K. F. (2005). Calibration of accelerometer output for children. Medicine & 

Science in Sports & Exercise, 37, S523–S530. 

Fricke-Oerkermann, L., Pluck, J., Schredl, M., Heinz, K., Mitschke, A., Wiater, A., & Lehmkuhl, G. (2007). 

Prevalence and course of sleep problems in childhood. Sleep, 30, 1371–1377.  

Gangwisch, J. E., Heymsfield, S. B., Boden-Albala, B., Buijs, R. M., Kreier, F., Pickering, T. G., . . . Malaspina, 

D. (2006). Short sleep duration as a risk factor for hypertension: Analyses of the first national health and 

nutrition examination survey. Hypertension, 47, 833–839.  

Garde, A. H., Albertsen, K., Persson, R., Hansen, A. M., & Rugulies, R. (2011). Bi-directional associations 

between psychological arousal, cortisol, and sleep. Behavioral Sleep Medicine, 10, 28–40.  

Gerber, M., Jonsdottir, I. H., Kalak, N., Elliot, C., Puhse, U., Holsboer-Trachsler, E., & Brand, S. (2013). 

Objectively assessed physical activity is associated with increased hair cortisol content in young adults. 

Stress, 16, 593–599. 

Germain, A., & Kupfer, D. J. (2008). Circadian rhythm disturbances in depression. Human 

Psychopharmacology, 23, 571–585. 

Golombek, D. A., Casiraghi, L. P., Agostino, P. V., Paladino, N., Duhart, J. M., Plano, S. A., & Chiesa, J. J. 

(2013). The times they're a-changing: Effects of circadian desynchronization on physiology and disease. 

Journal of Physiology, Paris, 107, 310–322. 

Gottlieb, D. J., Redline, S., Nieto, F. J., Baldwin, C. M., Newman, A. B., Resnick, H. E., & Punjabi, N. M. 

(2006). Association of usual sleep duration with hypertension: The Sleep Heart Health Study. Sleep, 29, 

1009–1014.  



79 

 

Griffiths, L. J., Dowda, M., Dezateux, C., & Pate, R. (2010). Associations between sport and screen-

entertainment with mental health problems in 5-year-old children. The International Journal of Behavioral 

Nutrition and Physical Activity, 7, 30. 

Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus severe early life stress: 

Associations with stress reactivity and regulation in 10-12-year-old children. Psychoneuroendocrinology, 

34, 62–75. 

Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in 

hypothalamus-pituitary-adrenal activity over the transition to adolescence: Normative changes and 

associations with puberty. Development and Psychopathology, 21, 69–85. 

Hackney, A. C. (2006). Stress and the neuroendocrine system: The role of exercise as a stressor and modifier of 

stress. Expert Review of Endocrinology & Metabolism, 1, 783–792. 

Hallal, P. C., Wells, J. C., Reichert, F. F., Anselmi, L., & Victora, C. G. (2006). Early determinants of physical 

activity in adolescence: Prospective birth cohort study. BMJ (Clinical Research Ed.), 332, 1002–1007. 

Hamer, M., Stamatakis, E., & Mishra, G. (2009). Psychological distress, television viewing, and physical 

activity in children aged 4 to 12 years. Pediatrics, 123, 1263–1268. 

Heil, D. P. (2006). Predicting activity energy expenditure using the actical activity monitor. Research Quarterly 

for Exercise and Sport, 77, 64–80.  

Hermida, R. C., Ayala, D. E., & Portaluppi, F. (2007). Circadian variation of blood pressure: The basis for the 

chronotherapy of hypertension. Advanced Drug Delivery Reviews, 59, 904–922. 

Hobson, J. A. (2009). REM sleep and dreaming: Towards a theory of protoconsciousness. Nature 

Reviews.Neuroscience, 10, 803–813. 

Hovi, P., Andersson, S., Räikkönen, K., Strang-Karlsson, S., Järvenpää, A., Eriksson, J. G., . . . Kajantie, E. 

(2010). Ambulatory blood pressure in young adults with very low birth weight. The Journal of Pediatrics, 

156, 54–59.  

Hughes, A. T., & Piggins, H. D. (2012). Feedback actions of locomotor activity to the circadian clock. Progress 

in Brain Research, 199, 305–336. 

James, G., D. (2007). Measuring physiological changes in the cardiovascular system: Ambulatory blood 

pressure. In G. Ice H., & G. James D. (Eds.), Measuring stress in humans. A practical guide for the field 

(pp. 158–180). Cambridge, UK: Cambridge University Press. 

Janssen, I., & Leblanc, A. G. (2010). Systematic review of the health benefits of physical activity and fitness in 

school-aged children and youth. The International Journal of Behavioral Nutrition and Physical Activity, 

7, 40. 

Javaheri, S., Storfer-Isser, A., Rosen, C.,L., & Redline, S. (2008). Sleep quality and elevated blood pressure in 

adolescents. Circulation, 118, 1034–1040.  

Johnson, C. C., Murray, D. M., Elder, J. P., Jobe, J. B., Dunn, A. L., Kubik, M., . . . Schachter, K. (2008). 

Depressive symptoms and physical activity in adolescent girls. Medicine and Science in Sports and 

Exercise, 40, 818–826. 

Jones, A., Beda, A., Osmond, C., Godfrey, K. M., Simpson, D. M., & Phillips, D. I. (2008). Sex-specific 

programming of cardiovascular physiology in children. European Heart Journal, 29, 2164–2170. 



80 

 

Jones, A., Godfrey, K. M., Wood, P., Osmond, C., Goulden, P., & Phillips, D. I. (2006). Fetal growth and the 

adrenocortical response to psychological stress. The Journal of Clinical Endocrinology and Metabolism, 

91, 1868–1871. 

Kaditis, A. G., Alexopoulos, E. I., Kostadima, E., Kaditis, D. G., Pastaka, C., Zintzaras, E., & Gourgoulianis, K. 

(2005). Comparison of blood pressure measurements in children with and without habitual snoring. 

Pediatric Pulmonology, 39, 408–414. 

Kajantie, E., Eriksson, J., Barker, D. J., Forsen, T., Osmond, C., Wood, P. J., . . . Phillips, D. I. (2003). 

Birthsize, gestational age and adrenal function in adult life: Studies of dexamethasone suppression and 

ACTH1-24 stimulation. European Journal of Endocrinology / European Federation of Endocrine 

Societies, 149, 569–575.  

Kajantie, E., Feldt, K., Räikkönen, K., Phillips, D. I., Osmond, C., Heinonen, K., . . . Eriksson, J. G. (2007). 

Body size at birth predicts hypothalamic-pituitary-adrenal axis response to psychosocial stress at age 60 to 

70 years. The Journal of Clinical Endocrinology and Metabolism, 92, 4094–4100. 

Kajantie, E., & Phillips, D. I. (2006). The effects of sex and hormonal status on the physiological response to 

acute psychosocial stress. Psychoneuroendocrinology, 31, 151–178. 

Kamarck, T. W., & Lovallo, W. R. (2003). Cardiovascular reactivity to psychological challenge: Conceptual 

and measurement considerations. Psychosomatic Medicine, 65, 9–21.  

Kantomaa, M. T., Tammelin, T. H., Ebeling, H. E., & Taanila, A. M. (2008). Emotional and behavioral 

problems in relation to physical activity in youth. Medicine and Science in Sports and Exercise, 40, 1749–

1756. 

Kantomaa, M. T., Tammelin, T. H., Näyhä, S., & Taanila, A. M. (2007). Adolescents' physical activity in 

relation to family income and parents' education. Preventive Medicine, 44, 410–415. 

Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The 'Trier Social Stress Test' -a tool for 

investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 76–81. 

Klaperski, S. (2013). Does the level of physical exercise affect physiological and psychological responses to 

psychosocial stress in women? Psychology of Sport & Exercise, 14, 266–274.  

Kohyama, J., Ohinata, J. S., & Hasegawa, T. (2003). Blood pressure in sleep disordered breathing. Archives of 

Disease in Childhood, 88, 139–142. 

Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flugge, G., Korte, S. M., . . . Fuchs, E. (2011). 

Stress revisited: A critical evaluation of the stress concept. Neuroscience and Biobehavioral Reviews, 35, 

1291–1301. 

Kristensen, P. L., Moller, N. C., Korsholm, L., Wedderkopp, N., Andersen, L. B., & Froberg, K. (2008). 

Tracking of objectively measured physical activity from childhood to adolescence: The European Youth 

Heart Study. Scandinavian Journal of Medicine & Science in Sports, 18, 171–178. 

Krol, N. P., De Bruyn, E. E., Coolen, J. C., & van Aarle, E. J. (2006). From CBCL to DSM: A comparison of 

two methods to screen for DSM-IV diagnoses using CBCL data. Journal of Clinical Child and Adolescent 

Psychology : The Official Journal for the Society of Clinical Child and Adolescent Psychology, American 

Psychological Association, Division 53, 35, 127–135. 



81 

 

Kudielka, B. M., Gierens, A., Hellhammer, D. H., Wust, S., & Schlotz, W. (2012). Salivary cortisol in 

ambulatory assessment - some dos, some don'ts, and some open questions. Psychosomatic Medicine, 74, 

418–431. 

Kudielka, B. M., & Kirschbaum, C. (2005). Sex differences in HPA axis responses to stress: A review. 

Biological Psychology, 69, 113–132. 

Larun, L., Nordheim, L. V., Ekeland, E., Hagen, K. B., & Heian, F. (2006). Exercise in prevention and treatment 

of anxiety and depression among children and young people. Cochrane Database of Systematic Reviews 

(Online), 3, CD004691. 

Leung, L. C., Ng, D. K., Lau, M. W., Chan, C. H., Kwok, K. L., Chow, P. Y., & Cheung, J. M. (2006). Twenty-

four-hour ambulatory BP in snoring children with obstructive sleep apnea syndrome. Chest, 130, 1009–

1017. 

Li, A.,M., Au, C.,T., Sung, R.,Y.T., Ho, C., Ng, P.,C., Fok, T.,F., & Wing, Y.,K. (2008). Ambulatory blood 

pressure in children with obstructive sleep apnoea: A community based study. Thorax, 63, 803–809. 

Li, A. M., Au, C. T., Ho, C., Fok, T. F., & Wing, Y. K. (2009). Blood pressure is elevated in children with 

primary snoring. The Journal of Pediatrics, 155, 362–368. 

Loponen, M., Hublin, C., Kalimo, R., Mänttäri, M., & Tenkanen, L. (2010). Joint effect of self-reported sleep 

problems and three components of the metabolic syndrome on risk of coronary heart disease. Journal of 

Psychosomatic Research, 68, 149–158. 

Luger, A., Deuster, P. A., Kyle, S. B., Gallucci, W. T., Montgomery, L. C., Gold, P. W., . . . Chrousos, G. P. 

(1987). Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise. physiologic 

adaptations to physical training. The New England Journal of Medicine, 316, 1309–1315. 

Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on 

the brain, behaviour and cognition. Nature Reviews.Neuroscience, 10, 434–445.  

Lurbe, E., Cifkova, R., Cruickshank, J. K., Dillon, M. J., Ferreira, I., Invitti, C., . . . European Society of 

Hypertension. (2009). Management of high blood pressure in children and adolescents: Recommendations 

of the European Society of Hypertension. Journal of Hypertension, 27, 1719–1742. 

Lurbe, E., Sorof, J. M., & Daniels, S. R. (2004). Clinical and research aspects of ambulatory blood pressure 

monitoring in children. The Journal of Pediatrics, 144, 7–16. 

Lurbe, E., Cremades, B., Rodrigues, C., Torro, M., Isabel, Alvarez, V., & Redon, J. (1999). Factors related to 

quality of ambulatory blood pressure monitoring in a pediatric population. American Journal of 

Hypertension, 12, 929–933.  

Lusardi, P., Mugellini, A., Preti, P., Zoppi, A., Derosa, G., & Fogari, R. (1996). Effects of a restricted sleep 

regimen on ambulatory blood pressure monitoring in normotensive subjects. American Journal of 

Hypertension, 9, 503–505. 

Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. 

Trends in Cognitive Sciences, 11, 442–450. 

Marshall, W. A, & Tanner, J. M. (1969). Variations in pattern of pubertal changes in girls. Archives of Disease 

in Childhood, 44, 291–303.  

Marshall, W. A, & Tanner, J. M. (1970). Variations in pattern of pubertal changes in boys. Archives of Disease 

in Childhood, 45, 13–23.  



82 

 

Matricciani, L., Blunden, S., Rigney, G., Williams, M. T., & Olds, T. S. (2013). Children's sleep needs: Is there 

sufficient evidence to recommend optimal sleep for children? Sleep, 36, 527–534. 

Matthews, K. A., Katholi, C. R., McCreath, H., Whooley, M. A., Williams, D. R., Zhu, S., & Markovitz, J. H. 

(2004). Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study. 

Circulation, 110, 74–78. 

Matthews, K. A., Zhu, S., Tucker, D. C., & Whooley, M. A. (2006). Blood pressure reactivity to psychological 

stress and coronary calcification in the coronary artery risk development in young adults study. 

Hypertension, 47, 391–395. 

Mattocks, C., Leary, S., Ness, A., Deere, K., Saunders, J., Tilling, K., . . . Riddoch, C. (2007). Calibration of an 

accelerometer during free-living activities in children. International Journal of Pediatric Obesity, 2, 218–

226. 

McEwen, B. S. (1998). Protective and damaging effects of stress mediators. The New England Journal of 

Medicine, 338, 171–179. 

McEwen, B. S. (2003). Interacting mediators of allostasis and allostatic load: Towards an understanding of 

resilience in aging. Metabolism: Clinical and Experimental, 52(10 Suppl 2), 10–16.  

McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective 

and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583, 174–185. 

Meltzer, L. J., Walsh, C. M., Traylor, J., & Westin, A. M. (2012). Direct comparison of two new actigraphs and 

polysomnography in children and adolescents. Sleep, 35, 159–166. 

Mezick, E. J., Hall, M., & Matthews, K. A. (2012). Sleep duration and ambulatory blood pressure in black and 

white adolescents. Hypertension, 59, 747–752.  

Montesano, M., Miano, S., Paolino, M. C., Massolo, A. C., Ianniello, F., Forlani, M., & Villa, M. P. (2010). 

Autonomic cardiovascular tests in children with obstructive sleep apnea syndrome. Sleep, 33, 1349–1355.  

Morgenthaler, T. I., Lee-Chiong, T., Alessi, C., Friedman, L., Aurora, R. N., Boehlecke, B., . . . Standards of 

Practice Committee of the American Academy of Sleep Medicine. (2007). Practice parameters for the 

clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep 

Medicine Report. Sleep, 30, 1445–1459.  

Nader, P. R., Bradley, R. H., Houts, R. M., McRitchie, S. L., & O'Brien, M. (2008). Moderate-to-vigorous 

physical activity from ages 9 to 15 years. JAMA : The Journal of the American Medical Association, 300, 

295–305. 

Newell-Price, J., Trainer, P., Besser, M., & Grossman, A. (1998). The diagnosis and differential diagnosis of 

Cushing's syndrome and pseudo-Cushing's states. Endocrine Reviews, 19, 647–672.  

Nyberg, G. A., Nordenfelt, A. M., Ekelund, U., & Marcus, C. (2009). Physical activity patterns measured by 

accelerometry in 6- to 10-yr-old children. Medicine and Science in Sports and Exercise, 41, 1842–1848. 

O'Brien, E., Mee, F., Atkins, N., & O'Malley, K. (1992). The quest for better validation: A critical comparison 

of the AAMI and BHS validation protocols for ambulatory blood pressure measurement systems. 

Biomedical Instrumentation & Technology / Association for the Advancement of Medical Instrumentation, 

26, 395–399.  

O'Brien, L. M., & Gozal, D. (2005). Autonomic dysfunction in children with sleep-disordered breathing. Sleep, 

28, 747–752.  



83 

 

Ogawa, Y., Kanbayashi, T., Saito, Y., Takahashi, Y., Kitajima, T., Takahashi, K., . . . Shimizu, T. (2003). Total 

sleep deprivation elevates blood pressure through arterial baroreflex resetting: A study with 

microneurographic technique. Sleep, 26, 986–989.  

Ohayon, M. M., Carskadon, M. A., Guilleminault, C., & Vitiello, M. V. (2004). Meta-analysis of quantitative 

sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values 

across the human lifespan. Sleep, 27, 1255–1273. 

Oldehinkel, A. J., Verhulst, F. C., & Ormel, J. (2011). Mental health problems during puberty: Tanner stage-

related differences in specific symptoms. The TRAILS study. Journal of Adolescence, 34(1), 73–85.  

Olds, T., Blunden, S., Petkov, J., & Forchino, F. (2010). The relationships between sex, age, geography and 

time in bed in adolescents: A meta-analysis of data from 23 countries. Sleep Medicine Reviews, 14, 371–

378. 

Ordaz, S., & Luna, B. (2012). Sex differences in physiological reactivity to acute psychosocial stress in 

adolescence. Psychoneuroendocrinology, 37, 1135–1157. 

Ortega, F. B., Konstabel, K., Pasquali, E., Ruiz, J. R., Hurtig-Wennlof, A., Maestu, J., . . . Sjostrom, M. (2013). 

Objectively measured physical activity and sedentary time during childhood, adolescence and young 

adulthood: A cohort study. PloS One, 8, e60871. 

Paavonen, E. J., Räikkönen, K., Lahti, J., Komsi, N., Heinonen, K., Pesonen, A. K., . . . Porkka-Heiskanen, T. 

(2009). Short sleep duration and behavioral symptoms of attention-deficit/hyperactivity disorder in healthy 

7- to 8-year-old children. Pediatrics, 123, e857–e864. 

Paavonen, E. J., Räikkönen, K., Pesonen, A. K., Lahti, J., Komsi, N., Heinonen, K., . . . Porkka-Heiskanen, T. 

(2010). Sleep quality and cognitive performance in 8-year-old children. Sleep Medicine, 11, 386–392. 

Pace-Schott, E. F., & Hobson, J. A. (2002). The neurobiology of sleep: Genetics, cellular physiology and 

subcortical networks. Nature Reviews.Neuroscience, 3, 591–605. 

Parfitt, G., & Eston, R. G. (2005). The relationship between children's habitual activity level and psychological 

well-being. Acta Paediatrica (Oslo, Norway : 1992), 94, 1791–1797. 

Parfitt, G., Pavey, T., & Rowlands, A. V. (2009). Children's physical activity and psychological health: The 

relevance of intensity. Acta Paediatrica, 98, 1037–1043. 

Pariante, C. M., & Miller, A. H. (2001). Glucocorticoid receptors in major depression: Relevance to 

pathophysiology and treatment. Biological Psychiatry, 49, 391–404.  

Pesonen, A. K., Kajantie, E., Heinonen, K., Pyhälä, R., Lahti, J., Jones, A., . . . Räikkönen, K. (2012). Sex-

specific associations between sleep problems and hypothalamic-pituitary-adrenocortical axis activity in 

children. Psychoneuroendocrinology, 37, 238–248. 

Pesonen, A. K., Martikainen, S., Heinonen, K., Wehkalampi, K., Lahti, J., Kajantie, E., & Raikkonen, K. 

(2014). Continuity and change in poor sleep from childhood to early adolescence. Sleep, 37, 289–297. 

Pesonen, A. K., Räikkönen, K., Matthews, K., Heinonen, K., Paavonen, J. E., Lahti, J., . . . Kajantie, E. (2009). 

Prenatal origins of poor sleep in children. Sleep, 32, 1086–1092.  

Pesonen, A. K., Raikkonen, K., Paavonen, E. J., Heinonen, K., Komsi, N., Lahti, J., . . . Strandberg, T. (2010). 

Sleep duration and regularity are associated with behavioral problems in 8-year-old children. International 

Journal of Behavioral Medicine, 17, 298–305. 



84 

 

Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: 

Reliability, validity, and initial norms. Journal of Youth and Adolescence, J Youth Adolescence, 17, 117–

133.  

Phillips, B., & Mannino, D. M. (2007). Do insomnia complaints cause hypertension or cardiovascular disease? 

Journal of Clinical Sleep Medicine: JCSM: Official Publication of the American Academy of Sleep 

Medicine, 3, 489–494. 

Physical Activity Guidelines Advisory Committee. (2008). Physical Activity Guidelines Advisory Committee 

report. Washington, DC: U.S.: Department of Health and Human Services. 

Price, D. A., Close, G. C., & Fielding, B. A. (1983). Age of appearance of circadian rhythm in salivary cortisol 

values in infancy. Archives of Disease in Childhood, 58, 454–456.  

Räikkönen, K., Matthews, K. A., Pesonen, A. K., Pyhälä, R., Paavonen, E. J., Feldt, K., . . . Kajantie, E. (2010). 

Poor sleep and altered hypothalamic-pituitary-adrenocortical and sympatho-adrenal-medullary system 

activity in children. The Journal of Clinical Endocrinology and Metabolism, 95, 2254–2261. 

Raitakari, O. T., Juonala, M., Kähönen, M., Taittonen, L., Laitinen, T., Mäki-Torkko, N., . . . Viikari, J. (2003). 

Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: The 

cardiovascular risk in young finns study. JAMA: Journal of the American Medical Association, 290, 2277–

2283.  

Reynolds, R. M., Hii, H. L., Pennell, C. E., McKeague, I. W., Kloet, E. R., Lye, S., . . . Foster, J. K. (2013). 

Analysis of baseline hypothalamic-pituitary-adrenal activity in late adolescence reveals gender specific 

sensitivity of the stress axis. Psychoneuroendocrinology, 38, 1271–1280. 

Reynolds, R. M., Walker, B. R., Syddall, H. E., Andrew, R., Wood, P. J., Whorwood, C. B., & Phillips, D. I. 

(2001). Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk 

factors. The Journal of Clinical Endocrinology and Metabolism, 86, 245–250. 

Riddoch, C. J., Leary, S. D., Ness, A. R., Blair, S. N., Deere, K., Mattocks, C., . . . Tilling, K. (2009). 

Prospective associations between objective measures of physical activity and fat mass in 12-14 year old 

children: The Avon longitudinal study of parents and children (ALSPAC). BMJ (Clinical Research Ed.), 

339, b4544. 

Rimmele, U., Seiler, R., Marti, B., Wirtz, P. H., Ehlert, U., & Heinrichs, M. (2009). The level of physical 

activity affects adrenal and cardiovascular reactivity to psychosocial stress. Psychoneuroendocrinology, 

34, 190–198. 

Rimmele, U., Zellweger, B. C., Marti, B., Seiler, R., Mohiyeddini, C., Ehlert, U., & Heinrichs, M. (2007). 

Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared 

with untrained men. Psychoneuroendocrinology, 32, 627–635.  

Rowlands, A. V., Ingledew, D. K., & Eston, R. G. (2000). The effect of type of physical activity measure on the 

relationship between body fatness and habitual physical activity in children: A meta-analysis. Annals of 

Human Biology, 27, 479–497.  

Sadeh, A., Dahl, R.,E., Shahar, G., & Rosenblat-Stein, S. (2009). Sleep and the transition to adolescence: A 

longitudinal study. Sleep, 32, 1602–1609.  

Sadeh, A., Gruber, R., & Raviv, A. (2002). Sleep, neurobehavioral functioning, and behavior problems in 

school-age children. Child Development, 73, 405–417.  



85 

 

Sadeh, A., Mindell, J. A., Luedtke, K., & Wiegand, B. (2009). Sleep and sleep ecology in the first 3 years: A 

web-based study. Journal of Sleep Research, 18, 60–73. 

Sagatun, A., Sogaard, A. J., Bjertness, E., Selmer, R., & Heyerdahl, S. (2007). The association between weekly 

hours of physical activity and mental health: A three-year follow-up study of 15-16-year-old students in 

the city of Oslo, Norway. BMC Public Health, 7, 155. 

Sampei, M., Dakeishi, M., Wood, D. C., & Murata, K. (2006). Impact of total sleep duration on blood pressure 

in preschool children. Biomedical Research (Tokyo, Japan), 27, 111–115.  

Schwartz, S., McDowell Anderson, W., Cole, S. R., Cornoni-Huntley, J., Hays, J. C., & Blazer, D. (1999). 

Insomnia and heart disease: A review of epidemiologic studies. Journal of Psychosomatic Research, 47, 

313–333.  

Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. (1990). 

Methodological guidelines for impedance cardiography. Psychophysiology, 27, 1–23.  

Sorof, J., & Daniels, S. (2002). Obesity hypertension in children: A problem of epidemic proportions. 

Hypertension, 40, 441–447.  

Spatola, C. A., Fagnani, C., Pesenti-Gritti, P., Ogliari, A., Stazi, M. A., & Battaglia, M. (2007). A general 

population twin study of the CBCL/6-18 DSM-oriented scales. Journal of the American Academy of Child 

and Adolescent Psychiatry, 46, 619–627. 

Spruyt, K., O'Brien, L. M., Cluydts, R., Verleye, G. B., & Ferri, R. (2005). Odds, prevalence and predictors of 

sleep problems in school-age normal children. Journal of Sleep Research, 14, 163–176. 

Sterling, P., & Eyer, J. (1988). Allostasis a new paradigm to explain arousal pathology. In S. Fisher, & J. 

Reason (Eds.), Handbook of life stress cognition and health (pp. 629–650). Oxford: Oxford University 

Press. 

Stickgold, R. (2006). Neuroscience: A memory boost while you sleep. Nature, 444, 559–560. 

Strandberg, T. E., Vanhanen, H., & McKeigue, P. M. (2001). Birth outcome in relation to licorice consumption 

during pregnancy. American Journal of Epidemiology, 153, 1085–1088.  

Strauss, R. S., Rodzilsky, D., Burack, G., & Colin, M. (2001). Psychosocial correlates of physical activity in 

healthy children. Archives of Pediatrics & Adolescent Medicine, 155, 897–902.  

Strong, W. B., Malina, R. M., Blimkie, C. J., Daniels, S. R., Dishman, R. K., Gutin, B., . . . Trudeau, F. (2005). 

Evidence based physical activity for school-age youth. The Journal of Pediatrics, 146, 732–737. 

Sung, R. Y., Choi, K. C., So, H. K., Nelson, E. A., Li, A. M., Kwok, C. W., . . . Fok, T. F. (2008). 

Oscillometrically measured blood pressure in Hong Kong Chinese children and associations with 

anthropometric parameters. Journal of Hypertension, 26, 678–684. 

Syväoja, H. J., Kantomaa, M. T., Ahonen, T., Hakonen, H., Kankaanpää, A., & Tammelin, T. H. (2013). 

Physical activity, sedentary behavior, and academic performance in Finnish children. Medicine and 

Science in Sports and Exercise, 45, 2098–2104. 

The Actiwatch User Manual; Issue Version.7.2. (2008). CamNtech Ltd, Cambridge, UK 

Tarokh, L., Van Reen, E., LeBourgeois, M., Seifer, R., & Carskadon, M. A. (2011). Sleep EEG provides 

evidence that cortical changes persist into late adolescence. Sleep, 34, 1385–1393. 

Tonetti, L., Pasquini, F., Fabbri, M., Belluzzi, M., & Natale, V. (2008). Comparison of two different actigraphs 

with polysomnography in healthy young subjects. Chronobiology International, 25, 145–153. 



86 

 

Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: From synaptic and cellular homeostasis to 

memory consolidation and integration. Neuron, 81, 12–34. 

Traustadottir, T., Bosch, P. R., & Matt, K. S. (2005). The HPA axis response to stress in women: Effects of 

aging and fitness. Psychoneuroendocrinology, 30, 392–402. 

Treiber, F. A., Kamarck, T., Schneiderman, N., Sheffield, D., Kapuku, G., & Taylor, T. (2003). Cardiovascular 

reactivity and development of preclinical and clinical disease states. Psychosomatic Medicine, 65, 46–62.  

Trost, S. G., Loprinzi, P. D., Moore, R., & Pfeiffer, K. A. (2011). Comparison of accelerometer cut points for 

predicting activity intensity in youth. Medicine and Science in Sports and Exercise, 43, 1360–1368. 

Trost, S. G., Pate, R. R., Freedson, P. S., Sallis, J. F., & Taylor, W. C. (2000). Using objective physical activity 

measures with youth: How many days of monitoring are needed? Medicine and Science in Sports and 

Exercise, 32, 426–431.  

U.S. Department of Health and Human Services. (1996). Physical activity and health: A report of the surgeon 

general. Atlanta, GA: U.S.: Department of Health and Human Services, Centers for Disease Control and 

Prevention, National Center for Chronic Disease Prevention and Health Promotion. 

Urbina, E., Alpert, B., Flynn, J., Hayman, L., Harshfield, G. A., Jacobson, M., . . . American Heart Association 

Atherosclerosis, Hypertension, and Obesity in Youth Committee. (2008). Ambulatory blood pressure 

monitoring in children and adolescents: Recommendations for standard assessment: A scientific statement 

from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of 

the Council on Cardiovascular Disease in the Young and the Council for High Blood Pressure Research. 

Hypertension, 52, 433–451. 

Verhulst, F. C., Dekker, M. C., & van der Ende, J. (1997). Parent, teacher and self-reports as predictors of signs 

of disturbance in adolescents: Whose information carries the most weight? Acta Psychiatrica 

Scandinavica, 96, 75–81.  

Vreeburg, S. A., Kruijtzer, B. P., van Pelt, J., van Dyck, R., DeRijk, R. H., Hoogendijk, W. J., . . . Penninx, B. 

W. (2009). Associations between sociodemographic, sampling and health factors and various salivary 

cortisol indicators in a large sample without psychopathology. Psychoneuroendocrinology, 34, 1109–

1120. 

Weitzman, E. D., Fukushima, D., Nogeire, C., Roffwarg, H., Gallagher, T. F., & Hellman, L. (1971). Twenty-

four hour pattern of the episodic secretion of cortisol in normal subjects. The Journal of Clinical 

Endocrinology and Metabolism, 33, 14–22. 

Werner, H., Molinari, L., Guyer, C., & Jenni, O. G. (2008). Agreement rates between actigraphy, diary, and 

questionnaire for children's sleep patterns. Archives of Pediatrics & Adolescent Medicine, 162, 350–358.  

Winkleby, M. A., Robinson, T. N., Sundquist, J., & Kraemer, H. C. (1999). Ethnic variation in cardiovascular 

disease risk factors among children and young adults: Findings from the third National Health and 

Nutrition Examination Survey, 1988–1994. JAMA: The Journal of the American Medical Association, 

281, 1006–1013.  

Wühl, E., Hadtstein, C., Mehls, O., Schaefer, F., & Escape Trial Group. (2004). Home, clinic, and ambulatory 

blood pressure monitoring in children with chronic renal failure. Pediatric Research, 55, 492–497. 



87 

 

Wühl, E., Witte, K., Soergel, M., Mehls, O., Schaefer, F., & German Working Group on Pediatric Hypertension. 

(2002). Distribution of 24-h ambulatory blood pressure in children: Normalized reference values and role 

of body dimensions. Journal of Hypertension, 20, 1995–2007.  

Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., . . . Nedergaard, M. (2013). Sleep drives 

metabolite clearance from the adult brain. Science (New York, N.Y.), 342, 373–377. 

Yehuda, R. (2002). Post-traumatic stress disorder. The New England Journal of Medicine, 346, 108–114. 

  


