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Abstract 

One task of cognitive science is to explain the information processing capacities of 
cognitive systems, and to provide a scientific account of how cognitive systems produce 
the adaptive and systematic intelligent behavior that they do. However, there are several 
disputes and controversies among cognitive scientists about almost every aspect of the 
question of how to fulfill this task. Some of these disputes originate from the 
fundamental issue of how to explain cognitive phenomena. 

In recent years, a growing number of philosophers have proposed that explanations of 
cognitive phenomena could be seen as instances of mechanistic explanation. In this 
dissertation, my aim is to examine to what extent the mechanistic account of 
explanation can be applied to explanations of complex cognitive phenomena, such as 
conceptual change.  

The dissertation is composed of five related research articles, which explore different 
aspects of mechanistic explanations. The first two articles explore the question, whether 
explanations of cognitive phenomena are mechanistic in the standard sense. The third 
and fourth articles focus on two widely shared assumptions concerning the mechanistic 
account of explanatory models: that (i) explanatory models represent, describe, 
correspond to or are similar to mechanisms in the world and that (ii) in order to be 
explanatory a model must represent the relevant causal or constitutive organization of a 
mechanism in the world. Finally, in the fifth article a sketch of a mechanistic 
explanation of conceptual change is outlined.  

The main conclusions of this dissertation can be summarized as four distinct, but related 
claims: (i) I argue that the standard mechanistic account of explanation can be applied to 
such cognitive explanations which track dependencies at the performance level. Those 
explanations refer to mechanisms which sustain or perform cognitive activity. However, 
(ii) if mechanistic explanations are extended to cover so-called computational or 
competence level explanations as well, a more liberal interpretation of the term 
mechanism may be needed (Rusanen & Lappi 2007; Lappi & Rusanen 2011). Moreover 
(iii) it is also argued that computational or competence level explanations are genuinely 
explanatory, and that they are more than mere descriptions of computational tasks. 
Rather than describing the causal basis of certain performances of the target system, or 
how that system can have certain capacities or competences, they explain why and how 
certain principles govern the possible behavior or processes of the target system. 
Finally, (iv) I propose that the information semantic account of representational 
character of scientific models can offer a naturalist account of how models depict can 
depict their targets, and offer also an objective account of how explanatory models can 
depict the relevant properties of their target systems (Rusanen & Lappi 2012; Rusanen 
under review).  
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groups. A very special thanks goes out to Academy Professor Uskali Mäki, whose 
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have influenced the whole group. I would also like to thank Doc. Tarja Knuuttila for her 

intellectual, social and practical support. I have especially enjoyed our long discussions 

in various airplanes. Moreover, I am deeply indebted to many other colleagues in POS, 
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used to spend time with, but especially my Fodorian camaraderie Mikko Määttä. 
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PART I: Introductory Essay 

1.1. Introduction. On Explaining Cognitive Phenomena.  

It is a fundamental task of cognitive science to define and to explain the information 

processing capacities of cognitive systems, and to provide a scientific account of how 

cognitive systems produce the adaptive and systematic intelligent behavior that they do. 

As is well known, there are several disputes and controversies among cognitive 

scientists about almost every aspect of the question of how to fulfill this task. Some of 

these disputes originate from the fundamental issue of how to explain cognitive 

phenomena. Should we think of cognitive phenomena as subject to general, universal, 

law-like regularities? Or should we explain cognitive phenomena, such as computing a 

function, by decomposing them into sets of simpler functions and seeking how these are 

executed in cognitive systems?  

In the history of cognitive science and psychology, examples may be found of the view 

according to which cognitive phenomena can be explained by appealing to general, 

universal and law-like regularities. For instance, German psychophysicists studied 

empirically the existence of law-like dependencies in the process of sensory 

transduction. In the domain of learning theory, behaviourists explored the possibility of 

formulating species-independent laws of learning (conditioning) as relationships 

between stimuli and responses. In recent years, some theories of associative learning 

can be seen as attempts to establish general and potentially universal accounts of 

learning (Chater & Brown 2008). Moreover, computational or probabilistic research on 

how people detect regularities has been characterized as a search for “universal laws of 

generalization” (Chater & Vitanyi 2003; Chater & Brown 2008).  

This tendency to explain cognitive phenomena as subject to universal law-like 

regularities may reflect the idea that physics is a model for all sciences and sets the 

standards of explanation for other fields of science as well. However, many have 

emphasized that rather than adopting the explanatory strategy of the hard natural 

sciences, the cognitive sciences should develop such explanatory practices that align 

better with their actual research heuristics and explanatory purposes1.  

                                                           

1 See, for instance Cummins 1983, 2000; Bechtel & Wright 2005; Bechtel 2008. 
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Namely, ever since the cognitive revolution of the 1960´s, one of the most widely used 

research heuristic in cognitive science has been that of “reverse engineering”. In reverse 

engineering2, one begins with a complex phenomenon, and then it is showed how that 

phenomenon can be produced by a set of less capable sub-systems. The behavior of the 

sub-systems can often be explained in turn by postulating the behavior of various 

subsystems, and so on. When this heuristic was applied to cognitive systems, it became 

natural to think of them as collections of highly complex computational devices, which 

can be studied by decomposing complex information processing tasks, such as problem 

solving (Newell 1980) or object vision (Marr 1982), into simpler information 

processing tasks. It then became possible to investigate how these simpler information 

processing tasks are implemented in various platforms, such as in human brains or 

computers3.     

It is common to think that when this heuristic is applied, the result is not typically a 

universal law-like generalization (Cummins 2000). Instead, the outcome of this kind of 

process is typically a specific model of how certain cognitive processes sustain, produce 

or execute the phenomenon to be explained. Recently, a growing number of 

philosophers and cognitive scientists have proposed that these models may provide 

explanations, which can be seen as instances of mechanistic explanation (for example, 

Bechtel & Wright 2005; Bechtel 2008; Piccinini 2004; Sun 2008; Kaplan 2011; 

Milkowski 2013).  

In this dissertation, my aim is to examine to what extent this mechanistic account of 

explanation can be applied to explanations of complex cognitive phenomena, such as 

conceptual change. The dissertation is composed of five related research articles, which 

explore different aspects of mechanistic explanations. These articles can be divided into 

three groups. The first group explores the question, to what extent explanations of 

cognitive phenomena are mechanistic in the standard sense. The second group focuses 

on the issue of explanatory models. Finally, the third one concentrates on the question, 

whether conceptual change can be explained mechanistically.  

                                                           

2 Originally this heuristic was borrowed from computer science. Rather than seeking universal laws, 
computer scientists design solutions for specific computational problems by decomposing complex 
problems into their component problems. See Cummins 1983, 2000. 
3 Cummins 1983, 2000. 
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These themes arise from the theoretical background that will be discussed in this 

introductory essay. The essay is organized as follows: Chapter 2 gives a general 

overview of the mechanistic account of explanation. In Chapter 3 the focus is on the 

question, to what extent the mechanistic account of explanation can be extended to 

cover cognitive explanations. I will first go through the argument I and Otto Lappi put 

forward in a pair of papers (Rusanen & Lappi 2007; Lappi & Rusanen 2011). At the end 

of the chapter, I will briefly present some main points of the criticism that these papers 

raised (Piccinini 2011; Kaplan 2011; Milkowski 2012, 2013) and reply to that criticism.  

The Chapters 4 and 5 focus on the roles that models and modeling play in mechanistic 

explanation. In those chapters, I will examine the implications of two widely shared 

assumptions concerning the mechanistic account of explanatory models: That (i) 

explanatory models represent, describe, correspond to or are similar to mechanisms in 

the world and that (ii) in order to be explanatory a model must represent the relevant 

causal or constitutive organization of a mechanism in the world. As is well known, there 

has been a tense and vivid debate concerning both these assumptions in the 

philosophical literature on modeling, and I will summarize this debate briefly in 

Chapters 4 and 5.  

Chapter 6 presents the main conclusions defended in this thesis, and discusses some 

implications of them in a broader framework. Finally, Chapter 7 provides an overview 

of the original articles.      

1.2. Background: The Framework of Mechanistic Explanation 

The mechanistic account of explanation was originally developed to offer an account of 

explanation that would stem from the explanatory practices of biochemistry and 

molecular genetics. Many of the traditional philosophical ideas about scientific 

explanations – such as the conception of laws as the principal explanatory tools in 

science – have been most applicable to domains of physics. In the 1970s and 1980s a 

group of philosophers, such as Bechtel and colleagues started to focus their attention on 

the biological sciences. They remarked that the traditional framework did not apply all 

that well to this domain. One especially important observation was that in many areas of 

biosciences explanations of complex systems are often given by constructing specific 
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models of particular mechanisms, not by offering laws or law-like general 

universalizations.  

Since then, the mechanistic account has spread everywhere. For instance, it has been 

proposed to be extended to cover explanations in neuroscience (Bechtel and Richardson 

1993; Craver 2007), cognitive neuroscience (Revonsuo 2006; Wright and Bechtel 2007; 

Kaplan 2011). It has also been suggested that computational explanation in computer 

science and in cognitive sciences can also take the form of mechanistic explanations 

(Piccinini 2004, 2007; Sun 2008; Kaplan 2011). Moreover, some philosophers of social 

science have argued that there are also mechanistic explanations in social sciences 

(Ylikoski & Hedström 2010). 

1.2.1. The Mechanistic Explanation in a Nutshell 

According to the mechanistic account, a phenomenon is explained by giving an accurate 

and sufficient description i.e. a model of how hierarchical causal systems composed of 

component parts and their properties sustain or produce the phenomenon (Bechtel & 

Richardson 1993; Machamer & al. 2000; Craver 2006, 2007). Constructing an 

explanatory mechanistic model thus involves mapping elements of a mechanistic model 

to the system of interest, so that the elements of the model correspond to identifiable 

constituent parts with the appropriate organization and causal powers to sustain that 

organization (Craver 2006; Craver & Kaplan 2011). These explanatory models should 

specify the initial and termination conditions for the mechanism, how it behaves under 

various kinds of interventions, how it is integrated with its environment, and so on.   

In the mechanistic literature, it is debated whether explanations should be understood in 

epistemic or in ontic terms. According to the ontic view, the explanans of a 

phenomenon is the causal mechanism. In other words, it is the mechanism itself, rather 

than some representation of the mechanism that does the explaining independent of 

scientists’ epistemic goals, abilities, explanatory purposes or interests (Craver 2007). In 

contrast, the epistemic view emphasizes that explanation is an essentially cognitive 

activity, and that mechanisms in the world do not provide explanations, while 

representations or models of them do (Bechtel & Abrahamsen 2005). These 

representations or models describe what are taken to be relevant component parts and 

operations, the organization of the parts and operations into a system, and the means by 

which operations are orchestrated so as to produce the phenomenon. 
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In spite of these differences, both the ontic and the epistemic view share the 

presuppositions that descriptions of mechanisms must represent the objective 

relationships between things in the real world, and that the world determines whether an 

explanation is correct or not. Namely, on the ontic view, mechanisms can be 

explanatory, if and only if mechanisms are real entities which produce or sustain the 

phenomena they explain, and descriptions of those mechanisms must correspond the 

mechanisms (Craver 2006). Also the advocates of the epistemic view require that 

mechanistic systems are “real systems in nature”, of which mechanistic explanations 

provide descriptions (Bechtel and Abrahamsen 2005, p 424-425). According to this 

view, models – or other representations – can be used to explain, if and only if they are 

true, correct or accurate representations of the relevant features of their real world 

targets. 

1.2.2. Etiological, Constitutive and Contextual Explanations 

It is common to distinguish “mere” causal explanations from mechanistic explanations 

in philosophical literature on explanation. “Mere” or “simple” causal explanations 

describe the causal connection between the thing that explains and the thing to be 

explained i.e. they describe causal dependencies between explanans and explanandum.  

Philosophers have attempted to characterize the nature of explanatory dependencies in 

various ways. For instance, according to one of the most influential current accounts, 

Woodward´s interventionist or manipulationist theory (Woodward 2003), genuine 

explanations offer the ability to say not merely how the system in fact behaves, but to 

say how it would behave under a variety of circumstances or interventions (Woodward 

2003). In other words, explanation is explanation of differences, and the task of the 

explanans is to tell what makes the difference (Woodward 2003).  

In the contrastive-counterfactual account of explanation, the relationship between 

explanantia and explananda are seen as objective dependencies (Ylikoski & Kuorikoski 

2010; Ylikoski 2013). Explanations track these objective dependencies between 

phenomena and relate to these dependencies in a certain way (Ylikoski and Kuorikoski 

2010; Ylikoski 2013). These dependencies can be causal, constitutive or even formal 

(Ylikoski 2013). Thus, in explanations the interest is in questions such as “why are 

things one way rather than some other way?” and so on.  
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A mechanistic explanation is not something that is contrary to describing what these 

causal or constitutive dependencies are. In contrast, mechanistic explanations describe 

how the dependency relation produces the phenomenon to be explained. Describing 

mechanisms can be seen as way of helping scientists answer these “what-would-have-

happened-if-the-components-of-mechanisms-or-their-organization-were-changed”-

questions. As Pöyhönen nicely puts it, these more comprehensive views on explanations 

“can be seen as giving a systematic account of why describing mechanisms is 

explanatory in the first place” (Pöyhönen 2013, p. 38).  

Depending on the kinds of dependencies explanations track, mechanistic explanations 

can be divided into different types. Etiological explanations are explanations in which a 

phenomenon or an event is explained by describing its antecedent causes (Craver 2001). 

In contrast, constitutive explanations are explanations which explain the phenomena at a 

higher level of mechanistic organization by describing the internal mechanisms that 

produce the higher level phenomena (Craver 2001)4. Finally, contextual explanations 

are explanations in which the explanation is given by “showing how a mechanism is 

organized (spatially, temporally, and actively) into the higher-level mechanism” (Craver 

2001). These explanations describe how the mechanisms are related to the other entities 

and activities in a higher-level mechanism, and they explain what the item does as a 

component of a higher-level mechanism.  

These etiological, constitutive and contextual descriptions of an item's activity are three 

different perspectives on that item's activity in a hierarchically organized mechanism, 

not “metaphysical” levels of nature 5 . In other words, etiological, constitutive and 

contextual explanations track different kinds of dependencies. As Ylikoski (2012) puts 

it, while etiological explanations “are in the business of explaining changes in the 

properties of an entity”, constitutive explanations explain “capacities, which are 

properties of entities or systems”. Moreover, contextual explanations6 can be seen as 

                                                           

4 According to Craver (2001 p. 63), the relationship between lower and higher mechanistic levels is a 
mereological part/whole relationship with the restriction that the lower-level parts are components of (and 
hence organized within) the higher-level mechanism. Lower-level entities (e.g., the Xs) are proper parts 
of higher-level entities (S), and so the Xs are typically smaller than higher level entities, and always 
within the spatial boundaries of S. The activities of the lower-level parts are steps or stages in the higher-
level activities. 
5 Craver 2001.  
6 It is not completely clear that what kind of explanations contextual explanations are. I thank Petri 
Ylikoski for making this point.  
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explanations which explain how the higher level organization of a mechanism 

constrains the properties and activities of lower level components. 

1.2.3. On Mechanisms 

While the mechanists vary slightly in their precise definitions of the term “mechanism”, 

most of them conceive of mechanisms as causal, real and spatiotemporally localized. 

For instance, Glennan defines a mechanism underlying a behavior as “a complex system 

that produces that behavior by the interaction of a number of parts, where the 

interactions between parts can be characterized by direct, invariant, change-relating 

generalizations” (Glennan 2002, p. 344, emphasis added). Bechtel and Abrahamsen 

define a mechanism as “a structure performing a function in virtue of its component 

parts, component operations, and their organization” and add that “the orchestrated 

functioning of the mechanism is responsible for one or more phenomena” (Bechtel and 

Abrahamsen 2005, 423, emphasis added).  

For Craver and colleagues, mechanisms are collections of entities and activities, which 

are organized in the production of regular changes from start or set up conditions to 

finish or termination conditions (Machamer & al, 2000; Craver 2001, 2007). On this 

account, a mechanism is a structure performing a function, given initial and boundary 

conditions, in virtue of its component parts, component operations performed by those 

parts, and the organization of the parts into a functional whole (the “system”). 

Mechanisms are something more than just aggregates of their parts (Craver 2007), and 

this “something more” is the “active” i.e. the spatiotemporal and causal organization of 

the mechanisms (Craver 2001, 2007).  

1.2.4. Concrete and Abstract Mechanisms 

All of these characterizations of mechanisms share the assumption that mechanisms are 

both causal and spatiotemporally implemented. In other words, mechanisms are seen as 

anchored in their components, and those components occupy space and act in real time 

(Craver 2001, 2007). However, recent discussions on mechanisms in various fields have 

demonstrated that a broader notion of mechanisms may be needed (Illari & Williamson 

2011).  

For instance, in cognitive sciences the notion of a computing mechanism can mean two 

things, either a concrete or an abstract mechanism (Piccinini 2007; Rusanen & Lappi 
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2007, Lappi & Rusanen 2011) 7 . When the notion of a computing mechanism is 

interpreted as a concrete mechanism, symbols are understood as states, and symbol 

structures are spatiotemporal arrangements of these symbols (Piccinini 2007). Under 

this interpretation computation is a process unfolding in real time, and computing 

mechanisms refer to spatiotemporally implemented computing mechanisms such as (ex 

hypotesi) neural mechanisms in brains, computers and so on.  

Computing mechanisms can also be seen as abstract mechanisms (Piccinini 2007; 

Rusanen & Lappi 2007; Lappi & Rusanen 2011). Namely, computation is defined 

mathematically in terms of symbol structures (e.g. strings of letters produced from a 

finite alphabet), and instructions that generate new symbol structures from old ones in 

accordance with a recursive function. A computation is a proof-like sequence of symbol 

structures related to each other by operations specified by the instructions. As Otto 

Lappi and I argue (Lappi & Rusanen 2011), this definition does not necessarily involve 

the notion of physical causation, or require that computations are spatiotemporally 

implemented. For this reason, computational mechanisms can be seen as abstract in a 

very strong - and almost platonic sense - as mechanisms which do not operate in real 

space and are not spatiotemporally or causally implemented.  

1.3. The Limits of Mechanistic Explanation in Cognitive Sciences 

In a pair of papers Otto Lappi and I argued that the basic distinction between concrete 

and abstract computational mechanisms is that they operate at different levels of 

explanation: algorithmic (performance) and computational (competence) (Rusanen & 

Lappi 2007; Lappi & Rusanen 2011). These “levels” correspond to the levels of 

explanation or understanding introduced by David Marr (1982).  Marr distinguished 

three distinct types of analysis of information processing systems; the computational, 

the algorithmic and the implementation level of analysis.  

A common way to distinguish these different levels is to refer to the kinds of questions 

they answer. In short, computational explanations answer “what” questions and “why” 

questions. These are questions such as “What is the goal of the computation?”, “Why 

does this computational task create such and such computational constraints?” and 

                                                           

7For other similar examples in various fields of science, see Illari & Williamson 2011. Moreover, 
Kuorikoski (2009) discusses on abstract and concrete mechanisms in social sciences.  
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“Why is this algorithm or information processing mechanism appropriate for this task?”. 

The algorithmic level answers “how” questions (“How is this computation executed in a 

particular cognitive system?”) by describing the specific algorithms, and the 

implementation level describes, how neural or other implementing mechanisms produce 

or sustain the behavior of the system.  

1.3.1. Computational and Algorithmic Explanations 

Computational explanations are explanations which focus on information processing 

tasks of specific cognitive capacities, such as perception, reasoning, decision making 

and so on. These tasks can be specified in terms of information processing as mappings 

from one kind of information to another.  

Computational explanations track formal dependencies between certain kinds of 

information processing tasks and the information processing requirements of certain 

kinds of tasks. In a sense, computational explanations are perhaps explanations which 

explain why and how certain principles govern the possible behavior or processes of a 

system, rather than explanations of how certain mechanisms cause the behavior or 

processes.  

While computational explanations track dependencies at the level of cognitive 

competences, algorithmic explanations track dependencies at the level of cognitive 

performances. Those dependencies, and the states of the system and the trajectories they 

follow, are causal (Piccinini 2007). In the case of neurocognitive sciences these 

performances can be found at the functional (symbolic or connectionist) or neurological 

(systemic, cellular, molecular) levels. These levels give a description of the concrete 

mechanisms that fulfill a particular cognitive task. These explanations can, for instance, 

explain how one ends up from one representation (which makes explicit a piece of 

input-information) to another (for output-information).  

Thus, the basic difference between computational and algorithmic explanations is that 

they track different kinds of dependencies. While computational explanations track 

formal dependencies, algorithmic explanations track causal dependencies. Moreover, 

because computational, algorithmic and implementation level explanations track 

different kinds of dependencies, computational explanations can be considered largely 

autonomous with respect to the algorithmic or implementation levels below, because the 
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level where the cognitive capacities in question are specified is not logically dependent 

on the ways the causal mechanisms sustain them (Marr 1982; Shapiro, 1997). Thus the 

computational problems at the highest level may be formulated independently of 

assumptions about the algorithmic or neural mechanisms which perform the 

computation (Marr 1982; see also Shapiro 1997; Shagrir 2001). Generally, given a 

computational task, the realization can be based on various different representations and 

various algorithms might be appropriate for any given representation (Shagrir, 2001). In 

other words, these algorithms may then be multiply realized in terms of physical 

implementation. 

1.3.2. Are Computational Explanations Mechanistic? 

Piccinini proposed in a series of papers (2004, 2006a, 2006b) that computational 

explanations are (or should be) mechanistic explanations. Piccinini suggested that 

computing mechanisms can be analyzed in terms of their component parts, their 

functions, and their organization. A computational explanation is then “a mechanistic 

explanation that characterizes the inputs, outputs, and sometimes internal states of a 

mechanism as strings of symbols, and it provides a rule, defined over the inputs (and 

possibly the internal states), for generating the outputs” (Piccinini, 2006b).  

In our 2007 paper (Rusanen & Lappi 2007) we argued that this kind of mechanistic 

account of “computational” explanations can be applied to computational explanations, 

if computational explanations track the dependencies at the algorithmic or performance 

level i.e. at the level of the mechanisms which sustain or produce the cognitive activity 

causally.  

However, we had certain reservations about whether the mechanistic strategy Piccinini 

held could be extended to cover computational explanations at the competence level. 

Our argument was based on two claims. The first one was that computational 

explanations are not only bottom-up, but also top-down. The second one was that if the 

notion of mechanism employed in mechanistic explanation refers to concrete 

mechanisms only, then it cannot be applied to computational explanations at the level of 

cognitive competences. 

 

 



11 

 

1.3.3. The Problem of Direction of Interlevel Explanations 

In our two papers, we took it for granted that when Piccinini discusses computational 

explanations, he does not view them as etiological explanations, but rather as 

constitutive explanations. However, in standard accounts constitutive mechanistic 

explanations are characterized in such a way that they seem always to be bottom-up 

explanations. For constitutive explanations are described as explanations in which 

phenomena at a higher level of hierarchical mechanistic organization are explained by 

their lower-level constitutive causal mechanisms but not vice versa (Craver 2001, 2006; 

Machamer & al, 2000). For example Craver (2001, p. 70, emphasis added) notes that 

“Constitutive explanations are inward and downward looking, looking within the 

boundaries of X to determine the lower level mechanisms by which it can Φ. The 

explanandum… is the Φ-ing of an X, and the explanans is a description of the organized 

σ-ing (activities) of Ps (still lower level mechanisms).”  

However, computational explanations of cognitive competences are inter-level 

explanations, which also proceed top-down. Namely, computational explanations are 

also used to explain the behavior of mechanisms at the algorithmic and implementation 

levels. For instance, if one considers why a certain pattern of synaptic changes is such-

and-such, one can answer: because it serves to store the value of x needed in order to 

compute y. Or, why is the wiring in this type of ganglion cell such-and-such? - Because 

the wiring computes, or approximates a computation of, some variable x.  Or, why does 

this kind of learning mechanism lead to conceptual change? - Because it increases the 

utility of the conceptual system for a particular problem solving task.  

In such explanations, the explanans is at the computational level, and the explananda are 

at the algorithmic or performance levels. In other words, the explanations start from the 

upper level and end up on the lower levels. But constitutive mechanistic explanations 

are always bottom up. Thus, we concluded, computational explanations are not 

constitutive mechanistic explanations in the standard sense.   

However, our analysis ignores the possibility that computational explanations are 

contextual rather than constitutive mechanistic explanations. The contextual 

explanations explain how the “higher-level” mechanism constrains what a lower level 

mechanism does, and obviously, one computational mechanism can be a component of 

a larger computational system, while the latter serves as the contextual level for the 
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former. It may be that this is what Bechtel has in mind, when he remarks that “since 

computational explanations address what mechanisms are doing they focus on 

mechanisms “in context”” (Bechtel 2008, p. 26).  

If this were right, our argument would fail. Namely, if computational-level explanations 

were contextual explanations, and if contextual explanation is a subspecies of standard 

mechanistic explanations, then computational level explanations would be a subspecies 

of mechanistic explanations. 

However, it is still an open question, to what extent computational explanations - as we 

understand them - are contextual explanations in the standard mechanistic sense. For 

instance, Craver (2001, p.70) characterizes contextual explanations as explanations, 

which “refer to components outside of X” and are “upward looking because they 

contextualize X within a higher level mechanism”. On this view, a description of how a 

cognitive system “behaves” in its environment, or how an organization of a system 

constraints the behavior of it´s components8, is expressed in causal and spatiotemporal 

terms, not in terms of information processing at the level of computational competences.  

In other words, contextual explanations show how an entity or activity fits into a 

spatiotemporally implemented higher-level mechanism. This kind of view conceives 

contextual explanations as a kind of systemic explanations, in which the uppermost 

level of the larger mechanism will still remain non-computational in character. The 

problem is that computational explanations do not refer to spatiotemporally 

implemented higher-level mechanisms and they do not involve spatiotemporally 

implemented components “outside of (spatiotemporally implemented) X”. Instead, they 

refer to abstract mechanisms, which are not spatiotemporally implemented. For this 

reason, computational explanations are not these kinds of “systemic” contextual 

explanations.  

1.3.4. Replies to Kaplan´s, Piccinini´s and Millkowski´s criticism 

Some of our critics, such as Kaplan (2011) and Piccinini (2011), remark that our 

position can be seen as a typical example of “computational chauvinism”, according to 

                                                           

8 Kuorikoski & Ylikoski 2013. 
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which computational explanations of human cognitive capacities can be constructed and 

confirmed independently of details of their implementation in the brain.  

In a sense, this accusation is a correct one. Indeed, we defend the view that 

computational explanations can be considered largely autonomous with respect to the 

algorithmic or implementation levels below, and that the computational problems of the 

highest level may be formulated independently of assumptions about the algorithmic or 

neural mechanisms which perform the computation (Marr 1982; see also Shapiro 1997; 

Shagrir 2001). Because the performance and competence- level computational 

explanations track different kinds of dependencies, these different modes of explanation 

are not necessarily logically dependent on each other. Hence, if this is computational 

chauvinism, then we are computational chauvinists.  

However, Kaplan (2011) claims that while we highlight the independence of 

computational explanations, we forget something important Marr himself emphasized. 

Namely, Kaplan remarks that even if Marr emphasized that the same computation might 

be performed by any number of algorithms and implemented in any number of diverse 

hardwares, Marr´s position changes when he “addresses the key explanatory question of 

whether a given computational model or algorithmic description is appropriate for the 

specific target system under investigation” (Kaplan 2011, p.343).  

While I am uncertain whether this is the key explanatory question Marr is interested in, 

I do agree that for a cognitive neuroscientist it is. But is this an argument against our 

position? As Kaplan himself remarks, Marr rejects “the idea that any computationally 

adequate algorithm (i.e., one that produces the same input-output transformation or 

computes the same function) is equally good as an explanation of how the computation 

is performed in that particular system” (Kaplan 2011 p.343, italics added)9.  

But then, we are not talking about competence level explanations anymore. When the 

issue is how the computation is performed in the particular system, such as in human 

brains, then the explanation is given in terms of algorithmic or neural processes, or 

mechanisms, if you will. Then, naturally, the crucial issue is what kinds of algorithms 

are possible for a certain kind of system, or whether the system has structural 

components that can sustain the information processing that the computational model 

                                                           

9 For a similar remark, see Piccinini & Craver 2011.  
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posits at the neural level10. If one aims to explain how our brains are able to perform 

some computations, then – of course – one should take the actual neural implementation 

and the constraints of the possible neurocognitive architecture into account as well. 

But given this, these kinds of explanations are explanations at the algorithmic or 

performance level, not at the computational or competence level. For this reason, the 

remark that our brains cannot actually perform any kind of computations, or that the 

neural implementation poses some limitations to possible computations, is not actually 

an argument against the logical independence of the computational level11.  

A more problematic issue is to what extent these kinds of computational explanations 

are explanatory after all. For example, Milkowski argues that we see “functional 

explanations” as “a kind of systemic explanation that shows how a cognitive system can 

have some capacities” (Milkowski 2013, p. 107). However, we do not speak of 

“functional explanations” but computational explanations, and we do not claim that 

computational explanations explain how a cognitive system can have some capacities12. 

Instead, what we claim is that computational explanations explain why and how certain 

principles govern the possible behavior or processes of the system.  

Although Milkowski may partially misinterpret our position, he still raises an important 

question concerning the explanatory character of computational explanations 

(Milkowski 2012, 2013). If computational explanations are characterized as 

explanations which answer questions such as: “What is the goal of this computation?”, 

it may be claimed that we fail to make a distinction between task analysis and genuine 

explanations. Obviously, if computational explanations are mere descriptions of 

computational tasks, then they are not explanations at all.  

However, as we see it, computational explanations are more than mere descriptions of 

computational tasks, because they describe formal dependencies between certain kinds 

of tasks and certain kinds of information processing requirements. If these formal 

dependencies are such that descriptions of them not only offer the ability to say how the 

computational layout of the system actually is, but also the ability to say how it would 

                                                           

10 See Piccinini & Craver 2011.  
11 This may actually be an argument against the multiple realizability of computations rather than against 
the autonomy of computational explanations. 
12 This is rather a question of constitution than a question of computational layout.   
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be under a variety of circumstances or interventions, they can be counted as 

explanatory13. In other words, if these descriptions answer questions such as “Why does 

this kind of task create this kind of constraint rather than that kind of constraint?” by 

tracking such formal dependencies which can explain what makes the difference, then 

these descriptions can be explanatory. 

Obviously, computational explanations of this sort are not causal explanations. 

However, in the context of explanation of cognitive phenomena, it may be necessary to 

defend more liberal and pluralistic views of explanation, which would allow that there 

are also some non-causal forms of explanation. I agree with mechanists that when we 

are explaining how cognitive processing actually happens for example in human brains, 

it is a matter of causal explanation to tell how the neuronal structures sustain or produce 

the information processing in question. However, I still defend the view that there are 

other modes of explanation in cognitive sciences as well. 

1.4. On Explanatory Mechanistic Models 

In the previous sections, I have focused mostly on the issue of mechanistic explanation. 

In this section I turn to the issue of explanatory mechanistic models. This issue is 

important, for mechanists often emphasize that mechanistic explanations involve 

presenting a model of the mechanism(s) taken to be responsible for a given 

phenomenon, rather than presenting a formalized set of propositions (Bechtel & 

Abrahamsen 2005). Explanatory mechanistic models involve mapping the elements of 

the model to the system of interest, so that the elements of the model correspond to 

identifiable constituent parts having the appropriate organization and causal powers to 

sustain that organization (Craver 2006, Craver & Kaplan 2011).  

1.4.1. Evaluation of Explanatory Adequacy 

However, not all models that describe mechanisms are explanatory14. In contrast, the 

explanatory adequacy of a given model can be evaluated along three dimensions 

(Craver 2006, 2007), whereby distinctions may be made between (1) merely 

phenomenological models and genuinely explanatory models, (2) how-possibly and 

how-actually models, and (3) sketches and ideally complete models.  
                                                           

13This is a non-causal modification of Woodward (2003) and Ylikoski (2011). 
14 Moreover, not all models are models of mechanisms.  
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Phenomenological and explanatory models 

The first distinction is between merely phenomenological and genuinely explanatory 

models. Merely phenomenological models provide only descriptions of the phenomena 

to be explained, though they allow one to make predictions about the system. However, 

phenomenological models do not provide genuine explanations, because they do not 

reveal the causal structure underlying the phenomenon that is the explanandum. For this 

reason, these descriptions and predictions do not show why the dependencies captured 

by the models are as the models describe them. Moreover, Craver suggests that 

genuinely explanatory models can be distinguished from merely phenomenological 

models by their ability to answer “what-if-things-had-been-different” questions (Craver 

2006, p. 358). Explanatory models allow one to say how things would have been under 

different conditions, how the system would behave if it were manipulated, and so on. 

How-possibly and how-actually models 

The second distinction is between how-possibly and how-actually models. How-

possibly models are ‘only loosely constrained conjectures about the mechanism that 

produces the explanandum phenomenon’ (Craver 2006, p. 361)15. Even though how-

possibly models describe organized parts and activities and how they can produce the 

phenomenon to be explained, “one can have no idea if the conjectured parts exist and, if 

they do, whether they can engage in the activities attributed to them in the model” 

(Craver 2006, p. 361). How-actually models, on the other hand, “describe real 

components, activities, and organizational features” of the mechanism (Craver, 2007, p. 

112). Between how-possibly and how-actually models lie the so-called how-plausibly 

models, which vary in their degree of realism (Craver 2006). 

Craver (2006) seems to suggest that the difference between how-actually and how-

possibly models is mainly a matter of how accurately or truthfully a model describes the 

system in question. However, as Weiskopf (2011) and Colombo et al. (forthcoming) 

remark, Craver´s distinction between how-possibly and how-actually models may 

actually be about the degrees of evidential support, and not about the truth or accuracy 

                                                           

15 For alternative analysis of how possibly- models, see for instance Ylikoski & Aydinonat 2014. 
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of models (Weiskopf 2011)16.  Namely, Craver’s (2006, 2007) own reconstruction of 

the Hodgkin-Huxley model of the action potential seems to formulate the distinction in 

terms of confirmation rather than in terms of accuracy.  

As Colombo et al. (forthcoming) note, Craver’s argument that the Hodgkin-Huxley 

model is a how-possibly model relies on the fact that “Hodgkin and Huxley had no 

evidence favoring their model over other possible models”. Along similar lines 

Weiskopf (2011) points out, any one of a set of how-possibly models might turn out to 

accurately model the system. But then, as Weiskopf (2011) emphasizes, if the 

distinction were one of truth or accuracy, it would “make little sense” to say that a how-

possibly model can turn out to be a how-actually model. Instead, the dimension 

represents “something like the degree of confirmation of the claim that the model 

corresponds to the mechanism” (Weiskopf 2011, p. 316). 

Sketches and complete models 

The third distinction is between “sketches” and “ideally complete models”. Depending 

on the amount of information it carries, a model can be a mechanism sketch, a 

mechanism schema or an ideally complete description of the mechanism (Craver 2006). 

A mechanism sketch is an incomplete model of a mechanism. It characterizes some 

parts, activities, and features of the mechanism’s organization, but it has gaps. 

Mechanism schemata are abstracted models which omit some of the details of a 

particular mechanism. Ideally complete models of a mechanism include all of the 

entities, properties, activities, and organizational features that are relevant to every 

aspect of the phenomenon to be explained.  

This third dimension is a matter of the representational accuracy and relevance of a 

model with respect to the explanandum17. The more features of the target system a 

model takes into account, the more detailed it is; and the more features relevant to the 

behavior of the target system a model describes, the more relevant the model is. So, the 

most representationally complete models are the ones that take into account all the 

features of the system modelled that are relevant to the behavior of the system. 

                                                           

16 In Machamer et al. (2000, p. 21) the distinction is clearly formulated in epistemic terms as one related 
to “intelligibility” (Weiskopf 2011; Colombo et al, forthcoming). 
17 Weiskopf 2011, Colombo et al, forthcoming.  



18 

 

1.4.2. The Problem of Relevance 

It has been widely recognized that the most – if any - of the models scientists use, do 

not provide ideally complete descriptions of their real world targets. Target systems are 

just too complicated to be studied in full fidelity, and thus all kinds of assumptions are 

made to reduce the complexity of a model. Hence, models are always more or less 

abstract, simplified and idealized descriptions of their real world target systems. 

However, in so far as models are explanatory (in a mechanistic sense), models should 

represent the relevant bits and pieces of the causal organization of their target 

systems 18 .This raises the issue of relevance: How, exactly, are the relevant parts 

distinguished from the irrelevant parts?  

As is well known, defining and characterizing relevance has turned out to be a 

notoriously difficult problem for most accounts of scientific explanation (Hitchcock 

1995; Imbert 2013). For instance, in theories of causal explanation relevance is often 

defined as the property of causal factors that can cause the changes in explananda 

(Hitchcock 1995). However, only some parts of the causal chain or causal history are 

relevant for a given explanandum, and thus the challenge is to offer such an account of 

relevance, which could distinguish the relevant parts of causal history from the 

irrelevant parts.  

Different attempts have been made to solve this problem. For example, Salmon focuses 

on appropriate causal relationship between the things that explain and the things to be 

explained (Salmon 1984; Hitchcock 1995). Salmon views the causal structure of the 

world as a nexus or a connection of causal processes intersecting and exchanging 

“marks” (1984), and argues that in etiological (i.e. causal) explanations the relevant 

antecedent causes are connected to phenomena by physical transmission, while 

irrelevant features or events are not connected in such a way. For instance, because 

there is no causal process which would connect the dog´s bark to the doorbell, a barking 

dog is not a relevant antecedent cause for the ring of the doorbell,  

However, Salmon´s attempts to solve the problem of relevance have been critized in 

many ways. For example, Hitchcock argues (1995) that relevance is still a problem for 
                                                           

18 Craver, too, refers to the pragmatics of modeling when he writes that “In fact, such (ideally complete) 
descriptions would include so many potential factors that they would be unwieldy for the purposes of 
prediction and control and utterly unilluminating to human beings”.” (Craver 2006, p.5) 
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Salmon’s account, because even if all the causal processes were identified, Salmon´s 

account fails to show exactly why the target phenomenon would occur in those 

circumstances. Moreover, in the context of mechanistic explanation, it does not suffice 

to offer an account of relevance that is appropriate for etiological explanations only: any 

account of relevance must be appropriate for constitutive (and contextual) explanations 

as well (Craver 2007b).  

Craver himself proposes (2006, 2007b) that relevance can be understood in terms of the 

ability to manipulate one component by intervening on another, and that the relevant 

components or elements of a system can be established experimentally i.e. either (i) by 

manipulating the components and observing changes in the behavior of the mechanism 

as a whole or (ii) by manipulating the behavior of the mechanism as a whole and 

observing the behavior of the component parts. According to this account, the relevant 

factors are those which not only have an impact on how the system in fact behaves, but 

which also have an impact on how it would behave under a variety of circumstances or 

interventions (Woodward 2003).  

Generally speaking, this kind of notion of relevance is ontic in the sense that the factors 

or dependencies between phenomena are seen as objective features of the world. In 

other words, they are not dependent on scientists' ways of conceptualizing or theorizing 

about them, and the degree of relevance is not dependent on our psychological, 

pragmatic or inferential practices. However, Craver (2006) seems to allow for the 

possibility that relevance may also involve some pragmatical dimensions. He makes the 

following – quite cryptic – remark (2006, p. 360):  

“Models frequently drop details that are irrelevant in the conditions under which 
the model is to be used… Which information is relevant varies from context to 
context… Explanations are sometimes represented as answers to questions about 
why something has happened or about how something works. Questions and 
answers, as linguistic entities, presuppose a conversational context that specifies 
precisely what is to be explained (by a model) and how much detail will suffice 
for a satisfying answer”.  

 

If I understand Craver correctly, he seems to think that the relevance (of the details of a 

model) is partially dependent on the pragmatical context of modeling. In other words, 

some elements are selected as relevant (or expressed on some continuum of relevance) 

from a number of available existing elements, because they are (or are seen) relevant for 
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the explanatory purpose(s). Some other elements or details are considered irrelevant, 

because they are not (seen) relevant for these purposes.  

This kind of relevance can be called “pragmatic relevance” (Rusanen under review). 

Generally, this “pragmatic relevance” can be interpreted either as intentionality based or 

as task based relevance (Rusanen under review). According to the intentionality based 

account, the relevance of P for a certain task Z is understood as dependent on the model 

user´s (intentional) evaluation of the usability of P for certain purposes, such as 

explaining. This kind of subjective, intentionality based relevance can be characterized 

as follows: 

(Subjective relevance) P is relevant to Q, if and only if P is judged (intentionally) 

to be relevant to Q.   

This has been quite a popular view in the philosophical literature on modelling, and 

many have shared the intuition that the relevant properties are those that the users of 

models take, interpret or even intend to be relevant (for example Giere 2004; Contessa 

2011). For example, Giere (2004, italics added) writes as follows:  

 

"...How do scientists use models to represent aspects of the world? …One way... is 
by exploiting similarities between a model and that aspect of the world it is being 
used to represent...  It is not the model that is doing the representing; it is the scientist 
using the model who is doing the representing. Part of being able to use a model to 
represent some aspect of the world is being able to pick out the relevantly similar 
features....” 
 

According to this view, relevance is based on subjective and intentional relevance 

assessments, on the ways of conceptualizing the tasks, on personal expectations and 

even on the motivation behind the scientific research. However, this does not mean that 

these subjective relevance evaluations are completely individual. On the contrary, these 

evaluations are often influenced by socio-cultural standards of relevance assessments, 

the strategical and tactical decisions by groups of scientists, the division of epistemic 

labour, and the normative practices of the scientific community at large.  

However, I doubt whether advocates of mechanistic explanation are willing to accept 

this view of relevance. Merely postulating or intending that a model captures the 

relevant causal organization does not guarantee that the model actually captures the 

relevant bits and pieces. For a mechanist, it is crucial that those factors that are taken to 
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be relevant really do correspond to the relevant aspects of the world. Explanation is not 

a matter of intending explanatory relationships to hold, but a matter of describing how 

the world really is. For this reason, I believe that Craver's cryptic remark may actually 

refer to the idea that fulfilling a certain task, such as explanation, determines the 

pragmatic relevance. This kind of relevance can be called task based relevance, and it 

can be characterized as follows: 

(Task Based Relevance) P is relevant to task T, if and only if it increases the 

likelihood of accomplishing the purpose Z which is implied by the task19.  

If the “usability” for a task is what determines the relevance of P, then it is still possible 

to think that “usability” is not dependent on our subjective ways of evaluating that 

usability. In short, P can be used for the purpose Z (such as explanation), if P is suitable 

for it (whether or not the user realizes, or even evaluates the relevance of P for it). If 

explanation is understood in terms of manipulation and control, then the degree of P´s 

relevance is dependent on its ability to depict the right kinds of causal factors. 

1.4.3. Explanatory Mechanistic Models and Scientific Realism  

What emerges, then, is a picture of explanatory models in which these models do not 

only include information, but are required to be adequate how-actually explanations of 

the relevant features of target systems. In short, they explain the phenomenon by giving 

an accurate and sufficient description i.e. a model of how the relevant hierarchical 

causal systems composed of component parts and their properties sustain or produce the 

phenomenon in the world (Bechtel & Richardson 1993; Machamer & al. 2000; Craver 

2006, 2007).  

In a sense, this picture of explanatory models is a typical example of a (possibly 

extreme) realistic attitude towards models and modeling. According to realism, 

scientific explanations, theories and models are (at least approximately) correct 

descriptions of how things stand in the real world. This realistic attitude involves a 

metaphysical claim and a semantic claim. The metaphysical claim is that the 

components and activities, of which mechanisms consist, are real and mind-independent 

features of the world (Bechtel and Abrahamsen 2005, p. 423-5; Machamer, Darden and 
                                                           

19 There is an analogical notion of relevance in information and library sciences. See Sarasevic 2007 for 
an introduction. 
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Craver 2000; Craver 2006). The semantic claim is that our explanatory models give us 

descriptions of their targets, because they can correctly represent, depict or describe the 

causal interactions among the parts of the target mechanisms that enable the latter to 

produce the phenomena they do under various conditions.  

Generally, in the mechanistic literature, this representational relationship -“the 

aboutness”- between a model and its target systems is often seen as some kind of 

similarity or correspondence relation. For instance Glennan characterizes the 

representational relationship as “one of approximate similarity” (Glennan, 2000) in a 

way, where “the behavior of the system in nature is described (to varying degrees of 

approximation) by the model's behavioral description and the internal structure of the 

system is described (again to varying degrees of approximation) by the model's 

mechanical description”. Craver and Kaplan (2011) describe the representational 

relationship as “correspondence” in the following way “…in succesfull explanatory 

models… (a) the variables in the model correspond to components, activities, properties 

and organizational features of the target mechanism that produces, maintains, or 

underlies the phenomenon, and (b) the… dependencies posited among these variables in 

the model correspond to the… causal relations among the components of the target 

mechanism”. 

However, as already Quine (1969) pointed out, similarity is a vague notion, and 

correspondence is actually not much better. In order to specify these concepts, many 

philosophers of science have appealed various “morphisms” – iso-, partial- or 

homomorphisms. However, all these various morphisms, similarities and 

correspondences are problematic, and they have been critized on many grounds.   

In the next section, I will briefly summarize some of the main points of this criticism, 

and then briefly describe the basic tenets of the information semantic account of 

scientific representations.   

1.5. On the Problem of Scientific Representation 

Generally, representations are things that we can think of as standing in for something. 

A photograph of a person stands in for that person. A model of DNA represents the 

structure of the DNA molecule: bits of the model stand in for bits of DNA (bases, 
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sugars, phosphates) and their relations stand in for the relations between the bits (e.g. 

base pairing).  

The directionality of representations poses some formal requirements for 

representational relationships between the things that represent (i.e. the representations) 

and the things that are represented (i.e. the targets) (Cummins 1983; in the context of 

scientific representations, see Suaréz 2003). Firstly, a representational relation 20  is 

asymmetric: representations stand in for their targets, but targets do not stand in for the 

representations. For instance, a photograph of a person stands in for that person, but the 

person does not represent the photograph. In a similar way, if a model of DNA 

represents DNA, then DNA does not represent the model. Secondly, representations are 

not reflexive, since they rarely, if ever, represent themselves. A photograph of a person 

represents the person, but the photograph does not represent itself. In a similar way, a 

model of DNA represents DNA, but the model of DNA does not represent the model of 

DNA. Thirdly, it is often emphasized that representations are also intransitive: Even if 

the target B of a representation A were itself a representation of some further target S, 

yet the representation A would not represent S, but only B. For example, if a painting (B) 

represents a person (S), then a photograph of the painting (A) represents just the 

painting, not the person. 

1.5.1. On Accounts of Scientific Representations 

Recent discussions of scientific representations offer what may appear to be three broad 

and conflicting approaches. Firstly, some approaches emphasize that a scientific 

representation is something that bears an objective relation to the thing it represents. In 

what follows, I will call proponents of such approaches “naturalists”. Secondly, there 

are “intentionalist” accounts, according to which models represent their targets in virtue 

of the modeler’s intentions to use them as representations. Thirdly, there are accounts 

which urge us to adopt the “deflationary attitude” towards scientific representation. 

These inferential or minimalist conceptions of scientific representation reject the view 

that scientific representation is “an substantive objective relation” between A and B that 

answers “solely to the properties of A and B” (Suárez 2004). 

The Minimalist Approach 

                                                           

20 See Suaréz 2003. 
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Perhaps the most well-known advocate of the minimalist or inferentialist account is 

Mauricio Suárez, who in a series of papers (2002, 2003, 2004) has argued for the 

“deflationary attitude”. According to this attitude, attempts to formulate a general 

account of scientific representations are doomed to fail, because they track a special 

relationship which does not exist. For this reason, we should not seek for “deeper” 

features of representation other than its surface features (Suárez 2002). According to 

Suárez, these “surface features” are: (1) the representational force of a source, and (2) 

the capacity of surrogate reasoning i.e. the capacity to draw inferences about the target 

from the model. Thus, according to this minimalist approach A represents B if (and only 

if) (i) the representational force of A points toward B, and (ii) A allows competent and 

informed agents to draw specific inferences regarding B (Suárez, 2002, p. 27). 

However, it is unclear how minimalist Suaréz´s minimalism actually is. Namely, he 

defines the representational force of a model as “the capacity of a source to lead a 

competent and informed user to a consideration of the target”, in virtue of “a relational 

and contextual property of the source, fixed and maintained in part by the intended 

representational uses of the source on the part of agents” (Suárez 2004, p.773, italics 

added). This seems to suggest that it is the intended uses, and a fortiori the intentions of 

users, which are – at the end of the day - doing the representational work21. Nonethless, 

it is possible to defend such an interpretation of inferentialism, which emphasize that the 

representational “properties” of models are reducible, or based on the inferences the 

models allow22 . On this view, the inferential properties of models constitute their 

representational properties, and a model is a representation of a certain target (for a 

certain user), if and only if the user is able to perform “surrogative inferences” from a 

model to the target. Nevertheless, also this line of minimalistic reasoning is problematic. 

It seems counterintuitive to suggest that a model can be used to represent (the relevant 

features of) the world, because we can make inferences on the basis of it. As Contessa 

(2011) remarks, it is more intuitive to think that we can make correct inferences on the 

                                                           

21 Actually, Suárez and Solé (2006, p.39) seem to admit this by writing how “representation in science is 
conceived as an intentional activity… The inferential conception takes it that agents’ pragmatic purposes 
are essential in two different ways to the nature of the kind of cognitive representations one finds in 
science: i) as initial fixers of the representational force that points from A to B when A represents B, and 
ii) as defining the level of information, skill and competence required for an appropriate use of the 
representation, which in turn determines the inferential capacities of the source —i.e. it determines the 
inferences about B that can legitimately be carried out on the basis of reasoning about A.  
22 See Ylikoski & Kuorikoski, under evaluation.  
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basis of models, because models depict or refer to the real world targets in one way or 

another23.  

Naturalist Accounts 

Naturalists suggest that there is a mind-independent, objective “representational” 

relationship between models and their targets. According to similarity based views, a 

model represents its target in virtue of the fact that the former is similar to the latter. 

However, as many have pointed out, this conception is problematic (for example, 

Cummins 1989; Suárez 2003). Firstly, similarity does not fulfil the requirements set for 

the representational relation, because the similarity relation lacks the distinctive 

“directionality” of representations: similarity relations are reflexive and symmetric, 

while the representation relation is irreflexive and asymmetric (Cummins 1989; Suaréz 

2003). Secondly, similarity is a vague notion, which needs a more rigorous 

characterization. 

Many philosophers have appealed to various “morphisms” (isomorphism, partial 

isomorphism, homomorphism) in order to specify – or partially in order to replace – the 

notion of “similarity” (van Fraassen 1980; da Costa and French 2000; French 2003 etc.). 

However, also these attempts have been critized in many ways. Just like similarity, the 

various morphisms are symmetric, reflexive and transitive relations, and for this reason 

they do not qualify as representations (Suárez 2003). Moreover, both the similarity and 

isomorphism-based accounts have trouble with the problem of representational 

relevance. A model typically cannot be perfectly “similar” or “isomorphic” with its 

target system, since target systems are too complex. For this reason, it is often, if not 

always necessary to reduce this complexity by making all kinds of simplifying and 

unrealistic assumptions. Thus, to save the representational relationship, models should 

be “sufficiently similar”, “similar in specified aspects” or “sufficiently isomorphic” to 

the target in the relevant respects. However, it is quite tricky to characterize “sufficiency” 

and “relevance” in a precise manner – especially in naturalist terms. This may partially 

explain why so many philosophers have been tempted into intentionality based 

semantics. It is simply intuitively compelling to think that the relevant properties of 

                                                           

23 As Chakravarty (2010) remarks, even Suárez himself (2003, p. 229) admits that “if A represents B, then 
A must hold some particular relationship to B that allows us to infer some features of B by investigating 
A”.  
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models are those that the users of models take, interpret or even intend to be relevant 

(for example Giere 2004; also Contessa 2011). 

Intentionality Based Accounts  

According to the intentionality based account, models represent their targets in virtue of 

the modelers’ intentions to use them as representations. In other words, models have 

their semantic properties in virtue of the intentional states of model users. For instance, 

Teller (2001, p.397) describes this approach nicely by writing that “I take the stand that, 

in principle, anything can be a model, and that what makes a thing a model is the fact 

that it is regarded or used as a representation of something by the model users.”   

The cost of this “intentionalist” or “derived intentionality” – as Searle (1992) would call 

it -– approach is that it will make accounts of scientific representations dependent on 

prior intentional characterization of the users, and on empirical facts about how 

scientists interpret their models. However, since empirically the intentional practices of 

scientists are complicated and not at all well understood, the issue becomes 

unnecessarily complicated. “Intending to represent scientifically” is not better 

understood than “representing scientifically”, in fact less so. Moreover, as many have 

pointed out, merely postulating a representational relation to hold between a model and 

an intended target (or intending such a relation to hold) does not create a proper 

representational relation between them (Frigg 2006). As Frigg writes, “to say S is turned 

into a representation because a scientist intends S to represent T is a paraphrase of the 

problem [of giving an account of scientific representation – of explaining why or how S 

represents T] rather than a solution” (Frigg 2006, p. 54).  

In addition, the problem of relevance arises again. To say that S is turned into a 

representation of the relevant features of a target system T, because a scientist intends S 

to represent the relevant aspects of T, is also a paraphrase of the problem of relevance 

rather than a good solution to it. Moreover, “intending to represent the relevant parts of 

a target system” is not better understood than mere intending S to represent T. In 

contrast, appealing to intentions – again -– just complicates the problem further. 

Empirically speaking, there is no widely accepted theory of relevance among cognitive 

scientists or psychologists. On the contrary, for the last 60 years cognitive scientists 

have tried to understand how human cognition is able to realize relevance, to evaluate 

relevance, and to use relevance in various forms of cognitive processes. But no 
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consensus has emerged, and explaining relevance has actually turned out to be one of 

the most difficult tasks for cognitive scientists24. 

1.5.2. The Plea for Objective Accounts of Semantic Relevance 

Because merely postulating or intending that a model captures the relevant causal 

organization does not guarantee that the model actually captures the relevant bits and 

pieces, it may be that solving the problem of semantic relevance requires postulation of 

at least some sort of objective relation between a model and its target.  

In some approaches isomorphism (or another morphism) is meant to offer such a 

substantive connection. In those accounts isomorphism regulates the way in which the 

(intended) model relates to the target system, and thus imposes constraints on what 

kinds of representation are admissible (Frigg 2006). However, isomorphism does not 

offer a sufficient constraint on relevance, because a prior choice of the relevant 

similarities is needed to get any isomorphism based account off the ground. To put this 

in a slightly different way, before one can inquire into the isomorphism of two 

structures, one must first identify the “relevant” elements and relations. This 

identification may be done by appealing intentions of users or by appealing to some sort 

of objective factors. If this identification is based on modelers’ intentions, then we are 

back with problems of intentionality based accounts. Hence, the solution for the 

problem of relevance may require a more objective stance.  

1.5.3. The Information Semantic Account of Models and the Problem of 

Relevance 

In our 2012 paper I and Otto Lappi developed a completely new account of the 

representational character of scientific models, which we titled “the information 

semantic account of scientific models” (Rusanen & Lappi 2012a). According to this 

account, a model represents its target if and only if it carries information about its 

target25.  

                                                           

24 Carruthers 2003; Shanahan 2003.  
25 This view of models and modeling differs from the picture of modeling portrayed for instance by 
Weisberg (2007). According to Weisberg, modeling can be seen as the indirect theoretical investigation 
of a real world phenomenon using the model as a “mediator”. On this view, this investigation happens in 
three stages: In the first stage, a theorist constructs a model. In the second, she analyzes, refines and 
further articulates the properties and dynamics of the model. Finally, in the third stage, she assesses the 
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This information connection between the parts of the model and parts of the target 

system is implemented in model building. It includes, for example, the data collection, 

model fitting, different experimental and data analysis methods and so on. This kind of 

process is an iterative and self-correcting process of interaction with the phenomenon, 

and at its best it ensures non-accidental convergence of some aspects of the world and 

the structure or behaviour of (some parts of) the model (Rusanen & Lappi 2012a).  

In practice, this is what scientists often try to do. When scientists build a model of some 

target system they do a lot of systematic work to ensure that the model is connected to 

its target rather than something else, e.g. the behavior of the measuring device (artifacts), 

or nothing at all (noise). For instance, scientists debug their data gathering methods, 

analyse their operational criteria and data analysis methods, do parallel experiments to 

verify assumptions related to hypotheses concerning both the real world phenomena and 

the behaviour of measuring devices and they relate their model to a known background 

theory of the functioning of their measurement devices etc. In this way, scientists do not 

only manipulate the properties of the target system and record the systematic effects of 

these manipulations, but they also conduct a lot of parallel methodological research on 

the parts of the data gathering and analysis methods in order to be able to present 

sufficient evidence that the model is referring to elements of target system.  

In our paper (2012a) we proposed that the representational character of models is then a 

product of, and is in part defined by, this iterative model building process, in which 

information about a phenomenon comes through from the empirical data. If the model 

building process is successful, then this information is incorporated into the model. The 

semantics of models is thus a result of information carrying properties of the models 

that emerge from the model building process, not the modelers´ intentions per se. The 

model building processes may well be directed by the modellers' assumptions and 

purposes, as well as by assumptions about mappings made by the modellers. However, 

the intentions or purposes, which causally direct the model building process, do not 

enter into the definition of the semantic relation itself. Hence, in the context of 

                                                                                                                                                                          

relationship between the model and the world if such an assessment is appropriate. If the model is 
sufficiently similar to the world, then the analysis of the model is also, indirectly, an analysis of the 
properties of the real world phenomenon. In our account, the first stage, the construction of models, 
involves data gathering, data-analysis and so on.  
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information semantics the semantic constitution of a model is based on an objective 

model-world relation, not on the purposes or intentions of a scientist. 

This reflects the fact that in information semantics, the semantics and the pragmatics of 

models are kept distinct. The semantics of a model is about how a model “represents”, 

“depicts” or “is about” its target system. The pragmatics of models, on the other hand, 

concerns the context-dependent properties and features of the ways that models are used 

in scientific practices, including the ways that they are used to explain in certain 

contexts, to make predictions about the possible behavior of target systems, and analyze 

the structure of the target system. The semantic constitution of a model is more 

fundamental than the pragmatics in the following sense: If a representation A does not 

carry information about the target B, A is really not a representation of the target B – 

even if A is considered by modelers “a representation of B”. On this view, unless a 

model carries information about its target, it fails to represent the target altogether (the 

modelers’ intentions notwithstanding), and if a model carries information about its 

target the model represents this target – whether or not its user realizes it or even intends 

it. In information semantics it is the world, which decides, which models are 

representing their targets, and which are not.    

The semantics also places some restrictions on the meaningful use of a model:  the 

usefulness of models for representational purposes depends on their semantic relation to 

their target systems. As a semantic theory, the information theoretic account of 

semantics is not only descriptive, but also normative. It gives a criterion for 

distinguishing a “genuine” representation from arbitrary mappings: genuine information 

carrying representations allow us to obtain information about the intrinsic properties of 

target systems, arbitrary or false mappings do not. 

Moreover, we suggested that at its best the iterative model building process ensures 

non-accidental convergence of some aspects of the world and the structure or behaviour 

of (some parts of) the model. On this view, the semantically "relevant" aspects of the 

world X are simply the parts of the world that this kind of model building process ends 

up tracking, and the relevant parts of the model F are the ones that end up performing 

this tracking – whether or not these properties are the ones the model builders intend or 

actually believe to be involved. Thus the ability to refer to relevant dependencies is a 
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result of the information carrying properties of the models that emerge from the model 

building process, and not of the modelers´ intentions per se. 

1.5.4. Concluding remarks: The Virtues of Information Semantic Account 

A number of theoretical virtues result from thinking of representational features of 

models in this way. Firstly, in information semantics the representational relationship is 

a directional relationship, and for this reason the information semantics fulfils the 

requirements of asymmetry and irreflexivity (Rusanen & Lappi 2012a)26. Secondly, it 

also solves the problem of circularity (Rusanen & Lappi 2012a). Thirdly, it may shed 

light on the issue, how to define the relevance relation between models and their targets 

in objective terms (Rusanen & Lappi 2012a, Rusanen under review). Finally, it offers an 

opportunity to define the semantics of scientific representations directly, without 

reference to prior users’ intentions.  

Of course, there are many problems left open by the information semantic account. For 

example, it is extremely complicated to spell out how, exactly, models carry 

information about their targets, and how the flow of information is implemented in a 

model building process. Moreover, traditionally information semantics has been mostly 

applied only to mental representations, and one may raise the question to what extent it 

is an appropriate account of scientific representations 27 . However, there are some 

information semantic based accounts, such as Ryder´s account (2004), in which brains 

are described as “model making machines”, and representations are seen as model-like 

entities produced by the brains. If mental representations are conceived in this way, the 

gap between mental and scientific representations may not be as deep as it seems to be.   

There is also a set of problems related to fictional models, which may pose some 

challenges to the information semantic account. However, as we have argued elsewhere 

(Rusanen & Lappi 2012b), many of these problems are strictly analogous to problems 

which crop up in information semantics in the philosophy of mind. These problems 

have been extensively discussed there since the 1980’s, and there are significant recent 

developments.  

                                                           

26 As such, information semantic account is not in contradiction with other naturalist accounts, such as 
similarity-, resemblance- or isomorphism based views. In contrast, it is possible to supplement these 
accounts with information semantic account.  
27 I thank Oron Shagrir for raising this interesting question.  
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1.6. Conclusions   

The main conclusions of this dissertation can be summarized as four distinct, but related 

claims. The first claim concerns the applicability of mechanistic explanation to 

cognitive sciences, the second is about the explanatory character of computational 

explanations. The third claim concerns the representational character of explanatory 

models, and the fourth one focuses on the issue of relevance.  

More precisely, in this dissertation I argue that 

1) The standard mechanistic account of explanation can be applied to such 

cognitive explanations which track dependencies at the performance level. 

Those explanations refer to mechanisms which sustain or perform cognitive 

activity. For instance, those explanations of conceptual change that focus on 

individual learning trajectories can be seen as instances of mechanistic 

explanation (Rusanen 2013).  

2) However, if mechanistic explanations are extended to cover so-called 

computational or competence level explanations as well, a more liberal 

interpretation of the term mechanism may be needed (Rusanen & Lappi 2007; 

Lappi & Rusanen 2011). Typically mechanists define mechanisms as concrete 

mechanisms, which are implemented spatiotemporally. This notion of 

mechanism is not compatible with the notion of abstract mechanism that is used 

in competence level explanations (Rusanen & Lappi 2007; Lappi & Rusanen 

2011). 

3) Computational or competence level explanations are genuinely explanatory, and 

they are more than mere descriptions of computational tasks. If explanations 

differ from mere phenomenological descriptions in that they allow control and 

manipulation of the system in question, and that they also allow us to answer 

various counterfactual questions about the system’s behavior (Craver 2006), 

then computational explanations, too, can be explanatory. Namely, 

computational explanations describe formal dependencies between certain kinds 

of tasks and certain kinds of information processing requirements. If these 

formal dependencies are such that descriptions of them not only enable one to 

say what the computational layout of the system actually is, but to say how it 
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would be under a variety of circumstances or interventions, they can be counted 

as explanatory28  

4) Obviously, computational explanations of this sort are not causal explanations. 

Rather than describing the causal basis of certain performances of the target 

system, or how that system can have certain capacities or competences, they 

explain why and how certain principles govern the possible behavior or 

processes of the target system.  

5) The “information semantic account of scientific models” provides a naturalist 

view of how scientific models can depict their target systems (Rusanen & Lappi 

2011). According to this view, a model represents its target if and only if it 

carries information about its target. The information connection between parts 

of the model and parts of the target system is implemented in the iterative and 

self-correcting process of model building. At its best it ensures non-accidental 

convergence of some aspects of the world and the structure or behaviour of 

(some parts of) the model (Rusanen and Lappi 2012). 

6) In information semantics, the representational relationship is a directional 

relationship. For this reason, the information semantic account can meet the 

requirements of asymmetry and irreflexivity (Cummins 1983; in the context of 

scientific representation, see Suaréz 2003). Moreover, the information semantic 

account can offer a possible naturalistic solution to the problem of relevance 

that has posed difficulties for most naturalistic accounts of scientific 

representations. On this view, the semantically "relevant" aspects of the world 

X are simply those parts of the world that the iterative and self-correcting model 

building process ends up tracking, and the relevant parts of the model F are the 

ones that end up performing this tracking. The model building process may well 

be directed by the modellers' intentions, as well as by assumptions about 

mappings made by the modellers. However, the intentions or purposes, which 

causally direct the model building process, do not enter into the definition of the 

relevance relation itself. The ability to refer to relevant dependencies is a result 

                                                           

28 This is a non-causal modification of Woodward 2003 and Ylikoski 2011. 
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of information carrying properties of the models that emerge from the model 

building process, not of the modelers´ intentions. 

7) The information semantic account may also offer an objective account of how 

explanatory models can depict the relevant properties of their target systems 

(Rusanen under review). Explanatory models track or detect the causal, 

constitutive or formal dependencies of their target systems. According to the 

information semantic account, if a model building process ends up tracking 

these dependencies, then the relevant parts of the model F are the ones that end 

up performing this tracking.  

 

1.6.2. Final Remarks. The Plea for Explanatory Pluralism. 

In this dissertation, I have argued that some explanations of cognitive phenomena can 

be subsumed under the banner of “mechanistic explanation”. Typically those 

explanations are neurocognitive explanations of how certain neurocognitive 

mechanisms produce or sustain certain cognitive phenomena, but also some 

psychological explanations can be seen as instances of mechanistic explanations 

(Rusanen 2013). Moreover, if a more liberal interpretation for the term mechanism is 

allowed, then some computational or competence level explanations may also qualify as 

mechanistic explanations (Rusanen & Lappi 2007; Lappi & Rusanen 2011). 

Nevertheless, I doubt whether mechanistic explanation can be extended to cover all 

cognitive explanations. There are several reasons for this plea for explanatory pluralism: 

Firstly, it is not clear whether all cognitive systems or cognitive phenomena can be 

captured mechanistically. Mechanistic explanations require that the system can be 

decomposed i.e. analyzed into a set of possible component operations that would be 

sufficient to produce or sustain the phenomenon in question (Bechtel & Richardson 

1993). Typically a mechanism built in such a manner will work in a sequential order, so 

that the contributions of each component can be examined separately (Bechtel & 

Richardson 1993).  

However, in cognitive sciences there are examples of systems – such as certain neural 

nets – which are not organized in such a manner. As Bechtel and colleagues remark, the 

behavior of these kinds of systems cannot be explained by decomposing the systems 
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into subsystems, because the parts of the networks do not perform any activities 

individually that could be characterized in terms of what the whole network does 

(Bechtel & Richardson 1993; Bechtel 2011, 2012). Hence, it is an open question to what 

extent the behavior of these kinds of systems can be explained mechanistically. At the 

very least, it will require adopting a framework of mechanistic explanation different 

from the one that assumes sequential operation of decomposable parts (Bechtel 2011, 

2012; Bechtel & Abrahamsen 2011).  

Moreover, Von Eckardt and Poland (2004) raise the question to what extent the 

mechanistic account is appropriate for those explanations which involve appeal to 

mental representations or to the normative features of certain psychopathological 

phenomena. Although I find Von Eckardt and Poland´s argumentation slightly 

misguided, I still think that it is important to consider the normative aspects of cognitive 

phenomena. Cognitive systems are, after all, adaptive systems which have a tendency to 

seek “optimal”, “rational” or “best possible” solutions to the information processing 

problems that they face 29 . Because of this, cognitive processes are not only goal-

directed, but also normative. It is not clear how well this normative aspect of cognitive 

systems can be captured by mechanistic explanations.  

Thirdly, some philosophers have paid attention to the fact that there are examples of 

explanatory computational models in cognitive sciences which focus on the flow of 

information through a system rather than the mechanisms that underlie the information 

prosessing (Shagrir 2006, 2010). Along similar lines, Weiskopf (2011) argues that there 

is a set of “functional” models of psychological capacities which are both explanatory 

and non-mechanistic.  

Finally, in recent years cognitive scientists have raised the possibility that there are 

some universal, law-like principles of cognition, such as the “principle of simplicity”, 

“universal law of generalization” or the “principle of scale-variance” (Chater & Brown 

2008; Chater & Vitanyi 2003). Chater and colleagues (ibid.) argue that it is possible to 

explain many cognitive phenomena, such as certain forms of linguistic patterns, or 

certain types of inductive generalizations, by combining these principles. These 

                                                           

29 Of course, often these solutions are not ideally optimal or ideally best possible ones. They are typically 
(if not always) results of different kinds of performance limitations, trade-offs between different aspects 
of solutions and so on. 
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explanations are “principle based” rather than mechanistic explanations. Moreover, 

Chater and colleagues seem to suggest the mechanistic models of these phenomena may 

actually be derived from these general principles, and explanations that appeal to these 

general principles provide “deeper” explanations than the mechanistic explanations 

(Chater & Brown 2008). It is possible, that many of the so called computational level 

explanations turn out to be instances of these principle-based explanations rather than 

instances of mechanistic explanations.  

In sum, taken together these diverse claims seem to imply that there is not a single, 

unified mode of explanation in cognitive sciences. Instead, they seem to suggest that 

cognitive sciences are examples of those sciences which utilize several different modes 

of explanation, only some of which can be subsumed under the mechanistic account of 

explanation. Obviously, mechanistic explanation is a powerful framework for 

explaining the behavior of complex systems, and it has demonstrated its usefulness in 

many scientific domains. Also, many successful theories and explanations in cognitive 

sciences are due to this mechanistic approach. However, this does not imply that it 

would be the only way to explain complex cognitive phenomena.  
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1.7. Overview of Original Articles 

This dissertation is composed of five articles. The first two articles explore the question, 

to what extent explanations of cognitive phenomena are mechanistic in the standard 

sense. The third article focuses on the issue of the representational character of scientific 

models. The subject of the fourth article is the notion of relevance. Finally, in the fifth 

article a sketch of a mechanistic explanation of conceptual change is outlined. 

1.7.1. The Limits of Mechanistic Explanation in Cognitive Neurosciences 

Piccinini proposed in a series of papers (2004, 2006a, 2006b, 2006c) that computational 

explanations are mechanistic explanations. He suggested that computing mechanisms 

can be analyzed in terms of their component parts, their functions, and their 

organization. A computational explanation is then “a mechanistic explanation that 

characterizes the inputs, outputs, and sometimes internal states of a mechanism as 

strings of symbols, and it provides a rule, defined over the inputs (and possibly the 

internal states), for generating the outputs” (Piccinini, 2006b).  

In “The Limits of Mechanistic Explanation in Cognitive Neurosciences” I and Otto 

Lappi argue that this kind of mechanistic account of “computational” explanations can 

be applied to such explanations which track causal dependencies at the level of 

cognitive performances. In those explanations, the explanantia can be given in terms of 

causal mechanisms. These explanations correspond to explanations which Marr called 

“algorithmic” or “implementation-level” explanations.  

However, we found it difficult to assume that the standard mechanistic account of 

explanation could be extended to cover explanations which track dependencies at the 

level of cognitive competences i.e. the computational explanations in Marr´s typology.  

Our argument was based on two claims. Firstly, we claimed that there are examples of 

inter-level computational explanations, which can proceed top-down. In those cases, 

computational explanations explain also the behavior of mechanisms at the algorithmic 

and implementation levels. In such explanations, the explanans is at the computational 

level, and the explananda are at the algorithmic or performance levels. In other words, 

the explanations start from the upper level and end up on the lower levels. If this is right, 

then this mode of explanation does not correspond to the standard picture of constitutive 
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mechanistic explanation. In standard accounts (constitutive) mechanistic explanations 

are characterized in such a way that they seem always to be bottom-up explanations. In 

those explanations, phenomena at a higher level of hierarchical mechanistic 

organization are explained by their lower-level constitutive causal mechanisms but not 

vice versa (Craver 2001, 2006; Machamer & al, 2000).  

Secondly, we remarked that if mechanistic explanation requires that both the 

explananda and the explanantia are causal, then explanations which appeal to the 

abstract competence level just cannot serve as a source of standard mechanistic 

explanations. The computational information structure of a cognitive system is not 

characterized in terms of causal organization. In contrast, we claimed, it involves 

abstract mechanisms, which are not causally, but logically governing the behavior of the 

mechanisms at the lower levels.   

1.7.2. Turing Machines and Causal Mechanisms 

In “Turing Machines and Causal Mechanisms” we developed the distinction between 

abstract and concrete computational mechanisms further. In cognitive sciences the 

notion of a computing mechanism can mean two things, either a concrete or an abstract 

mechanism (Piccinini 2007). When the notion of a computing mechanism is interpreted 

as a concrete mechanism, computation is seen as a process unfolding in real time, and 

computing mechanisms refer to spatiotemporally implemented computing mechanisms 

such as neural mechanisms in brains and so on. 

Computing mechanisms can also be seen as abstract mechanisms (Piccinini 2007). In 

“Turing Machines” we argue that these abstract mechanisms do not necessarily involve 

the notion of physical causation, or require that computations are spatiotemporally 

implemented. On this view, computational mechanisms can be abstract in a very strong 

sense: They can be viewed as mechanisms which do not operate in real space, and they 

are not spatiotemporally implemented causal mechanisms.  

1.7.3. Information Semantic Account of Scientific Models 

In “Information Semantic Account of Scientific Models”, a novel account of scientific 

models is presented. In this information semantic account, models are understood as 

information carrying artifacts. According to this proposal, models “represent”, “depict” 
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or “are about” their real world target systems, if they carry information about relevant 

parts of the target systems.  

The information connection between the parts of the model and parts of the target 

system is implemented in model building. It includes, for example, the data collection, 

model fitting, different experimental and data analysis methods and so on. This kind of 

process is an iterative and self-correcting process of interaction with the phenomenon, 

and at its best it ensures non-accidental convergence of some aspects of the world and 

the structure or behaviour of (some parts of) the model. 

The representational character of models is then a product of, and is in part defined by, 

this iterative model building process, in which information about a phenomenon comes 

through from the empirical data. If the model building process is successful, then this 

information is incorporated into the model. The semantics of models is thus a result of 

information carrying properties of the models that emerge from the model building 

process, and the semantic constitution of a model is based on an objective model-world 

relation. 

1.7.4. On Relevance 

“On Relevance” proposes a short characterization of the general notion of relevance. 

According to it, relevance can be viewed as “a relation between a P (or a number of Ps) 

and a Q (or a number of Qs) along some property R (or a number of Rs), such as utility, 

topicality, information and causality etc”.  

Depending on the specific context, not only the interpretation of Ps and Qs but also the 

relational properties Rs may vary. In the philosophical literature on modeling, the P´s 

and Q´s are typically interpreted either in ontic or in pragmatic terms. While the ontic 

view defines Ps and Qs as instances of ontic entities, such as events or components, and 

understands the property R causally and constitutively (and also, if necessary, formally), 

the pragmatic view emphasizes the tasks and purposes of modeling. Under the 

pragmatic interpretation, some elements of models are selected as relevant (or expressed 

on some continuum of relevance) from a number of available existing elements, because 

they are (or are seen) relevant to the purpose for which a model is used. 

The pragmatic interpretation of relevance can be understood in different ways. Firstly, it 

can be understood as task based relevance, in which the relevance of P is dependent on 
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its suitability for task T. It is important to notice that this “suitability” is not dependent 

on our subjective ways of evaluating that suitability. In short, when relevance is 

interpreted as task based relevance, then P can be used for the purpose Z (such as 

explanation), if P is suitable for it (whether or not the user realizes, or even evaluates the 

relevance of P for it). Secondly, relevance can be understood as intentionality based 

relevance. On this view, the relevance of P for a certain task Z is understood as 

dependent on the model user´s (intentional) evaluation of the usability of P for certain 

purposes. These evaluations are subjective in the sense that the evaluation is viewed as 

requiring an intentional stance.  

However, as I argue in “On Relevance”, the intentionality based account is a 

problematic view of relevance. Firstly, merely postulating or intending a relevance 

relation to hold between two items does not create a proper relation between them. 

Secondly, appealing to intentions may actually serve to complicate the problem of 

relevance rather than offer a possible solution to it. For these reasons, I propose that 

solving the problem of relevance may require appealing to a more objective account of 

relevance.  

1.7.5. Towards to an Explanation of Conceptual Change: A Mechanistic 

Alternative 

Conceptual change is one of the most studied fields of science education and 

psychology of learning, and there are hundreds, if not thousands of studies on this topic. 

These studies show that a crucial aspect of learning in science involves conceptual 

change i.e. radically organizing and altering the learner’s pre- or misconceptions in 

addition to adding new knowledge to what is already there.  

However, despite the fertility of the field there are still important theoretical issues in 

conceptual change research on which no clear consensus has emerged. Firstly, there is 

no agreement on what kinds of changes in belief and concept systems constitute 

conceptual change, and what kinds of changes do not. Secondly, there is no consensus 

on what the learning mechanisms of conceptual change are. Thirdly, there is no 

common explanatory framework or paradigm for explaining conceptual change.  
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In “Towards to an Explanation of Conceptual Change”, I outline a sketch of a 

mechanistic explanation of conceptual change. I argue that the explanation of an 

individual learning episode as an instance of conceptual change requires 1) a precise 

description of the information processing task and 2) a sufficiently accurate and detailed 

description of the cognitive mechanisms responsible for fulfilling that task.  However, 

although many kinds of cognitive mechanisms of conceptual change have been 

suggested, sometimes these suggested mechanisms are not mechanisms at all. Moreover, 

there are very few accounts of conceptual change in which the mechanisms of 

conceptual change are specified in sufficient detail. These descriptions of “mechanisms” 

include filler terms, and they fail to satisfy the requirements for genuine mechanism 

descriptions.   
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