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Abstract 

Human parechovirus (HPeV) and Ljungan virus (LV) are non-enveloped, single-

stranded RNA viruses that form the genus Parechovirus in the family Picornaviridae. 

The interest in these viruses has notably increased over the past 15 years because 

of their strengthened associations human and animal diseases. HPeVs include 16 

genotypes (HPeV1 to 16) that are globally distributed common pathogens, primarily 

causing clinically mild or unapparent infections. HPeV types 1 and 3 have also been 

associated with more severe infections in young children, such as infections of the 

central nervous system (CNS) and sepsis-like disease. Rodent-infecting LV has been 

suggested to possess zoonotic potential and to induce various human diseases. 

However, the proof for this possibility remains lacking. This study aimed to describe 

the epidemiological features of HPeVs in Finland and in the Netherlands, to examine 

the connection between HPeV-induced infection and human diseases and to study 

the circulation of LV in Finland. 

The epidemiological analysis of stool samples, which were collected during the 

period from 1996 to 2007, revealed that HPeVs are highly common in healthy Finnish 

children. HPeV was primarily detectable in children under 2 years old. Altogether, 

39% of the study participants tested positive for HPeV at least once during the study 

period. HPeVs circulated throughout the year, with a distinct seasonal peak in 

October-November. The results indicated that not only the previously described 

HPeV1 but also HPeV genotypes 3 and 6 circulate in Finland. 

Microneutralisation assays, which were set up to detect HPeV1 to 6, the most 

common genotypes in Europe, provided a deeper understanding of HPeV 

seroprevalence in the Finnish and Dutch populations. Although seropositivity for 

HPeV1, 2 and HPeV4 to 6 was high and moderate in adults, notably, seropositivity 

was extremely low for HPeV3. We could attribute this low seroprevalence of HPeV3 

to the lack of its neutralisation by antibodies. The serological data demonstrate that 

HPeV types 1 to 6 might be even more prevalent than previously assumed. All six 

types of HPeV circulate in Finland. 
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In addition to HPeV detection in background populations, we presented the first 

cases of severe infection in neonates with HPeV4 and, subsequently, the first 

isolation of this genotype in Finland. Five hospitalised neonates with a sepsis-like 

disease in the fall of 2012 were positive for HPeV. Four of these children had HPeV4, 

indicating a potential small epidemic of this genotype, whereas one HPeV remained 

untyped. In addition, we detected HPeV3 in a neonate with suspected viral sepsis in 

October 2011 and another untyped HPeV in a child with symptoms corresponding to 

acute disseminated encephalomyelitis in May 2012. Following these findings, we 

promoted the addition of HPeV detection to routine diagnostics of young children. No 

connection was observed between HPeVs and the onset of acute otitis media or 

respiratory infections. 

To extend the knowledge regarding other parechoviruses in Finland, we studied LV 

antibody prevalence in both humans and rodents. The seroprevalence detected for 

LV was 38% in humans and 18% in bank voles (Myodes glareolus). The observation 

of LV antibodies in humans is relatively high because LV has never been isolated 

from humans. These results suggest that an LV or LV-like virus, in addition to 

HPeVs, circulates frequently among human populations in Finland. 
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1 Literature review 

1.1 Introduction 

Together, human parechoviruses (HPeVs) and Ljungan viruses (LVs) form the 

Parechovirus genus in the Picornaviridae family. Members of this viral family are 

characterised by the following shared properties: all members are small, non-

enveloped RNA viruses with a 7 to 8.8-kilobase positive-stranded RNA genome 

encoding a single polypeptide. This family also comprises numerous important 

human and animal pathogens, such as the species of the well-characterised 

Enterovirus (EV), which is presumably the best-known Picornaviridae genus. This 

genus includes the poliomyelitis-causing poliovirus; herpangina; hand, foot and 

mouth disease; severe neonatal disease-causing coxsackie- and enterovirus 

species; and rhinoviruses (RVs), the major cause of the common cold. In contrast to 

EVs, parechoviruses have primarily been linked to mild or asymptomatic diseases in 

children since their discovery and, thus, have long been considered clinically 

irrelevant. However, the publication of HPeV type 3 [Ito et al., 2004], which is 

associated with sepsis-like disease and with central nervous system (CNS) infections 

in young children [Harvala et al., 2010], in 2004 has not only raised interest in HPeVs 

but also has drastically increased their clinical relevance. 

 

1.2 Picornaviridae taxonomy 

The Picornaviridae family currently consists of 26 genera, which are further divided 

into 46 species (Table 1). The number of members and the classification within this 

viral family are constantly evolving due to increasing advances in molecular methods, 

which allow the rapid discovery of new viruses. The latest update of Picornaviridae 

classification was in March 2014 [Adams et al., 2013; International Committee on the 

Taxonomy of Viruses (ICTV) website, http://talk.ictvonline.org, accessed August 13, 

2014]; however, new updates are to be expected due to the constantly ongoing 

identification of new viruses that fit the Picornaviridae criteria. 
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In the latest update, several proposed genera were added to the Picornaviridae 

classification scheme [ICTV website]. Additional picornaviruses that have been 

unassigned thus far are awaiting approval for addition by the ICTV [Knowles et al., 

2014; Picornastudygroup]. To further clarify the Picornaviridae classification scheme, 

the picornavirus study group has recently proposed the division of picornaviruses into 

subfamilies [Knowles et al., 2014]. Recent changes to the present picornavirus 

classification also include the removal of host names from species names. An 

example of this update is the renaming of entero- and rhinoviruses, which were 

formerly known as human enterovirus and human rhinovirus, respectively. The 

current efforts of the Picornaviridae study group suggest a change in the naming of 

parechoviruses. Members of HPeVs should be called parechoviruses type A, 

whereas LVs would be designated as parechoviruses type B. Furthermore, this group 

suggests that Sebokele virus should be introduced to the genus as parechovirus C 

and that ferret parechovirus should be introduced as parechovirus D [Knowles et al., 

2014]. 

Picornaviruses are further classified into genotypes at the species level. Before the 

advances in sequencing methods, the typing of picornaviruses was based on the 

neutralisation of virus isolates by specific antisera; thus, viral types were called 

serotypes. Serotyping has now been replaced by genetic typing or genotyping, where 

the sequence of the viral protein 1 (VP1) defines the type. Genotyping has 

significantly increased the number of identified types, currently accounting for over 

450 types. 

  



10 

 

Table 1 Current members of the Picornaviridae and their genotype number, as well as their 

typical natural host, listed according to the relevant genus. Data collected from Ehrenfeld et 

al. [2010] and picornaviridae study group homepage (www.picornastudygroup.com, 

accessed August 13, 2014). 

Genus Species Number of 
genotypes 

Natural host 

Aphthovirus Foot-and-mouth disease virus 

Bovine rhinitis A and B viruses 

Equene rhinitis A virus 

7 

2 and 1 

1 

+70 species, e.g. cattle, pigs, sheep 

Cattle 

Horses, dromedaries, humans 

Aquamavirus Aquamavirus A 1 Seals 

Avihepatovirus Duck hepatitis A virus 3 Ducks 

Avisivirus Avisivirus A 1 Turkeys 

Cardiovirus Enchephalomyocarditis virus 

 
Theilovirus 

2 

 
12 

+30 species, including mammals, 
birds, and vertebrates 

Mice, rats, humans 

Cosavirus Cosavirus A 24 Humans 

Dicipivirus Cadicivirus A 1 Dogs 

Enterovirus Enterovirus A-J 

Rhinovirus A-C 

Altogether 145 

Altogether 166 

E.g. humans, monkeys, pigs, cattle 

Humans 

Erbovirus Equine rhinitis B virus 3 Horses 

Gallivirus Gallivirus A 1 Turkeys, chickens 

Hepatovirus Hepatitis A virus 1 Humans, monkeys 

Hunnivirus Hunnivirus A 3 Cattle, sheeps 

Kobuvirus Aichivirus A, B and C 3, 2 and 1 Humans 

Megrivirus Melegrivirus A 1 Turkeys 

Mischivirus Mischivirus A 1 Bats 

Mosavirus Mosavirus A 1 Mice 

Oscivirus Oscivirus A 2 Wild birds 

Parechovirus Human parechovirus 

Ljungan virus 

16 

4 

Humans, monkeys 

Rodents, humans? 

Pasivirus Pasivirus A 1 Pigs 

Passerivirus Passerivirus A 1 Wild birds 

Rosavirus Rosavirus A 1 Mice 

Salivirus Salivirus A 1 Humans 

Sapelovirus Porcine sapelovirus 

Simian sapelovirus 

Avian sapelovirus 

1 

3 

1 

Pigs 

Monkeys 

Ducks 

Senecavirus Seneca valley virus 1 Pigs 

Teschovirus Porcine teschovirus 13 Pigs 

Tremovirus Avian encephalomyelitis virus 1 E.g. chicken, turkeys, pheasants 

Unassigned 
species 

Several species +28 Seals, ticks, humans, bats, snakes, 
rodents and at least four bird and 
eight fish species 
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1.2.1 The Parechovirus genus 

The first two parechoviruses discovered were originally classified as EVs and named 

echovirus 22 and 23 [Wigand and Sabin, 1961]. In 1999, parechoviruses were 

separated from EVs based on molecular, biological and functional differences 

[Hyypia et al., 1992; King et al., 2000] to form their own genus. Subsequently, 

echovirus 22 and 23 were renamed human parechovirus 1 and 2, respectively. 

Shortly after its formation, this genus was joined by another species, namely, 

Ljungan virus, which is a suspected zoonotic virus isolated from a bank vole 

[Niklasson et al., 1999]. Advances in molecular virus discovery and in reverse 

transcription (RT) polymerase chain reaction (PCR) technology have allowed the 

identification of new parechoviruses. Because LVs were discovered from samples 

collected in the 1960s and 1980s, parechoviruses appear to have remained 

undetected due to a lack of sufficient technology. Presumably, their lack of frequent 

association with severe clinical cases also delayed their discovery. Thus far, 4 LV 

and 16 HPeV genotypes have been described (Table 2). As aforementioned, two 

additional viral species, the rodent-borne Sebokele virus [Joffret et al., 2013] and a 

ferret parechovirus [Smits et al., 2013], have recently been suggested to join the 

Parechovirus genus.  

Although humans are the primary hosts of HPeVs, some HPeV types have also been 

discovered in synanthropic non-human primates (NHPs). These NHP species include 

mandrills (Mandrillus sphinx) and pigtail macaques (Macaca nemestrina) not living in 

the wild [Oberste et al., 2013a], as well as rhesus macaques (Macaca mulatta) living 

in close contact with human populations [Oberste et al., 2013b]. Instead of humans, 

the original detection of HPeV12 and HPeV15 was in rhesus macaques. In addition 

to these findings, HPeV genotypes 1, 4, 5, 6 and 14 have also been detected in 

macaques [Oberste et al., 2013b; Shan et al., 2010]. 
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Table 2 Parechovirus genotypes discovered to date, listed according to year, place, source, 

and reference of discovery. 

Genotype Sampling 
year 

Place Source Reference 

HPeV1 1956 USA Feces from children with diarrhea Wigand and Sabin, 1961 

HPeV2 1956 USA Feces from children with diarrhea Wigand and Sabin, 1961 

HPeV3 1999 Japan Feces of a 1-year-old child with 
transient paralysis, fever and 
diarrhea 

Ito et al., 2004 

HPeV4 2002 The 
Netherlands 

Feces from an 8-week-old child with 
fever 

Benschop et al., 2006a 

HPeV5 1986 USA Originally classified as HPeV2, feces 
of a 2-year-old with high fever 

Oberste et al., 1998 

HPeV6 2000 Japan Cerebrospinal fluid from a 1-year-old 
with Reye’s syndrome 

Watanabe et al., 2007 

HPeV7 2007 Pakistan Feces from a healthy 2-year-old Li et al., 2009 

HPeV8 2006 Brazil Child with enteritis Drexler et al., 2009 

HPeV9 2004 Bangladesh Human feces Nix et al., 2013 
Oberste et al., 2013b 

HPeV10 2005 Sri Lanka Feces from a child with 
gastroenteritis 

Kim Pham et al., 2010 

HPeV11 2005 Sri Lanka Feces from a child with 
gastroenteritis 

Pham et al., 2011 

HPeV12 2004 Bangladesh Feces from rhesus macaque Nix et al., 2013 
Oberste et al., 2013b 

HPeV13 2005 Bangladesh Human feces Oberste et al., 2013b 

HPeV14 2004 The 
Netherlands 

Human feces Benschop et al., 2008b 

HPeV15 2008 Bangladesh Feces from rhesus macaque Oberste et al., 2013b 

HPeV16 2008 Bangladesh Human feces Oberste et al., 2013b 

LV1 1987 Sweden Bank vole Niklasson et al., 1999 

LV2 1987 Sweden Bank vole Niklasson et al., 1999 

LV3 1962 USA Montane vole Johansson et al., 2003 

LV4 1964 USA Red-backed vole Tolf et al., 2009 
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According to recent estimations, all HPeVs presently in circulation share a common 

ancestor that dates back approximately 400 years [Faria et al., 2009]. From this 

single ancestor, different lineages are thought to have evolved to form all present 

genotypes. Typical for RNA viruses, the mutation rate of HPeVs is high [Drake and 

Holland, 1999; Faria et al., 2009], enabling their rapid evolution. Recombination, 

which occurs among existing genotypes and which greatly affects their genomic 

composition, aggravates further the genotype evolution [Benschop et al., 2008c; Sun 

et al., 2012]. Recombination events cause much larger changes to the HPeV 

genome than single point mutations. Thus, the true diversity of the present, 

constantly evolving HPeV population in humans may be far greater than the fraction 

detected by VP1 sequencing [Baumgarte et al., 2008]. 

 

1.3 Virus structure and genome 

Similar to other picornaviruses, parechoviruses are non-enveloped, positive-sense 

single-stranded RNA viruses. The virion of parechoviruses measures approximately 

22-30 nm in diameter and has icosahedral symmetry. Their genome is an 

approximately 7.3 kilobase RNA molecule with a cap protein, Vpg, at its 5ʹ-end and 

with a polyadenylation site at its 3ʹ-end. This molecule consists of untranslated 

regions at the 5ʹ- and 3ʹ-ends preceding and following a single open reading frame 

encoding for a polyprotein (Figure 1). The untranslated region at the 5ʹ-end forms 

secondary structures, which include a type II internal ribosome entry site (IRES) 

[Nateri et al., 2000; Nateri et al., 2002]. This genome acts as an mRNA for IRES-

mediated translation, which produces a polyprotein containing all of the viral proteins. 

Three structural proteins, which are designated viral protein 0 (VP0), 1 (VP1) and 3 

(VP3), are at the 5ʹ-end of this polyprotein. A combination of these structural proteins 

aligns to a unit that forms the core structure of the viral capsid. The final icosahedral 

capsid represents an assembly of 60 copies of this core unit. 
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Figure 1 Organisation of the parechovirus genome. The function of each gene according to 

current knowledge is presented in the text. Grey boxes at the ends of the genome denote the 

two untranslated regions (UTRs). 

VP0, VP1 and VP3 are succeeded in the polyprotein by non-structural 2A-2C and 

3A-3D proteins. Of these proteins, the 2C protein has NTPase activity and 

participates in replication complex formation [Krogerus et al., 2003; Samuilova et al., 

2006], the 3B protein (Vpg) acts as the primer for RNA replication, and the 3C protein 

functions as a protease in polyprotein cleavage [Schultheiss et al., 1995]. The 3D 

protein is an RNA-dependent RNA polymerase, which executes genome replication. 

The exact functions of the 2A, 2B and 3A proteins have yet to be examined in detail, 

although the 2A protein has a suggested function in viral replication [Samuilova et al., 

2004], and the 2B protein has a suggested function in membrane permeability 

[Stanway et al., 2000]. 

 

1.4 Replication strategy 

The primary replication strategy of parechoviruses closely resembles that of other 

picornaviruses (Figure 2). Although the current knowledge is heavily based on 

picornavirus studies, certain steps of the replication cycle have specifically been 

characterised for HPeV1. The recognition of target receptors on the cell membrane of 

the host initiates the parechovirus life cycle. HPeV1 binds to αvβ integrins [Seitsonen 

et al., 2010; Triantafilou et al., 2000] using an arginine-glycine-aspartic acid (RGD) 

motif in the C-terminus of its VP1 [Stanway et al., 1994]. However, this motif is only 

present in some of the HPeV genotypes. HPeV3 and many of the recently discovered 

HPeV types lack the RGD motif, and their receptor route remains unknown. HPeV1 

studies have demonstrated that parechoviruses enter the host cell through a clathrin-
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mediated endolytic pathway after binding to receptors [Joki-Korpela et al., 2001]. 

Following internalisation, the parechovirus viral genome is freed into the cytosol, 

where the genome reaches the host cell ribosomes and adopts the role of mRNA in 

IRES-mediated translation. 

 

 

Figure 2 The suggested lytic life cycle for parechoviruses. Host cell recognition initiates the 

virus life cycle and launches viral entry through endocytosis. Viral RNA is released to the 

cytosol, where this RNA is first translated to produce viral proteins, which participate in 

replicating the genome and forming viral capsids. Newly produced viral RNA is packed into 

the capsid before lytic release from the host cell.  

The viral polyprotein is produced by translation and is proteolytically cleaved by the 

3C protein to produce viral proteins. After all viral proteins have been produced, the 

life cycle shifts to RNA replication. This replication process is governed by the viral 

peptide 3D. First, the positive 3D replicates RNA strand into a complementary 

negative-strand RNA, which consequently serves as a template for new viral 
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genomes. HPeV RNA replication occurs in vesicular structures. For HPeV1, the 

replication complex is thought to be built from Golgi-related vesicles, whose 

formation is thought to be mediated by the viral peptide 3D [Krogerus et al., 2003]. 

The newly produced viral molecules, structural proteins and 5ʹ-end Vpg-capped 

positive-strand RNAs assemble to form new virus particles. These newly born viral 

particles still undergo a maturation step before becoming infective. The mechanism 

behind the maturation process in parechoviruses remains unknown. However, this 

mechanism differs from that of most picornaviruses because cleavage of the VP0 

protein into VP2 and VP4 proteins is absent in HPeVs [Stanway et al., 2000]. In the 

lytic life cycle of picornaviruses, the newly built virions are released after host cell 

lysis [Cann, 2012]. The majority of picornaviruses disrupt the translation of host cell 

proteins to enhance the production of the viral polyprotein during an ongoing 

infection. The life cycle of parechoviruses, lack this step [Coller et al., 1990; Stanway 

et al., 2000]. 

 

1.5 Epidemiological aspects of HPeV 

HPeVs are globally distributed and have been detected on all populated continents. 

Most studies regarding these viruses are of clinical nature, thus primarily linking 

HPeVs to human diseases. The global distribution varies between HPeV types. 

Although HPeV types 1-6 have been detected globally, the circulation of other types 

appears to be more restricted. Fewer reports involve HPeV genotypes 7-16. Thus far, 

HPeV7, 8, 9 and 12 have been detected in South America and Asia in children with 

gastrointestinal disease or without a known clinical condition [Alam et al., 2013; Alam 

et al., 2012; Drexler et al., 2009; Li et al., 2009; Nix et al., 2013; Oberste et al., 

2013b; Zhang et al., 2011; Zhong et al., 2011]. Genotypes 10, 11, 13, 14 and 15 

have been detected in samples from gastroenteritic or asymptomatic children and 

from monkeys in Asia [Alam et al., 2013; Kim Pham et al., 2010; Oberste et al., 

2013b; Pham et al., 2011].  



17 

 

Currently, the original HPeV14 finding from a stool sample of a Dutch child is the only 

report of this type in Europe [Benschop et al., 2008b]. Genotype 16 was recently 

identified from a human stool sample in Bangladesh [Nix et al., 2013; Oberste et al., 

2013b]. 

Multiple HPeV genotypes simultaneously circulate among human populations. 

Surveillance data of sewage samples from Scotland and from the Netherlands 

indicate a high presence of HPeVs in the environment, with HPeV3, 6 and 1 being 

the most common genotypes [Harvala et al., 2014; Lodder et al., 2013]. Serological 

data of HPeV1 from Canada and from Finland suggest that most individuals (from 72 

to over 90%) experience their first HPeV1 infection before two years old [Abed et al., 

2007; Tauriainen et al., 2007]. The seropositivity for HPeV1 increases to over 90% in 

the adult population, whereas the seropositivity for HPeV3 remains slightly lower, at 

87% [Ito et al., 2004; Joki-Korpela and Hyypia, 1998; Tauriainen et al., 2007]. 

Because HPeV1 and HPeV3 are predominantly found in children under the age of 

three years, HPeVs are thought to primarily target children [Grist et al., 1978; Harvala 

and Simmonds, 2009; Khetsuriani et al., 2006]. According to studies conducted 

between 1983 and 2005 in the USA, most HPeV1 (73%) and HPeV2 (68%) infections 

occur in children under one year old [Khetsuriani et al., 2006]. This observation that 

HPeVs target young children has been widely confirmed [Benschop et al., 2006b]. 

Although primarily reported in young children, a few reports have described HPeV 

infections in adults. In Japan, an HPeV3 epidemic resulted in a series of myalgia 

cases in adults over 30 years old [Mizuta et al., 2012]. In addition to Japan, sporadic 

HPeV findings in adults have also been reported for Canada and for Jamaica [Abed 

and Boivin, 2006; Figueroa et al., 1989; Watanabe et al., 2007]. The concentration of 

HPeV findings in children differs from that of EVs, which tend to affect individuals of 

all ages. 
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1.5.1 Seasonality of HPeV circulation 

HPeV infections have been observed to occur throughout the year. The peak of 

infections varies among geographical areas and genotypes. Although the detection 

rate of HPeV1 has been reported to be the highest during the period from September 

to December [Tapia et al., 2008], the detection rate of HPeV3s peaks during summer 

months [Harvala et al., 2011; Schuffenecker et al., 2012]. Studies from Scotland and 

from the Netherlands have reported a biennial cycle for HPeV3 infections [Benschop 

et al., 2008b; Harvala et al., 2011], with a high frequency of infections in even-

numbered years and with a lack of the virus in odd-numbered years. This cycle, 

though was absent in a more recent study from Denmark [Fischer et al., 2014]. 

 

1.6 Clinical features of HPeV infection 

Similar to other members of Picornaviridae, HPeVs primarily replicate in the intestine 

and are therefore transmitted via the faecal-oral route. However, replication appears 

to also occur in the respiratory tract, and HPeV has been detected in respiratory 

secretions [Harvala and Simmonds, 2009]. Because HPeV is predominantly shed in 

the stool, this virus is detectable in faecal samples. HPeV may also enter the blood 

stream [Noordhoek et al., 2008; Pineiro et al., 2010, Shoji et al., 2013], thereby 

spreading to and affecting other organs. A typical HPeV infection presents itself 

similar to an EV infection. The clinical course and outcome of HPeV infection are 

often mild or asymptomatic. The age of the child and the HPeV genotype are crucial 

factors influencing the severity of the infection course and, hence, the outcome 

[Wildenbeest et al., 2014]. Severe cases concentrate on young (less than 6 months 

old) children with HPeV type 3 infections. 

HPeVs were originally described in children suffering from summer diarrhoea 

[Wigand and Sabin, 1961]. Since their initial detection, numerous studies have been 

conducted, reporting their association to this disease and to several other types of 

gastroenteritides. In fact, most HPeV types have been identified in children suffering 

from gastroenteritis [Alam et al., 2013; Pham et al., 2011; Zhang et al., 2011].  
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HPeVs have also been associated with respiratory tract infections in an increasing 

number of studies [Harvala et al., 2008; Khetsuriani et al., 2006; Pajkrt et al., 2009; 

Sharp et al., 2012a]. However, the definite causative relation between HPeVs and 

gastrointestinal or respiratory tract diseases remains to be established. The typical 

outcome of diseases associated with HPeV in either area is mild. Of all HPeVs, 

HPeV1, which has also been associated with acute otitis media (AOM) [Tauriainen et 

al., 2008], is the most frequently detected type in HPeV-induced infections. 

In addition to these relatively common observations, single reports of sporadic cases 

have associated HPeVs with several other diseases, including Guillan-Barré 

syndrome [Linden et al., 2012], myocarditis [Russell and Bell, 1970], necrotising 

enterocolitis [Birenbaum et al., 1997], haemolytic uremic syndrome [Oregan et al., 

1980], myositis, Reye’s syndrome and lymphadenitis [Watanabe et al., 2007]. HPeV 

types 1, 3 and 6 have also been detected in sporadic cases of acute flaccid paralysis 

in children [Figueroa et al., 1989; Ito et al., 2004; Watanabe et al., 2007]. 

HPeV type 4 was originally isolated from a Dutch neonate with fever in 2002 

[Benschop et al., 2006]. Since then, HPeV4 has been detected in samples from 

asymptomatic children and from children with gastrointestinal or respiratory 

symptoms [Boros et al., 2010; Chen et al., 2009; Pajkrt et al., 2009; Zhang et al., 

2011; Zhong et al., 2011]. Based on single cases, a few studies have also proposed 

that HPeV4 is associated with TORCH syndrome [Schnurr et al., 1996] and with 

lymphadenitis [Watanabe et al., 2007]. However, the association of HPeV4 with any 

specific illness has remained to be established. 

 

 

 



20 

 

1.6.1 Neonatal infections 

HPeV3 may cause CNS infections and sepsis-like disease in neonates [Harvala et 

al., 2010]. The discovery of this genotype has drastically increased the interest in and 

the clinical relevance of HPeVs because HPeV infections have previously been 

primarily linked to mild clinical presentations. In the years after the first report of 

HPeV3, particularly over the past six years, reports regarding severe HPeV infections 

with CNS involvement or with sepsis-like disease have significantly grown in number. 

Recently, HPeV3 was even detected as the most prevalent picornavirus genotype in 

young children with CNS-related diseases [Harvala et al., 2011]. Before HPeV3, only 

HPeV1 was linked to infections with a more severe clinical outcome, such as 

paralysis or encephalitis [Figueroa et al., 1989; Koskiniemi et al., 1989]. Interestingly, 

all of the recent studies regarding severe HPeV infections, except for a single report 

by Zhong et al. [2013], have solely involved HPeV3. All these studies substantiate 

the important role of HPeV3 as a causative agent of severe infections that have 

occurred in several European areas and in areas of the USA, Israel, China and 

Korea (Table 3).  

HPeV3-induced CNS-related diseases include viral meningitis [Wolthers et al., 2007; 

Wolthers et al., 2008] and meningoencephalitis [Verboon-Maciolek et al., 2008a; 

Verboon-Maciolek et al., 2008b]. Some studies have also linked HPeV3 to white 

matter damage in neonates, and neuronal HPeV infection in young children may lead 

to aberrations in the white matter [Belcastro et al., 2014; Gupta et al., 2010; Verboon-

Maciolek et al., 2008a]. Some of these children presented neurodevelopmental 

effects later, including learning disabilities and the development of post-natal epilepsy 

[Verboon-Maciolek et al., 2008a]. Further studies with a larger study population and 

with a longer follow-up are still required to determine the long-term effects of these 

infections. 
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Table 3 Recent studies on HPeV findings in children with severe diseases, listed according 

to place and date conducted. Clinical presentation and patient age are indicated in 

connection to HPeV prevalence and type detected. 

Country / Author Year(s) Clinical presentation HPeV 
prevalence* 

Types Patient age 

the Netherlands / 

Wolthers et al. [2008] 

2004 to 
2006 

CNS-related or 

sepsis-like disease 

33/716, 4.6% unknown < 5 years 

Scotland /  

Harvala et al. [2009] 

2006 to 
2008 

sepsis-like disease 14/1575, 0.9% 14 HPeV3s <3 months 

Spain /  

Pineiro et al. [2010] 

2006 to 
2009 

febrile illness, sepsis-
like disease 

9/397, 2.3% 8 HPeV3s >7 months 

Scotland /  

Harvala et al. [2011] 

2005 to 
2010 

CNS-related disease 31/4168, 0.7% 30 HPeV3s <3 months 

France / 

Schuffenecker et al. 
[2012] 

2008 to 
2010 

sepsis-like disease 33/1128, 3% 28 HPeV3s, 

1 HPeV4 

<6 months 

France /  

Mirand et al. [2012] 

2010 
sepsis-like disease 4/100, 4% 4 HPeV3s <4 months 

USA /  

Selvarangan et al. 
[2011] 

2006 to 
2008 

sepsis-like disease 58/780, 7% 52 HPEV3s, 

1 HPeV1 

0-7 months, 
mean 1.5 m. 

USA / Renaud et al. 
[2011] 

2009 to 
2010 

CNS-related or 

sepsis-like disease 

15/499, 3.4% 11 HPeV3s <3months 

USA /  

Walters et al. [2011] 

2005 to 
2010 

CNS-related or 

sepsis-like disease 

10/421,  2.4% 10 HPeV3s 0-2 months 

USA / 

Sharp et al. [2012b] 

2009 
sepsis-like disease 66/388, 17% 51 HPeV3s <5 months 

Israel / 

Ghanem-Zoubi et al. 
[2013] 

2007 to 
2009 

CNS-related or 

sepsis-like disease 

13/367,  3.5% 13 HPeV3s <3months 

China / 

Zhong et al. [2013] 

2008 to 
2011 

CNS-related disease 68/776,  8.8% 28 HPeV1s, 

3 HPeV3s 

0-13y, 
median 
14m. 

South-Korea / 

Han et al. [2013] 

2011 to 
2012 

CNS-related or 

sepsis-like disease 

12 /183, 6.5% HPeV3 <5 months 

CNS-related disease includes meningitis and encephalitis. 

*HPeV prevalence in cerebrospinal fluid (CSF) samples collected from children with suspected central 
nervous system infection. 
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A typical neonatal HPeV infection presents with high fever and irritability. Additionally, 

the patient may have seizures, a rash and apnoea. In contrast, sepsis-like disease 

consists of fever or hypothermia, with respiratory dysfunction measured by 

tachycardia or bradycardia, low blood pressure and decreased oxygen saturation 

[Wolthers et al., 2008]. In connection with an HPeV infection, the term sepsis-like 

disease is often used when the patient presents with some sepsis-like symptoms, 

although not fulfilling all of the aforementioned criteria. The severity of neonatal 

sepsis may vary greatly between a mild febrile illness and a potentially extremely 

severe systemic infection with CNS involvement [Harvala et al., 2010]. Compared 

with EVs, neonatal HPeV infections typically contain lower peripheral white blood cell 

counts, higher maximum temperatures, longer fever duration, pleocytosis absence, 

and longer patient hospitalisation [Felsenstein et al., 2013; Renaud et al., 2011; 

Sharp et al., 2012b]. 

Despite their severity, HPeV infections rarely have lethal outcomes. In an EV 

surveillance report conducted in the USA between the years 1983 and 2005, ten 

lethal cases of HPeV1 infection were reported [Khetsuriani et al., 2006]. In another 

study, HPeV types 1, 3 and 6 were detectable in postmortem specimens although 

with no apparent connection to the death of the patients [Sedmak et al., 2010]. 

HPeV3 has also been reported as a causative agent in sporadic fatal cases of 

neonates in Denmark [Fischer et al., 2014], France [Schuffenecker et al., 2012] and 

the Netherlands [van Zwol et al., 2009]. 

 

1.6.2 Diagnostic assays 

Traditional EV detection with targeted, monoclonal antibody neutralisation detected 

the first parechoviruses, HPeV1 and HPeV2. Because of this method, HPeVs were 

long diagnostically considered part of EVs. These initial detection methods were 

based on viral propagation in cell cultures. Due to their laborious, time-consuming 

and strain-dependent nature, cell cultures are now widely replaced by real-time RT-

PCR methods.  



23 

 

Because of the genetic differences between HPeV and EV, HPeV remains 

undetected with EV RT-PCR. Thus, the transition to RT-PCR methods led to a 

complete lack of HPeV detection in many laboratories. 

HPeV real-time RT-PCR targets a highly conserved region in the 5ʹ-end of the 

parechovirus RNA genome. This method is rapid, specific, and sensitive because 

viral RNA is detectable in a broad array of samples, including faecal, blood, 

cerebrospinal fluid (CSF), and different respiratory tract samples [de Crom et al., 

2013]. During the acute phase of a severe neonate infection with sepsis-like 

syndrome or with meningitis, HPeV may be directly detected from blood [Wildenbeest 

et al., 2013] and CSF samples [Harvala et al., 2009]. The addition of HPeV detection 

into routine diagnostics has frequently been requested [Baumgarte et al., 2008; 

Pham et al., 2011; Sharp et al., 2012b; Zhong et al., 2013]. Hence, several multiplex 

RT-PCR methods, including HPeV detection, have been developed in recent years 

[Jokela et al., 2005; Katano et al., 2011; Noordhoek et al., 2008; Pham et al., 2010]. 

Picornavirus genotyping is performed using RT-PCR targeted to a more variable VP1 

region [Harvala et al., 2008; Nix et al., 2008]. 

In contrast, the detection of parechovirus-specific antibodies is challenging because 

of limitations in the type specificity. Thus far, neutralisation tests set up for specific 

genotypes have been used to study the seroprevalence of HPeV1 and HPeV3. 

However, these tests are time-consuming, slow and laborious compared with other 

serological methods. Setting up more efficient methods has proven challenging due 

to cross-reactions between genotypes. An ELISA-based method for the detection of 

HPeV1 [Yu et al., 2012] represents the most recent advance. Unfortunately, the risk 

of cross-reaction is also extremely high for this method. The fact that practically all 

humans have antibodies against HPeV1 after the first years of life further complicates 

the development of this methodology. 

 



24 

 

1.6.3 Treatment and prevention 

Currently, no specific antiviral treatment against HPeV infection is available. 

Therefore, the treatment of neonatal HPeV-induced infection mainly includes 

supportive measures because the primary focus lies on treating the symptoms. 

However, a recent report described a case of HPeV1-induced myocarditis, where 

treatment with intravenous immunoglobulins (IVIGs) was successful [Wildenbeest et 

al., 2013]. This report further suggested that IVIGs are likely to include neutralising 

antibodies against viruses with high prevalence, thus benefiting the treatment of a 

patient. Previously, IVIGs have been used in neonatal EV infections [Abzug et al., 

1995]. Another suggested option for treating HPeV infection is the use of human 

monoclonal antibodies [Wildenbeest et al., 2010], which have been successfully used 

against influenza virus [Friesen et al., 2010] and respiratory syncytial virus (RSV) 

[Kwakkenbos et al., 2010]. However, for HPeV this treatment method remains to be 

developed. Preventing HPeV infections is based on common practices of good 

hygiene, which are also recommended for other gastrointestinal pathogens. No 

vaccine against HPeV is currently available. 

 

1.7 Epidemiological features of LV 

Ljungan virus was first isolated from bank voles (Myodes glareolus), home to the 

Ljungan Valley in Sweden, during a search for infectious agents associated with a 

myocarditis epidemic in humans [Niklasson et al., 1999]. Since that initial discovery, 

this virus has also been detected in other vole species (Microtus montanus and 

Myodes gapperi) [Johansson et al., 2003; Tolf et al., 2009] in yellow-necked mice 

(Apodemus flavicollis) [Hauffe et al., 2010], and in Eurasian red squirrels (Sciurus 

vulgaris) [Romeo et al., 2014]. Recently, a potentially new LV type was detected in a 

faecal sample from an urban rhesus macaque [Oberste et al., 2013b]. LV-specific 

antibodies have also been reported from other rodent species, such as field voles 

(Microtus agrestis) [Forbes et al., 2014]. 
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Interest in LV has increased due to its suggested zoonotic potential as a causative 

agent of severe human diseases, including type 1 diabetes (T1D), myocarditis, 

encephalitis, Guillain-Barré syndrome (GBS), sudden infant death syndrome 

[Niklasson et al., 2009b] and intrauterine foetal death [Niklasson et al., 2009a; 

Niklasson et al., 2007]. However, establishing a clear connection between LV and 

human diseases has proven to be difficult. The cyclical peaks in bank vole population 

densities every three to four years [Hansson and Henttonen, 1985] correlate with the 

incidence of T1D, myocarditis and GBS in humans [Niklasson et al., 1998]. LV has 

been suggested to be the link explaining this correlation. LV infection has been 

demonstrated to cause T1D, myocarditis and encephalitis [Niklasson et al., 2006], as 

well as perinatal death [Samsioe et al., 2008], in bank voles, experimental mice and 

lemmings (Lemmus lemmus). 

The connection between LV and these diseases in humans remains to be confirmed. 

The association of LV infection with human cases of intrauterine foetal death, 

malformations and placental inflammation [Niklasson et al., 2007; Samsioe et al., 

2009] is controversial [Krous and Langlois, 2010] and requires further evidence. LV 

detection in human samples using RT-PCR methods has been described in a few 

cases, whereas virus isolation has been unsuccessful thus far [Niklasson et al., 

2009b; Niklasson et al., 2007; Samsioe et al., 2009; Tapia et al., 2010]. 
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2 Study aims 

The primary goal of this project was to obtain a deeper understanding of the 

epidemiological behaviour of parechoviruses and to more closely examine their 

clinical associations. The specific aims were to investigate the following: 

 the prevalence and epidemiological features of HPeV in a healthy Finnish 

population (I), 

 

 the seroprevalence of HPeV in different age groups of Finnish and Dutch 

populations (II), 

 

 the connection of HPeV to severe infections in Finnish infants (III, IV), 

 

 the role of HPeV infection in respiratory tract diseases and in acute otitis 

media (IV), and 

 

 the presence of antibodies against Ljungan virus in Finnish human and rodent 

populations (V). 

 



27 

 

3 Materials and Methods 

3.1 Materials 

3.1.1 Ethical approvals 

Ethical approvals were separately required for human specimens from each study 

group. The ethical approval for collecting and using specimens from  the Finnish 

Type 1 Diabetes Prediction and Prevention (DIPP) study participants was obtained 

from the Ethics Committees of Tampere and Turku University Hospitals (permission 

no. 97193M, R12036 and 10/1994). The Ethics Committee of the Tampere University 

Hospital also approved the study of samples from respiratory infection patients 

(permission no. R07211). The samples derived from the Finnish Otitis Media Vaccine 

Trial were collected with permission from the ethical review committees of the 

National Institute of Health and Welfare, Helsinki University Hospital (permission no. 

28/13/03/00/2012) and from the relevant municipal health care authorities. Informed 

consents were obtained from the individuals or from the parents of the children 

enrolled in each of these studies. The Ethics Committee of the Helsinki University 

Hospital approved the study of samples from hospitalised children with unknown 

infections (permission no. TYH2014251) and the study of human specimens for 

Ljungan virus (permission no. TYH2013357). The Dutch serum samples were 

collected from patients visiting the Academic Medical Center (AMC) in Amsterdam. 

The use of patient sera obtained for diagnostic purposes has been approved under 

the Research Code of the AMC. 

Capturing rodents using techniques such as live- and snap-trapping are not 

considered an animal experiment according to the Finnish Act on the Use of Animals 

for Experimental Purposes (62/2006) and the Finnish Animal Experiment Board’s 

decision (May 16th, 2007). Thus, no ethics approval from the Finnish Animal 

Experiment Board was required for this study. 
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3.1.2 Serum and faecal specimens from DIPP study participants (I and II) 

A summary of all sample materials is presented in Table 4. DIPP study concentrates 

on studying various aspects of the beta-cell destruction process leading to T1D, 

including the environmental factors that are associated with an increased risk for 

T1D. The children are recruited to this ongoing follow-up study according to their 

HLA-defined increased genetic risk of developing T1D [Ilonen et al., 1996; Kupila et 

al., 2001]. The children enrol in the study at three months old; first, these children 

visit the study clinic every three months and, later, every six to 12 months. Blood 

samples are drawn at each visit and are tested for T1D-associated autoantibodies. 

The parents are instructed to collect faecal samples monthly and to deliver these 

samples through regular mail to the laboratory. Additionally, parents complete 

questionnaires regarding different aspects that might be connected to T1D, such as 

breast-feeding, the number of siblings, the time of starting day care, pets, infectious 

diseases, other health issues, etc. Some children are more closely monitored for diet, 

and different interventions have been tested, for example, different milk formulas 

during the first few months of a child's life. Since the beginning of the DIPP study in 

1994 to present, over 150000 children have been screened for genetic T1D risk at 

birth, 8500 children have been recruited to the follow-up study, and over 300 children 

have developed the disease [DIPP studygroup homepage, accessed the 15th of May 

2014]. 

Altogether, 2236 faecal samples, which were collected between the years 1996 and 

2007 in Turku and Tampere from 200 children aged 3-72 months, were selected for 

analysis. Most of the samples were from children younger than 24 months. Fifty-six 

children were considered cases (2 or more T1D-risk autoantibodies) and the rest of 

the children were considered controls, which were matched according to gender, 

HLA-defined risk for T1D, place and time of birth. A set of serum samples from 

children in age groups of 1, 5 and 10 years, with 144-149 samples per group, were 

selected for HPeV antibody analysis.  

Sixty-one children had provided a serum sample for each time-point, whereas 68 

children had provided two samples, and 121 children provided a single sample, for 
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440 serum samples from 250 children. Seven additional serum samples were 

selected from children aged 2 years for the analysis of HPeV detection efficiency in 

stool samples. 

 

Table 4 Sample sets and groups used for detection of HPeV or antibodies against 

HPeV or LV 

Group name Age 
range 

Subjects Samples Sampling 
time 

Location Method Study 

DIPP-
participants 

3-72 
months 

200 2236 stool 1996-
2007 

Tampere, 
Turku 

HPeV RT-PCR I 

DIPP-
participants 

1, 2, 5 
and 10y 

257 447 serum 1994-
2010 

Tampere, 
Turku 

HPEV 
microneutralization 

I, II 

Dutch 
patients 

1-5y, 
20-30y, 
40-60y 

114 114 serum 2010-
2011 

Amsterdam, 
the 
Netherlands 

HPEV 
microneutralization 

II 

Medical 
students 

20-30y 72 72 serum 2008-
2009 

Tampere HPEV 
microneutralization 

II 

AOM-
patients 

2.7-25.3 
months 

162 200 MEF 1996-
1998 

Helsinki HPeV real time RT-
PCR 

IV 

Respiratory 
infection 
patients 

0-6 
months 

170 198 NPA 2001-
2004 

Tampere HPeV real time RT-
PCR 

IV 

Hospitalized 
children with 
unknown 
infection 

0-13 
months 

85 79 CSF, 
50 serum, 

5 stool 

2011-
2012 

Helsinki HPeV real time RT-
PCR 

III, IV 

NE-patients 13-90y 37 37 serum 2008 Around 
Finland 

LV IFA, HPEV 
microneutralization 

V 

Rodents - 9 and 50 9 serum 
and 50 
blood 

2010, 
2008 

Northern Italy 
and 
Konnevesi, 
Finland 

LV IFA V 

AOM, acute otitis media; CSF, cerebrospinal fluid;  DIPP, diabetes prediction and prevention study; 

HPeV, human parechovirus; IFA, immunofluorescent assay; LV, Ljungan virus; MEF, middle-ear fluid; 

NE, nephropatia epidemica; NPA, nasopharyngeal aspirate 

 

3.1.3 Sera from Finnish adults and from a Dutch population (II) 

Serum samples were collected from 72 medical students from the University of 

Tampere Medical School to represent a Finnish adult population in comparison to 

child populations. For comparison with the Finnish subjects, 114 serum samples 
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were obtained from three groups of Dutch individuals: 1-5-year-old children, women 

of child-bearing age, and HIV-positive men. Each group provided 37-39 samples. All 

of the individuals visited the Academic Medical Center in Amsterdam, and their 

serum samples had been directed to virus diagnostics at the Laboratory of Clinical 

Virology. 

 

3.1.4 Cerebrospinal fluid, serum and stool samples from hospitalised children 

(III, IV) 

Altogether, 79 CSF, 50 serum and 5 faecal samples from 1- to 60-week-old children 

with a request for microbiological analysis and with no finding of a causative agent, 

except for EV, were retrospectively collected for HPeV analysis. The children visited 

hospital, mainly the Helsinki University Hospital, during the period from October 2011 

– December 2012.  

These samples included CSF, serum and faecal samples from two neonates, which 

were 4 and 8 weeks old, when hospitalised in autumn 2012; these neonates were 

described in greater detail in Study III. Originally, the samples were sent to HUSLAB 

for microbiological analysis, and suspicion of sepsis without bacterial findings 

directed the samples for EV detection. 

 

 

3.1.5 Middle ear fluid and nasopharyngeal aspirate specimens (IV) 

Middle ear fluid (MEF) samples and nucleic acids, which were extracted from 

nasopharyngeal aspirate (NPA) specimens, were obtained for HPeV analysis from 

collaborating groups. The MEF samples were collected from 162 children (2-25 

months old) with AOM that originally participated in the Finnish Otitis Media Vaccine 

Trial during the study period from 1996-1998 [Nokso-Koivisto et al., 2004]. A set of 



31 

 

200 samples, which were previously analysed for a variety of infectious bacterial and 

viral agents, were included in this study. 

Total nucleic acids, which were extracted from 198 NPA samples, were obtained for 

this study. The NPA samples were obtained from 162 children who were less than 6 

months old who participated in a respiratory infection study from November 2001 to 

May 2002 and from October 2002 to April 2004 [Nuolivirta et al., 2010]. The children 

had been previously acquainted with hospital care due to bronchiolitis. These 

samples had been previously analysed for other bacterial and viral human pathogens 

[Helminen et al., 2008; Nuolivirta et al., 2010], and RSV, RV, influenza-, 

metapneumo- or adenovirus had been detected in 83% of the samples. 

 

3.1.6 Blood specimens from humans and rodents for LV studies (V) 

Sera were sampled from 37 patients with suspected nephropathia epidemica (NE) in 

2008 from nine health care districts in Finland. Another four serum samples were 

acquired from previously HPeV-positive individuals, including a sample from a rodent 

researcher with frequent rodent contacts. The latter sample was tested and used as 

the positive control for LV antibody tests. 

Serum samples from nine rodents trapped in Northern Italy in 2010 and with previous 

LV RNA detection in liver samples [Hauffe et al., 2010] were obtained for analysis. 

Additionally, whole blood samples from 50 bank voles trapped in Konnevesi, Central 

Finland in 2008 for Puumala hantavirus studies [Razzauti et al., 2013] were 

analysed. 

3.1.7 Parechovirus antisera (V) 

LV anti-serum produced in rabbit against VP1 [Tolf et al., 2008] and anti-serum 

against HPeV1 and HPeV2 produced in horse (VR-1063AS/HO and VR-1064AS/HO; 

LGC Standards, ATCC, Teddington, United Kingdom) were used as controls for 

testing LV IFA. 
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3.1.8 Viruses (II, V) 

Virus strains representing HPeV genotypes 1-6 and LV genotypes 1 and 2 were used 

in this study. Strains were chosen according to their ability to induce a cytopathic 

effect (CPE). A list of virus strains is presented in Table 5. The strains of HPeV1, 2 

and 4-6 were originally from Dutch clinical samples, whereas the HPeV3 strain was 

isolated in this study (I). The HPeV1 Harris strain was used as a control. The LV 

strains used in this study included cell culture condition-adapted LV1 and 2 isolates. 

 

Table 5 Virus strains used in this study. 

Genotype Strain Reference 

HPeV1 152212 Benschop et al., 2006b 

HPeV1 Harris Hyypia et al., 1992 

HPeV2 751312 van der Sanden et al., 2008 

HPeV3 FI0688 Study I 

HPeV4 K251176-02 Benschop et al., 2006a 

HPeV5 20552322 Benschop et al., 2006b 

HPeV6 20751393 Benschop et al., 2008b 

LV1 87-012G Johansson et al., 2004 

LV2 145SLG Tolf et al., 2008 

 

3.1.9 Cell lines 

Viruses were cultured in American Type Culture Collection (ATCC) cell lines 

originating from different human and monkey tissues, as well as in GMK (Green 

monkey kidney) cells. A549 (human alveolar epithelial adenocarcinoma), Caco-2 

(human colon carcinoma), GMK, HeLa (human cervical epithelial carcinoma), HT29 

(human colon adenocarcinoma), LLC-MK2 (rhesus macaque kidney), Vero (grivet 

kidney) and Vero E6 (grivet kidney) cells were maintained in minimum essential 
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medium (MEM), Dulbecco’s modified Eagle’s medium (DMEM) or F-12 nutrient 

medium with 10% heat-inactivated foetal bovine serum (FBS), 100 IU/l penicillin and 

10 µg/ml streptomycin at +37°C and 5% CO2. For virus propagation, the amount of 

FBS was decreased to 1-5%, depending on the cell line. 

 

3.1.10 Reference sequence material from databases 

The phylogenetic analysis in this study was conducted in comparison to reference 

sequences and to other published sequences available in the GenBank database 

(www.ncbi.nlm.nih.gov/genbank) of the National Center for Biotechnology Information 

(NCBI). In addition to the reference strains of HPeV genotypes 1-16, 3 HPeV1, 3 

HPeV3, 42 HPeV4 and two HPEV6 isolate sequences were included in the 

phylogenetic relation analysis. 

 

3.2 Methods 

3.2.1 Virus isolation in cell cultures (I, III and IV) 

Parechovirus strain cultivation was tested in different cell lines, particularly for setting 

up the microneutralisation assay. The best cell lines were the ATCC-cell lines HT-29, 

Vero and Vero E6. HPeV1, 2 and 4-6 infected HT-29 cells and induced a 

distinguishable CPE. Vero and Vero E6 cells were better suited for cultivating HPeV3 

because no CPE occurred in HT-29 cells. The LV strains were previously adapted to 

the cell culture conditions and were cultivated in GMK and Vero cells. 

The cultivation and isolation of HPeV was attempted from faecal (I, III and IV), CSF 

(IV) and serum samples (III, IV). The culture medium was discharged from the cells, 

grown to 50-70% confluence in a 25-cm2 culture flask or in a 5.5-cm2 culture tube 

with a flat side before the addition of 50-150 µl serum, CSF or 10% (w/v) 

homogenised faecal suspension sample. After 1 h of incubation, fresh DMEM 

supplemented with 2% FBS and antibiotics was added to cells inoculated with serum 
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or CSF sample. The same incubation time was used for faecal suspensions; 

however, these samples were discharged before the addition of fresh MEM or DMEM 

supplemented with 2% FBS, penicillin, streptomycin, gentamicin, and amphotericin B 

to the cells. The time of induction and the level of induced CPE varied between 

isolates. CPE was primarily detectable after 4 days, although the incubation was 

continued for up to 4 weeks for some isolates. Then, the virus was freed into the 

supernatant with three rounds of freeze-thaw cycles. The presence of the virus in the 

supernatant was further controlled with RT-PCR or with real-time RT-PCR before 

storing at -70°C for further studies. 

  

3.2.2 RNA extraction (I, III and IV) 

Viral RNA was extracted from various materials for RT-PCR-based detection 

analyses. Extraction from CSF, faecal, serum, MEF and cell culture samples was 

performed using a QIAamp Viral RNA kit (Qiagen Inc., Valencia, CA, USA) according 

to the manufacturer’s instructions. Total nucleic acids from NPA specimens were 

extracted using a High Pure Template Preparation kit (Roche Applied Science, 

Indianapolis, IN, USA). Most RNA samples were stored at -70°C, and total nucleic 

acid samples were stored at -20°C until analysis. 

 

 

3.2.3 RT-PCR coupled with liquid hybridisation (I) 

HPeV RNA detection from samples was based on PCR targeted to a conserved 

sequence in the 5ʹ-end of HPeV genome. The RT-PCR coupled with hybridisation 

was conducted as described previously [Tauriainen et al., 2007; Tauriainen et al., 

2008]. This method was used to detect viral RNA before the introduction of real-time 

RT-PCR methods. This method included a reverse transcription step using an HPeV-

specific primer (Par30) and a PCR step with a biotin-labelled primer (Par28-bio, 
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Table 6). In this method, the amplified PCR product was fixed to the bottom of the 

plate by biotin-streptavidin binding, and the PCR amplicon was detected by 

hybridisation to a europium-labelled probe. 

Table 6 Oligonucleotide primers and probe used in HPeV detection and genotyping. 

Genome position according to the HPeV1 Harris strain (GenBank accession no. 

S45208). 

Name Sequence (5ʹ to 3ʹ) Genome 
position 

Reference 

Par28-bio biotin-AGCCATCCTCTAGTAAGTTTG 313-333 Modified from Oberste et 
al. [1999] 

Par30 GGTACCTTCTGGGCATCCTTC 577-556 Oberste et al. [1999] 

Par31 CTGGGGCCAAAAGCCA 441-457 Benschop et al. [2008a] 

HPeV probe 6ʹFAM-AAACACTAGTTGTA(A/T/C)GGCCC-MGB-
NFQ 

535-554 Modified from Benschop 
et al. [2008a] 

HPeV_VP1f ATTC(A/G)TGGGG(C/T)TC(A/C)CA(A/G)ATGG 2337-2357 Study I 

HPeV_VP1rev AATATCCTTAGAAT(A/G/T)GT(C/T)TCACA(A/G)TT 3328-3302 Study I 

FAM, 6-carboxylfluorescein, MGB, minor groove binder; NFQ, non-fluorescent quencher 

3.2.4 One- and two-step real-time RT-PCR (III and IV) 

HPeV RNA detection included real-time PCR protocols with one step and two steps, 

which were both adapted and modified from Benschop et al. [2008a]. The cDNA 

synthesis for the two-step reaction was performed in a 40 µl reaction containing 10 µl 

of RNA template, 8 µl of reaction buffer, 50 pmol of HPeV-specific primer (Par 30, 

Table 6), 20 nmol of dNTP, 4 units of Recombinant RNasin© RNase inhibitor and 20 

units of M-MLV reverse transcriptase (Promega, Madison, WI, USA).  

Additionally, 0.5% bovine serum albumin (BSA) was added to faecal suspension 

samples to minimise RT and PCR reaction inhibition. The reaction mixture was 

incubated for 1 h at 37°C to complete the reaction. 

The PCR step was performed using a Maxima qPCR master mix kit (Thermo 

Scientific, Rockford, IL, USA) in a 25 µl reaction, which contained 5 µl of cDNA 

product, 300 nM of primers (Par30 and Par31, Table 6), and 200 nM of probe (HPeV-
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NedA). The Taqman® probe included the reporter label 6-carboxylfluorescein at the 

5ʹ-end and a minor groove binder and  non-fluorescent quencher at the 3ʹ-end. An 

ABI 5ʹ Prism 7900HT System (Applied Biosystems, Foster City, CA, USA) was used 

to perform the assay with following parameters: 10 min at 95°C, 40 cycles of 15 s at 

95°C and 60 s at 60°C. 

One-step RT-PCR was set up to increase the sensitivity and speed of the HPeV 

detection assay. The same set of primers and probe as in the two-step system was 

utilised in this reaction, which was performed using the Superscript® III Platinum® 

One-step qRT-PCR System (Invitrogen, Carlsbad, CA, USA). The total reaction 

volume of 25 µl included 12.5 µl of reaction mix, 7 µl of RNA template, 400 nM of 

each primer and 200 nM of the fluorogenic probe. The RT-PCR reaction, whose 

conditions were 15 min at 50°C and 2 min at 95°C, followed by 45 times of a two-step 

cycle of 15 s at 95°C and 50 s at 60°C, was performed using a Stratagene Mx3005P 

qPCR System (Agilent Technologies, Santa Clara, CA, USA). 

  

3.2.5 HPeV typing PCR (I, III and IV) 

An RT-PCR targeted to the almost complete VP1-sequence area of the HPeV 

genome was developed for genotyping HPeV-positive findings as part of this study 

(I). The typing was performed using viral RNA directly extracted from the target 

sample or from the cell culture suspension after virus propagation from the sample. 

cDNA synthesis was performed as described in 3.2.4, except with a different specific 

primer (HPEV_VP1rev, Table 6).  

The PCR reaction was performed using Biotools Taq polymerase (Biotools, Madrid, 

ESP) in a final volume of 50 µl, which contained 5 µl of cDNA template, 10 µl of 

reaction buffer, 200 nM of each primer (HPeV_VP1f and –rev, Table 6), 200 µM of 

dNTP and 3 units of Taq DNA polymerase. The VP1 PCR conditions were as follows: 

94°C for 2 min, followed by 36 cycles of 94°C for 30 s, 55°C for 30 s and 72°C for 2 

min, with a final extension at 72°C for 10 min. 
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The positive PCR fragments observed by agarose gel electrophoresis were directed 

to sequencing using the same primers used in the typing RT-PCR. Sequencing 

reactions were performed by MACROGEN® (Seoul, Korea) or by Helsinki University 

sequencing service. In the latter, the PCR products were purified using a Qiaquick 

gel extraction kit or a Qiaquick PCR purification kit (Qiagen Inc.) before the 

sequencing reaction. 

 

3.2.6 Sequence analysis and phylogeny (I and IV) 

The data from genotyping the VP1 sequences was initially compared with reference 

sequences using BLAST [Altschul et al., 1990] and aligned using the CLUSTALW 

tool [Thompson et al., 1994]. In Study I, the estimation of evolutionary relations was 

conducted using the neighbour-joining method with the Kimura two-parameter model 

[Kimura, 1980] and using the DNAdist program contained in the PHYLIP software 

package [Felsenstein, 1993]. In Study IV, the neighbour-joining method was used 

with Tamura-Nei algorithm [Tamura and Nei, 1993] using MEGA 6.6 software 

[Tamura et al., 2013]. The evolutionary distances were estimated with 1000 bootstrap 

pseudoreplicates [Hillis and Bull, 1993]. 

 

 

3.2.7 Statistical analysis (I, II) 

Differences in HPeV frequencies between boys and girls and different locations, as 

well as the significance in the differences in the level of neutralising antibodies 

between groups were analysed using the X2-test in IBM SPSS statistics 19 software. 

P-values of <0.05 were considered statistically significant. 
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3.2.8 HPeV microneutralisation assay (II, V) 

A microneutralisation assay for HPeV types 1 to 6 was developed and set up as part 

of this study (II) using virus titres of 50 TCID50 per 2.5 µl. The assay for detection of 

neutralising antibodies against HPeV 1, 2, 4, 5 and 6 used HT29 cells, whereas Vero 

E6 cells were used for HPeV3 antibodies. The serum samples were diluted fourfold 

(1:8–1:4096) in Hank’s balanced salt solution (including CaCl2 and MgCl2). A 2.5 µl 

volume of serum dilution was mixed with 2.5 µl of virus and incubated for 1 h at 37°C, 

followed by overnight incubation at room temperature. Then, the mixture was 

inoculated to a confluent monolayer of cells on microtitre plates. DMEM growth 

medium supplemented with 2% FBS was added to each well, and the cells were 

grown for 5-7 days before staining with crystal violet. The HPeV types grown on 

HT29 cells caused a CPE, which resulted in the cells detaching from the bottom of 

the well unless neutralising antibodies were present. In contrast, HPeV3 infection 

turned the cells dark and round (CPE) without detaching, and this result was 

observed under a light microscope. Serum dilution was considered positive when 

50% or more of the infection was prevented, and the lowest dilution considered 

positive was 1:16. 

 

3.2.9 LV microneutralisation (V) 

The LV microneutralisation assay was performed in comparison to the 

immunofluorescence assay (IFA) using LV strain 145SLG in a titre of 60–100 TCID50 

and Vero cells. Serum samples were inactivated performed before the assay using a 

heat treatment for 30 min at 56°C. Fourfold serum dilutions ranging from 1/8 to 1/512 

were prepared using Hank’s balanced salt solution (HBSS; University of Helsinki). 

The LV was mixed with serum dilutions and incubated for 1 h at 37°C before adding 

to Vero cells. The formation of infection foci on the monolayer of cells, which were 

grown on 96-well plates in media consisting of MEM supplemented with 2% FBS and 

1X GLUTPEST (Invitrogen), was monitored daily for 5 days using a light microscope. 

Then, the cells were stained with crystal violet to observe the plaques. The number of 

plaques in the presence of serial serum dilutions was compared with that in the virus 
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control to calculate the neutralisation effect. A reduction in the number of infected 

cells of at least 80% in comparison to LV control wells was considered positive. 

 

3.2.10 LV indirect fluorescence assay (V) 

LV IFA was set up with LV strains 87-012G and 145SLG (Table 5) and with Vero 

cells. The IFA protocol was modified from Kallio-Kokko et al. [2001]. Briefly, LV-

infected Vero cells with weak signs of CPE were collected and washed 5 times with 

PBS before mixing at a ratio of 1:1 with non-infected cells. The mixture was further 

diluted with PBS before adding to 10-well diagnostic slides (Paul Marienfeld GmbH 

and Co. KG, Lauda-Königshofen, Germany). The cells were dried in the wells 

overnight at room temperature before fixing for 7 min with ice-cold acetone (Sigma-

Aldrich Finland, Finland).  

Dilutions of serum samples (1:20) and rodent whole blood samples (1:10) in PBS 

were added onto diagnostic slides before incubation for 30 min at 37°C, followed by 

washing three times with PBS and once with water for 5 min before drying. For slides 

with human serum samples, fluorescein (FITC)-AffiniPure F(ab’)2 fragment goat anti-

human IgG (H+L) (Jackson Immuno Research Laboratories, West Grove, PA) diluted 

1:100 was added next and incubated for 30 min at 37°C.  

 

Similar incubations were performed, with 1:100 dilution of FITC-AffiniPure goat anti-

horse IgG (H + L; Jackson ImmunoResearch Laboratories) for HPeV1 and HPeV2 

antisera produced in horse and with 1:30 dilution of polyclonal rabbit anti-mouse 

immunoglobulins labelled with FITC (all mouse IgG subclasses, mouse IgM and 

mouse IgA; Dako Finland Oy, Helsinki, Finland) and of polyclonal swine anti-rabbit 

immunoglobulins labelled with FITC (immunoglobulins of all classes, Dako Finland 

Oy) for rodent samples and antisera produced in rabbit. Then, the slides were 

washed as described previously and dried before adding cover slips with mounting 
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medium. The results were detectable using a fluorescence microscope (Leica 

Microsystems, Espoo, Finland) with an FITC-filter. 

 

3.2.11 Electron microscopy (III) 

A cell culture suspension sample of HPeV4 strain FI121236-infected cells was fixed 

onto copper grids, stained by negative staining with 2% KPTA (tungstophosphoric 

acid) and examined using a JEOL JEM 1400 electron microscope. 
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4 Results and Discussion 

4.1 HPeV prevalence and seasonality (I) 

In the majority of previously conducted studies, HPeV has been screened for and 

detected in clinical samples. Therefore, knowledge regarding their presence and 

circulation in background populations has remained scarce. In this study, we 

detected HPeV in stool samples from 78 of 200 (39%) healthy children. By 12 

months old, 22% of the sampled children had at least one HPeV-positive sample, 

and by 22 months, this percentage increased to 48%. After 2 years old, the rate of 

HPeV detections decreased. Fifty percent of the findings had two or more 

consecutive HPeV-positive samples with shedding up to 93 days. Eight children had 

two distinct HPeV episodes. Detection rates were similar between Turku and 

Tampere, as well as between boys and girls. HPeV was detectable from samples 

collected between 1996 and 2006; however, this detection distributed unevenly due 

to the variation in the sample number for different years (Figure 3). HPeV was absent 

in the small number of samples collected in 2007. During most years, a distinct peak 

in HPeV detections was observable from October to November. The HPeV genotype 

was identified for 105 (73%) of 144 positive samples. The primary type detected was 

HPeV1, which was typed 98 times, whereas HPeV6 was identified in four samples, 

and HPeV3 was identified in three samples. 
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Figure 3 Timing and percentage of HPeV-positive stool samples during the study period 

from 1996-2007. The results are shown in three-month groupings (January-March, April-

June, July-September and October-December). 

These results demonstrate that HPeVs commonly circulate among healthy Finnish 

children. The actual number of HPeV-positive children is likely to be even higher 

because continuous, monthly sampling series of 18 or more samples, which were 

collected until two years old, were available from only 36 (18%) children. The majority 

of sample series comprised a lower number of samples; thus, the question of 

whether HPeV remained undetected was left unanswered. Additionally, the presence 

of HPeV was not studied in all of the children before three months old. A Norwegian 

study with a similar setting and with a more consistent sample series demonstrated 

that 86% of 102 children had their first HPeV infection before reaching two years old 

[Tapia et al., 2008]. The long-lasting shedding of HPeV1 suggests that this virus is 

detectable using a sampling frequency of collecting one sample each month. Long-

lasting shedding may also explain the common occurrence of HPeV1 because this 

characteristic allows more opportunities for transmission to new hosts. 
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The children recruited to the DIPP study were healthy and, therefore, were good 

representatives of the background population. However, the children were selected 

for the follow-up study according to certain criteria, which limit the generalisation of 

the results. The collection of monthly samples from healthy individuals at an identical 

scale to that used in the DIPP study is highly challenging; therefore, this sample 

series is unique for analysing the circulation of viral agents in the Finnish population. 

The HPeV genotypes circulating among healthy Finnish children include at least 

HPeV1, 3 and 6. Consistent with our results, HPeV1 has been widely reported as the 

most commonly detected HPeV genotype and is followed in frequency by genotypes 

3, 4 and 6 [Benschop et al., 2008b; Boros et al., 2010; Pham et al., 2011; Tapia et 

al., 2008; Zhang et al., 2011]. Except for a single finding of HPeV14 in the 

Netherlands [Benschop et al., 2008b], the genotypes commonly circulating in Europe 

appear to be HPeV 1 to 6. In rare cases, the presence of HPeV2 and 5 has also 

been reported. Thus, the genotype distribution pattern in Finland is similar to that 

reported elsewhere in Europe. No HPeV4 was detected in this sample series, which 

is consistent with data analysed in Norway [Tapia et al., 2008] and in Scotland 

[Harvala et al., 2008]. In contrast to this observation, HPeV4 was detectable later in 

Finland during a series of neonatal infection cases (IV). 

HPeV circulation was observable throughout the year during the study period from 

1996 to 2006, with a seasonal peak from October to November during most years. 

Studies from many other countries have described similar seasonal pattern 

[Benschop et al., 2006b; Tapia et al., 2008; Zhang et al., 2011]. In contrast, in China 

in 2009, a temporal change in the HPeV prevalence from autumn to summer was 

reported [Guo et al., 2013]. Because we primarily detected HPeV1, we could base 

our seasonality analysis solely on this genotype. The detected numbers of HPeV3 

and 6 were too low to consider for a more detailed analysis. However, if these 

numbers are considered, then the few detections of HPeV3 do not support the 

biennial cycle with a peak during summer months [Benschop et al., 2008b; Harvala et 

al., 2011; van der Sanden et al., 2008], which has been suggested for HPeV3.  
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The results from our study are consistent with a later study conducted by Simonen-

Tikka and colleagues (2013), which similarly describes a long circulation and 

shedding period of HPeVs, in addition to their seasonal prevalence in autumn in 

Finland.  

Serum samples were tested for neutralising antibodies (nABs) against HPeV types 1 

to 6 to examine whether a monthly sampling frequency represents a sufficiently short 

interval for HPeV detection. Samples of seven children with an HPeV-negative 

consecutive series of stool samples between the ages of 3 and 24 months were 

collected at 24 months old. All of the seven samples were negative for nABs against 

HPeV1, 3 and 4. However, four children had nABs against HPeV2, whereas one of 

the children also had nABs against HPeV5 and 6.  

Our neutralisation data supports the observation that the monthly collection of stool 

samples represents a sufficient frequency for HPeV1 detection. In contrast, the 

presence of nABs against HPeV2 in four of seven serum samples is intriguing 

because HPeV2 was not detectable in the stool samples. This discrepancy raises a 

question regarding the validity of these findings. Interestingly, similar divergences 

were also observed in the analysis of nABs in Study II. 

 

4.2 Seroprevalence of HPeV (II) 

NABs against HPeV types 1 to 6 were common in Finnish and Dutch populations. In 

adults, the seroprevalence was high for HPeV1 and HPeV2 (86-92%), moderate for 

HPeV4-6 (35-75%) and low for HPeV3 (10-13%). Due to differences in the sample 

selection process, the age groups of children from the two countries were 

incomparable. We conducted a comparison between Finnish and Dutch adult 

populations, although the selection of individuals in the populations differed and was 

only roughly comparable. The seroprevalence for HPeV1 to 4 was similar in Finnish 

and Dutch adults, whereas nABs against HPeV5 (35% vs. 75%; p= <0.001) and 6 

(57% vs. 74%; p= 0.04) were significantly more common in Dutch adults. 
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The seroprevalence increased with the age of the study populations (Figure 4). 

Interestingly, the highest seropositivity level for most HPeV genotypes tested, i.e., the 

level attained in adulthood, was already reached in children by 5 years old. The 

seroprevalence of HPeV3 was noticeably higher in adults compared with that of 5-

year-olds. 

 

Figure 4 Seroprevalence for HPeV1-6 in Finnish age groups of 1-, 5-, and 10-year-old 

children and in adults (>20 years old). 

The high seroprevalence detected for HPeVs in this study suggests that HPeVs are 

even more common than previously assumed. Although the serologically abundant 

nature of HPeV1 has been previously discovered [Joki-Korpela and Hyypia, 1998; 

Tauriainen et al., 2007], knowledge regarding the seroprevalence of other HPeV 

genotypes has been scarce thus far. Only one study, namely, the study conducted by 

Ito and co-workers (2004), handled similar serological data on HPeV3. To our 

knowledge, no previous reports regarding the seroprevalence of HPeV4 to HPeV6 

have been published. Most of the other epidemiological data available are based on 

stool sample analyses of hospitalised patients. 
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Our results further reveal the presence of HPeV4 and HPeV5 in the Finnish 

population. This finding was particularly interesting because the two genotypes had 

never been detectable in Finland before 2012. Overall, the serological data were 

primarily consistent with prior available results from stool sample analyses of 

hospitalised patients in European countries, with the exception of HPeV3 being less 

prevalent and HPeV2 being far more prevalent than observed previously.  

The selection criteria for the different populations in this study limit the generalisation 

of the results and the comparison of the subgroups from Finland and the 

Netherlands. However, these results do provide the first insights into the 

seroprevalence of multiple HPeV types in different populations. Another limitation of 

this study was the uncertainty of potential cross-reaction in the detection of type-

specific nABs. Although no clear pattern of this effect was observable, the possibility 

of affecting the results on some level cannot be ignored. 

High seroprevalence for HPeV2 is intriguing because this genotype has rarely been 

detected and isolated from human samples. Cross-reactivity between HPeV2 and 

other genotypes represents one explanation; thus, this finding would be an irreverent 

by-product of neutralisation testing. However, this possibility appears unlikely 

because an extensive number of children (60 children of 441 in Finnish data) were 

positive only for HPeV2. Additionally, we detected no indication of a sample being 

HPeV2 seropositive each time antibodies against any other genotype were present. 

Moreover, only extremely weak cross-reactivity was reported against HPeV2 by 

antisera of other HPeV types, whereas the HPeV2 antiserum did not neutralise other 

HPeV types, indicating specificity at least compared with HPeV types 1 to 6 

[Westerhuis et al., 2013]. Although cross-reactivity among different HPeV types can 

be excluded, the detected HPeV2 antibodies cannot be conclusively verified as not 

being antibodies against some other virus with antigenic epitopes resembling those 

epitopes of HPeV2. In contrast, the discrepancy between rare isolation and high 

seroprevalence might either be attributed to a shorter shedding period, demanding 

the requirement for sampling interval shorter than per month, or to a low level of 

replication, leaving the viral count below detection limits.  
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Because HPeV2 was not detectable in stool samples (I), one might assume a 

different primary replication site than the intestine. However, we detected no HPeV2 

RNA in NPA, MEF, CSF or serum samples (IV) nor has HPeV2 RNA been found in 

other studies testing various sample types [Chen et al., 2009; Harvala et al., 2014; 

Nielsen et al., 2013]; thus, this possibility can be excluded.  

We detected only 13% and 10% seroprevalence for HPeV3 in adults in Finland and 

in the Netherlands, respectively, which is significantly lower than that reported 

previously in Japan (87%) [Ito et al., 2004]. The nAB level was even lower in children. 

The retrospective analysis of neutralising antibodies from three children with HPeV3 

detection in the stool demonstrated that the presence of HPeV3 did not initiate the 

production of any nABs in one of three cases. NABs were present in the remaining 

two cases; however, in one of the cases, the level of nABs decreased below the 

detection limit within a few months. Unfortunately, we only had three stool-positive 

children and, therefore, were unable to further confirm this effect. However, the 

absence of nABs against HPeV3 has also been reported previously [Mizuta et al., 

2012; Westerhuis et al., 2012]. Additionally, the antibodies raised against HPeV3 did 

not have a neutralising effect [Westerhuis et al., 2013]. Therefore, HPeV3 has likely 

employed a strategy of avoiding its own neutralisation. 

The relatively recent emergence of HPeV3 [Calvert et al., 2010] may explain its 

diverging pathogenicity from that of other HPeV types. Its recent spread would 

account for reduced adult exposure and, thus, reduced production of protective 

maternal antibodies, making neonates more susceptible to HPeV3 infections 

[Harvala et al., 2010]. This theory is supported by a report describing HPeV3 

infections detected simultaneously in a mother and in her young children [Al Maamari 

et al., 2009]. The partially immature immune system might also contribute to the 

higher risk of HPeV3 infection in neonates [Wildenbeest et al., 2010]. Our results 

indicate another potential explanation for the stronger pathogenicity of HPeV3, 

namely, the observation that this virus avoids its neutralisation by antibodies. 
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4.3 Description of clinical and virological findings in two neonatal 

HPeV4 infection patients (III) 

In October 2012, two male neonates, who were 8 (case 1) and 4 (case 2) weeks old, 

were hospitalised due to suspected infection. At six weeks old, case 1 had already 

been hospitalised with pneumonia and treated with G-penicillin. However, the 

causative agent that induced the pneumonia remained unknown. Following the 

treatment for pneumonia, the case 1 neonate was discharged in good clinical 

condition from the hospital until he was readmitted two weeks later due to suspected 

bacterial sepsis. The patient presented with high fever, tachycardia (220-230/min), 

and clear irritability. The blood parameters were within the normal range (detailed in 

III). To rule out recurring pneumonia, the chest was X-rayed, and no sign of 

inflammation was detected. The patient remained hospitalised for seven days and 

was treated for the entire period with G-penicillin and for three days with acyclovir 

after initial treatment with intravenous cefuroxime. 

The case 2 neonate, who was only 4 weeks old, was hospitalised, presenting with 

fever and leukopenia. In addition to fever, the patient showed signs of skin marbling 

but no other abnormalities when examined physically. The blood parameters of the 

patient were normal, with a slightly decreased level of leukocytes (3.8 × 109/l). The 

chest X-ray was normal, whereas a slight elevation of protein content was obviousble 

in CSF samples. A macular rash, with round lesions two to three millimetres in 

diameter, became apparent on the patient’s skin after three days of hospitalisation. 

After hospitalisation, the initial treatment of case 2 with G-penicillin was changed to a 

course of five days ampicillin, in addition to cefotaxime and three days of acyclovir. 

After extensive microbiological testing for causative agents of viral or bacterial nature 

at the diagnostic laboratory of HUSLAB (Finland), the only progress was the 

detection of an EV-like CPE in viral cultures from faecal samples of both neonates. 

However, specific EV screening remained unsuccessful. Therefore, the patients’ 

samples were redirected to our department for HPeV detection, which was a method 

not yet included in HUSLAB routine diagnostics.  
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HPeV4 RNA was detectable from both neonates in viral cultures from faecal and 

serum samples but was absent in CSF samples, which were also negative for all 

other tested pathogens. Picornavirus- sized virus particles were detectable by EM 

(Figure 5), further confirming the presence of an HPeV. During hospitalisation, the 

cell counts of case 2 normalised, and both children were discharged in clinically good 

condition after six to seven days of hospitalisation. 

 

 

Figure 5 HPeV4 virus particles, marked with arrows, in a virus culture sample on an EM-

image. 

 

The two cases described in the present study demonstrate that HPeV4 circulates in 

Finland and is detectable in the serum and stool from neonates with severe 

infections. Previously, HPeV4 has been associated with mild diseases, whereas 

these neonates had been hospitalised with sepsis-like symptoms, similar to those 

symptoms observed in children with neonatal HPeV3 infection. One of the neonates 

also developed dermatological changes, which have not been previously reported in 

HPeV4 cases but which are typical for HPeV3 infection [Levorson et al., 2009; Shoji 

et al., 2013]. 

 

25 nm 
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4.4 HPeV infections in young children with severe diseases (III, IV) 

The aforementioned cases in neonates represent not only the first finding of HPeV4 

infections in Finland but also some of the first HPeV-related infections of a higher 

severity in Finland, raising our interest in this particular genotype and in other 

genotypes linked to more severe disease manifestations. To obtain a better 

understanding of their epidemiological character in young children with severe clinical 

presentations in Finland, we designed a retrospective screening approach. Samples 

from 85 children with suspected CNS infection, which were collected during the 

period from October 2011 to December 2012, were screened for HPeV. Seven (8%) 

children, including the two cases described in Study III, were HPeV-positive in CSF, 

serum or faecal samples. Five of the HPeV detections were from samples collected 

from September to October 2012, and four of these samples were successfully typed 

as HPeV4, whereas one case remained untyped. These children were two to eight 

weeks old. Additionally, a six-week-old child was detected to have had an HPeV3 

infection in October 2011, and a 13-month-old child an untyped HPeV infection in 

May 2012. During routine diagnostics (HUSLAB, Finland), the children participating 

the study had been tested using real-time RT-PCR for EV, indicating that six of these 

children were EV-positive. No child had a simultaneous infection of both HPeV and 

EV. 

All of the HPeV-positive children were admitted to hospital care and had tested 

negative for other infectious agents. The symptoms (Table 7) of the patients varied; 

however, each patient had a fever. The patient infected with HPeV in May 2012 was 

older (56 weeks old) than the other patients, who were two to eight weeks old. This 

child had presented with unusual neuroimaging features, fitting the criteria of acute 

disseminated encephalomyelitis (ADEM). This child had further presented with 

slightly elevated platelet counts, with an increased level of CSF protein in addition to 

leucocytosis in serum. Four of the other children had had suspected sepsis, with 

fever, rash, poor feeding and irritability.  
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The laboratory results indicated leukopenia for three children, whereas CSF protein 

counts were slightly elevated in three patients, including the ADEM patient. 

Unfortunately, the CSF laboratory results were available for only some of the HPeV-

positive cases (laboratory findings for each child are presented in Study IV, Table 3). 

 

Table 7 Clinical features of HPeV-infected young children with suspected CNS-infection. 

Feature Number of cases 

prolonged fever 7/7 (100%) 

suspected sepsis 4/7 (57%) 

leucopoenia 3/7 (43%) 

tachycardia 1/7 (14%) 

rash 1/7 (14%) 

acute disseminated encephalomyelitis (ADEM) 1/7 (14%) 

 

These seven cases are among the first severe HPeV infections detected in Finland. 

The only HPeV infection case with a more severe outcome before these findings 

represents a single case of HPeV1-induced encephalitis in 1989 [Koskiniemi et al., 

1989]. Our retrospective screening approach revealed that all except one of the 

HPeV-positive patients had HPeV4 in autumn 2012. The single HPeV infection case 

without a known genotype remained untyped because no positive sample material 

from this child was left for genotyping. All of these patients were positive for HPeV in 

serum, whereas two of these patients were also positive in CSF, and two others were 

positive in faecal samples. Because HPeV4 has never been detected before in 

Finland, its role, as well as that of other HPeVs, in clinical infections of Finnish 

children was previously unknown. Thus, no apparent reason could be given for HPeV 

detection as part of Finnish routine diagnostics before this study. Past unsolved 

infectious cases fitting patient and clinical profiles may represent undetected HPeV 

infections. No knowledge regarding the potential role of HPeV4 infections in 2012 

outside the Uusimaa district in Finland exist because our analysed sample pool was 

limited to this area.  
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The cases of HPeV4 observed in this study may have been part of a local outbreak. 

We only detected HPeV from children with suspected CNS infection because our 

focus was on patients with more severe symptoms. Thus, whether clinically milder 

infections can also be linked to HPeV4 in Finland remains to be investigated. 

However, outbreaks of other picornaviruses have been reported previously in Finland 

[Savolainen-Kopra et al., 2011]. HPeV3 outbreaks have even been described in other 

countries [Nordbø et al., 2013; Sharp et al., 2012b].  

The serological data (II) demonstrate that HPeV4 has already been circulating in 

Finland for some time. Thus, an alternative explanation for these neonatal HPeV4 

cases may be the lack of specific, protecting maternal antibodies, which would 

predispose a child to HPeV infection. Eight percent of 1-year-old children in Study II 

had neutralising antibodies against HPeV4, suggesting that thousands of Finnish 

children may be exposed to HPeV4 before that age. Furthermore, of the Finnish adult 

population and Dutch mothers, approximately 60% had HPeV4 antibodies, leaving a 

large part of children unprotected by maternal antibodies during their first months of 

life. 

Studies regarding neonatal sepsis during the first month of life revealed that bacterial 

causes were responsible in only 10 to 15% of tested cases, whereas the rest were 

assumed to be virally induced, with EVs being the primary viral cause [Byington et 

al., 2004]. However, the causative agent remained unsolved in many of these cases. 

Although no HPeV4 has yet been detected in studies of HPeV-associated neonatal 

diseases, HPeV4 may represent one of the undetected causative agents [Benschop 

et al., 2006b; Harvala et al., 2011; Walters et al., 2011]. In addition to fever 

[Benschop et al., 2006a], HPeV4 has previously been associated with respiratory and 

gastrointestinal symptoms [Pajkrt et al., 2009]. Recently, HPeV4 was detectable in a 

single case of sepsis-like disease in France [Jeziorsky et al., 2014], a finding similar 

to the cases detected in this study. Although this recently detected HPeV4 may 

represent a newly evolved, genetically different HPeV4, we could not observe 

sufficient genetic differences in the sequenced VP1 region to support this 

assumption. 
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One of the HPeV-positive patients of our retrospective study, a patient with 

suspected sepsis, tested positive for HPeV3 in a faecal sample. The previous 

detections of HPeV3 in Finland are from healthy children (I). The other HPeV-positive 

child with a differing infection pattern had an untyped HPeV in May 2012. This patient 

was slightly older and had ADEM, which has not been previously associated with 

HPeV-induced infection. Unfortunately, we were not able to obtain other samples or 

information regarding the underlying diseases from these two patients. Thus, the 

causative relation of HPeV in relation to the clinical case presentation can only be 

suspected but not confirmed with certainty. 

Neonates with a manifested infection of unknown nature and presenting with CNS-

related or sepsis-like disease symptoms are hospitalised and treated with broad-

spectrum antimicrobials to prevent any spreading or severe damage caused by the 

infectious agent(s). Once the infectious agent is identified, then the amount of 

medication may be reduced and changed to a more targeted treatment. Therefore, 

determining the cause of a neonatal infection in the shortest possible timeframe is 

extremely important. At present, however, a large fraction remains without a definite 

diagnosis. Although no specific treatment is available for EV and HPeV infections, 

their detection is vital for choosing the right treatment. Based on our findings, HPeV 

detection methods were added to routine diagnostics in Finland, representing an 

advance in paediatric care. 

 

4.5 Association of HPeV to acute otitis media and to respiratory 

infections (IV) 

As shown in Study I, the occurrence of HPeV is common in healthy children and, 

thus, often causes only mild or unapparent infections. The association of HPeV with 

common diseases of young children has been suggested in many studies [Ghazi et 

al., 2012; Ito et al., 2010; Khetsuriani et al., 2006; Pajkrt et al., 2009]. We examined 

the association of HPeV in two highly common disease groups of children: AOM 

patients and bronchiolitis patients.  
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Although the prevalence of HPeV was low among AOM cases, HPeV was absent 

from all of the 198 NPA samples from bronchiolitis patients. In AOM patients, HPeV 

was detectable in MEF samples in 5 of 200 (2.5%) infection events, of which two 

were successfully typed as HPeV1. These results indicate no connection between 

HPeV and these common paediatric diseases. 

The most common cause of AOM is considered a co-infection of bacterial and viral 

pathogens [Monobe et al., 2003; Ruohola et al., 2006]. Furthermore, the bacterial 

infection in AOM may follow an initial viral respiratory infection [Heikkinen and 

Chonmaitree, 2003]. Therefore, the association of a virus with AOM is often studied 

using both MEF and NPA samples. Our lack of data regarding the presence of HPeV 

in NPA samples of AOM patients limits the conclusion that HPeV has no association 

with the onset of AOM. 

HPeV1 is one of the many potential human pathogens suggested to cause AOM 

[Tauriainen et al., 2008]. However, the detection rate of other viruses, such as RV, in 

MEF samples from AOM patients is much higher than that of HPeV [Savolainen-

Kopra et al., 2009]. Although we detected only HPeV1 in AOM patients, other studies 

have shown HPeV4, 5 and 6 in NPA samples from patients with AOM [Pajkrt et al., 

2009] but could not deliver proof of causality. The presence of different HPeV types 

in AOM patients is evident, whereas the association with the disease remains to be 

confirmed. 

The role of HPeV in the onset of respiratory diseases is uncertain because HPeVs 

have only been detectable in low rates in respiratory infection patients [Harvala et al., 

2008; Khetsuriani et al., 2006; Selvarangan et al., 2011]. A recent study has 

suggested that HPeV is as common in respiratory samples from patients with acute 

respiratory illness as in samples from healthy controls, indicating no connection 

between this virus and acute respiratory illness [Feikin et al., 2012]. The absence of 

HPeV in the NPA samples in our study supports the observation that HPeV has no 

important role in the onset of respiratory diseases, specifically, bronchiolitis. 

However, our study population was quite young (<6 months) and was most likely still 

under the protection of maternal antibodies. 
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Furthermore, other potential respiratory illness-causing viruses were detectable in 

most of the samples. The presence of HPeV in MEF, NPA and other sample types 

suggests that HPeV is able to spread widely around the host body although not 

necessarily in connection to any specific disease. 

 

4.6 Phylogeny of Finnish HPeV strains (I, IV) 

Phylogenetically, the 78 Finnish HPeV isolates detected in this study predominantly 

cluster with other European strains (Figure 6). HPeV1 isolates from MEF of AOM-

patients (IV) do not particularly diverge from most of the other HPeV1s isolated from 

healthy children (I). All of the Finnish HPeV1 isolates cluster together with more 

recently isolated HPeV1 strains (HPeV1B) rather than with the original HPeV1 

reference strain Harris (HPeV1A). This finding suggests that the HPeV1 isolates 

circulating in Finland originated from a more recent HPeV1B lineage.  

The HPeV3 from a child with suspected sepsis (FI110988) clusters together with the 

Finnish isolate from 2006. These two strains share sequence similarities to reference 

strains from the Netherlands, Canada and Germany. In contrast, one of the Finnish 

HPeV3 isolates from 1997 is more similar to a Japanese reference strain. The other 

Finnish HPeV3 isolate from 1997 is genetically most divergent from all of the other 

strains. HPeV6 isolates from 2001 are more closely related with American and 

Japanese strains, whereas another HPeV6 isolate from 2002 groups closer to the 

cluster formed by Brazilian and German strains. 

 



56 

 

 

Figure 6 Evolutionary relations of 78 Finnish HPeVs (marked with a grey background) 

isolated in Studies I and IV, as well as reference strains from a 498 bp long region in VP1. 

Isolates from hospitalised children are marked with circles, whereas the ones from AOM 

patients are marked with squares. The country of discovery and the genotype are indicated 

for each reference strain. 
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The Finnish HPeV4 isolates shared high sequence homology, with 95% similarity in 

nucleotide and 98% in amino acid sequence, with the Dutch reference strain of 

HPeV4 (K251176-02), which was isolated in 2002 [Benschop et al., 2006a]. High 

sequence similarity to the reference strain in the VP1 area suggests that the genetic 

differences of the Finnish isolates, which have evolved into more potent strains than 

the reference strain, must be elsewhere in the genome. The determinants of 

picornavirus virulence may also reside outside the VP1 region. For poliovirus, the 

genetic markers affecting the virulence locate into 5ʹ-UTR [Gutierrez et al., 1997; 

Westrop et al., 1989], whereas the factors affecting that of EV71 reside in the 5ʹ-UTR 

and 2A, in addition to VP1 region [Li et al., 2011]. Therefore, a genome-wide genetic 

comparison between the HPeV4 reference strain and the Finnish HPeV4 isolates 

would deliver further insights regarding how the strains diverge on a molecular level. 

The phylogenetically close relation between Finnish isolates and different HPeV 

strains from around the world underline the global nature of HPeV distribution. 

However, because the phylogenetic relations analysed in the present study are 

based on a relatively short sequence in the VP1 protein-encoding region, only a 

general observation can be made. As aforementioned, whole-genome sequence-

based analysis would provide more information regarding the variations of these 

isolates and would reveal the potential large-scale changes caused by recombination 

events [Benschop et al., 2008c]. The evolution of parechoviruses is rapid, and 

recombination, which often causing large changes in HPeV genomes, is common 

[Benschop et al., 2008c; Calvert et al., 2010; Sun et al., 2012]. 
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4.7 High detection rate of Ljungan virus-specific antibodies in Finland 

(V) 

LV causes various diseases in its natural hosts, rodents, whereas its association with 

human diseases lacks evidence. To study the circulation of LV in Finnish human and 

rodent populations, we set up IFA tests to detect LV-specific antibodies. Cross-

testing the LV IFA with LV microneutralisation and HPeV, which is the most closely 

related virus to LV, microneutralisation for types 1-6 assured the test’s specificity, 

with no detected cross-reaction. The LV IFA test negative samples had high titres of 

nABs against HPeV types 1, 2 and 4 to 6, whereas antibodies against HPeV3 were 

absent in all samples. However, due to the differences in the microneutralisation 

methods, the titres of LV and HPeV were incomparable. 

A set of human samples for LV IFA-testing was collected from humans with 

suspected Puumala virus-induced infection, who were, consequently, assumed to 

have likely been in contact with bank voles. The seroprevalence for LV was higher in 

humans (36%) than in bank voles (18%). This result is particularly surprising because 

bank voles are the natural host of LV and because the majority of LV strains thus far 

have been isolated from bank voles and from other related rodents [Niklasson et al., 

1999; Salisbury et al., 2014]. Despite efforts, LV RNA has been detected in only few 

human samples [Niklasson et al., 2009b; Samsioe et al., 2009; Tapia et al., 2010], 

and isolating LV from these samples has been unsuccessful. Therefore, LV infection 

in humans and the LV-induced immunological reaction are poorly characterised. 

The higher seroprevalence of LV in humans than in bank voles does not support the 

zoonotic relation suggested for LV. In contrast, our results suggest circulation of LV 

or of a LV-like virus among human populations. Another possibility is that some other 

common virus shares immunogenic epitopes with LV and is responsible for raising 

the antibodies in humans that are detectable with LV IFA. Studies that are more 

detailed are required to determine which virus is responsible for the presence of LV-

specific nABs in humans. 
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5 Concluding remarks 

The Parechovirus genus represents a relatively recent genus of viruses, including the 

human pathogens HPeVs and the rodent-infecting LVs. The presence of HPeVs 

among human populations is globally common and is often found in children with 

mild clinical symptoms. Increasing evidence has connected HPeVs to severe 

infections in neonates. LVs have been attributed with a potential zoonotic behaviour; 

however, their connection to human diseases remains to be established. Our project 

aimed to deepen the available knowledge regarding HPeV and LV by describing their 

epidemiology in Finland and by examining their involvement in various paediatric 

diseases. 

The epidemiological observations in this study demonstrated that HPeVs are highly 

common in healthy Finnish children. Practically every individual encounters HPeVs 

during the first years of life. The common presence of HPeV1 in healthy children 

suggests that HPeV1 often participates in unapparent infections. In Finland, HPeV 

appears to be in circulation throughout the year, with a seasonal peak from October 

to November/December. Although antibodies against many HPeV genotypes were 

present, the genotype primarily detectable from stool samples was HPeV1. 

Therefore, future studies are required to examine the actual circulation of other types 

of HPeV. 

Our microneutralisation data demonstrated that antibodies against HPeV1 to 6 are 

present in high levels in adults and children over five years old. Although the 

seroprevalence of HPeV-specific antibodies expectantly increased with population 

ages, this seroprevalence already reached near maximum in five-year-old children. 

The high seroprevalence for HPeV2 and 4 to 6 also indicated that these types are 

much more common than previously observed. Interestingly, all six types appear to 

be circulating in Finland. Only antibodies against HPeV3 were detectable in low 

levels. Intrigued by this fact, we observed that this genotype might employ a strategy 

to avoid its own neutralisation. Thus, studies based on HPeV3 antibodies do not 

deliver a reliable picture regarding its prevalence.  
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Because HPeV3 is a serious pathogen causing severe neonatal infections, the 

mechanism and role of its stronger pathogenicity demands further investigated.  

The majority of HPeV-induced infections seem to be clinically mild or unapparent, 

thus remain undetected. Although HPeVs are extremely common in young children, 

we observed no connection between them and two common paediatric illnesses, 

AOM and bronchiolitis.  

We detected and isolated HPeV type 4 for the first time in Finland from young 

children with sepsis-like disease during a potential local epidemic in autumn 2012 in 

Helsinki. The association of HPeV4 to severe human diseases had not been 

established before this study. These first severe HPeV-induced infections in Finland 

demonstrated that the role of HPeVs in cases of suspected CNS-infection or sepsis-

like disease in young children is as serious as that of EV. Therefore, we stressed the 

addition of HPeV detection to clinical diagnostics. Specific knowledge regarding 

causative agents in neonatal infections is vital for ensuring the best course of 

treatment. Further investigations are required to understand why neonatal HPeV4 

infections previously remained undetected. A complete sequence analysis of the 

Finnish HPeV4 strain may help in clarifying the recent epidemic in Finland. An 

analysis of maternal antibodies represents a further measure in resolving the 

question of whether children with no maternal antibodies are at higher risk for HPeV4 

infection. An analysis of different sample pools from individuals of different ages 

would provide additional insight regarding the potential circulation of HPeV4 in a 

wider population. 

The seroprevalence for LV was higher in humans than in bank voles, suggesting that 

zoonotic transmission of LV from bank voles to humans does not occur. The 

presence of antibodies for LV in humans indicates that an LV or LV-like virus is 

commonly circulating in Finnish populations, independent of those viruses circulating 

in rodent populations. The identification and isolation of an LV or LV-like virus from 

humans in the future is not only important for obtaining a better picture of their 

circulation pattern but also for understanding the character of a human-borne LV. 
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