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1 Introduction

In the recent years sequenced genomic data has become an enormous aid in virtually
any biological research. The sequencing technology has made a significant progress
in the last 15 years bringing the run-time and cost of sequencing down. The ready
availability of sequenced data has made possible a novel approach to treat diseases
and come up with new medicine. For example, in the recent case of the Ebola out-
break, the sequenced data of the virus led to finding the origin and transmission
of the virus [1]. A variation of next generation sequencing technology is RNA se-
quencing (RNA-Seq), which is used for revealing a transcriptome, the set of RNA
molecules, as well as its quantities at a moment in time. Among other uses, the
transcriptome data provides the ability to look for changes in gene expression levels
that sheds light on the activity of particular genes.

Despite all the progress made in sequencing technology, the process is computation-
ally intensive. Data sets measure in terabytes and analysis might take days, if not
weeks or months to complete. In order to speed up the analysis, several computers
may be employed to process data in parallel. This approach is called parallel or
distributed computing. In the heart of a parallel computing solution lies a resource
manager, a piece of software that coordinates execution of jobs between different
computers. Another essential piece of parallel computing is an ability to share data
between computers.

The goal of this work is to speed up processing of RNA-Seq data using distributed
computing methods. Our implementation is built on top of Anduril, a workflow
system for scientific data analysis, but also can be used on its own. We evaluated a
number of resource managers, as well as distributed storage mechanisms to make a
distributed computing solution accommodating our needs. As a case study we use
an RNA-Seq workflow for Anduril that is designed to process raw RNA-Seq data into
a more usable form and convert it to gene expressions matrices. The RNA-Seq data
in question comes from patients suffering from lymphoma, a type of blood cancer
and the ultimate goal of the case study is to determine which genes are responsible
for facilitating the disease.

The thesis is organized as follows. Section 2 provides necessary biological background
information, details on Anduril, an overview of distributed computing, as well as an
evaluation of several resource managers and shared storage systems. In Section 3 we
provide technical details about the implementation with usage examples. Section 5
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evaluates the performance of the RNA-Seq workflow run using a number of threads,
running time and CPU load as metrics. Finally, in Section 6 we discuss performance
of the solution, as well as possible directions for future research.
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2 Background

2.1 DNA Sequencing

The building block of life is deoxyribonucleic acid or DNA, a molecule that encodes
genetic instructions that define a living organism. DNA molecules take a form of
a double-stranded helices that are made of a sugar phosphate backbone that has
building blocks called nucleotides or bases attached it (Figure 1). Each nucleotide
can take one of four forms, adenine, cytosine, guanine and thymine that are encoded
as letters A, C, T, G. The strands are connected together using a process called
complementary base pairing, such that the A base always pairs T and the G pair
with C. Thus one strand always mirrors the other one and the combination of two
nucleotides is called a base pair.

Figure 1: Structure of DNA.

The process of DNA sequencing determines the sequence of nucleotides from an or-
ganic tissue of an organism. Sequencing is a method that transforms data stored
in DNA molecules into data that can be read and processed by computers. DNA
sequencing takes root in the 1970s, when the Sanger sequencing was introduced [2].
The technology is based on a chain termination method, in which a DNA sequence
is copied repeatedly producing fragments of different lengths. This is achieved by
special nucleotides called chain terminators. When encountered they stop DNA
polymerase from further copying. Thus a large number of fragments of different
length with fluorescent chain terminators attached to their ends is produced. The
fragments are put into a gel matrix ignited by electrical current, which sorts frag-
ments by length. At the end of the matrix a laser reads a fluorescent label of each
fragment and stores its value, thus producing the target sequence. [43] At the time
of creation the technology was limited only to producing the sequences of several
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hundreds base pairs a year, but over the years the technology matured leading to
more automation and lower costs. Eventually the Sanger method led to the only
finished-grade sequencing of human genome. Even though the Sanger sequencing
dominated the field for almost 25 years, by 2000s limitations in the technology and
the need for more efficient, cheaper and faster sequencing technologies became ap-
parent.

2.1.1 Next-Generation Sequencing

In early 2000s next-generation sequencing (NGS) technologies took hold. Next-
generation sequencing is an umbrella term that incorporates various sometimes rad-
ically different methods for inexpensive and efficient sequencing. A common trait of
NGS technologies is massive parallelization, which is vastly superior to the maximum
number of 96 sequence reads achieved with the modern Sanger technology [44]. The
parallelization of the sequencing process dramatically decreases the time needed to
obtain the sequence while keeping the costs low. On the other hand, Sanger method
produces read lengths longer than those produced by NGS technologies. For the
time being this is a clear advantage over NGS, especially with sequencing repetitive
regions and de novo sequencing (that is determining a sequence of a previously un-
sequenced organism). However, the NGS technology is rapidly moving forward and
the prices of sequencing are going down and NGS are expected to phase out Sanger
sequencing.

Some of the most prominent NGS platforms include Roche 454 pyrosequencing, sev-
eral products by Illumina, SOLiD/Life/APG and IonTorrent. Differences between
these technologies are characterized by read lengths, error rate, cost, the amount of
data output per run and run time. The key characteristics of these platforms, as
well as the Sanger platform are summarized in Table 1 [52] [53].

Table 1: Comparison of sequencing technologies.

Platform Read length Error rate Run time Output data Cost/Mb

Ion Torrent 200bp 1.71% 2h <1Gb $0.63

Roche 454 700bp 0.01% 24h 0.7b $31

Solid/Life/APG 50–100bp 0.06% 7–14d 120Gb $0.15

Illumina MiSeq <150bp 0.80% 27h 1.5–2Gb $0.5

Sanger sequencing 400–900bp 0.01% 20m–3h 1.9 84Kb $2400
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Next generation sequencing technologies include a number of methods, which gen-
erally fall into three categories template preparation, sequencing and imaging, and
post-processing [45]. The technologies differ by how they perform each of these
steps. The process is illustrated in Figure 2.

The template preparation begins with splitting DNA into smaller fragments. Adapters,
short known DNA sequences, are then added to both ends of the fragments. Since
current imaging technology does not allow detecting single events, the genetic ma-
terial needs to be amplified, which is commonly achieved using a variation of PCR
(Polymerase Chain Reaction). Two different types of PCR are used: emulsion PCR
(emPCR) is employed by Roche 454 and Life/APG, and solid-phase amplification
as used by SOLiD and Illumina. Finally the fragments are immobilized to a solid
surface for support, after which they become ready for sequencing.

In the next step, the prepared template is sequenced and imaged. Illumina and Ion-
Torrent use a sequencing by synthesis method, where new DNA fragments are syn-
thesized out of prepared DNA templates. DNA polymerase, an enzyme that creates
a DNA strand out of nucleotides, is used for synthesis by Illumina, Roche 454 and
IonTorrent. SOLiD, on the other hand, employs a method called sequence by liga-
tion, which involves another enzyme, DNA ligase for synthesis. As single nucleotides
are incorporated into growing DNA strands, they are imaged and recorded as a se-
quence. Illumina achieves imaging by detecting fluorescently labeled nucleotides in
the growing DNA strands. Roche 454 uses a chemical called luciferase to tag in-
dividual nucleotides. Luciferase emits light that can be detected for determining a
corresponding nucleotide. IonTorrent, on the other hand, does not employ optical
imaging methods, but instead detects pH changes, which are caused by release of a
hydrogen ion during the synthesis of a DNA strand.

After sequencing is complete, raw sequence data is processed and analyzed. The
first step is to filter out low quality reads and remove adapter sequences that were
added in the sequencing step. The second step involves reconstructing fragments
to a complete genome. In case of de novo sequencing the data is assembled into a
complete sequence. Otherwise fragments are mapped to a reference genome. After
this stage, the sequencing is complete and the reconstructed sequence is ready for
further analysis and applications.

Ready availability of genetic data has dramatically changed the way biological re-
search is conducted [43]. Instead of being a scientific curiosity, sequenced genetic
data is now being ubiquitously used as an aide in life sciences research. Practical
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Figure 2: Overview of the next generation sequencing technology
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applications of sequenced data are numerous and include among others identifying
genes that result in decease processes, comparative biological studies of different
organisms and study of bacterial and viral species for better understanding the un-
derlying mechanisms [50].

2.2 RNA Sequencing

According to the central dogma of molecular biology, DNA is converted to RNA,
which in turn makes proteins (Figure 3). The process of converting DNA into
RNA is called transcription. The first step of transcription is a creating a copy
of a DNA strand using an enzyme called RNA polymerase II. The newly created
copy is called pre-mRNA (a messenger RNA) and is essentially a complementary
base-paired copy of the DNA template with thymine (T) bases replaced uracil (U)
bases. The resulting pre-mRNA is further transformed into the mature mRNA. The
process involves RNA splicing, a process that filters out the pre-mRNA code for
the parts that will be included in the final mRNA (exons), while leaving out other
parts (introns). Moreover, splicing may take an alternative approach resulting in
a different, but yet functional mRNA [42]. Alternative splicing might explain the
phenotypical diversity of organisms, that have relatively few genes, such as humans.
It is a widespread phenomenon and for example, the work of Wang [41] suggests
that 92-94% of human genes are a subject to alternative splicing.

RNA sequencing (RNA-Seq) is a method to reveal a snapshot of a transcriptome us-
ing data obtained by the means of next-generation sequencing. It is similar to DNA
sequencing, but unlike a genome, transcriptome data is dynamic and constantly
changes based on environmental factors. Ultimately RNA-Seq allows complete an-
notation of all the genes and their isoforms. Even though the technology is relatively
new, a number of methods to perform RNA equencing already exist. [24]

Obtaining RNA-Seq data involves several steps, which are depicted in Figure 4.
The starting point is a set of mRNA that are extracted from the biological material.
After the extraction, mRNAs are fragmented and converted into a cDNA library
with adapters attached to one or both ends of each fragment. cDNA stands for
complementary DNA and represents a fragment which is complementary to the
original one according to the base pair ruling (A is complementary to T and C is to
G). Once fragments are prepared they are sequenced using one of next-generation
sequencing techniques. Depending on a particular sequencing method, a fragment
can be sequenced either from one end (single-end) or both ends (paired-end). In the
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Figure 3: Central dogma of molecular biology. DNA is transcribed to RNA, which
is translated to proteins.

paired-end sequencing a sequenced fragment becomes known on its ends, while the
middle part remains unknown. Any next-generation sequencing technology can be
used for RNA sequencing and sequencing technologies like Illumina, SOLiD and 454
Life Science have been successfully employed. [19]

One feature of these sequencing methods is a short length of reads that varies from
50 to 700 basepairs. To reconstruct the whole transcriptome the reads must be
reassembled. Reassembly is not a trivial task due the presence of sequencing errors
and introns in the reference genome. There are several ways to approach reconstruc-
tion. First, if a reference genome exists for the sequenced data, individual reads can
be aligned to the reference data. This method is relatively easy and computationally
less intensive and thus preferred. Unfortunately reference data is not always avail-
able, which might be the case for sequencing of novel organisms. If the reference
data is not available, then the transcriptome is reconstructed using de novo assem-
bling strategy. In de novo assembly individual reads are assembled into a number of
De Bruijn graphs, multidimensional directed graphs that represent overlaps between
symbols [19]. Individual graphs are then assembled into one graph to merge contigs
and remove redundancy. In the third approach reference and de novo assembling
strategies can be combined to detect novel transcripts. The general approach of this
hybrid strategy is first to construct a partial genome using reference assembly and
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Figure 4: Overview of the RNA sequencing process

then employ a de novo approach. Finally after transcriptome is assembled, a gene
expression profile is created and the data is analyzed by counting the number and
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density of exons, splice events and new candidate genes. [19]

2.3 Anduril Workflow System

Anduril (ANalysis of Data Using Rapid Integration of aLgorithms) is an open-source
cross-platform component based workflow system for scientific data analysis [14].
The system is flexible and extensible and virtually can be tailored for arbitrary
data processing and analysis. However, the emphasis is made on analyzing high-
throughput data produced by life science disciplines. Anduril provides out of the box
support for analyzing gene expression, SNP, microarray, next-generation sequencing
analysis, biodatabase mining and cell imaging analysis data among others. Adding
support for analyzing data of other types is a matter of developing a new component,
which can be easily plugged into the Anduril framework. Anduril has been developed
and is maintained by Systems Biology Laboratory at the University of Helsinki.

The central concept in Anduril is a workflow. A workflow describes a series of
processing steps that collectively perform a certain task. Each step is described by
a component, a piece of reusable executable code, which accepts a number of inputs
and produces one or more outputs. Steps are chained together in a pipeline with the
outputs of components acting as the inputs for the next component in the pipeline.
One benefit of this approach is a loose coupling, meaning that a component may
be freely replaced with another one, as long as input and outputs are the same. As
the bioinformatics field makes rapid advances , this is a very desirable feature that
makes a quick response to technological changes possible.

Components communicate with each other using a file system. Workflows store all
the output in an execution directory with a separate subdirectory for each compo-
nent. The input and output of a component are represented as files in the execution
directory. This approach allows workflows to save its interstate by default. If execu-
tion is halted midway, during the next run Anduril will find files from the previous
run and automatically resume the workflow. Another benefit is its ability to easily
analyze the output of each component separately even after the execution is finished.

Workflows are described using AndurilScript, a custom programming language. An-
durilScript supports typical features found in a programming language such as vari-
ables, data types, functions, looping and branching. Components are incorporated
in AndurilScript as function calls with function parameters acting as the input and a
return value as the output. Furthermore, AndurilScript has a notion of annotations,
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special parameters that provide additional information about a component or mod-
ifies the execution logic of component instances. For example, the @host annotation
specifies the host, on which component is executed in the remote execution mode.

Below is an example of a trivial Anduril script. The script looks for input values
in the files in1, in2, m1, m2. Files in1 and in2 contain simple numeric values and
m1, m2 contain matrix values. Numeric values are summed, while matrix values are
summed and multiplied. Finally end values are processed for output.

/∗ Numeric inputs ∗/
in1 = INPUT( path="in1 ")
in2 = INPUT( path="in2 ")

/∗ Matrix inputs ∗/
m1 = INPUT( path="m1")
m2 = INPUT( path="m2")

/∗ Add two i n t e g e r s and s t o r e s r e s u l t in the va r i ab l e add ∗/
add = Add( x1=in1 . in , x2=in2 . in )

/∗ Add two matr i ce s and s t o r e s r e s u l t in the va r i ab l e madd ∗/
madd = AddMatrix (m1=m1. in , m2=m2. in )

/∗ Mult ip l e two matr i ce s and s t o r e s r e s u l t in the va r i ab l e mul ∗/
mul = Mult ip ly ( x1=add . sum , x2=in2 . in , x3=mstats .max)

/∗ Output v a r i a b l e s ∗/
OUTPUT(add . sum)
OUTPUT(mul . product )
OUTPUT(madd . sum)

2.3.1 Remote Execution

Anduril has a rudimentary support for distributed computing in the form of remote
execution. Components can be executed remotely by using the @host annotation
and a supplementary hosts file. The @host annotation specifies a remote host the
component is intended to be executed on and the hosts file contains detailed infor-
mation on remote hosts and their file systems. Provided information include server
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addresses, login information, path mappings, computational slots per host and so
on. Components are executed on remote hosts using SSH protocol. Public/private
key based login must be set up beforehand for automatic execution. Each remote
host must have Anduril and all the other required software installed. In case there
is no common file system shared between hosts, required files are copied from one
host to another using the rsync utility. Rsync is software for Unix systems that
synchronizes files between different locations, both local and remote ones.

The host a workflow is run from acts as a central node, meaning that it always
participates in the file copying process, acting either as the source or the destina-
tion. This approach is far from efficient and results in excessive data transfer. To
illustrate the problem consider the Figure 5. Consider an example set-up involv-
ing one local node that starts an Anduril workflow consisting of two nodes each of
which is executed on remote nodes. The first component is executed on the first
remote node and the second component on the second node. The local node does
not execute any components, but only acts as a workflow initiator and executor.
Thus the local node initiates the workflow and submits a component for execution
to the first remote node. Once execution finishes, next component in the workflow
is executed on the second remote node. With no shared storage present data from
the first execution must be copied back to the local node and then copied further
to the second remote node. Even though local node does not require output data
from the first component, it still acts as an intermediate transfer point resulting
in excessive data transfer. On the other hand, with shared storage all the data is
stored there and data is accessed only on a need basis. Furthermore, shared storage
can be accessed as a local file system, which eliminates the need to copy files before
accessing, further improving performance. [21]

Another problem with the remote execution is a laborious set up. Setting up remote
execution implies the knowledge of remote nodes, their file systems and relevant
paths. All this information must be gathered beforehand and the burden is laid
on the end-user. The system is far from transparent and requires familiarity with
non-trivial concepts such as setting up and using SSH keys in order to be taken into
use.

2.4 Parallel Computing

Parallelization is a concept that is not only limited to computing, but it may take
different forms. For example, a trench digging done manually by a single person can



13

Figure 5: Data transfer when no shared storage is present and with shared storage

be sped up by employing more workers to do the job. In a perfect case the time
require to finish digging the trench will be inversely proportional to the number
of additional workers. This is not always achievable, as additional people might
interfere with each other’s work. Of course, not any kind of work can benefit from
parallelization. One example of work that would not benefit from parallelization
is giving a birth to a child. If it takes for a mother roughly nine months to give
a birth to a child, adding more mothers the mix would not provide any benefit
at all. Another type of parallelization already reviewed here is parallelization in
DNA sequencing. Next generation sequencing technologies dramatically speed up a
sequencing process by massively parallelizing reads. Instead of sequencing a single
read at a single time, a modern NGS platform can process millions of reads at the
same time. Similarly data processing can be sped up by distributing work load to
several computers. As with the human example, not any kind of computing can be
sped up by parallelization. For example, tasks that depend on the outcome of other
tasks cannot be parallelized and must be executed in a serial fashion. On the other
hand, if tasks are similar to each other, but at the same time are independent of
the outcome of each other and do not require coordination between them, they can
be executed in parallel. The class of the latter problems is called embarrassingly
parallel [46]. Finally a third class of problems is a mixture of the first two. While a
program flow is serial, it may contain parts that can be parallelized.

The RNA-Seq workflow falls under the third category. The input data consists of
similar data sets that can be analyzed concurrently. There is no inter-dependencies
between data sets that would prevent parallel execution. Each data set provides
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parallelization to some degree, but much of it is executed in serial. So to recap
different data sets are embarrassingly parallelizable, while individual data sets are
a mixture of serial and parallel execution. More information on the RNA-Seq data
set can be found in Section 4.2.

2.4.1 Amdahl’s Law

The speed-up of a program executed in a parallel fashion is limited by the factor
of how much time the program spends in a serial code. One way to measure the
performance of a parallel computing solution is Amdahl’s Law, which indicates the
maximum speed-up of the overall system that can be achieved, when a part of the
system is improved [51]. More formally the law is defined as follows.

S(N) = 1
(1−P )+ P

N

N ∈ N, the number of execution threads
P ∈ [0, 1], the proportion of code that can be parallelized

For example, if half of the program code must be executed in serial, the maximum
speed-up is 1/(1−0.5) = 2, asN approaches the infinity. As the number of processors
increases the P/N ratio approaches zero, which effectively sets an upper limit on the
number of processors in use. For this reason parallelization makes sense for problems
with a high value of P (embarrassingly parallel) or alternatively the problems with
a small number of processors. As there is a hard limit on the usefulness of adding
more processors, another way to improve performance is to optimize programs to
make the 1− P value as small as possible.

2.5 Distributed Systems

In the traditional paradigm of personal computers, computing is limited to a single
computer. The computer may have several processors and each processor may have
several cores, which allows to execute several computational tasks simultaneously.
While this approach greatly enhances a computational potential, it is still limited by
CPU and memory constraints of a single machine. To overcome these constraints
computers can be connected together in a network forming a distributed system.
A more formal definition of a distributed system is a collection of independent
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computers that appear to its users as a single coherent system. A subclass of a
distributed system is a cluster that is deployed over a local network and is tailored
for a specific purpose.

One important feature of a distributed system is that the technical details and pe-
culiarities of individual nodes and inter-node communication are hidden from the
end-user. The whole system appears coherent, uniform and transparent. Ideally a
distributed system would not appear any different from a single computer to the
end-user. Another important feature is an ability to scale and change parts of a
distributed system without affecting its functionality. Ideally computers in a dis-
tributed system can be added and removed in an ad-hoc manner without interrupting
normal functioning of the system. [3]

A distributed system offers a number of benefits over traditional personal computers.
First of all, it makes possible access to remote resources. Instead of equipping each
computer with a large file system, a distributed file system might be used, thus
simplifying access of files and resulting in economic savings. Secondly, a distributed
computing power allows computing problems that are too demanding for tackling
on a single computer. These problems are solved by assigning each computer with
solving a part problem and finally combining results together. Thirdly, a properly
designed distributed system makes possible scaling and increasing a computational
potential. While it is feasible to add more computing power to a personal computer,
it works only up to a certain point. There is a limit how much memory can be
installed or how fast processor a personal computer is able to support. However,
increasing computational potential of a distributed system is a matter of adding
more nodes to the system. Ideally this process is transparent to users and can be
done on the fly, even during an execution of a parallel application.

In the heart of a distributed system lies a resource manager (also known as a work-
load manager), a computer application that monitors and controls allocation of
limited resources between jobs. A closely related concept is a job scheduler, which
makes decisions on the order of execution of submitted jobs. Often these two appli-
cations are combined into one. Another essential component in a distributed system
is a storage system accessible to all the nodes. A distributed storage allows to share
data between the nodes without having to resort to copy files from one node to
another. Below is a review of several resource managers considered in this project.
Distributed file systems are reviewed in Section 2.6.
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2.5.1 Evaluation criteria

The following criteria divided into three three priority categories were adopted in
the evaluation of distributed solutions.

Must have

• distributed execution of jobs

• supports a shared file system between compute nodes

• consumable CPU slots to limit CPU overloading

• can be integrated into an open source program (BSD/GPL license)

High-priority

• job scheduling and load balancing

• file transfer between compute nodes without a shared file system to reduce
unnecessary I/O

• pre/post-execution hooks to customize job execution (e.g., file transfer)

• mapping of file paths between file systems

Low-priority

• consumable resources to implement memory usage limiting

• easily integrated into a Java program (e.g., Java API)

More informally the goal of this work is to build a distributed system capable of
sharing execution jobs between computer nodes, as well as provide a distributed
storage mechanism. The solution shall work both on its own, as well as in conjunc-
tion with the Anduril software. The latter requirement applies both on a technical
and a license level. High-priority features such as file transfer without a shared file
system, execution hooks and mapping of file paths are designed to mirror existing
features of Anduril’s remote execution mechanism. While these are desired to have,
they are not essential, if a shared file system is one of pre-requisites.
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2.5.2 Slurm

Slurm (Simple Linux Utility for Resource Management) is an open source resource
manager for Linux systems that is scalable to clusters of all sizes. Slurm is capable of
managing consumable resources such as CPUs, GPUs (Graphic Processing Units)
and memory among submitted jobs. Slurm is extremely scalable and is able to
operate both on mini clusters of a few nodes and on gigantic clusters with tens of
millions of processor cores. Slurm allows up to 1000 job submissions per second and
500 job executions per second. Furthermore, Slurm supports different scheduling
policies and provides a flexible Quality of Service (QOS), which allows modifying the
job queue on the fly. Slurm is fault tolerant and is capable of recovering both node
and controller failures. Additionally Slurm implements a plug-in framework, which
allows extending functionality beyond built-in features. Currently available plug-ins
offer a wide range of additional features such as storing and viewing historical data,
gathering energy consumption data, managing generic resources like GPUs among
others. [4]

The architecture of Slurm consists of a single centralized server, a number of compute
servers and optionally a backup server that assumes the role of the central server in
the case of a failure. The central server monitors and assigns resources among jobs,
as well as maintains a queue of submitted jobs and makes sure that each job get its
fare share of resources according to the selected policy. On the other hand, the task
of compute servers is to accept, execute, and report status of jobs.

As of June 2013, Slurm is used on half of the supercomputers in the Top500 chart.
Example installations of Slurm include Tianhe-2 cluster in China (16000 nodes and
a total of 3.1 million cores) and Sequoia cluster in Lawrence Livermore National
Laboratory, USA (98304 nodes and 1.6 million cores). [5]

2.5.3 TORQUE Resource Manager

TORQUE (Terascale Open-Source Resource and QUEue Manager) is another open-
source resource manager for Unix-like systems maintained by Adaptive Computing.
It is based on Portable Batch System (PBS), a job scheduler originally developed for
NASA in 1995, and features many improvements over the original PBS. It scales to
clusters of tens of thousands nodes, features advanced fault tolerance, is capable of
managing different types of resources and provides a more user-friendly logging fa-
cility than the original OpenPBS. TORQUE implements a client-server architecture
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similar to Slurm with one head node acting as a server and many compute nodes
acting as clients. [30]

2.5.4 Oracle Grid Engine

Oracle Grid Engine (OGE), formerly known as Sun Grid Engine (SGE), is an open
source distributed resource management system developed by Sun Microsystems
and currently maintained by Oracle. Like other workload managers described here,
features of OGE include high scalability, advanced scheduling, increased reliability
and flexibility. The architecture of OGE is similar to Slurm and TORQUE. Nodes
in OGE are divided into master and execution hosts. The master host handles job
submissions from users, assigns resources, dispatches jobs to execution hosts and
monitoring the overall health status of the cluster. Additionally to increase fault
tolerance, there might be a shadow master host present that assumes the responsi-
bilities of the master host in case the master goes offline. Execution hosts accept
jobs from the master host and runs them locally. Execution hosts also continuously
report the status of running jobs to the master host. [17]

Even though the software started as open source, it was commercialized later and
the current version features only a trial available for free. Nonetheless, there is a
free fork of OGE available, Open Grid Scheduler. It is based on the original SGE
and has been forked, when Sun was purchased by Oracle in 2010. The software is
maintained by the original external developers of SGE, who have been contributing
code since 2001. [18] However there have been no updates of software since 2011
and the project appears abandoned. The latest version of Open Grid Scheduler
was evaluated, but the evaluation failed at the installation step due difficulties with
compilation and lack of documentation.

2.5.5 Hadoop

Apache Hadoop [9] was also extensively evaluated for the purposes of the project.
Unlike other resource managers, Hadoop is a complete computing platform for pro-
cessing large data sets on clusters of commodity hardware. In addition to a resource
manager Hadoop provides its own distributed file system Hadoop Distributed File
System (HDFS) and a large set of related tools and technologies such as distributed
databases (Cassandra, HBase), own query language (Hive), monitoring and coor-
dination service (ZooKeeper) among others. [16] Hadoop used by thousands of
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organization all over the world, including Amazon, Facebook, IBM, Twitter and
Yahoo! [11].

Another striking difference is that Hadoop is not a general job execution mechanism,
but a framework designed for solving problems using a MapReduce computational
paradigm. MapReduce consists of two functions, map and reduce. Map function
transforms input data into a set of intermediate key/value pairs, and reduce function
combines all the intermediate values associated with the same intermediate key.
[7] While MapReduce might sound trivial, in fact many real world problems can
be solved using this algorithm. One feature of MapReduce is that any program
implementing it is parallelized by default and can be executed on a cluster for high
throughput performance.

2.5.6 Evaluation

With an exception of Hadoop, all the resource managers evaluated here are similar
in features and meet our evaluation criteria. In particular Slurm, TORQUE and
OGE fulfill P1, P3 and most of P2, except file related features. Indeed, file transfer
between nodes and file path mapping, features found in Anduril remote execution
mechanism, cannot be found in any of the evaluated resource managers. Instead all
the resource managers rely on an underlying shared file system, which is not provided
out of the box with any schedulers here with a notable exception of Hadoop.

Hadoop differed from the evaluated resource managers. Namely Hadoop offers a
rather poor support for non-MapReduce means of computation. As of the Hadoop
1.x branch MapReduce is the only computational paradigm supported by Hadoop.
Hadoop 2.x aims to fix the problem with the new YARN framework, which aim is
to support other modes of execution [10]. YARN was evaluated, but it turned out
to be extremely hard to configure and use partly due to the poor documentation
and partly due to the pre-release nature of the framework. As the result it was
concluded that Hadoop did not meet the most important requirement, a distributed
execution of jobs. Another weakness of Hadoop is limitations posed by HDFS. See
Section 2.6.2 for more details.

The commercial nature of the software was a decisive factor against deploying OGE,
even when it appears to be most feature rich and comes with a solid support plat-
form. In the end decision had to be made between Slurm and TORQUE and the
former was chosen based on its wide-spread use, extensive documentation and thriv-
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ing community.

2.6 Distributed File Systems

In this chapter we briefly describe basic concepts of distributed file systems, as they
are an integral part of any distributed application. A distributed file system can be
defined as a file system that is hosted on a server or multiple servers that allows
remote access to its resources over a network. The simplest form of a distributed file
system follows a client/server architecture. In this model data is stored on a remote
server and accessed by clients over network. For example, Network File System
(NFS) employs this architecture. In such a distributed file system files do not have
to be downloaded to a local file system in order to be used (such as in a network
storage system like FTP), but can be read or written directly. In contrast with FTP
in order to modify a file it has to be first downloaded to a local file system and then
uploaded back to the server, once the user is done with the file.

In a more elaborated view storage and access of data can be distributed over several
servers, which serves several purposes. First of all, it improves fault tolerance. If one
server goes down, it does not bring whole system with it, but only a respective part.
Furthermore to increase robustness we might introduce redundancy by replicating
data several times over multiple servers. This way a server failure would not affect
data accessibility. The second impact is increased performance. By splitting files into
multiple parts stored on different servers, we may access those parts simultaneously
in parallel thus improving the overall performance. Ceph and GlusterFS use this
strategy for example.

In the next sections we review and evaluate several distributed file systems, namely
NFS, HDFS, Mapr-FS, GlusterFS and Ceph. The primary evaluation criteria is
shared access of data, decent performance and POSIX compliance. POSIX is a
family of standards for maintaining compatibility between file systems. In particular,
we are interested in the POSIX compliance of a file system, as it would allow access
a file system in a standard manner without any designated tools.

2.6.1 NFS

NFS is a widely popular distributed file system originally unveiled by Sun Microsys-
tems in 1984. It is a part of Request For Comment (RFC) publications, an open
standard that anyone is free to implement. The current version 4.1 unveiled in 2010



21

introduced better performance, strong security, internationalization and most im-
portantly a support for parallel I/O in form of the pNFS (Parallel NFS) sub-protocol.
[23]

The primary goal of NFS is to let computers of different architectures and different
file systems to share their file system in a unified way. NFS hides details of the local
file system using a standard interface called Virtual File System (VFS). This level of
abstraction frees clients from knowing implementation details of the local file system
of a remote host. Instead a remote file system is made to appear indistinguishable
from a local one. [22]

NFS is built on top of the client/server architecture with a central server hosting
all the data. While this makes a network setup straightforward, NFS lacks features
of more advanced distributed file systems, like fault tolerance or a parallel access of
data. Unlike more advanced file systems, the failure of an NFS server will render
data unavailable. NFS mounts are also not scalable. The size of an NFS mount
is dictated by the underlying partition size. The only way to add more storage to
the mount size is to change the underlying partition size either by extending it or
installing a new hard drive.

2.6.2 HDFS

Hadoop Distributed File System (HDFS) is a distributed file system developed by
Apache Software Foundation. As the name suggest, HDFS is an integral module of
the Hadoop software stack. While HDFS can be run on its own, it is best suited
for running along with other services provided by Hadoop. HDFS is built with
several assumptions in mind. The first assumption is that hardware failures are
commonplace. For this reason, HDFS is built to withstand and quickly recover
from failing hardware. Second, HDFS is designed for processing large data sets with
typical files ranging from gigabytes to terabytes in size. High seek times make HDFS
impractical for small files and to minimize the performance impact, HDFS sets the
default block size to 64Mb. Third, HDFS is designed for streaming, rather than
random access of data. For this reason, HDFS emphasizes high throughput over
quick random access of data. Furthermore HDFS implements a write-once-read-
many access model typical for a Hadoop application. In other words it is assumed
that files are written once and never changed after that [13]. Another feature is that
HDFS does not offer POSIX compliancy out of the box, but rather relies on its own
API for data access. To offer POSIX support HDFS resorts to a FUSE (Filesystem
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in Usespace) Linux driver. The drawbacks of this approach is poor performance and
a lack of certain features, such as file append and setting file permissions. [12]

The architecture of HDFS consists of a central NameNode and a number of DataNodes,
usually one per node. NameNode is responsible for the file system namespace, co-
ordinating file access of clients and replicating data among DataNodes. DataNodes,
on the other hand, are responsible for storing actual data and providing access to it.
To handle possible failures of DataNodes, data is replicated several times with the
common case being three times. NameNode is capable of an automatic detection
of and recovering from node failures. In such a case the failed node is excluded
from the cluster and data is automatically re-replicated among other nodes to con-
form to the replication factor. One important feature not found in other distributed
file systems is data locality. The idea behind data locality is to process data on
the nodes where it is stored. This approach minimizes unnecessary internode data
traffic, which resulting in faster overall execution [13].

2.6.3 MapR-FS

MapR-FS is another distributed file system released as part of the MapR distribu-
tion of Hadoop. It is designed as a drop-in replacement for HDFS and fixes many
shortcomings of HDFS. First of all, MapR-FS eliminates the centralized NameN-
ode and replaces its functionality with distributed servers called Container Location
Database (CLDB). Secondly, it provides native full POSIX support out of the box.
Furthermore, MapR-FS provides a possibility to mount Mapr-FS partitions as NFS
mounts. Thirdly, the file system implements a full random read/write support.
Finally, MapR claims to have superior performance compared to HDFS with I/O
throughput being 5 to 100 times faster. Mapr-FS can be used either as part of MapR
distribution of Hadoop or as a replacement of HDFS in a standard installation of
Hadoop. [15]

2.6.4 GlusterFS

GlusterFS [8] is an open source distributed file system designed to run on commod-
ity hardware. Originally designed by Gluster Inc. in 2005, it is currently maintained
by Red Hat. The file system is scalable up to petabytes in size and makes it easy to
add additional storage on the fly. It is able to recover from hardware failures with
no manual intervention, as the failure recovery and replication of data is done au-
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tomatically. Unlike other distributed file systems, GlusterFS does not use separate
metadata servers, but instead metadata is stored with the file data itself. Actual
data is located using a designated mapping algorith of files and servers, which consol-
idates all the metadata into a global namespace. Furthermore, GlusterFS provides
a POSIX interface using FUSE, as well as its own Application Program Interface
(API) for extended functionality.

2.6.5 Ceph

The last considered distributed file system is Ceph. Ceph is a free open-source dis-
tributed storage solution scalable to petabytes in size and designed to store objects,
blocks and files. Originally developed by Sage Weil as his doctoral dissertation in
2007, it has been integrated into the Linux kernel since 2010. The first major stable
version was released only in 2012 and has gone through several major releases since
then. Nowadays Ceph is developed and supported by Inktank Storage. The main
difference to other distributed file systems evaluated here is that Ceph offers more
than just a file system. In addition to acting as a file system, Ceph can act as
a block device that automatically replicates and stripes data written to it among
participated nodes. Data striping is a way to improve performance of data access
by storing consequential segments of a file on different nodes, so that they can be
accessed in parallel. Ceph implements an object storage service that allows to read
and write data at a higher level in form of objects. The file system implements a
POSIX interface, making it accessible as a traditional UNIX file system.

Ceph implements all the three types of storage on top of unified reliable autonomic
distributed object store (RADOS) that consists of individual storage nodes. The
nodes in the system are divided into object storage devices (OSDs) and monitors.
OSDs are responsible for reading and writing actual data. Monitors, on the other
hand, maintain a mapping of all the data in the cluster. An unique feature of Ceph is
that the cluster map is stored on all the participating nodes in the cluster, including
file system clients. The map is lazily propagated among the nodes in a peer to peer
fashion using incremental updates, while monitors always have the freshest copy of
the map. This strategy eliminates a central point or points of the failure and makes
Ceph highly fault tolerant. [6]
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2.6.6 Evaluation

Out of these candidates Ceph and GlusterFS appear to be the most suitable choices
with their emphasis made on scalability and high tolerance. One advantage of Ceph
over GlusterFS is its native POSIX support and well-written documentation, which
appears to be more thorough than GlusterFS. NFS is also a good choice for remote
shared storage when advanced features like distributed storage or data redundancy
are not needed. The major drawback of NFSv3, a widely deployed version of NFS,
is its poor optimization of parallel data access. However NFS v4.1 aims to fix this
drawback by introducing parallel I/O. HDFS has many shortcomings with a lack
of proper POSIX support and write once/read many philosophy being the major
showstoppers. MapR appears to be a more suitable candidate than HDFS with
better performance and native POSIX support. However, both systems are aimed
to be used in conjunction with Hadoop, so there is little point to use them as a
standalone installation.
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3 Methods

3.1 Overview

As far as Anduril workflows are concerned, distributed computation can be achieved
in three different ways. The first, the most straightforward way, is a parallelization
of individual workflows. This way several workflows can be executed simultaneously
either on the same or several machines. Considering that Anduril supports multi-
threaded execution and some components are able to spawn its own threads as
well, this strategy actually provides a very basic level of parallelization. The second
way is to parallelize execution of components inside a workflow. Depending on the
implementation of a particular workflow, independent components can be executed
at the same time. The greatest strength of this approach lies in that different
components can be executed on different computers overcoming resource constraints
of a single computer. Finally, we can break execution of a component into individual
parts and run them in parallel. This method is employed by Hadoop. In this work
we consider the first two approaches, while briefly evaluate and discuss the third
one.

3.2 Computing environment

The lab, where the study was conducted in, consisted at the time of 20 members
working on different projects. In addition to personal computers of each lab member,
there is a virtual machine environment used to run heavy jobs. The environment is
shared by all the lab members and before the start of the project there was no robust
reservation system in place. Anyone could run any jobs on any virtual machine with
no guidance or supervision.

The virtual machine environment comprises of four virtual machines managed by
CSC (Tieteen tietotekniikan keskus Oy). Each virtual machine has got 24 virtual
cores and 88Gb of RAM. The environment has several distributed file system par-
titions, ranging in size from a couple of hundreds gigabytes to tens of terabytes.
Most of the file systems are mounted as NFSv3 with an exception of two GlusterFS
partitions. One of the GlusterFS partitions comprises of hard disks local to each
participating nodes, while the other one consolidates the existing NFS shares to one
GlusterFS partition.

During the time of testing the computing environment was shared with other lab
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members. For this reason we tried to carry out testing only when the cluster was
idle to minimize the impact of the jobs submitted by other users. This was not
always possible and due this there might be some distortion in the test results.

3.3 Parallelization of workflows

Slurm was deployed as a resource manager and acted as a central part of the dis-
tributed computing solution. The first step was to deploy Slurm on the virtual
machines and perform simple tests. After that testing was expanded to running real
Anduril workflows. The last step was to instruct all the lab members to use Slurm
for running their jobs. The last step was particularly crucial, as the ability to run
jobs out of Slurm’s framework was not removed and Slurm has no ability to take
non-Slurm jobs into account. Jobs run outside of Slurm would take resources from
everybody’s else degrading the overall performance of Slurm jobs.

3.4 Slurm configuration

Slurm 2.3.2 was installed on four virtual machines with the default Slurm configura-
tion. By default Slurm does not allow managing consumable resource such as CPUs
or memory, but instead employs a linear FIFO (First In, First Out) scheduling.
While this method makes a trivial scheduling possible, it prohibits a fine-grained
resource management. To turn on consumable resource management SelectType op-
tion was set to select/cons_res and SelectTypeParameters to CR_Socket_Memory
in Slurm’s configuration. The latter parameter instructs Slurm to treat CPU and
memory as consumable resources. The scheduler was set to sched/backfill, which is
otherwise similar to the default FIFO scheduler, but starts low-priority jobs first, if
their execution does not delay execution of higher priority jobs.

Additionally a wrapper script was introduced to gather and wrap commonly used
Slurm options in one place. When launched with no parameters the script submits
the job to Slurm queue and allocates four cores and 20Gb of RAM for the job. Given
the lab environment, this configuration yields four jobs per machine on average.

3.5 Parallelization of components

The next logical step was to further fine-grain distributed computation and bring
parallelization to the level of components. To achieve this Slurm was integrated
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with Anduril, so that each individual component would be submitted to Slurm as
a separate job. While Slurm provides its own batching mechanism in form of the
sbatch command, we decided against it as it would introduce an unnecessary level of
complexity on top of Anduril’s own workflow system. Instead the implementation
was build on top of Slurm’s srun command, which allows to submit jobs to the
Slurm queue in a simple manner.

The integration process was fairly straight-forward and did not involve dramatic
changes to the architecture of Anduril. As Anduril components are stand-alone
applications that can be run from command line, the solution was implemented by
prefixing component command line strings with the srun command and optional
Slurm’s arguments.

3.5.1 Execution Modes

To differentiate various ways of executing components, a concept of execution modes
was introduced. Available user modes are local (default), remote, slurm and prefix.
Local is the default mode of operation, in which everything is run on the local
machine using threads. Remote mode is a SSH invoke / rsync copy mechanism
already present in Anduril before this project. As the name suggests Slurm mode
instructs to use Slurm for running components. And finally prefix mode makes
possible to put an arbitrary prefix in front of a component command line string.
The mode is selected using the --exec-mode command line switch. For example to
run Anduril using Slurm, one would execute a following command:

andur i l run workflow . and −−exec−mode slurm

To supply arguments to Slurm, one would use a --slurm-args command line parame-
ter. Note that dashes in the argument strings must be escaped as percentage signs.
For example to run a workflow as a low-priority job.

andur i l run workflow . and −−exec−mode slurm −−slurm−args
"%n i c e 100"

The prefix mode is intended for introducing additional flexibility to execution of each
component. For example, one could use the prefix mode as a generic mechanism
that allows Anduril use with schedulers other than Slurm. Another use is to modify
a component flow or gather additional information about component execution. In
our tests, we used the prefix execution mode for gathering statistics about the run
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of each component, such as execution time and CPU load. The prefix mode is taken
into use by specifying --exec-mode prefix as a command line argument and the prefix
is defined using the --prefix argument. For example to run an Anduril workflow with
Torque, one executes a following command.

andur i l run workflow . and −−exec−mode p r e f i x
−−p r e f i x "qrun"

3.5.2 Threads and Fine-Grained Resource Management

By default Anduril limits the number of threads per workflow to four. Obviously
the number is too low for a workflow run in a distributed environment. As the
solution, the default number of consecutive threads for Slurm execution mode was
raised to 500. In case a user wishes to specify another limit, they could use the
existing --threads command line option.

Since different components have different memory and CPU requirements, it would
be beneficial to specify this information on a component level. To achieve that two
new annotations, @cpu and @memory, were introduced to allow workflow developers
to specify processor core and memory requirements of each component. The required
memory is specified in megabytes, while the number of cores is always an integer
greater than zero. The following example demonstrates how annotations are applied
in a workflow file, which results in allocation of five CPU cores and 20Gb of memory
for the component in question.

component = CSVJoin ( o r i g i n a l=in ,
rename = "number=value " ,
@cpu=5, @memory=20480)

3.5.3 Load-balancing

Slurm does not provide a load balancing mechanism out of the box. The default
modus operandi is to gradually fill nodes with jobs by assigning a new job to the node
that has already got jobs running. Only if the available resources are not enough,
the job is sent to a ”fresh” node. This strategy minimizes fragmentation of available
resources and as the result maximizes available resources under a high load. On
the other hand, with a low load the jobs are execute on the same node, while other
nodes are idle. To achieve load-balancing, a custom shell script was introduced to
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be run in the prefix execution mode. The script invokes Slurm’s squeue command
to determine a node with the least number of jobs, after which the job is sent to this
node. This approach always ensure that the nodes are filled with jobs in a uniform
manner.

3.5.4 Performance Evaluation

To measure performance of the distributed computing mechanism and gather statis-
tics, workflows were run using a custom Bash prefix script. The prefix is essentially
a wrapper around Slurm’s srun command that records start and end times of the
component by invoking the UNIX time command before running each component.
The information gathered by the time command includes total running time, aver-
age CPU load and I/O throughput. Additionally the script records the name of the
component and the node it was run on. All this information is written to separate
files, one for each component. The data was parsed using a custom Python script
that processed each file and outputted data as comma-separated values (CSV) files.
The statistical analysis was performed using R software.
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4 Case Study

4.1 Overview

The original case study, which our research uses as a basis, concerns a research of
lymphoma, a blood cancer. The case study employs RNA-Seq technology to reveal a
relationship between genes and cancer activity. More specifically the ultimate goal
is to find differences in expression of certain genes associated with lymphoma in
relapse and remission patients. Finding such genes may shed light on new treatment
methods for this disease and lead to development of new drugs affecting discovered
genes [49]. The goal of our work, on the other hand, is to speed up the RNA-Seq
process by the means of parallel computing.

Cancer is an umbrella term for a variety of diseases that may take place in any
body organ and that share common traits like uncontrolled and unscheduled cell
proliferation. Cancerous cells fail to limit their growth and resist cell death, which
can result in invade adjoining cells as well as spreading to other organs [47]. This
phenomenon is called a metastasis and is the major cause of death. Cancer is
amongst the leading causes of death worldwide. In 2012 alone there were 14 millions
of cancer cases, which resulted in 8.2 million deaths worldwide. In two decades the
number of cancer cases is expected to rise to 22 millions [48].

Lymphoma is a type of cancer that occurs when lymphocytes (white blood cells) lose
their ability to regulate their growth and start to divide uncontrollably eventually
forming a tumor. Lymphoma usually develops in lymph nodes, organs of the immune
system found all over a body, or other parts of the body such as spleen, bone marrow
or blood. Lymphoma is classified by the cell type it originates in: B, T or NK
(Natural Killer) lymphocytes. The samples used as the dataset come from B-type
cells, which is the most common type of lymphoma affecting 40-50% of all lymphoma
cases [20].

4.2 Data set

The data set was obtained from Cancer Institute Cancer Genome Characterization
Initiative (CGCI). The set comprises of RNA-Seq data of 92 diffuse large B-cell
lymphoma (DLBCL) cases, divided into relapse and remission categories.

Data of each case consists of a number of paired end reads represented as FASTQ
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files. FASTQ is a text-based format that is designed for storing both genetic se-
quences and their quality scores. The number of files per case varies from 4 to 16
divided between paired reads and their mates. Each file in the case ranges in size
from 2Gb to 20Gb. The total size of the set is 9.6 Tb (Remission: 3.2 Tb, Relapse:
6.4 Tb) and there are 447 individual files in total, which we refer from now on as
samples. The division of the case data into samples is dictated by how the original
sequencing was done in the first place. Technically the files that make up a case
could be merged together, but it would greatly reduce the parallelization potential,
as less data could be analyzed in parallel. Similarly dividing files further into parts
would make execution more parallel. In this study we opted to leave the files intact.
The issues of splitting files and parallellization is discussed in details in Section 6.

4.3 Workflow description

The main aim of the original analysis is to clean up raw RNA-Seq data and trans-
form it into gene expression matrices. The analysis is summarized in Figure 6.
The process is divided into three stages: quality control, processing and statistical
analysis.

In the first stage, quality statistics of the data is gathered using the FastQC soft-
ware [25]. Low quality reads are discarded if the Phred quality score is below a
threshold value of 20 for that sample, which corresponds to the 99% accuracy rate
that a nucleotide is error free. The overall quality for a sample is evaluated by
the number of reads that has the quality score below the mean quality score. If
the number of low quality reads is above 70% (or any other user-specified value),
then the whole file is discarded. Once reads a filtered, adapters/tags are removed
from the remaining reads using the TagCleaner software [26]. The sequences of
the adapters are not always known, as in the case when sequencing is done off-site
and the information about adaptor sequences is not available. On the other hand,
adapters can be predicted by the software. After the adapter removal, the reads
are trimmed even further employing the Trimmomatic software [31]. The reads not
meeting the minimum size criterion are discarded. Furthermore the quality at the
beginning and end of reads is usually sub-par, so those must be trimmed as well. If
a read becomes too short (less than 20 nucleotides), then the read is discarded. For
paired end reads, the read must be removed from the both pairs. Finally FastQC is
run again to check the quality of the data after the trimming and files with too few
reads are discarded. This concludes the quality control stage.
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Figure 6: Overview of the RNA-Seq workflow.

In the next stage, trimmed reads are aligned and assembled into reconstructed tran-
scripts and abundance or transcripts is estimated. Reads are aligned by running the
TopHat software [27], which employs Bowtie, a Burrows-Wheeler transform aligner.
TopHat is suitable both for aligning reads for which the transcriptome is available,
as well as for the reads without reference genome. Another possible candidate for
alignment is STAR (Spliced Transcripts Alignment to a Reference) software, which
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utilizes suffix arrays and mappable seed search, clustering and stitching techniques
[29]. Assembly is performed using Cufflinks [28]. In the case of the de novo assembly
prior alignment is not required. The final step in this stage is abundance estimation,
in which abundances of individual sequences are calculated and results are put into
isoform expression tables. Abundance estimation is performed by CuffLinks as well.
This step is important to the studies, where no control samples are available.

The final stage involves analyzing the data that has been filtered, aligned and assem-
bled. This step involves measuring the differences in gene expression in the relapse
and remission samples. Cuffdiff, a program that is part of the Cufflinks software
bundle, is employed for this task.

Due to very large data sets and heavy computations, the workflow is both CPU and
I/O bound. While this makes testing more complicated, it is a perfect candidate for
our purposes, as it covers both types of bottlenecks. In our tests we concentrated
on tuning the first stage of the workflow. While the later stages of the workflow are
parallelizable, they would require a separate investigation in order to fine-tune the
performance.
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5 Results

We evaluated the performance of the presented solution using several metrics. The
first metric is the level of parallelization. That is how many workflow components
can be run simultaneously. By default Anduril allows four simultaneous compo-
nents. When run on a single computer increasing the number of threads does not
necessarily result in higher performance, as performance is ultimately limited by the
number of cores the computer has. This constraint is alleviated in a distributed
computing environment with every new node increasing the computational poten-
tial of the system. So the first metric determines whether the workflow achieves
an adequate level of parallelization that would exceed capabilities of a single node.
The second metric is a total execution time of the workflow. Naturally we aim for
faster execution time. Finally, the third metric is CPU load of each component. It
is desirable to have components to utilize the entire computational potential or in
other words to have CPU load close to 100% or even greater for multi-threaded com-
ponents. Lower than 100% CPU load might be a sign of I/O bottleneck introduced
by delays in network communication or slow disk throughput.

5.1 Parallelization

The workflow concerns processing data sets that are perfectly independent from
each other, so the problem falls under the embarrassingly parallelizable category.
As there are no parts of the program that would be executed in serial, Amdahl’s

Figure 7: One sample: a number of threads over time
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Figure 8: Two samples: a number of
threads over time

Figure 9: Four samples: a number of
threads over time

law is not applicable here and the overall performance increase is limited by the
limitations of infrastructure, such as throughoutput of I/O.

To make a parallelization profile of the workflow, the dataset was reduced to one
sample (size 7.2Gb), after which the workflow was run on a single machine. Figure 7
depicts a number of components running in parallel over time. As we can see for
the most part of the run, the workflow consisted of two parallel components. To
determine whether the same condition holds with a higher number of samples we
increased the number of samples first to two and then to four, after which we ran
the analyses again. The situation looked a bit different this time (Figure 8) with
the number of parallel components peaking at four for a period of time, but staying
at two for the most part of the run. The reason for this discrepancy is a different
size of each sample. The first sample is 7.2Gb and the second one is 18Gb, which is
reflected in component execution times. The first sample took roughly an hour to
complete, which can be seen as two additional threads running for an hour. After
the analysis of the first sample was complete, the number of parallel components
went back to two. The remaining two components belong to the second sample.
Similar execution behavior can be observed behavior in another run of 4 samples
(Figure 9). For each sample the workflow spawns two parallel component instances
and the execution time of the components corresponds with the size of the sample
in question.

As a next step we investigated how many threads each component of the workflow
creates. To do that we employed UNIX time command to measure CPU load of each
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component. Values above 100% indicate multi-threaded execution with a number
of threads being roughly equal to CPU load divided by 100 and rounded up. For
example, the CPU load of 143% indicate that the component executes two threads.
We performed a test run of 12 samples and prepared a list of the longest running
component along with their CPU load. Most of the longest running components
turned out to be single-threaded. The AdaptorRemoval component (a wrapper
around TagCleaner) which accounted for 88% of execution time is single-threaded.
The SeqQC (9% total execution time), a wrapper around FastQC, has maximum
CPU load of 121% (mean: 94%), but this is most likely because the program is
written on Java, which incurs extra CPU load due the pecularities of Java virtual
machine. Trimmomatic (4% total execution time) is clearly multi-threaded with
max CPU load 200% and mean 126%, but considering its overall low impact on the
total execution time, it is not worth to allocate an additional core for it. Other
components have very short execution times, so can be left out of consideration
altogether. To sum it up, we determined the requirements of two CPU cores per
sample for the analysis workflow.

5.2 Execution time

To determine the difference in performance of the workflow run in a distributed
fashion and the same workflow run on a single machine, we prepared a data set of
12 samples, which is the optimal maximum number of the samples that could be
run in parallel on any single machine in our environment. More parallel components
would hinder the performance of a single-machine run, as more threads than a
number of cores would compete for the limited resources. On the other hand, a low
number of parallel components would defeat the purpose of distributing execution
over several machines.

Our assumption is that execution times of both runs would be the same. However,
when run on a single machine, the workflow took 10 hours 33 minutes, but in a
distributed environment it took an hour less or 9 hours 25 minutes. With such
a modest dataset we shaved almost 10% off the execution time by distributing
execution. The cause of overhead is not known, but the most probable cause is the
hyper-threading feature of modern processors, which creates two logical cores for
each physical core and share execution resources between the logical cores.

After we determined that the distributed execution did indeed provide a performance
benefit, we looked at the execution times of analyses encompassing a different num-
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Figure 10: Execution times of different sized data sets

ber of samples. Since samples have different sizes, it makes little sense to compare
execution times of individual samples to each other. In order to perform sensible
testing we reduced the data set to one sample and performed analyses using this
sample multiple times simultaneously. This way made possible to reliably measure
execution times of different runs. Given 24 cores per machine, four machines in
the cluster and two threads per sample, 48 is the maximum theoretical number of
parallel components we are able to execute without impairing CPU performance.
Assuming each of the analyses achieve 100% CPU load, the total execution time of
these analyses should be equal to the execution time of the single sample analysis.
To test this hypothesis we compared the execution times of the analyses and 1, 2,
4, 6, 12, 24 and 48 samples run in parallel. Results are shown in Figure 10.

The execution times of all the runs fall in the same range and the size of the run
is not reflected in its execution time. It seems that there is a minimal overhead
introduced with increased parallelization, as the the minimal run of two samples
took the least time with 9% less time than the next shortest run (n=6, where n is
the number of samples). Similarly the largest run of 48 samples took the most time
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with 13% more time than the second longest run (n=12) and 37% more than the
shortest run (n=2). Interestingly enough, execution times do not grow in a linear
fashion with the increasing number of samples. This has several implications. First
of all, the workflow has attended a high level of parallelization without sacrificing
performance of individual components. This hints that we may further improve
performance by introducing more nodes to the cluster. Secondly, there might be
room for optimization here. As mentioned before, tests were performed in a shared
computing environment. Indeed at times tests were run, when other jobs were
present. Even though Slurm takes care of CPU and memory allocation, a similar
thing cannot be said about I/O resources. We investigated this issue in the next
session by measuring CPU load of each run.

5.3 CPU load

Next we analyzed the CPU load of each run. We used the data obtained from the
runs in the previous section. To get comparable statistics, we calculated the mean
CPU load of each component with a running time longer than 5 minutes. The reason
for the cut-off is that the analysis workflow has several multi-threaded, but short-
running components. Such components have no noticeable impact on the overall
execution time, but would taint statistics if included. For example, in one instance
the ImageGallery component had CPU load of 1015%, but ran only for 11 seconds.
Similarly we opted against weighting CPU loads by the execution times, as CPU
load has a direct impact on the execution time. The lower CPU load is, the slower
execution performs, so a poorly performing component would have a disproportional
impact on the overall statistics.

We analyzed CPU load of the analyses of 2, 4, 6, 12, 24 and 48 samples and presented
results as a five-number summary and means. The results are found in Table 2. The
most important observation made here is that all the runs achieved almost full CPU
utilization on average, meaning that our set-up had no I/O bottlenecks. Num-
bers suggest that further optimizations can be made, but they would have only a
minor effect on the execution times, as execution times are near their maximums
already. Secondly, it appears as the number of parallel components increase, the
maximum value of CPU load decreases. The cause of this behaviour is unclear.
One explanation could be a bottleneck posed either by network throughout-put or
by the constraints of GlusterFS, which was employed both for reading and writing
data. Another possible explanation is that CPUs used in testing are hyper-threaded,
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meaning that the actual number of cores is less than the nominal value and compu-
tational power is actually shared between cores. So under a heavy load, when all the
advertised cores approach their maximum utilization, no additional computational
power can be drawn from vacant cores.

Table 2: Basic statistics of CPU load of parallel sample analyses

N samples Min Q1 Median Q3 Max Mean

2 98 99 99 103 165 107

4 69 99 99 104 118 101

6 74 82 99 102 112 95

12 41 91 99 100 117 91

24 76 99 99 99 103 95

48 78 89 98 99 99 94

In another test we ran an analysis of 12 samples with a number of other jobs present
in Slurm. The run took 57% more time (164 minutes vs 104 minutes) than the same
run under no load. The investigation revealed that the reason for poor performance
was the Trimmomatic component. All the instances of the component achieved
only 9-18% CPU load. As CPU allocation is handled by Slurm, which ensures that
CPUs are not overbooked, the likely culprit is either network bandwidth or file
system throttling.

5.4 Heterogeneous dataset

As in previous tests the data set consisted of a single sample duplicated a number of
times, it is not a valid test for real-world performance. For this reason we performed
additional tests with heterogeneous samples. The newly formed data-set consisted
of 24 heterogeneous samples ranging in size from 5.2Gb to 36Gb. Due the size
of the data set, it would have been prohibitively expensive to run it on a single
machine to establish a baseline. Instead we opted to use as a baseline the execution
time of the largest sample (36Gb) and compare the total running time of all the
samples to it. The hypothesis is that in an ideal situation the two running times
should be along the same lines. In reality the running time of the largest sample
was 179 minutes, while the entire analysis of 24 samples took 236 minutes. In other
words the execution time of all the samples was 32% longer than the single sample
test. Even though it is considerably longer than the single sample test, it is still a
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considerable improvement over the scenario, where all the samples would be run in
serial. The CPU load analysis revealed that the slowdown was caused by the SeqQC
component, which is a front-end for FastQC. On average CPU load for the SeqQC
component was 29%, when with one sample the CPU load was 105%. Repeated
tests revealed similar results. It is not entirely clear what caused the slow-down,
but the most-likely culprit is I/O. The topic is discussed in details in Discussion.

5.5 Disk space

Because of the large sizes of data sets running out of disk space was a frequent
problem. Given several partitions available for data analysis free space tended to
get fragmented between partitions. To illustrate the problem, consider the situation
described in Table 3, which contains a snapshot of the status of mounts. The
information was obtained by UNIX command df. Each of these mounts contain
around three terabytes of space, but 13 terabytes collectively. On the other hand,
there is no way to use this total free space without resorting to painstakingly moving
files from one partition to another. To address the problem, a GlusterFS mount
consisting of these individual partitions was introduced, which allowed to tap into
this total free space. As GlusterFS allows to incorporate NFS mounts in its cluster,
the solution allowed to create the GlusterFS cluster on top of existing mounts. This
approach required only minimal configuration changes to the existing infrastructure
and users were instructed to use this mount instead of individual ones. No additional
actions were required from users.

Table 3: Snapshot of disk space usage in the lab

Partition Size Used Avail Use%

1 30T 28T 3.0T 91%

2 14T 11T 3.5T 76%

3 28T 25T 3.2T 89%

4 30T 27T 3.3T 90%

5.6 Network latency

During testing it was discovered that from time to time workflow execution failed,
as components were not able to find their output files. Subsequent runs of the
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same workflow did not result in the same failure, but often another failure took
place after that. The culprit turned out to be latency of the NFS mount workflows
were executed on. The workaround involved delaying the check of output files.
The delay was implemented in a progressive fashion, starting with the delay of 50
milliseconds and doubling the delay on each subsequent check until a maximum
wait time was reached (30 seconds by default, which happens to the default NFS
timeout). To specify a custom maximum delay, –nfs-timeout command line option
was introduced.
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6 Conclusion & Discussion

We implemented and presented a distributed computing solution on top of Slurm
resource manager. Testing was performed in the cluster of four virtual machines.
We made modifications to the in-house workflow framework Anduril to offer better
integration with Slurm and provide distributed execution of individual workflow
components. Job distribution and scheduling can be used either on its own or in
conjunction with Anduril. Our solution requires almost no preparation and can be
taken into use with minimum prior knowledge. On the other hand, optimization of
execution requires careful testing and is likely to be problem specific. For example,
a number of threads created by each component is essential information that cannot
be determined automatically, but must be investigated by trial.

To test the performance and the viability of the solution, the workflow for RNA
sequencing data analysis was used as a case study. The performance was measured
using three different metrics: the number of component executing in parallel, the
CPU load of components and the total execution time. The level of parallelization
achieved with the workflow was excellent and in fact far exceeded the capabilities
of our testing environment. As there are 447 samples in the data set and the
requirements of two CPU cores per sample, the upper level of parallelization yields
894 cores in total. In comparison our cluster is modest with only 96 cores in total. On
the other hand, this paves a straightforward way to improve execution performance
by adding more nodes to the cluster.

When execution times were compared, all the single sample tests took on average
the similar amount of time regardless of the size of the data set. The maximum
test of 48 samples took the most amount of time, but was only 13% longer than the
second largest set and 37% longer than the shortest set. Comparing execution times
of heterogeneous samples tests proved to be challenging because of a different size
of each sample. As the result the execution time of the largest sample was chosen
as a baseline and the total execution time was compared to this value. The analysis
of 24 heterogeneous samples was longer than the baseline by 32%. Finally the CPU
load was close to full in the simulated one sample tests. However, in the repeated
test with heterogeneous samples a suboptimal CPU load was observed in several
components. The possible causes for the slowdown are addressed in the Section 6.2.

A very important result, which was not covered in the results section, is solving
the computer time reservation problems that had been present in the lab. Before
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deploying Slurm in the lab, reservation of virtual machines was done manually.
Reserving computer time involved querying lab members about their jobs and telling
everyone about own jobs. The process was facilitated either verbally or by e-mail.
Either way this strategy was prone to frequent miscommunication and mistakes.
One problem in particular was that resource incentive jobs often crashed because of
insufficient resources, when jobs by other users were ran in the same node. Needless
to say this resulted in poor resource allocation and wasted both computer and human
time. Slurm deployment put an end to these problems. After a short transitional
period, when the lab members were instructed to use Slurm, reservation related
problems vanished.

6.1 Performance improvement

As mentioned the most straight-forward, but not necessarily most cost-effective way
to improve performance of the case study is to add more nodes to the cluster.
Another way to improve performance is to have more samples to start from. The
way the original dataset was structured, individual cases were split into separate files,
from 4 to 16 files per case. This split is not by any means special, it is just a way
sequencing was done in the first place. By having more files per case, we can further
improve parallelization. Dividing each sample in two allows to share computation
with one more extra node, reducing the time required to analyze the original sample
roughly in half. On the other hand, this approach has got its practical limits for
a number of reasons. First of all, we are ultimately interested in the statistics of
the case, not its parts. For example while quality scores of the large samples do
not differ from the score of the full case data, further decreasing the size of samples
would have a noticeable effect on statistics. Secondly, a plot intended for visual
inspection is generated for each sample, so each additional sample would increase
the amount of manual work. Clearly with hundreds of samples it is impractical to
analyze each one manually. Finally, some align software as STAR does not support
multiple input files, but accept input only as a single file.

As we tested only the first out of three stages of the RNA-Seq workflow, the dis-
tributed execution strategy for the remaining two stages remains to be determined.
However, it is a straightforward process, as we established necessary steps for deter-
mining resource requirements for individual components in this study. In particular
the second stage of the analysis workflow, which deals with alignment, is compute-
intensive and takes a lot of time. On the other hand, software used for alignment
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both TopHat and STAR support multi-threaded execution. Furthermore, for both
programs a number of required cores can be set as a command line parameter, so
the upper bound for the alignment phase is 24 cores, which equals to the number
of cores in a single node in the cluster. However, the real resource requirements
could differ from the stated values, so it would be beneficial to determine that by
hand. Alignment of single samples cannot be sped up further, as execution cannot
be distributed to multiple nodes. However, several samples (maximum four in our
cluster) can be aligned at the same time independently on different nodes.

In general the steps for determining resource requirements of a particular component
are as follows. The first step is to reduce the dataset to a single entity, which can
be analyzed separately and cannot be divided further in a rational fashion. In the
first stage of the case study it was a single sample and in the alignment phase it is
the single case data. In the second step the workflow is run with the prepared data
set using a statistics prefix script or any other means that is capable of determining
resource usage. After execution is finished, the statistics is ought to be analyzed
manually to determine the number of parallel components and CPU load of each
component. Multi-threaded components have CPU load higher than 100% and
the number of required cores can be obtained by the actual CPU load divided by
100 and rounding the result up. In case there are multiple parallel multi-threaded
components, the total core requirements is determined by summing up the core
requirements of each component. In this project we have not run into the problem
of having not enough memory, as default memory allocation settings were enough
for all the performed tests. Defining memory requirements could be done using time
command with the -v switch. The program reports a maximum resident set size,
which is the minimum memory requirements of a component for given input data.
For different sets of input data, memory requirements will be different, so it makes
sense to estimate memory usage with the largest available data sample size. On
the other hand, insufficient allocated memory is easy to detect, as programs tend to
crash when they run out of memory, so in the best case no such estimate is needed,
unless a crash occurs.

6.2 I/O issues

Sub-optimal CPU load was noticed with highly parallelized executions and especially
when competing jobs from other jobs from other users were present in the system.
While the reasons for the poor performance were not investigated in details, it
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was determined that CPU cores were partly idle at the time, which suggests that
the bottleneck is posed by I/O. The I/O system in question is composed of two
components: network communication and disk throughput. The throughput of
network communication is governed by the physical hardware, network topology
and software configuration of network parameters of each participating node. Disk
throughput, on the other hand, is defined by the disk hardware, the local file system
and more importantly in our case by the type of a network file system. In our testing
we employed both NFS and GlusterFS file systems. Homogeneous sample tests were
carried out from a GlusterFS partition, while the data for the heterogeneous sample
was stored on a NFS partition. As it was demonstrated a slowdown occurred, when
heterogeneous data was analyzed. Indeed, NFSv3 file system is not designed for
parallel access, which might be the culprit for the performance degradation. A
simple way to test it would be to copy data to a GlusterFS partition and repeat
tests. Another possible solution is upgrading to NFSv4.1, which optimizes a support
for parallel access. However, the impact of a network file system on performance
is beyond the scope of this project, but it would be a likely candidate for further
research.

6.3 Future prospects

As biological and life science research becomes more and more dependent on com-
puting, the need for efficient data processing will certainly grow in the future. Tools
for processing data will mature and are likely to enter a more mainstream use.
Similarly Anduril-like workflow processing systems that glue tools together into a
coherent workflow will see wider adoption. Such a system could provide ready-made
workflows for common tasks eliminating the need to implement and tweak such a
workflow yourself. Amounts of data to process will grow, while the desire for shorter
processing times will not go anywhere. Distributed computing is the answer that
satisfies both of these requirements. While our solution is more like than a proof
of concept than an end-user product, it showed that it was feasible. On the other
hand it requires a fair amount of manual work for setting up and in the current form
is hardly suitable for general research audience with no background in computers.
Indeed, in addition to improving performance, an effort must be put into making the
solution more user-friendly and easier to set up. Ideally the system would provide
complete workflows for common tasks hiding the nuances of implementation and
configuration details. The best scenario use case would require from the user only
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to choose a correct workflow and input their data in order to get processing done.

Cloud computing is another concept that might make an impact on the life sci-
ence research. In a nutshell cloud computing is a delivery of shared resources as
computing power and disk space as a utility over a network [54]. As building and
maintaining an own computing cluster is both expensive and complicated, it makes
sense to outsource computing infrastructure to a third party. This approach elimi-
nates the need for an end-user to get familiar with technical details, as well as paves
a straightforward way for adding more processing power to computation. A possible
future direction for Anduril or a similar system would involve to have a support for
a cloud computing system, while acting as an interface to such a system.

6.4 Hadoop and cloud computing

We evaluated Hadoop in this project and deemed it to be unfit as a general purpose
distributed computing solution. Hadoop, in its current form, is capable of only
running MapReduce jobs and optimized for processing very large amount of data,
which is too limiting for our purpose. Another reason was its dependence on HDFS
and poor POSIX support. Given that Anduril relies a POSIX file system for its
inter-component communication, integrating Anduril with Hadoop is challenging at
best. Nonetheless Hadoop may be a good candidate for future endeavors, as it allows
parallelize individual components beyond multithreading.

A variety of Hadoop ready tools exists for different aspects of bioinformatics com-
puting. In particular there are tools for sequence alignment [38], mapping [33] [32],
assembly [34] [35], quality assurance of sequence data [36] [37] and gene expression
analysis [39] [40]. None of these tools were evaluated in details, but it appears
that the current state of technology allows to carry on RNA-Seq and other kinds of
bioinformatics analysis exclusively on Hadoop.

As it proved to be difficult to integrate Anduril with Hadoop given the require-
ments, an alternative approach could be to set up a separate Hadoop cluster and
run jobs in it separately from Anduril’s distribution mechanism. Alternative inte-
gration with Anduril can be carried out in form of a Hadoop bridge component that
would submit a job to Hadoop from Anduril. This would allow to execute Anduril
jobs normally, while compute-intensive jobs would be delegated to Hadoop. This
would not, however, completely eliminate the problem of data sharing, as Hadoop
requires data to be present on a HDFS partition, so data must be transferred twice.
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First to the HDFS partition and after execution is complete back to the Anduril
working directory. In order to alleviate this problem a HDFS partition could be used
for an Anduril working directory. However, as POSIX support in HDFS is poor at
the time, MapR-FS might be a better choice for this purpose given its better POSIX
support and superior performance.

Another possible future solution for mitigating computational load is to perform
computations in Amazon Web Services (AWS), such as Amazon EC2 and Amazon
S3. Employing a third party computational power provider would eliminate the
need to build and maintain a computer cluster yourself. Another benefit is hassle-
free extensibility of such a solution. Amazon sells additional computer power as a
product and completely shields an end-user from technical nuances. On the other
hand, this would imply storing data on a third party’s servers, which might pose
a problem with sensitive information such as RNA-Seq data of patients’ tumors.
Another open question is so the technical viability of integration of Anduril with
AWS remains an open question. We have not pursued this direction at all, but it
might be a prospect of future research.
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