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Abstract 

Two of the main steroidogenic organs, the adrenal cortex and ovary, arise from a common 
pool of progenitors in the developing embryo, and similar signaling pathways regulate the 
differentiation, growth, and survival of cells in these tissues. Proper development of the 
adrenal cortex and ovary requires precise spatiotemporal control of gene expression and 
apoptosis; disruption of these processes may lead to congenital disorders or malignant 
transformation. This dissertation project focuses on the molecular mechanisms that 
regulate normal and neoplastic steroidogenic cell development in the adrenal gland and 
ovary.  

 
Earlier in vitro studies demonstrated that GATA6, a member of the GATA family of 

transcription factors, regulates the expression of multiple steroidogenic genes in the 
adrenal cortex. To show that GATA6 is a crucial regulator of adrenocortical development 
and function in vivo, we generated a mouse model in which Gata6 is conditionally deleted 
in steroidogenic cells using Cre-Lox recombination with Sf1-cre. These mice exhibited a 
complex adrenal phenotype that includes cortical thinning, blunted aldosterone 
production, lack of an X-zone, impaired apoptosis, and subcapsular cell hyperplasia with 
increased expression of gonadal-like markers. These results offer genetic proof that 
GATA6 regulates the differentiation of steroidogenic progenitors into adrenocortical cells. 

 
Ovarian granulosa cell tumors (GCTs), the most common sex-cord stromal tumors in 

women, are thought to be caused by aberrant granulosa cell apoptosis during 
folliculogenesis.  A somatic missense mutation in FOXL2 (402CÆG) is present in vast 
majority of human GCTs. FOXL2 is a transcription factor that plays a key role in the 
development and function of normal granulosa cells. Wild type (wt) FOXL2 induces GCT 
cell apoptosis, while mutated FOXL2 is less effective. To clarify the molecular 
pathogenesis of GCTs, we investigated the impact of FOXL2 and two other factors 
implicated in granulosa cell function, GATA4 and the TGF-β  mediator SMAD3, on gene 
expression and cell viability in GCTs. Expression of these factors positively correlated 
with one other and with their common target gene CCND2. Furthermore, we showed that 
GATA4, FOXL2, and SMAD3 physically interact and that GATA4 and SMAD3 
synergistically induce CCND2 promoter transactivation, which is reduced by both wt and 
mutated FOXL2. Finally, we demonstrated that GATA4 and SMAD3 protect GCT cells 
from wt FOXL2 induced apoptosis without affecting the apoptosis induced by mutated 
FOXL2. These findings underscore the anti-apoptotic role of GATA4 in GCTs, and 
suggest that mutated FOXL2 gene disrupts the balance between growth and apoptosis in 
granulosa cells, leading to malignant transformation. 
 

The treatment of recurrent or metastatic GCTs is challenging, and biologically targeted 
treatment modalities are urgently needed. Tumor necrosis factor-related apoptosis 
inducing ligand (TRAIL), a member of TNF ligand superfamily, activates the extrinsic 
apoptotic pathway. Interestingly, TRAIL is able to induce apoptosis in malignant cells 
without affecting normal cells. Vascular endothelial growth factor (VEGF) is one of the 
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key regulators of both physiological and pathological angiogenesis. Cancer cells often 
express VEGF receptor, and an autocrine VEGF/VEGFR signaling loop has been shown 
to exist in several types of cancer cells. We found that GCT cells express functional 
TRAIL receptors and activated VEGF receptors, and that treatment with TRAIL and the 
VEGF-binding antibody bevacizumab induce GCT cell apoptosis. These findings establish 
a preclinical basis for targeting these two pathways in the treatment of GCTs. 
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Abbreviations 

ACTH Adrenocorticotrophic hormone 
AGP Adrenogonaldal primordium 
AMH Anti-Müllerian hormone (also termed as Müllerian Inhibiting Substance) 
AMHR2 Anti-Müllerian hormone receptor 2 
BCL2 B cell lymphoma 2 
BMP Bone morphogenetic protein 
BVZ Bevacizumab 
CCND2 CyclinD2 
CYP19 Cytochrome P450 19A1 (also termed as aromatase) 
DAPI 4’,6-diamino-2-phenylindole hydrochloride 
DAX-1 Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on 

chromosome X, gene 1 
DcR Decoy receptor 
DR Death receptor 
Dz Definitive zone 
ELISA Enzyme-linked immunnosorbent assay 
FOXL2 Forkhead box protein L2 
Fz Fetal zone 
GCT Granulosa cell tumor 
GDF Growth/differentiation factor 
GDX Gonadectomy 
HPA Hypothalamic-pituitary-adrenal axis 
InhD Inhibin D 
LH Luteinazing hormone 
LMD Laser microdissection 
PKA Protein kinase A 
qRT-PCR Quantitative reverse transcriptase polymerase chain reaction 
RIA Radioimmunoassay 
SEM Strandard error of mean 
SF1 Steroidogenic factor 1 
SHH Sonic hedgehog 
shRNA Small hairpin RNA 
SRY Sex-determining region of the Y chromosome 
StAR Steroidogenic acute regulatory protein 
TGF Transforming growth factor 
TRAIL Tumor necrosis factor-related apoptosis inducing ligand 
VEGF  Vascular endothelial growth factor 
VEGFR Vascular endothelial growth factor receptor 
WNT Wingless type MMTV integration site 
zF Zona fasciculata 
zG Zona glomerulosa 
zR Zona reticularis 
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Review of the literature 

1. The development of adrenal cortex and gonads 

1.1 The common origin of adrenal cortex and gonads  

The main steroidogenic organs, the adrenal cortex and gonads, arise from a common 
precursor, the adrenogonadal primordium (AGP) (1). The AGP is derived from a 
specialized region of coelomic epithelium called the urogenital ridge, which also gives rise 
to the kidney (Figure 1). During embryogenesis, progenitors of the adrenal cortex and the 
bipotential gonad separate and begin to differentiate into their final forms. Adrenal 
precursors combine with neural crest cells to form the nascent adrenal gland, while 
gonadal progenitors combine with primordial germ cells to form a bipotential gonad 
(Figure 1). 

 

 

Figure 1 A schematic drawing of the development of urogenital ridge derivatives. 
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1.2 Development of the adrenal cortex 

In humans, the AGP separates from the gonadal anlage at 33 days post-conception (dpc). 
By the 8th week of gestation the fetal adrenal consists of two distinctive layers: the inner 
fetal zone (Fz) and the outer definitive zone (Dz). The Fz is relatively thick and contains 
large eosinophilic cells, whereas the Dz is a thin band of small basophilic cells (2). Cells 
in both Fz and Dz show characteristics of steroidogenic capability (1). At the 9th week of 
gestation, mesenchymal cells surround the developing fetal adrenal and form a protective 
capsule. Shortely thereafter, neural crest cells, the progenitors of the adrenal medulla, 
migrate inside the nascent adrenal gland. During gestation, the adrenal medulla consists of 
small clusters of chromaffin cells scattered around the fetal adrenal cortex. After birth, 
these clusters coalesce to form a structurally discrete medulla (2). Postnatally, the 
morphology of adrenal gland changes dramatically when Fz undergoes apoptosis and Dz 
forms the adult adrenal zones; zona glomerulosa (zG) and zona fasciculata (zF) (2). In 
addition to zG and zF, adult human adrenal cortex contains also a third layer, zona 
reticularis (zR), which starts to develop between zF and medulla at the age of four, and 
continues to differentiate until the age of fiveteen (3). 

 
Mouse adrenal gland development differs somewhat from that of human. As in 

humans, the mouse fetal adrenal gland consists of an inner Fz and an outer Dz.  During 
late gestation, the Dz becomes thicker and forms the zF and zG while the Fz becomes 
thinner and its cells sporadically distribute in the medulla. After birth Fz cells coalesce and 
form a new layer between medulla and zF. This layer, termed the X-zone, disappears at 
the puberty in males and during the first pregnancy in females (4, 5). 

1.3 Gonadal development 

Gonadal development starts at week four of gestation when primordial germ cells migrate 
from the extraembryonic mesoderm of yolk sac to the AGP. Primordial germ cell arrival 
induces the proliferation of epithelial cells in the AGP, which leads to formation of the 
gonadal primordium. Proliferating epithelial cells extend into adjacent mesenchymal tissue 
and form sex cords. Primordial germ cells migrate into the developing gonad and are 
surrounded by the sex cord cells that differentiate into Sertoli cells in testis and granulosa 
cells in ovary. Adjacent mesenchymal cells differentiate into testosterone producing 
Leydig cells in male and ovarian androgen producing theca cells in female. The 
developing gonad remains sexually indifferent until gestation week seven. Genetic sex 
determinates whether the bipotential gonad develops into a testis or an ovary. 
 

 Sex-determining region of the Y chromosome (SRY) gene on Y chromosome of male 
genome expressed in somatic cells of developing testis is responsible for triggering the 
male sexual differentiation (6). SRY activates transcription factor SOX9, which in turn 
activates the molecular cascade leading to a male phenotype. One of the target genes of 
SOX9 is Anti-Müllerian hormone (AMH; also termed as Müllerian inhibiting substance, 
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MIS), a member of TGF-E superfamily ligands. The main function of AMH is to cause the 
regression of Müllerian ducts, but it also regulates testosterone production by Leydig cells. 
Testosterone, in turn, causes the formation of secondary structures of male reproductive 
tract. 

 
In the past, female sex differentiation was thought to be a passive process that occurs 

in the absence of Y chromosome and SRY gene. Recently, evidence has accumulated 
indicating that certain signaling molecules are essential for the proper female sex 
differentiation. These factors include Wingless type MMTV integration site family, 
member 4 (WNT4), R-spondin1 (RSPO1), and forkhead transcription factor L2 (FOXL2) 
(7). All of these factors prevent male sexual differentiation by inhibiting SOX9 expression. 
These factors also promote female reproductive development by sustaining Müllerian duct 
differentiation. Studies with transgenic mouse models support the importance of these 
factors in female sex differentiation. Wnt4-deficient female mice are masculinised, lacking 
Müllerian ducts while the Wolffian ducts continue to develop, and expressing male 
spesific steroidogenic enzymes 3E-hydroxysteroid dehydrogenase and 17D-hydroxylase 
(8, 9). RSPO1 synergises with WNT4 in  stabilization  of  β-catenin in ovarian somatic cells, 
and the ovarian phenotype of female Rspo1-/- mouse largely resembles that of Wnt4-
deficient mouse (10). FOXL2, in turn, is important for granulosa cell differentiation and 
maintenence of the ovarian phenotype. In adult ovary, FOXL2 prevents the 
transdifferentiation of granulosa cells into testicular Sertoli cells (11). 

 
In developing ovary the primordial germ cells surrounded by a layer of squamous 

granulosa cells form primordial follicles that proliferate mitotically until the mid gestation. 
After the last mitotic division primordial germ cells enter meiosis and are thereafter called 
oocytes. By the 20th week of gestation the number of oocytes reaches the maximum 6-7 
million. Over the ensuing weeks the number of oocytes decreases rapidly as most of the 
primordial follicles undergo the degenerative process called atresia. At birth about 1-2 
million and by the puberty only 300 000 primordial follicles remain, of which only ~400 
are ovulated during the reproductive life of a woman (12). Several genes are linked to the 
primordial follicle formation, including transcription factor FIGD (13), Nerve growth 
factor (14), and zinc-finger protein ZFX (15). 
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2. Adult adrenal cortex 

2.1 Structure and function 

Adult human adrenal cortex consists of three functionally distinct layers: zona 
glomerulosa (zG), zona fasciculata (zF), and zona reticularis (zR) (Figure 2) (16). The zG 
is the outermost layer and is composed of a thin region of columnar cells. The middle 
layer, the zF, is the thickest zone comprising more than 70% of the cortex, and it is 
composed of columns of polyhedral shaped secretory cells separated by capillaries. zR is 
the innermost layer also consisting of polyhedral cells organized in round clusters of cells 
(17). In adult murine adrenal cortex the zG and zF are well defined, but the zR is hardly 
recognizable. Instead, mouse adrenal cortex contains a transient zone between zF and 
medulla, termed the X-zone (Figure 2)(18). 

 
 

 

Figure 2 A schematic depiction of the structure of adult human (A) and mouse (B) adrenal 
cortex, and the hormones produced by each zone. Abbreviations: c, capsule; zG, zona 
glomerulosa; zF, zona fasciculata; zR, zona reticularis; me, medulla; X, x-zone. 

Adult adrenal cortex is a dynamic organ that undergoes constant turnover. Stem and 
progenitor cells residing under the capsule differentiate and move centripetally to 
repopulate the cortex (19). The main function of adrenal cortex is to produce steroid 
hormones. In humans, zG secretes mineralocorticoids (mainly aldosterone), zF secretes 
glucocorticoids (cortisol), and zR is responsible for adrenal androgen production. Mouse 



REVIEW OF THE LITERATURE 

 
 
 
 

14 

adrenal cortex lacks one of the steroidogenic enzymes, P450 17D-hydroxylase/17,20-lyase 
(P450c17), which is required for cortisol production. Thus, the main glucocorticoid 
produced by mouse zF is corticosterone. Adrenal corticosteroid production is controlled 
by hypothalamic-pituitary-adrenal (HPA) axis. After certain stimulus (e.g. stress), 
corticotropin-releasing hormone (CRH) is secreted from hypothalamus. This promotes the 
anterior pituitary to produce ACTH that induces adrenocortical cells to secrete 
corticosteroids. Corticosteroids in turn act back on hypothalamus and pituitary to suppress 
excess CRH and ACTH production in a negative feedback loop (17). 

2.2 Regulation of adrenocortical function 

Signaling pathways 

Various endo- and paracrine factors, such as adrenocorticotrophic hormone (ACTH), 
luteinizing hormone (LH), activins, inhibins, and components of the WNT and Sonic 
hedgehog (SHH) signaling pathways, regulate the homeostasis of adrenocortical 
steroidogenic cells (20, 21). 

 
The WNT signaling pathway is highly conserved phylogenetically and regulates a vast 

array of cellular functions, including proliferation, differentiation, and apoptosis. WNT-
ligands exert their effects through three different WNT pathways, of which canonical E-
catenin pathway is the most prominent in adrenocortical function. As the name implies, 
activation of canonical E-catenin pathway activates the cytoplasmic E-catenin leading to 
its translocation to the nucleus, where it acts as transcription factor activating the target 
gene expression. Two of the WNT-ligand family members, WNT4 and WNT11, are 
expressed in adrenal cortex (22, 23). Transgenic mouse studies have revealed that 
complete inactivation of E-catenin causes a drastic decrease of adrenocortical cell 
proliferation and differentiation at early stages of development leading to complete 
absence of adrenal gland. On the other hand, partial inactivation of E-catenin does not 
affect the development of the fetal adrenal cortex but has effects on adult cortex causing 
cortical thinning, disorganisation, increased apoptosis, and lack of differentiation of 
adrenocortical cells (24). This finding indicates that E-catenin signaling is required for 
normal adrenocortical renewal. Mice deficient for Wnt4 have impaired zG differentiation 
and decreased CYP11b2 (aldosterone synthase) expression coupled with lower plasma 
aldosterone levels (25). 

 
Another evolutionary conserved signaling pathway important for adrenocortical 

development and function is Sonic Hedgehog (SHH) signaling. SHH ligand is a secreted 
protein that by binding to its receptor Patched (PTCH) activates the signaling cascade 
leading to target gene activation. In mice, SHH is secreted by the non-steroidogenic cells 
of adrenal subcapsule, and capsular cells expressing PTCH transduce the signal and 
subsequently upregulate transcription factor Gli1. These Gli1 positive cells migrate into 
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the cortex and differentiate into steroidogenic cells (26). Shh null mice have small adrenals 
with thin capsule/subcapsule. Altough SHH does not directly signal to the cortical cells, 
the cortical growth of the Shh null mice is largely impaired, whereas the adrenal zonation 
and hormone production in these mice are normal (20). The expression patterns of SHH 
and its receptor in the human adrenal cortex has not yet been described.  

Gene regulation 

Precise spatiotemporal gene regulation is essential for proper function and homeostasis of 
the adrenal cortex. Several key transcription factors have been implicated in regulation of 
adrenocortical steroidogenic cell function. 

 
Steroidogenic factor 1 (SF1; also termed as NR5A1, AD4BP) is an orphan member of 

the nuclear receptor superfamily. SF1 is expressed in the steroidogenic cells of adrenal 
cortex as well as in gonadal somatic cells both during development and in adult organs. In 
vitro and in vivo studies have shown that SF1 is a key regulator of steroidogenesis by 
activating the expression of steroidogenic enzymes (27, 28). It has also been shown to 
promote adrenocortical cell growth and limit apoptosis (29, 30). Sf1 null mice develop no 
adrenals and die shortly after birth (30, 31). In humans, various heterozygous mutations in 
SF1 gene have been associated with adrenal failure (32). 

 
Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, 

gene 1 (Dax1; also termed as Nr0b1), another member of the nuclear receptor family, is an 
X-linked gene whose expression is mainly restricted to steroidogenic tissues. In adult 
adrenal cortex, DAX1 is expressed in the adrenal progenitor cells located in subcapsular 
region, where it has been shown to inhibit the steroid production stimulated by SF1 (33), 
and maintain the progenitor cell pool by inhibiting the differentiation of steroidogenic 
cells (34). DAX1 deficiency in mice and mutations in DAX1 gene in humans cause the 
similar phenotype of adrenal dysplasia and early adrenocortical failure (34). 

 
Transcription factor GATA6 is one of the six GATA factors that play crucial roles in 

development, differentiation, and function of diverse organs. GATA factors recognize and 
bind to the (A/T)GATA(A/G) sequence on their target gene promoter, and trigger the gene 
transcription. GATA6 is expressed in various tissues including heart, lung, liver, gonads, 
pancreas, placenta, and adrenal cortex (35). In adrenal cortex GATA6 is expressed both 
during development and in adult organ in all cortical zones (36). Transactivation studies 
have demonstrated that GATA6, in concert with SF1, regulates the expression of multiple 
steroidogenic genes including steroidogenic acute regulatory protein (StAR), CYP11A1, 
CYP17A1, HSD3B2, CYB5, and SULT2A (37-40). Gata6 null mice die early during 
development due to defects in yolk sac endoderm function preventing the use of this 
model for studying the in vivo role of GATA6 in adrenocortical cells (41). In humans, no 
adrenocortical defects caused by mutations in GATA6 gene have been found so far, but its 
expression has shown to be downregulated in human adrenocortical carcinomas (42). 
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Another GATA family member, GATA4, is implicated in fetal adrenocortical 
development, but its expression is downregulated soon after birth (43). 

2.3 Adrenocortical tumors 

Adrenocortical tumors (ACT) are fairly common in humans and some domestic animals 
including mice, dogs, ferrets, and goats. In humans, the most common ACT is the so-
called incidentaloma, found in ~5 % of people older than 50 years old. Incidentalomas are 
devided in non-secreting and hormone-secreting tumors, of which the former are usually 
asymptomatic and do not require treatment. Hormone-secreting tumors include 
aldosterone- and cortisol-producing adenomas. These benign tumors can cause Cushing 
syndrome and other complications (44). Malignant adrenocortical carcinoma (ACC) is 
more rare with incidence of 1 case per million people per year. ACCs are also classified as 
secreting and non-secreting tumors, and they possess high metastatic potential with 5-year 
survival rate of 16-38 % (patients with metastatic ACC) (45). 

 
The molecular pathogenesis of ACT is still largely unknown. Some mutations causing 

loss or gain of chromosomes have been found from ACT patients (45). Furthermore, 
several studies have revieled abnormalities in the expression of INHA (TGF-β   signaling 
mediator), IGF2 (growth factor), CTNNB1 (gene  coding  for  β-catenin), and TP53 (tumor 
suppressor gene) in most ACCs (46-49). Moreover,   silencing   of   β-catenin pathway has 
been shown to decrease ACC cell proliferation and increase apoptosis in vitro, as well as 
attenuate tumor formation in mouse xenograft model in vivo (50). The expression of 
transcription factor GATA6 has been shown to be downregulated in human ACCs 
compared to normal adrenal cortex and adenomas, whereas GATA4, which is not 
expressed in normal adrenal cortex, is highly expressed in both adenomas and ACCs (42, 
51). Furthermore, GATA6 expression in human ACCs is shown to correlate with poor 
outcome (52). 

Gonadectomy-induced adrenocortical neoplasms 

Subcapsular adrenocortical neoplasms that histologically resemble ovarian stroma have 
been reported in postmenopausal women and men with testicular atrophy (53, 54). 
Elevated LH levels and decreased sex steroid levels of these patients have been suggested 
to cause tumor formation (21). The similar kind of phenotype is found in certain inbred 
mouse strains (such as DBA/2J, C3H, and CE/J) after gonadectomy (GDX). GDX-induced 
adrenocortical neoplasms arise in subcapsular region and invade deeper in the cortex, 
forming wedge shaped areas of tumor tissue. These sex steroid producing tumor cells 
express gonadal specific markers including transcription factor GATA4, AMH and its 
receptor, CYP17, as well as LH receptor (LHR), whereas transcription factor GATA6, 
which is normally expressed in adrenocortical steroidogenic cells, is downregulated (21). 
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The molecular mechanisms behind GDX-induced adrenocortical neoplasms are still 
poorly understood. Recently, DNA methylation is shown to play a role in formation of 
these neoplasms. It is speculated that because of the common origin of adrenocortical and 
gonadal cells the changes in DNA methylation status of the adrenocortical progenitor cells 
induced by the elevated serum LH levels could lead to cell fate conversion. It has been 
shown that the genes expressed in tumor versus adjacent normal tissue are differentially 
methylated leading to differential gene expression (55). Transcription factor Wilms tumor 
1 (WT1) is also connected to the pathogenesis of these neoplasms. Bandiera et al. showed 
that the adrenal capsule contains a pool of progenitor cells that express AGP markers WT1 
and GATA4 (56). Under normal conditions these cells differentiate into adrenocortical 
cells, but GDX triggers the differentiation of these AGP-like cells into gonadal-like cells. 
Furthermore, transcription factor GATA4 has been shown to act as a dose-dependent key 
modifier of these neopleasms. Mice heterotzygous for Gata4 show attenuated tumor 
formation in susceptible mouse strains and reduced expression of gonadal specific genes 
(57), while transgenic expression of Gata4 induces adrenocortical neoplasia in a non-
susceptible strain (58). 
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3. Adult ovary 

3.1 Structure and function 

Adult ovaries are paired oval-shaped organs located on either side of the uterus and 
surrounded by the surface epithelium. Ovary consists of a number of vesicular follicles 
that are imbedded in the ovarian stroma. Stroma is composed of blood vessels and 
interstitial cells, mostly connective tissue cells (59). 

 
Adult ovaries have two main functions: 1) to secrete sex steroids (mainly estrogen) and 

2) to produce fertile gametes for reproduction, which can be fertilized. The process of 
ovarian follicle development from primordial follicle to ovulation is called 
folliculogenesis. Different phases and regulation of folliculogenesis are discussed in more 
detailed in the next chapter. 

3.2 Regulation of follicular development 

Initial recruitment 

The first phase of folliculogenesis is formation of primordial follicles during gestation and 
right after birth (see chapter 1.3). Primordial follicles remain in a quiescent phase until 
they are recruited into the primary stage for growth. This process, called initial 
recruitment, starts already in fetal life and continues postnatally over the whole 
reproductive life until the ovarian reserve is depleted. Initial recruitment of primordial 
follicles is gonadotropin-independent unlike the later stage of folliculogenesis, the cyclic 
recruitment of antral follicles from puberty onwards. During initial recruitment the size of 
the oocyte increases and granulosa cells around the oocyte change their shape from 
squamous to cuboidal (Figure 3). After this morphological transformation, granulosa cells 
start to proliferate forming two or more layers of cells around the oocyte. This stage is 
called secondary follicle (Figure 3). At the secondary stage a layer of theca cells is 
recruited from interstitial stromal cells to surround the follicle. As folliculogenesis 
proceeds and granulosa cells accumulate, a fluid filled space, termed the antrum, forms 
within the granulosa cell layers. Antrum formation divides granulosa cells into two 
distinct compartments, cumulus cells surrounding the oocyte and mural cells lining the 
follicle wall. This stage is called antral follicle (Figure 3) (reviewed in (60)). 
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Figure 3 A schematic drawing of folliculogenesis. 

Initial recruitment and follicle growth from primordial to antral follicle stage are 
regulated by the complex interplay between the oocyte and somatic granulosa and theca 
cells. Certain extra-cellular matrix components as well as paracrine and autocrine growth 
factors play roles in this regulation. Some of these factors, including tumor suppressors 
TSC-1 and PTEN, forkhead transcription factors FOXO3a and FOXL2, cyclin-dependent 
kinase inhibitor p27, and TGF-E member AMH inhibit the activation of follicular growth. 
In mouse models, loss of these factors leads to premature activation of the primordial 
follicle pool and premature ovarian failure (POF) (61-66). In addition to its inhibitory role, 
transcription factor FOXL2 has been shown to be important for the differentiation of 
granulosa cells from squamous to cuboidal state. Mice with mutated Foxl2 gene show 
normal primordial follicle development but granulosa cells fail to complete the squamous-
to-cuboidal transition leading to the absence of secondary follicles (67). In humans, 
mutations in FOXL2 gene have been associated with Blepharophimosis-ptosis-epicanthus 
inversus (BPES) syndrome causing premature ovarian failure (POF) (68, 69). 

 
Other important regulators of initial recruitment are the Transforming growth factor 

(TGF)-E superfamily members. Growth/differentiation factor (GDF) 9 is secreted from 
oocytes where it is expressed from primary follicles until ovulation (70). Gdf9 deficient 
mice are infertile and the follicle development is arrested at the primary stage. These mice 
also show impaired recruitment of theca cells around the developing follicle (71). In vitro 
studies have demonstrated increased number of primary and secondary follicles in human 
and rodent ovarian cortical samples cultured with oocyte-derived recombinant GDF9 (72-
74). These findings suggest that GDF9 is an important positive regulator of follicle 
development. Another oocyte derived TGF-E family member, Bone morphogenetic 
protein (BMP) 15, positively regulates follicle growth by stimulating granulosa cell 
proliferation (75). BMP4 and BMP7, derived from theca cells, also promote the follicle 
growth from primordial stage onwards (76, 77). Granulosa cell derived activin has been 
shown to promote pre-antral follicle growth and granulosa cell proliferation through 
autocrine and paracrine effects in rodent models (78-80). TGF-E is secreted from 
granulosa and theca cells during pre-antral follicular growth. In rodents TGF-E has shown 
to promote granulosa cell proliferation (79). 
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Cyclic recruitment 

At the puberty, when the levels of circulating follicle-stimulating hormone (FSH) rise, a 
few developing antral follicles are rescued from atresia during each menstrual cycle. This 
process is called cyclic recruitment, and unlike initial recruitment it is gonadotropin 
dependent. The pool of recruited follicles continues growing as the granulosa and theca 
cells proliferate further and the antrum increases in size. At this stage theca cells begin to 
express LHR and produce androgens stimulated by anterior pituitary-secreted LH. 
Granulosa cells express both FSH receptor (FSHR) and LHR. Furthermore, Cyp19 
expression of granulosa cells enables the estrogen production from thecal androgens. One 
of the recruited follicles is chosen as the dominant follicle through a very comlex and 
incompletely understood chain of events. This dominant follicle grows faster and develops 
into a Graafian follicle competent for ovulation and fertilization (Figure 3). The rest of 
recruited follicles undergo atresia. The LH surge triggers ovulation and shifts granulosa 
cell steroid production from estogen to progesterone. During ovulation the follicle wall 
ruptures, and the oocyte is released into the peritoneal cavity. The remaining follicle 
degenerates and forms the corpus luteum whose main function is to produce progesterone 
(reviewed in (60)).  

 
The growth of recruited follicles, their steroidogenic activity and responsiveness to 

gonadotropins, as well as prevention of premature luteinisation is controlled by endo-, 
para-, and autocrine factors. FSH is one of the two gonadotropin hormones secreted by 
anterior pituitary. It exerts its effects by binding to its receptor FSHR, which then activates 
the protein kinase A (PKA) pathway. Activated PKA pathway in granulosa cells, in turn, 
activates genes important for follicle development, including inhibin D and E, Cyp19, and 
cell cycle regulator CyclinD2. The importance of FSH for proper follicle growth and 
development has been demonstrated in studies using mice lacking either FSH or its 
receptor. Both of these mutants are infertile, and the folliculogenesis is blocked at antral 
stage (81, 82). 

 
Activin, a member of TGF-E family, has shown to induce the FSHR expression in 

granulosa cells in vitro (83). It also suppresses the growth of primary follicles while 
promoting follicular growth at later stages, and positively regulates Cyp19 and LHR 
expression (80, 84, 85). Activin receptor deficient mice show arrested follicle 
development (86). Inhibin A and B, expressed in granulosa cells of antral follicles, oppose 
the effects of activin. While activin is shown to stimulate the FSH production of pituitary, 
inhibin A and B decreases it (87, 88). Inhibins have also shown to decrease the growth of 
developing follicles (89). Another TGF-E member, AMH, inhibits cyclic recruitment by 
reducing responsiveness of antral follicles to FSH (90). Oocyte-derived factors BMP6, 
BMP15, and GDF9, as well as granulosa cell derived BMP4 and BMP7 inhibit premature 
luteinisation by suppressing gonadotropin-driven progesterone synthesis (89, 91). 

 
The ligands of TGF-E family exert their effects through their serine/threonine kinase 

receptors and intracellular signaling molecules, called SMADs that act as transcription 
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factors regulating the target gene expression. Precise spatiotemporal regulation of 
expression of these downstream effectors is essential for proper course of folliculogenesis. 
Eight different SMAD molecules have been identified, of which SMAD2 and -3 are 
activated by TGF-E, GDF9, and activin, whereas BMPs and AMH activate SMAD1, -5, 
and -8. In addition, SMAD6 and -7 act as inhibitory molecules and SMAD4 as a common 
co-activator (reviewed in (92)). In the ovary, mice deficient for both Smad2 and Smad3 are 
infertile having defects with follicular development and ovulation (93). Double knockout 
mice of Smad1 and -5, or triple knockouts of Smad1, -5, and -8 are infertile as well, but 
they also develop metastatic granulosa cell tumors (Discussed in more detailed in chapter 
4.3) (94). 

 
Another important regulator of ovarian function is transcription factor GATA4. This 

member of the GATA transcription family is expressed in both fetal and postnatal ovarian 
granulosa and theca cells (95, 96). In adult ovary, GATA4 is expressed in proliferating 
granulosa cells but its expression is downregulated before ovulation and luteinisation (95-
97). FSH has been shown to positively regulate the expression and intrinsic activity of 
GATA4 (96, 98). In vitro studies have demonstrated that GATA4 activates genes 
important for steroidogenesis, such as Star, Cyp11a1, and Cyp19 (98-100). GATA4 
heterozygous mice have delayed puberty and their responsiveness to exogenous 
gonadotropins is decreased, while mice conditionally deleted GATA4 in granulosa cells 
show impaired fertility with cystic ovarian morphology and attenuated response to 
gonadotropin stimulation (101-103). 

3.3 Apoptosis in the ovary 

Apoptosis is the process of programmed cell death that occurs in every multicellular 
organism and plays a crucial role in shaping organs during development and controlling 
homeostasis and proper function of various tissues in adult organisms, including the 
human reproductive system. Unlike necrosis, apoptosis is an energy-requiring and well co-
ordinated process that results in the formation of apoptotic bodies that are engulfed by the 
neighboring cells or macrophages without causing an inflammatory response. 

 
The default pathway of ovarian follicles is to undergo apoptosis, as only ~400 follicles 

ovulate during a female’s   reproductive   life, while the rest of the developing follicles 
become atretic and die during folliculogenesis. During the fetal period, the main cell type 
undergoing apoptosis are the germ cells. Oocytes that fail to become surrounded by 
somatic granulosa cells during primordial follicle formation degenerate and undergo 
apoptotic demise. In the postnatal ovary, apoptosis is prominent in the granulosa cells of 
the growing follicles during the cyclic recruitment. Furthermore, apoptosis is responsible 
for corpus luteum regression if pregnancy does not occur (104). 
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Regulation of ovarian apoptosis 

Gonadotropins are important regulators of postnatal ovarian apoptosis. In vivo rodent 
studies (105, 106) and in vitro studies utilizing the cultured follicles (107) have 
demonstrated that the decrease in gonadotropin levels causes follicular atresia, while the 
early apoptotic follicles can be rescued by exogenous gonadotropins. Locally produced 
paracrine growth factors (e.g. Insulin-like growth factor 1, IGF1; Epidermal growth factor, 
EGF; Basic fibroblast growth facor, FGF; and Interleukin-1E, IL-1E) as well as hormones 
(e.g. estrogen and progesterone) also play a role in the regulation of ovarian apoptosis by 
acting as prosurvival factors of granulosa cells and inhibiting apoptosis (107-111). 

 
In addition to the aforementioned prosurvival factors, two cellular apoptotic pathways, 

the extrinsic and intrinsic pathways, also regulate ovarian apoptosis. The extrinsic 
pathway is activated by binding of extracellular protein ligands to the proapoptotic death 
receptors (DR) located on the cell surface, whereas the intrinsic pathway (also termed as 
mithocondrial pathway) is activated in response to intracellular signals, including cellular 
stress and DNA damage. Both of these pathways lead to the activation of cystein-aspartic 
protease (caspase) cascade. Caspases are proteases that execute the cellular processes 
during apoptosis. After the apoptotic signal, the initiator caspases (caspase-2, -8, -9, -10) 
are activated, which in turn activate the downstream effector caspases (caspase-3, -6, -7). 
These effector caspases cleave various cellular proteins leading to the characteristic 
morphological changes of apoptotic cell, including blebbing of the plasma membrane, cell 
shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA 
fragmentation (reviewed in (112)). An overview of the extrinsic and intrinsic pathways is 
presented in Figure 4. 

 
BCL2 protein family members are important mediators of intrinsic apoptotic pathway. 

These proteins are devided into anti- and pro-apoptotic factors based on their function. 
Anti-apoptotic members of BCL2 family include BCL2, BCL-XL, BCL-W, A1, and Mcl-
1, while pro-apoptotic members include BAX, BAK, BOK, BID, BAD, PUMA, and 
NOXA (112). The balance between these factors sets the threshold of apoptosis for 
intrinsic pathway. 

 
One of the extracellular ligands that activate the extrinsic apoptosis pathway is Tumor 

Necrosis Factor (TNF)-Related Apoptosis Inducing Ligand (TRAIL) that belongs to the 
TNF superfamily. TRAIL acts through its receptors DR4 (TRAIL-R1) and DR5 (TRAIL-
R2), whose activation leads to caspase activation and apoptosis (113). In addition to its 
death receptors, TRAIL is also capable of binding to two decoy receptors DcR1 (TRAIL-
R3) and DcR2 (TRAIL-R4), which are lacking the intracellular death domain (114, 115), 
and thus modulate the TRAIL pathway activity by competing the ligand binding with DR4 
and DR5 (116). 

 
TRAIL and its receptors are widely expressed in variety of tissues, including liver, 

lung, prostate, and myometrium (117). In addition to its ability to induce apoptosis, 
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TRAIL has also been shown to have other functions, including the control of 
hematopoiesis, prevention of autoimmunity, and regulation of endothelial cell physiology 
(118-120). In human fetal ovary, TRAIL and its receptors DR5 and DcR2 are expressed 
both in oocytes and granulosa cells, whereas in postnatal ovary, TRAIL, DR5, as well as 
both DcR1 and DcR2, but not DR4, are expressed in oocytes and granulosa cells of small 
primary and secondary follicles (121). TRAIL and its receptors are also expressed in 
porcine ovaries, where the expression of TRAIL has been shown to increase and the 
expression of DcR1 to decrease during follicular atresia (122, 123). Furthermore, TRAIL 
has been shown to induce the apoptosis of primary cultured porcine granulosa cells in 
vitro, and eliminating the DcR1 from these cells results in increased number of apoptotic 
cells (123). These findings suggest that TRAIL has apoptosis-inducing activity in 
granulosa cell, and that decoy receptors can inhibit this ability. 

 

 

Figure 4 Apoptotic signaling pathways. Extrinsic pathway: the binding of extracellular death 
ligand to its plasmamembrane receptor (death receptor) activates the intracellular 
Fas-associated protein with death domain (FADD). FADD, in turn, recruits caspase-
8, which activates the effector caspases (caspase-3, -6, -7) leading to cell death. 
Intrinsic pathway: death stimulus (e.g. cellular stress or DNA damage) induces the 
release of cytochrome c from mitochondria. Cytochrome c catalyzes the 
oligomerization of Apoptosis protease activating factor-1 (Apaf-1), which recruits 
and promotes the activation of procaspase-9. This, in turn, activates caspase-3, -6, 
and -7 leading to apoptosis. B cell lymphoma 2 (BCL2) inhibits the intrinsic apoptotic 
pathway by controlling the mitochondrial membrane permeability and thus 
preventing the release of cytochrome c. Activation of extrinsic pathway can also 
trigger the intrinsic pathway through activation of BH3 interacting domain death 
agonist (BID), which in turn causes the release of cytochrome c. 
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4. Steroidogenesis in the adrenal cortex and ovary 

One of the main functions of adult adrenal cortex and gonads is the production of steroid 
hormones. Adult human adrenal cortex produces mineralocorticoids (aldosterone) secreted 
by zG cells, glucocorticoids (cortisol) secreted by zF cells, and adrenal androgens secreted 
by zR cells (17). Adult human ovarian granulosa cells in cooperation with theca cells, in 
turn, secrete sex steroids (mainly estrogen) (59). 
 
Cholesterol is the precursor for all steroid hormones. Cholesterol is converted to steroid 
hormone intermediates and mature hormones by oxidative cytochrome-450 enzymes in the 
mitochondria and smooth endoplasmic reticulum. ACTH in adrenal cortex, and FSH and 
LH in ovarian cells regulate the uptake and storage of cholesrerol. The pathways of 
adrenal cortex and ovarian steroid biosynthesis use the same enzymes for the first steps of 
steroidogenesis, but the final active product of each pathway depends on the enzymes 
present in a given cell type (Figure 5). This explains the differences in steroid hormone 
production among the steroidogenic tissues. 

 
 

 
 

Figure 5 Steroidogenic pathways in the human adrenal cortex and ovary. 
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5 Ovarian granulosa cell tumors 

5.1 Overview 

Invasive ovarian tumors are the most common lethal gynecological malignancy. Ovarian 
tumors are classified in three groups based on their histopathological patterns reflecting 
the various cell types in the ovary. Epithelial ovarian tumors, representing 80-90 % of all 
ovarian cancers, are derived from the ovarian surface epithelium. Germ cell tumors, 
accounting 1-2 % of the ovarian malignancies, are thought to be derived from the fetal 
primordial germ cells, and are much more common among children and adolescents than 
older women. The third group, sex cord-stromal tumors, arising from the sex cord and 
stromal components of the ovary represent approximately 8 % of the ovarian cancers. 
These tumors include granulosa cell tumors (GCTs), thecoma-fibromas, Sertoli-Leydig 
cell tumors, and sex cord-stromal tumors of mixed or unclassified cell types (reviewed in 
(124)). 
 

GCT is the most common sex-cord stromal tumor accounting for 90 % of the tumors 
within this subgroup. Based on the clinical behavior and histopathological charasteristics 
GCTs are further classified in two subgroups, juvenile (more common among children and 
young adults) and adult (more common among postmenopausal women) form, of which 
adult GCTs account for 95 % of the cases. The annual incidence of GCT is 0.4-1.7 cases 
per 100 000 women (125). Unless otherwise stated, the chapters below will focus on the 
adult subtype of GCT. 

 
Adult GCT is commonly diagnosed in peri- or postmenopausal women with the 

median age of 50-54 yrs (125). The most common symptoms of GCT include acute 
abdominal pain caused by tumor rupture, swelling due to a large tumor mass, and 
postmenopausal bleeding or irregular menstruation caused by excessive hormone 
production by the tumor cells. Size of the tumor varies from microscopic lesions to large 
abdominal masses, the average size being 12 cm (124). These tumors are often cystic and 
hemorrahagic, and microscopic examination shows poorly and well differentiated 
histologies, both of which contain characteristic round to oval shaped cells with “coffee-
bean grooved” nuclei. Low mitotic index and mild nuclear atypia are also characteristic 
for GCTs (125). 

 
Surgery is the primary treatment option for GCT, but the surgical treatment of 

metastatic or recurrent disease is challenging (126, 127). For these cases radiation and 
conventional chemotherapy have been used, but the efficacy of chemotherapeutic 
regimens, which were developed for epithelial ovarian cancer, is poor, highlighting the 
need for new treatment modalities, including biologically targeted therapies. 

 
GCTs are considered to have low malignant potential with tendency of late recurrence 

after primary diagnosis. Tumor stage at time of diagnosis is the only prognostic factor 
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with clinical significance. The 5-year survival rate for patients with stage I disease ranges 
from 75-95 %, while the 5-year survival rate for stage II is 55-75 %, and for stages III and 
IV only 22-50 % (125, 126). Recurrences may appear many years, even decades, after the 
primary tumor has been removed, and with the recurrent tumor the mortality rises up to 80 
% (128). 

5.2 Pathogenesis 

The molecular pathogenesis of GCT is still largely unknown. Compared with other 
ovarian malignancies, GCTs exhibit a relatively stable karyotype without chromosomal 
aberrations. Furthermore, no activating mutations in known oncogenes (129, 130), or loss 
of heterozygosity or mutations in tumor suppressor genes (129) have been found. GCT 
exhibits many features of normal proliferating granulosa cells of the preovulatory follicles, 
including estrogen and inhibin B production (131, 132), as well as expression of FSH 
receptor (133) and transcription factor GATA4 (97). Therefore it is suggested that the 
molecular pathogenesis of GCT involves developmentally abnormal or disrupted 
expression of essential signaling pathways that function during folliculogenesis and 
regulate proliferation and apoptosis of normal granulosa cells. 

Transcription factor FOXL2 mutation 

Recently, a huge step towards understanding the mechanisms behind GCT pathogenesis 
was taken, when the whole transcriptome RNA sequencing study identified a somatic 
missense mutation in gene coding for transcription factor FOXL2 (402CÆG) in four adult 
GCTs (134). This mutation leads to the substitution of a tryptophan residue for cysteine 
residue at amino acid position 134 (C134W). Subsequent studies confirmed this finding in 
larger patient cohorts, the average of mutation positive GCTs being 94 % (134-140). 
Interestingly, another GCT subtype, juveline GCT lacks this mutation and the expression 
of FOXL2 in this GCT type has been shown to negatively correlate with tumor 
aggressiveness (141). 

 
Although the vast majority of GCTs bear the C134W mutation in FOXL2, the 

mechanistic explanation of the effect of this mutation is still lacking. FOXL2 has been 
shown to negatively regulate cell cycle progression (142) and promote apoptosis (143) in 
granulosa cells, whereas C134W mutated FOXL2 disturbs this balanced regulation by 
upregulating genes involved in the control of cell cycle, and downregulating genes 
involved in apoptosis (144, 145) leading to a less effective induction of granulosa cell 
apoptosis (143). Furthermore, mutated FOXL2 inhibits the activin and GDF9 induction of 
anti-proliferative follistatin, which consequently may lead to increased cell proliferation 
and enhanced tumor formation (146). 
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Transcription factor GATA4 in GCT biology 

The majority of GCTs express transcription factor GATA4 at comparable levels to normal 
preovulatory granulosa cells (97), and GATA4 expression in these tumors has been shown 
to correlate with tumor aggressiveness and increased risk of recurrence (147). GATA4 
expression also correlates with the intrinsic apoptotic pathway inhibitor BCL2 and 
proproliferative CyclinD2 (CCND2) expression both at mRNA and protein level (148). In 
vitro studies have revealed that GATA4 activates the expression of Bcl2 and Ccnd2 in 
murine GCT cells (148). Furthermore, GATA4 has been shown to protect cardiomyocytes 
from apoptosis (149, 150). Taken together, these findings suggest that GATA4 may act as 
an anti-apoptotic factor also in GCTs. 

SMAD3 in GCT pathogenesis 

As discussed in chapter 3.2, SMAD proteins are the essential intracellular mediators of 
TGF-E signaling in normal granulosa cells. Activin A and TGF-E signaling are mediated 
by SMAD3, which is an important regulator of Ccnd2 in rat granulosa cells (151). 
Moreover, in human GCT cell lines SMAD3 drives cell viability by activating NF-NB, a 
transcription factor regulating a vast array of stimuli related to biological processes such 
as inflammation, immunity, differentiation, cell growth, tumorigenesis, and apoptosis. NF-
NB in turn up-regulates SMAD3 expression; this positive feedback loop activates the 
ERK1/2 pathway leading to increased GCT cell survival (152). Deficiency of inhibin-D 
subunit, or SMAD1/5 in mice has been shown to promote GCT formation, and SMAD3 is 
upregulated and activated in these murine GCTs (discussed in more detail below) (94, 
153, 154). Collectively these findings suggest a role for SMAD3 in GCT pathogenesis. 

5.3 Transgenic mouse models 

A number of transgenic mouse models have been generated to shed light on the possible 
mechanisms behind GCT pathogenesis, as detailed below. 

Mouse with simian virus 40 T-antigen (SV40 TAg) driven by inhibin D subunit 
promoter 

In order to generate in vivo gonadal tumor model and establish immortalized gonadal 
somatic cell line, Kananen et al. developed transgenic mice in which the SV40 TAg was 
overexpressed under the inhibin D promoter (inhD/SV40TAg) (155). These 
inhD/SV40TAg mice were infertile and developed GCTs by the age of 5-7 months with 
100 % penetrance. The features of these animals resemble those in human GCT patients, 
including elevated serum inhibin levels, continued folliculogenesis, depressed serum 
gonadotropins, and similar histopathlogical alterations (156). Moreover, the suppression 
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of circulating gonadotropin levels in these animals prevented tumor formation, and the 
constitutively overexpression of LH stimulated tumor formation, suggesting a tumor 
promoter role for LH (157, 158). More studies are, however, needed to assess the role of 
LH in human GCT pathogenesis. 

Inhibin D knockout mouse 

Complete deletion of inhibin D (InhD) gene in mouse results in the formation of bilateral, 
mixed, or incompletely differentiated sex cord-stromal tumors with 100 % penetrance in 
both sexes at age of 4 weeks (159). These mice suffer from severe cancer cachexia-like 
syndrome that was caused by the significant increase in circulating activin A levels (160). 
These findings suggest that inhibin D acts as a tumor suppressor in these mice. Subsequent 
studies, in which the InhD-/- mice have been crossbred with other conditional mouse 
models, have generated more valuable data to help understanding the modifiers of gonadal 
tumorigenesis. For instance, when the mice lacking FSH or LH were crossed with InhD-/- 
mouse, the resulting mice exhibited delayed onset of tumor formation and absence of the 
cancer cachexia-like syndrome (161, 162). In contrast, when the InhD-/- mice were crossed 
with estrogen receptor α deficient mice, tumor development was more rapid and the 
cancer cachexia-like syndrome started earlier compared to InhD-/- mice (163).  

 
Interestingly, human GCTs express and secrete inhibin B, and it is widely used as a 

diagnostic and surveillance marker in clinical practice (132, 164). Thus, further studies are 
needed to unravel the role of inhibins in human GCT pathogenesis. 

SMAD knockout mice 

Several mouse models have been generated to investigate the role of TGF-E family 
signaling, especially the intracellular signaling mediators (SMADs) in GCT pathogenesis. 
As stated in chapter 3.2, the mice deficient for both Smad2 and -3 are infertile but do not 
get tumors (93), whereas the granulosa cell specific douple KO mice of Smad1 and -5, or 
triple knockouts of Smad1, -5, and -8 are infertile as well, but also develop poorly 
differentiated, metastatic, uni- or bilateral GCTs by the age of 3 months with 100 % 
penetrance (94). More detailed analyses of the Smad1/5 double-knockout mice revealed 
several histological and physiological similarities to human juveline GCT (154). These 
studies indicated that BMP and AMH signaling, and their mediators SMAD1, -5, and -8 
act as tumor suppressors in mice. Interestingly, SMAD2 and -3 as well as some of their 
downstream target genes were shown to be upregulated in Smad1/5 and Smad1/5/8 
deficient mice, which may mean that in normal granulosa cells SMAD1/5/8 inhibit 
SMAD2/3 signaling (94). InhD-/- mice also show the upregulation of SMAD3 (153). This 
hyperactivity of the TGF-E signaling pathway is shown to stimulate tumor invasion and 
metastasis formation in many cancers. Thus based on the abovementioned findings it is 
plausible that this is the case also in GCT pathogensis. 
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Mouse with constitutively activated Wnt/E-catenin pathway 

Misregulation of Wnt/E-catenin pathway is a common hallmark of several types of cancer. 
To investigate the role of this pathway in GCT pathogenesis Boerboom et al. generated a 
mouse model with granulosa cell specific constantly active E-catenin (Catnbflox(ex3)/+; 
Amhr2cre/+ mice) (165). These mice were subfertile and developed ovarian lesions 
resembling disorganized follicles, which later evolved into GCT. At 7.5 months of age 57 
% of these mice had tumors that shared several histopathological features with human 
GCT (165) suggesting that the overexpression of the Wnt/E-catenin pathway may play a 
role also in human GCT pathogenesis. In the same study, Boerboom et al. also showed the 
nuclear localization of E-catenin in 15/24 human and equine GCTs. However, this finding 
was not supported by another study with 32 human GCT samples, where none of the 
examined tumors showed nuclear localisation of E-catenin (166). 

 

Table 1 GCT mouse models. dKO, double knockout; tKO, triple knockout. 

Genotype Phenotype 
 Tumor 

penetrance (%) Reference 
InhD/SV40TAg Infertile, GCT formation at age of 5-

7 mo, serum inhibinBn, serum 
gonadotropinsp 

 100 (155) 

InhD-/- Bilateral, mixed, or incompletely 
differentiated sex cord-stromal 
tumors coupled with cachexia-like 
syndrome at age of 4 wk 

 100 (159) 

Smad1/5 dKO Infertile, poorly differentiated, 
metastatic, uni- or bilateral GCT at 
age of 3 mo, histopathological 
features similar to human juvenile 
GCT 

 100 (94) 
(154) 

Smad1/5/8 tKO Infertile, poorly differentiated, 
metastatic, uni- or bilateral GCT at 
age of 3 mo 

 100 (94) 

Catnbflox(ex3)/+; 
Amhr2cre/+ 

Subfertile, follicle-like lesions that 
evolve into GCT at 7.5 mo of age 

 57 (165) 

5.4 Tumor angiogenesis 

Angiogenesis, the formation of new blood vessels from pre-existing vessels, is an essential 
process during development and also postnatally, e.g. in wound healing and formation of 
placenta during pregnancy. In addition to these physiological phenomena, angiogenesis 
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plays a pivotal role in several pathological conditions, including tumorigenesis, since the 
proliferation and metastatic spread of cancer cells are dependent on an adequate supply of 
oxygen and nutrients and the removal of waste products. 

Vascular endothelial growth factor-A 

Vascular endothelial growth factor-A (VEGF, also referred as VEGFA), a member of 
platelet-derived growth factor superfamily, is one of the key regulators of both 
physiological and pathological angiogenesis. It is a secreted, soluble growth factor that 
regulates endothelial cell proliferation, migration, vascular permeability, secretion, and 
other endothelial cell functions. Both Vegf homozygous knockout mice and heterozygous 
(Vegf+/-) mice die early during development due to immature blood vessel formation (167, 
168). Several VEGF subtypes are generated through alternative splicing (169). These 
subtypes differ from each other in their biological activity and binding affinity to receptors 
(170). 
 

In cancerous tissue, VEGF production and secretion are stimulated by hypoxia and 
several growth factors, such as EGF, TGF-E, IGF1, FGF, and platelet-derived growth 
factor (PDGF), as well as oncogenic mutations of the Ras pro-oncogene (170). 
 

VEGF exerts its effects through binding to its two tyrosine kinase receptors, VEGFR-1 
and VEGFR-2 (also termed as Flt-1 and KDR/Flk-1, respectively) (171, 172). These 
receptors are mainly expressed in endothelial cells, but inflammatory cells, osteoblasts, 
and hematopoietic stem cells express them as well (170). During early embryogenesis 
VEGFR-1 and VEGFR-2 have opposite roles in angiogenesis: VEGFR-2 is a positive 
signal transducer, whereas VEGFR-1 supresses VEGFR-2 signaling (173, 174). In adult 
organs and cancer, VEGFR-2 has shown to be the major mediator of the mitogenic and 
angiogenic effects of VEGF. VEGFR-2 consists of an extracellular ligand-binding domain 
organized into seven immunoglobulin-like folds, a single transmembrane domain, and an 
intracellular tyrosine kinase domain (170). The binding of VEGF causes dimerization of 
VEGFR-2 and autophosphorylation of several tyrosine residues of the intracellular 
tyrosinekinase domain (175). Upon activation, VEGFR-2 activates multiple intracellular 
signaling cascades resulting in mitogenic, chemotactic, and prosurvival signals (Figure 6) 
(170). 

VEGF signaling in tumor cells 

VEGF is expressed in and secreted by a majority of solid tumors, and serum VEGF levels 
are often elevated in cancer patients (176-178). Moreover, elevated serum VEGF levels 
are associated with poor prognosis (179). In addition to endothelial cells, VEGFR-2 has 
been shown to be expressed in several tumor types (180). In normal endothelial cells, 
VEGF secretion leads to downregulation of VEGFR-2, whereas in tumor cells this 
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regulation is lost (180). Previously, an autocrine VEGF/VEGFR-2 signaling loop has been 
shown to exist in breast cancer and ovarian carcinoma cells (181, 182), and it has been 
proposed that this autoloop promotes cancer cell growth and survival by phosphorylation 
and activation of VEGFR-2. VEGF and its receptors are also abundantly expressed in both 
primary and recurrent human GCTs (183). Furthermore, VEGF expression has been 
shown to correlate with that of VEGFR-2 at both the mRNA and protein level suggesting 
an autoregulatory VEGF/VEGFR-2 loop in GCTs (183). 
 
 

 

Figure 6 Overview of VEGFR-2 intracellular signaling. VEGF binding to the extracellular 
domain induces dimerization and autophosphorylation of intracellular tyrosine 
residues. Several intracellular messangers bind to the tyrosine residues leading to the 
phosphorylation and activation of these proteins. Activation of PI3K/Akt signaling 
leads to increased cell survival, p38MAPK signaling leads to enhanced cell 
migration, and Raf/MEK/ERK signaling activates cell proliferation. Modified from 
(184). 

Owing its importance for tumor angiogenesis, growth, and metastasis formation, 
VEGF/VEGFR-2 system has become an attractive target for cancer treatment. It has been 
shown that an anti-human VEGF antibody efficiently suppresses the growth of human 
tumor xenograft transplanted in immunedficient mouse (185). Currently several drugs 
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targeting either VEGF ligand or its receptors have been generated, and some of them have 
been approved for clinical use. One of these is Bevacizumab (BVZ), a recombinant 
humanized monoclonal antibody that efficiently inhibits VEGF/VEGFR-2 system by 
binding to the soluble VEGF. BVZ is used in the treatment of breat, lung, renal, 
colorectal, and epithelial ovarian cancers (186, 187). There are also small retrospective 
clinical studies and a case report showing that BVZ is effective in treatment of recurrent 
GCTs (188-190), but the in vitro evidence of its actions in GCT cells is lacking. 
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Aims of the study 

This dissertation project focuses on the molecular mechanisms that regulate normal and 
neoplastic steroidogenic cell development in the adrenal gland and ovary.  

 
The specific aims of the research are: 
 

1) Study the in vivo role of GATA6 in adrenocortical development and function. 
 
 
2) Investigate the impact of FOXL2, GATA4, and SMAD3 on GCT cell survival 

and apoptosis. 
 
 
3) Evaluate the potential of TRAIL and VEGF pathways as novel targets for 

GCT treatment. 
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Materials and methods 

1. Mice 

1.1 Experimental mice 

Procedures involving animal experiments were approved by the institutional committee 
for laboratory animal care and were conducted in accordance with National Research 
Council’s   (NRC)  publication  Guide for Care and Use of Laboratory Animals. All mice 
had free access to water and standard rodent chow, and were exposed to 12 h light/12 h 
dark photoperiods. 

1.2 Generation of Gata6 conditional knockout mice 

Adrenocortical cell specific Gata6 knockout (Gata6 cKO) mice were generated using the 
Cre-loxP recombination system. Mice bearing a floxed Gata6 allele (Gata6F/F; 
Gata6tm2.1Sad/J)(The Jackson Laboratory) were mated with mice harboring the Cre 
recombinase under the control of Sf1 gene (Sf1-Cre; (FVB-Tg(Nr5a1-cre)2Lowl/J)(The 
Jackson Laboratory). The resultant Gata6F/+;Sf1-cre mice were mated with Gata6F/F mice 
to produce Gata6F/F;Sf1-cre mice. The mice were genotyped as described earlier (191, 
192).  

1.3 Mouse gonadectomy 

Female (3-4 wk of age) or male (2 mo of age) mice were anesthetized with ip 
administration of ketamine (75 mg/kg) and subjected to gonadectomy or sham surgery. 
Females were killed 3 mo and males 30 d after gonadectomy by CO2 inhalation. 

1.4 Assessment of adrenal and reproductive function 

For plasma corticosterone and ACTH measurements 8-week-old male mice were 
decapitated at 8:00 to 9:00 AM with minimum stress and handling, and the trunk blood was 
collected in EDTA. For restrained stress experiment the mice were kept in 50 ml falcon 
tubes for 30 min after which blood was collected in EDTA. For the ACTH stimulation 
experiment the hypothalamic-pituitary-adrenal axis was suppressed by subcutaneous 
injection of 5 mg/kg dexamethasone at 6:00 PM 1 day before and at 8:00 AM on the day of 
testing. Mice were anesthetized with 1.5% isoflurane in 50% nitrogen/50% oxygen, and an 
external jugular venous catheter was placed. At 10:00 AM, 1 mg/kg ACTH1-24 was injected 
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ip, and 40 µl blood samples were drawn 15, 30, and 60 min after the injection for 
corticosterone measurements. The blood Na+ measurements were made on heparinized 
blood drawn from the tail vein using a Radiometer ABL90 Flex blood gas analyzer. 
Fertility was evaluated by housing male and female mice with wild type C57BL/6 mice 
and measuring the litter sizes. Sperm motility was assessed using Computer Assisted 
Sperm Analysis (Hamilton Thorne Biosciences IVOS, Beverly, MA, USA) with 
parameters optimized for detection of mouse sperm as described in (193). 

1.5 Electron microscopy 

Mice   were   anesthetized   and   perfused   with   Karnovsky’s   fixative.   Adrenal   glands   were  
postfixed with 2% OsO4 and embedded in epon. The sections were stained with uranyl 
acetate and lead citrate and examined by transmission electron microscopy. 

2. Cell culture 

2.1 Cell lines and primary hGCT cells 

The cells were grown at 37 °C in humidified atmosphere containing 5% CO2. Human 
GCT cell line KGN (a gift from Dr Toshihiko Yanase, Kyushu University, Fukuoka, 
Japan) was cultured in DMEM/F12 medium supplemented with 10% fetal bovine serum 
(FBS), penicillin (100 U/ml) and streptomycin (100 U/ml). KGN cells harbor the 
402CÆG mutation in FOXL2. Another human GCT cell line, COV434, that has a wild 
type FOXL2 genotype, was cultured in DMEM supplemented with 10% fetal bovine 
serum (FBS), penicillin (100 U/ml) and streptomycin (100 U/ml). COS-7 cells (originating 
from African green monkey kidney fibroblast-like cells) were cultured in DMEM 
supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 U/ml). 

 
Following the intraoperative diagnosis of GCT, fresh tumor sample was obtained 

straight from the operation room for cell culture. GCT tissue was mechanically minced 
and treated with 0.5% kollagenase (Sigma-Aldrich® Corporation, St Louis, MO, USA) in 
DMEM/F12 containing 0% FBS for 2 h, filtered through 140 µm filter mesh to obtain 
single cells, washed twice with 0% FBS culture medium, counted, and plated for 
experiments in DMEM/F12 containing 10% FBS, penicillin (100 U/ml) and streptomycin 
(100 U/ml). All the primary GCT cell cultures harbored the 402CÆG mutation in FOXL2. 
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2.2 Transfections 

For adenoviral transfections the following replication deficient adenoviral constructs used: 
wild type rat GATA4 (G4wt) (194) and dominant negative GATA4 (G4dn), construct that 
produces a fusion protein of GATA4 and engrailed domain tagged with flag epitope (195). 
5 × 105 KGN cells were seeded in 6-well plates 24 h before transfection. The cells were 
infected by incubating them with viruses in 1 ml DMEM containing 0% FBS. After 1 h, 2 
ml of DMEM/F12 containing 10% FBS was added to stop the infection. 
 

For lentiviral transfections the lentiviruses expressing small hairpin RNA (shRNA) 
were generated using constructs and protocols provided by the Biomedicum Virus Core 
Facility (196). pLKO.1 shRNA targeting GATA4 (shGATA4)-containing constructs were 
obtained from Sigma (Sigma-Aldrich® Corporation) and were as follows: shGATA4-1 
(TRCN0000020426) 5’-GAGGAGATGCGTCCCATCAA-3’ and shGATA4-2 
(TRCN0000020427) 5’-CTGAATAAATCTAAGACACCA-3’. 2 × 105 KGN cells were 
seeded in 6-well plates 24 h before transfection. The cells were transduced with 750 µl of 
lentiviral particles in 1.5 ml DMEM/F12 containing 10% FBS for 10 min at 37 °C, 
centrifuged for 30 min at 500 g, and further incubated for 2 h at 37 °C. Puromycin (1 
µg/ml) was used to select the tranduced cells. 
 

The overexpression and control plasmids used for the plasmid transfections were: 
pMT2-GATA4-V5 (V5-tag amino acid sequence GKPIPNPLLGLDST), untagged, V5-
tagged, or GFP-tagged pcDNA3.1-FOXL2-WT, pcDNA3.1-FOXL2-C134W, and 
pCDNA3.1-SMAD3. Twenty thousand KGN cells/well were transfected with the 
overexpression plasmids by electroporation using Neon transfection system (Invitrogen 
Corporation,   Carlsbad,   CA,   USA)   according   to   manufacturer’s   instructions.   Following  
settings were used: 1400V, 20 ms, and 1 pulse. 

2.3 Treatments/stimulations 

To induce apoptosis, the KGN/primary hGCT cells were incubated with recombinant 
human TRAIL (Millipore, Bedford, MA, USA) at concentrations of 10, 50, and 100 ng/ml 
or with BVZ (Genetech/Roche, San Francisco, CA, USA) at concentrations of 1 and 10 
µg/ml. 

2.4 Promoter activity assays 

KGN cells were plated 16 h before transfection at a density of 4x104 cells/cm2. The 
plasmid used for promoter transactivation assay was pGL3-680bp CCND2-luciferase 
(151). Transfection was done by using the calcium-phosphate method (Invitrogen 
Corporation, Carlsbad, CA, USA) and the luciferase activity was measured using dual-
Luciferase® Reporter Assay System (Promega, Madison, WI, USA) as described in (197). 



MATERIALS AND METHODS 

 
 
 
 

37 

2.5 Apoptosis and cell viability assays 

For   4’,6-diamino-2-phenylindole hydrochloride (DAPI) staining 20,000 KGN/primary 
hGCT cells were seeded on 8-well chamber slides. Prior to staining the cells were fixed 
with formalin for 10 min at room temperature followed by cold methanol for 10 min at -20 
°C. The cells were incubated for 30 min at room temperature with 0.4 µg/ml of DAPI in 
PBS, dehydrated, and mounted with UltraKitt (J T Baker, Deventer, Holland). The 
percentage of apoptotic cells from total cell count was analyzed with ImageJ version 1.42q 
software (National Institutes of Health, Bethesda, MD, USA). 

 
Caspase 3/7 activation was measured using Caspase-Glo® 3/7 Assay (Promega 

Corporation,  Madison,  WI,  USA)  according  to  manufacturer’s  instructions.  Luminescence  
was measured using a luminometer (Labsystems Luminoscan RS, Helsinki, Finland). 

 
Cell viability was assessed by either tetrazolium dye (MTT)-base cell growth 

determination kit (Sigma-Aldrich Corporation) or Cell Proliferation Reagent WST-1 kit 
(Roche Applied Science, Indianapolis, IN, USA) according to the instructions of 
manufacturer. 

3. Tissue and serum samples 

3.1 Murine tissues 

Mice were killed with CO2 inhalation. The adrenal glands, ovaries or testes were harvested 
and  fixed  overnight  in  4%  paraformaldehyde,  Bouin’s  solution,  or  Müller’s  fixative  (198) 
and embedded in paraffin. For cryosections the adrenals were embedded to OCT and 
frozen in –80°C. 

3.2 Human normal ovary, hGCT tissue microarray, and serum samples 

Normal adult ovary samples obtained from three premenopausal women undergoing 
ovariectomy due to cervical cancer were used as reference tissue to compare antigen 
expression between normal and malignant granulosa cells. A tumor tissue microarray 
consisting of 80 primary and 13 recurrent GCTs from 90 patients was previously 
assembled (147). Paraffin-embedded sections of the tumor tissue microarray consisted of 
quadruple core samples of 93 GCT on a single slide. Seventy-four serum samples were 
collected from 54 GCT patients between August 2007 and November 2011 and stored at -
80°C until analysis. 
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4. mRNA expression 

4.1 Laser microdissection 

 
Adrenal cryosections (10 µm) were cut on PEN-Membrane slides (Leica Microsystems, 
Wetzlar, Germany). Sections were fixed with ice-cold ethanol for 1 min, stained with 
Gram’s  crystal  violet,  and  dehydrated.  Laser  microdissection  (LMD)  was  performed  using  
Leica LMD6000 microscope. Dissectates were collected in RNA extraction buffer 
(RNeasy Mini Kit, Qiagen) for qRT-PCR analysis. 

4.2 Real time RT-PCR 

The RNA was extracted with RNeasy Mini Kit (Qiagen, Valencia, CA, USA)) according 
to instructions. First-strand cDNA synthesis was performed from 0.5 µg of total RNA 
using SuperScript® VILOTM cDNA Synthesis Kit (Invitrogen Corporation, Carlsbad, CA, 
USA). The primers listed in Table 2 were designed using NCBI/Primer-BLAST tool 
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) or retrieved from the literature. Analysis 
was performed with SYBR® GreenERTM qPCR SuperMix reagents (Invitrogen 
Corporation) and light cycler (Stratagene Mx3005, Agilent, CA, USA) according to 
manufacturer’s   instructions.  The  relative  expression  of   target genes was calculated using 
the relative standard curve method. Target gene expression was normalized to the 
expression of β-Actin and GAPDH. 
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Table 2 qRT-PCR primers 

Gene Reference Oligonucleotide  sequence  (5'  →  3') 

Gata6 NM_010258.3 
F: CGGCCGCTGAACGGAACGTA 
R: TCCAACAGGTCTGTGCTGGGG 

Lhcgr NM_013582.2 
F: CGCCCGACTATCTCTCACCTA 
R: GACAGATTGAGGAGGTTGTCAAA 

Cyp17 NM_007809.3 
F: CCAGATGGTGACTCTAGGCCTCTTGTC 
R: GGTCTGTATGGTAGTCAGTATCG 

Amhr2 NM_144547.2 
F: GGGGCTTTGGACACTGCTT 
R: GTCTCGGCATCCTTGCATCTC 

Gata4 NM_008092.3 
F: CCCTACCCAGCCTACATGG 
R: ACATATCGAGATTGGGGTGTCT 

Tcf21 NM_011545.1 
F: CAGTCAACCTGACGTGGCCCTTT 
R: GGGAAGGGCAGGGGTCGTCA 

Tyrosine 
hydroxylase 

NM_009377.1 
F: ACCTGGACCATCCGGGCTTCT 
R: GGCCCTTCAGCGTGGCGTAT 

Akr1c18 NM_134066.2 
F: TCCCATCGTCCAGAGTTGGTCA 
R: TCCATGGCCTCCCATGTGTCA 

Cyp11b2 NM_009991.3 
F: GCACCAGGTGGAGAGTATGC 
R: CCATTCTGGCCCATTTAGC 

Pik3c2g NM_011084.2 
F: GTGGACCCAGGTGAGAACT 
R: GGAACACACTTTGTTTTCTTTCTC 

E-actin NM_007393.3 
F: GCGTGACATCAAAGAGAAGC  
R: AGGATTCCATACCCAAGAAGG 

Gapdh NM_008084.2 
F: GCTCACTGGCATGGCCTTCCGTG  
R: TGGAAGAGTGGGAGTTGCTGTTGA  

 

4.3 Microarray analysis 

RNA was extracted from whole adrenal glands with RNeasy Mini Kit (Qiagen, Valencia, 
CA, USA) and amplified using the TotalPrep RNA amplification kit (Illumina, San Diego, 
CA, USA), and hybridized on an Illumina Mouse6v2 oligonucleotide array according to 
manufacturer’s  instructions.  Hybridization  was  performed  by  the  GTAC  Microarray  Core  
facility (Washington University in St Louis, MO, USA). Results can be found at the GEO 
database (GSE40398). 

4.4 In situ hybridization 

In situ hybridization was performed on paraffin-embedded, paraformaldehyde-fixed 
sections. Digoxygenin-labeled riboprobes were prepared as described in (199). First, 
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sections were treated with Proteinase K and pre-hybridized in 50 % formamide, 5x SSC, 
2% Boehringer blocking powder, 0.1% Triton X100, 0.5% CHAPS, 1 mg/ml yeast RNA, 
5 mM EDTA, 50 μg/ml heparin for 1 h at 60°C. Digoxygenin labeled probe was added to 
the hybridization mix and incubated overnight at 60°C. Sections were washed with 50% 
formamide/0.2× SSC, 2× SSC at 60°C and blocked with Boehringer blocking reagent and 
incubated overnight at 4°C with peroxidase-conjugated anti-digoxygenin antibody, in the 
presence of 0.5 mg/ml levamisole. Peroxidase activity was detected by incubation with 
with 0.18 mg/ml BCIP and 0.34 mg/ml NBT. 

5. Protein expression 

5.1 Western blotting 

For western blotting, the proteins were extracted from the cell lysates using Nucleospin 
RNA/Protein kit (740 933.250; Macherey-Nagel, Düren, Germany), and the proteins were 
separated with 7.5% SDS-PAGE and transferred onto Immobilon-P membrane 
(Millipore). Nonfat 5% milk in 0.1% Tween-TBS buffer was used for blocking the 
nonspecific binding. The primary and secondary antibodies and dilutions used are listed in 
Table 3. After o/n incubation at 4 °C with primary antibody the secondary antibody was 
incubated for 1 h at room temperature. The proteins were visualized by the Enhanced 
Chemiluminescence   Plus   Kit   (Amersham   Biosciences   Inc.,   Piscataway,   NJ,   USA).   β-
Actin was used as a loading control. 

5.2 Immunohistochemistry and scoring of the results 

Paraffin-embedded tissues were deparaffinized, rehydrated, treated by boiling for 20 min 
in 10 mM citric acid for antigen retrieval, and the endogenous peroxidase was quenched 
by 3% H2O2 treatment for 5 min at room temperature. Immunoperoxidase staining was 
performed using an avidin-biotin immunoperoxidase system (Vectastain Elite ABC kit; 
Vector Laboratories, Burlingame, CA, USA) and DAB (Sigma) to visualize the bound 
antibody. Primary antibodies used are listed in Table 3. Hematoxylin was used for 
counterstaining the sections. Stainings were evaluated by light microscopy and the images 
were acquired with an LS Leica DMRXA microscope, connected to an Olympus DP70 
camera and DCP controller image acquisition program. 

 
The immunohistochemistry results of the GCT tissue microarray were scored blinded 

to the clinical data and separately by two researchers. Tumors were classified based on the 
staining intensity (cytoplasmic antigens) or the percentage of positive cells (nuclear 
antigens). Disagreements were resolved by a joint review. 
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5.3 ELISA and RIA assays 

The serum, plasma, and cell culture supernatant samples were analyzed using commercial 
enzyme-linked immunnosorbent assay (ELISAs) or radioimmunoassay (RIA) kits 
according  to  manufacturer’s  instructions.  The  following  kits  were used: corticosterone and 
cortisol RIA kits (Siemens Healthcare Diagnostics, Erlangen, Germany), ACTH RIA kit 
(MP Biomedicals, Santa Ana, CA, USA), aldosterone ELISA kit (Endocrine Technologies 
Inc., Newark, CA, USA), VEGF and Endostatin ELISA kits (R&D Systems, Minneapolis, 
MN, USA). 

 

Table 3 Antibodies utilized. TH, tyrosine hydroxylase; IHC, immunohistochemisty; WB, 
western blotting. 

Antigen Manufacturer Catalog# Used in Method Dilution 

GATA4 Santa Cruz Biotechnology Sc-1237 
Mouse, 
human 

IHC 
WB 

1:200 
1:1000 

GATA6 R&D Systems AF1700 Mouse IHC 1:100 

Tyosine 
hydroxylase 

Chemicon AB152 Mouse IHC 1:500 

FOXL2 Imgenex IMG-3228 Human 
IHC 
WB 

1:400 
1:1000 

SMAD3 Invitrogen Corporation #51-1500 Human 
IHC 
WB 

1:400 
1:1000 

CCND2 Santa Cruz Biotechnology Sc-593 Human IHC 1:1000 

DR4 
Santa Cruz Biotechnology 
Abcam 

Sc-7863 
Ab8414 

Human 
IHC 
IHC 

1:100 
1:400 

DR5 Santa Cruz Biotechnology Sc-7192 Human IHC 1:50 

Cleaved 
caspase 3 

Cell Signalling Technology #9661L Human WB 1:1000 

p-VEGFR-2 Abcam Y1214 Human 
IHC 
WB 

1:70 
1:500 

β-actin Santa Cruz Biotechnology Sc-1616 Human WB 1:10000 

 

5.4 Protein co-immunoprecipitation 

COV434 or COS-7 cells were lysed in lysis buffer (50 mM Tris, 150 mM NaCl, 1 mM 
EDTA, 1% Triton X-100, pH 7.6) supplemented with protease inhibitors PMSF 1mM and 
Complete mini EDTA-free cocktail (Roche Diagnostics GmbH, Mannheim, Germany) and 
phosphatase inhibitors (Sigma Aldrich, St Louis, MO, USA). Immunoprecipitation was 
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performed using Anti-V5   Agarose   Affinity   Gel   (Sigma)   according   to   manufacturer’s  
instructions. Precipitated proteins were eluted in 2x-SDS sample buffer containing 100 
mM Tris, 4% SDS, 20% glycerol, 0.1% bromophenol blue, and 100 mM DTT, and 
separated by SDS-PAGE. Primary antibodies used for detection are listed in Table 3. 

6. Statistical analysis 

The statistical analyses were carried out with JMP® 9.0.0 software (SAS Institute Inc., 
Cary, NC, USA). The statistical significance of qPCR results and hormone measurements 
in  Study  I  were  analyzed  using  Student’s  t-test. One-way  ANOVA  followed  by  Dunnett’s  
or   each   pair   Student’s   t-test was used for apoptosis, cell viability and proliferation 
experiments. The tissue microarray scoring results and categorical variables were analyzed 
with   contingency   tabling   (2x2)   followed   by   the   χ2 or   Fisher’s   exact   test   and   with   Cox  
proportional hazard model. The serum data in Study IV were tested for normal distribution 
with Shapiro-Wilks test followed one-way  ANOVA  and  Student’s  t-test in case of normal 
distribution, or Wilcoxon/Kruskall-Wallis and Wilcoxon matched-pairs sign-rank tests 
when differing from the normal distribution. A p-value <0.05 was considered significant. 
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Results and discussion 

1. GATA6 in adrenocortical development and function (I) 

Transcription factor GATA6 has been connected to normal adrenal development and 
function (43). It is expressed in both fetal and adult adrenal cortex, and in vitro studies 
have identified some putative target genes, including genes involved in steroid 
biosynthesis (37-39, 200). However, genetic proof of its importance in adrenocortical cell 
function has still been lacking. 

1.1 Conditional deletion of Gata6 in Sf1-positive cells 

GATA6 KO mice die early in gestation due to defects in endoderm differentiation (201) 
preventing the use of this mouse model to study the role of GATA6 in adrenocortical 
function. To circumvent this problem we generated a cell type specific conditional Gata6 
knock out mouse model (hereafter referred to as Gata6 cKO) using Cre-LoxP 
recombination system. We used a Sf1-cre mouse line which was mated with mice bearing 
a floxed allele of Gata6 (Gata6F/F) (191), resulting mice in which GATA6 is deleted 
specifically in Sf1-positive cells. Based on the Rosa26 reporter analysis 
(http://cre.jax.org/Nr5a1/Nr5a1-creNano.html), Sf1-cre is expressed both in the fetal and 
adult adrenal cortex, gonadal somatic cells, hypothalamus, and pituitary gland. As a 
control we used either Gata6F/F or Gata6F/+;Sf1-cre mice (neither of these strains had an 
abnormal phenotype). The generation of Gata6 cKO mouse is illustrated in Figure 7A. 

 
The deletion of Gata6 was confirmed in the adrenal glands of cKO mice by 

immunohistochemistry and RNA analyses. In line with previous studies (43) the 
immunostaining of the control mouse adrenal gland showed nuclear GATA6 staining in 
capsular, subcapsular, and scattered vascular cells (Figure 7B). In cKO mouse, decreased 
GATA6 immunoreactivity was observed in subcapsular cells, where Sf1-cre is active (24), 
but persistent GATA6 immunostaining in capsular and vascular cells, where Sf1-cre is 
inactive (Figure 7C). In situ hybridization also showed reduced Gata6 mRNA expression 
in the cKO adrenal glands compared to control (Figure 7D and E). Finally, qRT-PCR 
analysis of adrenal glands from female mice at varying ages confirmed that Gata6 mRNA 
levels were significantly lower in cKO mice compared to age-matched controls (Figure 
7F). 
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Figure 7 Generation of Gata6 cKO mouse. A) a schematic illustration of the Cre-loxP 
recombination system. In cells where Sf-1 is active Cre enzyme is produced and it 
catalyses the recombination of loxP sites leading to a non-functional GATA6 
protein. B and C) GATA6 immunostaining of 3 mo old control and cKO mice. The 
arrow highlights ectopic medulla cells and arrowhead points out persistent GATA6 
staining in Sf-1 negative capsular cells. D and E) Gata6 in situ hybridization of 2 
mo old virgin female adrenal glands. F) qRT-PCR analyses of Gata6 mRNA from 
whole adrenal glands. Scale bar = 30 µm. *P < 0.05. 

1.2 Gata6 cKO mice are viable and fertile 

Gata6 cKO mice were born in expected Mendelian ratio (42 cKO  of  173  total  ≈  1:4)  and 
expected sex ratio (21 male and 21 female =1:1). These mice appeared healthy and their 
growth curves were identical with those of control mice. 

 
As it is known that Gata6 is expressed in gonadal somatic cells (96, 202), and we 

found the Gata6 mRNA levels to be lower in the ovaries and testes of cKO mice 
compared to age-matched controls (Figure 8A and B) we next assessed the reproductive 
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phenotype of this mouse. To our surprise, none of the examined features (plasma estrone 
sulfate/testosterone levels, ovarian/testicular mass, sperm count/motility, and seminal 
vesicle mass) was altered in the cKO mice. Moreover, the gonadal histology appeared 
normal. When mated with the wild-type mice, both female and male cKO mice produced 
viable pups at the same rate as control mice (Figure 8C and D). These findings are 
consistent with the recent study where GATA6 was deleted specifically in granulosa cells 
using Cyp19-cre line (102). These mice also lack the reproductive phenotype possibly due 
to a functional compensation by another member of GATA family, GATA4. This kind of 
redundancy as to GATA factors has also been reported in the cardiomyocytes (203) and in 
small intestine (204). 

 

 
 
Figure 8 Reproductive phenotype of Gata6 cKO mice. A and B) qRT-PCR analyses of Gata6 

mRNA from whole ovary (A) and testis (B). *P < 0.05. C and D) Number of viable 
pups produced by female (C) or male (D) Gata6 cKO mice. 

1.3 Gata6 cKO mice have small adrenal glands 

Next, we evaluated the effects of Gata6 deletion on the adrenal gland development and 
function. We found that the adrenal glands of Gata6 cKO mice were significantly smaller 
than those of control mice at 3 months of age (Figure 9A). The reduced adrenal gland 
mass was already evident at 1 month of age in both male and female cKO mice, but not at 
the embryonic day 17.5 (Figure 9B and C). 
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Figure 9 Gata6 cKO mice have small adrenal glands. A) Average adrenal masses of 3 mo 
old male, virgin female, and parous female mice. *P < 0.05. B and C) Gross 
morphology of adrenal glands (sircled) from E17.5 mice. Scale bar = 0.5 mm. 

 
 
To investigate whether the reduced adrenal gland size in Gata6 cKO mice was due to 

decreased proliferation of the cortical cells we stained the sections of cKO and control 
adrenal glands with two proliferation marker antigens, PCNA and BrdU. Unlike Pbx1+/- 
mice, in which reduced adrenal gland mass is associated with reduced cortical cell 
proliferation (205), we could not find differences in cell proliferation between Gata6 cKO 
mice and controls. 

1.4 Gata6 cKO mouse adrenal glands show cytomegalic changes and 
ectopic chromaffin cells 

Electron microscopy demonstrated normal ultrastructure of zF cells in adult Gata6 cKO 
mice with typical characteristics of steroidogenic cells (17) (Figure 10B), but organization 
of the fascicular cells was abnormal. Normally, zF cells form columns separated by 
prominent capillaries (17), but in Gata6 cKO mice zF was disordered (Figure 10C and D). 
Furthermore, the mutant adrenal glands showed cytomegalic changes (Figure 10C-F). 
Cytomegaly is a hallmark of adrenocortical dysfunction and hypoplasia, and it is 
connected to multiple genetic disorders (206-208). Cytomegalic cells are enlarged and 
have large nuclei. It is thought that cytomegaly is a compensatory mechanism to a reduced 
number of cortical cells, and that it ensures the sufficient hormone production of 
hypoplastic adrenals (206). Interestingly, cytomegalic changes were evident already in 
E17.5 Gata6 cKO adrenals (Figure 10E and F) indicating that the deletion of Gata6 in 
SF1-positive cells has an effect on both fetal and adult adrenocortical development. 
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Another abnormality in the Gata6 cKO mouse was ectopically located medulla cells. 

Tyrosine   hydroxylase   immunostaining   and   Müller’s   chromaffin   stain   showed   both  
chromaffin cell islands and finger-like projections in periphery of 3-month-old cKO 
adrenal gland (Figure 10G-J). Ectopic medulla cells were evident already in adrenals of 
E17.5 Gata6 cKO mice (Figure 10K and L), which is further evidence of the important of 
GATA6 in adrenal development.  

 
Ectopic medulla cells have also been reported in other mouse models, such as in mice 

with impaired SHH signaling (209), and SF-1 sumoylation (210), as well as in mice with 
constantly  active  or  inactivated  β-catenin signaling in adrenocortical cells (198). The latter 
study showed that proper   β-catenin signaling is essential for normal growth and 
organization of the medulla (198). Since GATA6   is   important   for   normal   β-catenin 
signaling in other tissues (211), it   is  plausible  that  β-catenin signaling is abnormal in the 
Gata6 cKO adrenals. Despite the fact that medulla cells were ectopically located in the 
cKO mice, the tyrosine hydroxylase mRNA levels were not changed compared to control 
indicating that the ablation of Gata6 does not affect the chromaffin cell number. 
 

 
 

Figure 10 Cytomegalic changes and ectopically located medulla cells in Gata6 cKO mice. A 
and B) Electron microscopy images from zF cells of 2 mo old mice. Scale bar = 1 
µm. C and D) Semi-thin (1 µm) sections from adrenal glands of 2 mo old mice. 
Scale bar = 2 µm. E and F) Adrenal glands from E17.5 embryos. Scale bar = 10 
µm. G-J) Tyrosine hydroxylase immunostaining of 3 mo old male adrenal glands. 
Scale bar = 200µm (G and H), 50 µm (I and J). K and L) Adrenal glands from 
E17.5 embryos. Arrowheads highlight differentiating chromaffin cells. Scale bar = 
10 µm. 
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1.5 Hormonal consequences of Gata6 deletion 

Next, we examined whether Gata6 deletion in adrenocortical cells affects hormone 
production. We first measured the basal and stress-induced corticosterone levels from 
plasma. There was a trend towards blunted secretion, but the results did not reach 
statistical significance. Basal ACTH levels were the same in cKO and control mice. The 
aldosterone levels measured both from serum and whole adrenal homogenates were 
significantly lower in cKOs versus controls (Figure 11A and B), but the blood sodium 
levels were indistinguishable between these mice. Accordingly, also the mRNA 
expression of aldosterone synthase (Cyp11b2) was significantly reduced in Gata6 cKO 
mice compared to controls. In contrast to our mouse model, mice with constitutively 
active β-catenin signaling, as well as mice with mutated β-catenin signaling inhibitor, 
Adenomatous polyposis coli (APC) gene exhibit hyperaldosteroism, resulting from 
aberrant zG differentiation (212, 213). 
 

Finally, we performed the ACTH stimulation test, which is known to be a sensitive 
measure of adrenal steroidogenic capacity (214). We first suppressed the endogenous 
ACTH by dexamethasone, and then stimulated the adrenals with ACTH1-24 after which the 
plasma corticosterone levels were measured. Interestingly, corticosterone secretion after 
ACTH stimulation was significantly reduced in Gata6 cKO mice compared with controls 
(Figure 11C), indicating a reduced steroidogenic capacity of Gata6 cKO mice. Normally, 
prolonged dexamethasone suppression induces apoptosis in the inner part of zF. 
Interestingly, we found a significantly decreased number of apoptotic cells in cKO mice 
when compared to controls after dexamethasone suppression. Similar kind of phenotype is 
observed in Prkar1a knockout mice and aged rats (215, 216). 

 
 

 
Figure 11 Hormonal consequences of Gata6 deletion. A) Serum aldosterone levels in 8 wk old 

female mice. B) Aldosterone content in whole adrenal glands from 8 wk old male 
mice. C) Plasma corticosterone levels after overnight dexamethasone suppression 
and administration of ACTH1-24 at time 0. * P < 0.05. 
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1.6 Gata6 cKO mice lack the X-zone 

Murine adrenal X-zone is a unique zone, derived the fetal adrenal cortex (4), that forms 
between zR and medulla at the age of two weeks (217). In males, the X-zone soon stops 
growing and vanishes before puberty, but an orchiectomy-induced rise of serum LH 
restores it in weanling mice (218). In females, the X-zone continues growing until the first 
pregnancy when it rapidly disappears, or in older nulliparous females until it undergoes 
fatty degeneration at the age of 3 months (217). 

 
To assess whether Gata6 deletion has an effect on the X-zone in our mouse model we 

looked at the cKO and control adrenals using both light and electron microscopy. To our 
surprise we found that young virgin female cKO mice lacked the X-zone completely. To 
confirm this finding we measured expression levels of the known X-zone marker Akr1c18 
with qRT-PCR, and found it to be significantly decreased in nulliparous female cKO mice 
compared to controls. Furthermore, the orchiectomized male cKO mice lacked the 
secondary X-zone while orchiectomized controls formed it properly. We could not detect 
Gata6 mRNA in the postnatal X-zone of the control mouse adrenals, which indicates that 
the lack of X-zone in the cKO mouse is a secondary effect caused by the adjacent zones. It 
has been shown that activin induces X-zone apoptosis in mice (219). Interestingly, we 
found the activin subunits, Inhba and Inhbb, mRNA levels to be elevated in our Gata6 
cKO mice, which might cause the early X-zone regression. 

 
Similar to our Gata6 cKO mice acd/acd mice that develop a severe adrenocortical 

dysplasia also lack X-zone (220). Other mouse models that have an abnormal X-zone 
phenotype are e.g. Pre-B-cell transcription factor 1 (Pbx1) haploinsufficient mice in 
which the size of the X-zone is reduced (205) and female Prophet of PIT1 (Prop1) 
deficient mice that has underdeveloped X-zone that undergoes early regression (221). It 
still remains unclear whether the lack of X-zone in Gata6 cKO mouse is caused by early 
regression of a preexisting X-zone or lack of progenitor proliferation. 

1.7 Gata6 cKO mice exhibit subcapcular cell hyperplasia coupled with 
upregulation of gonadal-like markers 

The adrenal capsule, which is normally only 3-5 cell layers thick, was expanded in Gata6 
cKO mice (Figure 12B). The subcapsule was also enlarged compared to control adrenal 
glands. Adrenal subcapsular cell hyperplasia is typically seen in older mice (222) and in 
certain mouse strains following gonadectomy (21), but it is rare in non-gonadectomized 
young mice. In both male and female Gata6 cKO mice subcapsular cell hyperplasia was 
evident by 1 month of age. These subcapsular cells, which are also called type A cells 
(21), were small, spindle-shaped nonsteroidogenic cells that resemble postmenopausal 
ovarian stroma (21, 223). Immunohistochemistry staining (Figure 12C and D) and qRT-
PCR analysis showed increased expression of type A cell marker GATA4 in the 
subcapsular cells of Gata6 cKO mice. Using qRT-PCR other gonadal-like markers were 
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shown to be significantly upregulated in the Gata6 cKO adrenals, including Amhr2, which 
is another type A cell marker (224), activin and inhibin subunits, as well as Fkhl18 (gene 
coding for FOXS1), which is an important factor for the development of testicular 
vasculature (225). Also the mRNA expression of transcription factor Tcf21, which is 
expressed both in adrenal capsule and gonadal somatic cells, was increased in Gata6 cKO 
mice. Microarray hybridization on adrenal glands from Gata6 cKO versus control mice 
confrimed increased mRNA expression of Amhr2 (9-fold), Fkhl18 (2-fold), and Tcf21 (3-
fold) in cKO adrenals. Other mouse models that exhibit GATA4 positive type A cell 
hyperplasia  are  mouse  with  constitutive  activation  of  β-catenin signaling in adrenocortical 
cells (226) and Prkar1a knockout mouse (227). 

 
Gonadectomy-induced increases in serum LH levels not only induce nonsteroidogenic 

type A cell hyperplasia but also sex steroidogenic type B cell accumulation in the 
subcapsular area (21, 228). The latter cells express both Cyp17 and Lhcgr and are capable 
of producing sex steroids, such as estrogen (228). To evaluate the effects of gonadectomy 
on our Gata6 cKO mouse model, we gonadectomized both male and female mice and 
monitored the subcapsular cell hyperplasia one month (males) and 3 months (females) 
after surgery. Both male and female cKO mice showed expanded subcapsular cell 
compartment compared with gonadectomized controls (Figure 12E and F). These 
hyperplastic cells stained positive with GATA4 antibody (Figure 12G and H) and qRT-
PCR showed upregulation of both type A cell (Amhr2 and Gata4) and type B cell (Cyp17 
and Lhcgr) markers in gonadectomised cKO females, suggesting that both of these cell 
types were present in the gonadectomized cKO adrenals. The similar kind of gonadal-like 
subcapsular cell hyperplasia has also been reported in postmenopausal women (53) and 
men with testicular atrophy (54), as well as in ferrets, rats, guinea pigs, and hamsters 
(229). 

 

 
 
Figure 12 Capsular and subcapsular cell hyperplasia in Gata6 cKO mice. A and B) Semi-thin 

sections of adrenal glands from 2mo old female mice. Yellow arrow points out the 
thickened capsule in mutant adrenal. Scale bar = 10 µm. C and D) GATA4 
immunostaining of adrenal glands from 3 mo old female mice. Scale bar = 100 µm. 
E and F) Adrenal glands from gonadectomized female mice. Scale bar = 100 µm. G 
and H) GATA4 immunostaining of adrenal glands from gonadectomized female 
mice. Scale bar = 100 µm. 
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Adult adrenal cortex undergo constant renewal as endogenous progenitor cells under 
the capsule proliferate, differentiate, and migrate centripetally to replace cells undergoing 
apoptosis (19). Previous studies have revealed several factors and signaling pathways that 
regulate this process. Transcription factor SF1 as well as SHH-, and WNT/β-catenin 
signaling promote steroidogenic cell differentiation, while DAX1 represses it (24, 26, 29, 
34). It is proposed that adrenocortical progenitor cells are capable of differentiating into 
adrenocortical or gonadal-like cells, and some exogenous factors, such as gonadectomy-
induced rise of serum LH levels, favor the gonaldal-like differentiation (21, 230). Based 
on our findings from the Gata6 cKO mice we presume that GATA6 inhibits the 
differentiation of adrenal progenitor cells into gonadal-like cells favoring the 
adrenocortical cell differentiation, whereas GATA4 is thought to drive gonadal-like cell 
differentiation (57) (Figure 13). All in all, our data provide evidence that GATA6 is an 
important regulator of the balance between stem and progenitor cell growth and 
differentiation in the adrenal cortex. 

 

 
 

Figure 13 Adrenocortical and gonadal cells originate from common pool of progenitor cells. 

2. GATA4, FOXL2, and SMAD3 in the regulation of GCT cell 
viability and apoptosis (II, III) 

The balance between signals promoting cell survival and death is often disrupted in 
malignant cells. Transcription factors GATA4, FOXL2, and SMAD3 are all implicated in 
normal granulosa cell function as well as pathogenesis of adult GCT. GATA4 is 
abundantly expressed in GCTs and its expression correlates with tumor aggressiveness, 
FOXL2 gene harbors a point mutation (C134W) in a vast majority of adult GCTs, and 
SMAD3 promotes GCT cell survival through NF-κB activation (134, 147, 152). 

2.1 The expression patterns of GATA4, FOXL2, and SMAD3 correlate with 
each other in GCT tissue microarray 

The expression patterns of GATA4, FOXL2, and SMAD3 overlap in developing and adult 
ovary, but the correlations have not been previously studied in GCTs. GATA4 expression 
pattern in the tumor tissue microarray containing 93 GCT samples has been previously 
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published (147). In brief, GATA4 was expressed at high/intermediate level in 90 % of the 
tumors, while only 10 % showed low/negative expression. We now analyzed the 
spatiotemporal protein expression patterns of FOXL2 and SMAD3 in GCT tissue 
microarray. Tumors were classified into three groups (high, intermediate, low) based on 
the staining intensity. The majority of tumors exhibited high or intermediate staining 
(Figure 14, Table 4). 

 
 

 
 

Figure 14 FOXL2 and SMAD3 are expressed in adult GCTs. Representative immunostaining 
images of high/intermediate expression (A and B) and low expression (C and D) 
tumors. Higher magnifications are shown in insets. Scale bar = 100µm. 

 
 

The high expression patterns of GATA4, FOXL2, and SMAD3 correlated with one 
other, but not with any of the clinicopathological parameters analyzed (i.e. age, 
menopause status at diagnosis, clinical stage, tumor size, tumor subtype, nuclear atypia, 
and mitotic index). Interestingly, when the association analyses were done only with the 
larger tumors (> 10 cm in diameter, n=35) the correlations of FOXL2 and GATA4 with 
each other and with SMAD3 were absent. In addition, the correlation between FOXL2 and 
GATA4 was lost in the primary GCTs that had recurred (n=19), suggesting that the 
imbalances in the expression of GATA4, FOXL2, and SMAD3 might give the tumor a 
growth advantage and therefore lead to more aggressive tumor behavior. Furthermore, 
high FOXL2 expression associated with an increased 5 years risk of recurrence, while low 
FOXL2 expression correlated with low 5-year recurrence risk. This is in line with the 
previous finding that FOXL2 expression in the primary tumor associates with the risk of 
recurrence (231). Currently, the only prognostic factor with clinical significance is tumor 
stage at time of diagnosis, and molecular prognostic markers are lacking (232-234). 
Finding new prognostic markers is difficult due to the rarity of GCT and long follow-up 
time needed. Based on our data, FOXL2 expression level might serve as a new tool for 
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evaluating the risk of recurrence, although further studies are needed to validate this 
finding. 

Table 4 The protein expression patterns of FOXL2 and SMAD3 in GCT microarray 

 FOXL2 SMAD3 
Low 5   (5%) 8   (9%) 
Intermediate 52   (58%) 43   (50%)  
High 33   (37%) 36   (41%) 
Total 90 87 

2.2 GATA4, FOXL2, and SMAD3 physically interact with each other 

GATA4 and SMAD3 have been shown to interact with each other (235). Moreover, 
SMAD3 also interacts with FOXL2 (236). The physical interaction between GATA4 and 
FOXL2, however, has not been demonstrated before. To investigate the interactions 
between GATA4, FOXL2, and SMAD3 in GCT cells we overexpressed V5-tagged 
GATA4 with SMAD3 and either untagged, V5- or GFP-tagged wild type (wt) or C134W-
FOXL2 in juveline GCT cell line COV434 cells (Figure 15). We chose to use this cell 
line, as the pilot experiments with adult GCT cell line (KGN) were unsuccessful probably 
due to their poor transfectability and low endogenous expression of transcription factors 
GATA4, FOXL2, and SMAD3. Protein complexes were immunoprecipitated using the V5 
epitope. 
 

Our data revealed that wt and C134W-mutated FOXL2 equally co-immunoprecipitated 
with both GATA4 and SMAD3, suggesting that the loss of interaction between these 
factors is not the cause of GCT. FOXL2 is also shown to interact with SF1 in granulosa 
cells, where it represses the binding of SF1 to CYP17 promoter, and thus act as inhibitor 
of steroidogenesis (237). Yet another identified binding partner of FOXL2 is DEAD box-
containing protein DP103. This transcription complex is able to induce granulosa cell 
apoptosis during follicular development (238). Altogether, our results do not directly 
prove that GATA4, FOXL2, and SMAD3 are all part of the same macromolecular 
transcription complex, but rather shows that they are capable of forming binary 
interactions with each other. 
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Figure 15 GATA4, FOXL2, and SMAD3 physically interact with each other. COV434 cells 
were transfected with V5 tagged GATA4, SMAD3, and wild type or C134W mutated 
FOXL2 overexpression vectors for 48h followed by immunoprecipitation using V5 
epitope. Immunoprecipitated proteins were detected using antibodies against 
FOXL2, SMAD3, and GATA4. Total proteins are shown as controls for 
transfections. Similar results were obtained in at least three independent 
experiments. 

2.3 GATA4, FOXL2, and SMAD3 synergistically regulate the CCND2 
promoter activation 

Cell cycle regulator CCND2, encoding cyclin D2,is a known target gene for GATA4, 
FOXL2, and SMAD3. GATA4 and SMAD3 are its positive regulators, while FOXL2 
inhibits its expression (148, 151, 239). Previously, CCND2 has shown to be expressed at 
high/intermediate levels in GCTs (148), and now we show that its expression pattern 
correlates with that of GATA4 and SMAD3, but not with FOXL2. 
 

To investigate the synergistic roles of GATA4, FOXL2, and SMAD3 in the regulation 
of CCND2 promoter we overexpressed GATA4, wt and C134W-mutated FOXL2, and 
SMAD3 in KGN cells, and measured the CCND2 promoter activity. None of these factors 
alone could significantly increase the promoter activity, whereas GATA4 together with 
SMAD3 synergistically caused a 8-fold increase in promoter activity compared to control. 
This finding strengthens the role of GATA4 in the TGF-β signaling in GCT cell (235). 
These data together with the positive correlation of expression of GATA4, SMAD3, and 
CCND2 in GCTs suggest that GATA4-SMAD3 co-operation is vital for CCND2 
expression and the proliferation of GCT cells. Furthermore, both FOXL2 forms decreased 
GATA4/SMAD3-induced CCND2 promoter activity by 50%. In rat granulosa cells, 
another member of forkhead transcription factor family, FOXO1, is shown to repress the 
transcription of CCND2 by binding to its promoter, and FSH signaling as well as positive 
signaling from activin-stimulated phosphorylation of SMAD2/3 are required to release 
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this repression (151). All in all, our findings imply that the disrupted functional 
interactions between GATA4, FOXL2, and SMAD3 with CCND2 promoter cannot 
explain how the mutated FOXL2 participates in GCT pathogenesis. 

2.4 GATA4, FOXL2, and SMAD3 modulate GCT cell viability and apoptosis 

GATA4 serves as an anti-apoptotic factor in cardiomyocytes protecting them from 
apoptosis induced by exogenous stimuli (149, 150). Furthermore, high GATA4 expression 
has been associated with more aggressive tumor behavior and increased risk of recurrence 
in GCTs (147). 
 

In order to investigate the effects of GATA4 on GCT cell apoptosis in vitro we 
transfected KGN cells with adenoviral constructs expressing either wild type or dominant 
negative GATA4, or lentiviral vectors expressing GATA4 targeting small hairpin RNAs 
(shRNA), and quantified the caspase 3/7 activity as a measure of apoptosis. 
Overexpression of GATA4 with wild type adenovirus construct did not affect the GCT 
cell apoptosis (Figure 16A), while disrupting GATA4 function significantly increased the 
number of apoptotic GCT cells (Figure 16B and C). This finding supports the anti-
apoptotic role of GATA4 in GCTs and is in line with the previous discoveries in 
cardiomyocytes (149, 150) and in normal ovary, in which downregulation of GATA4 
expression precedes the physiological apoptosis of granulosa cells in ovulating follicles 
(96). 

 

 
 

Figure 16 Disrupting GATA4 function protects GCT cells from apoptosis. KGN cells were 
transfected either with A) wild type (G4wt), B) dominant negative (G4dn) GATA4 
adenovirus constructs or C) lentiviral vectors expressing GATA4 targeting small 
hairpin RNAs (Sh1 and Sh2). Caspase3/7 was measured 6h after transfections and 
presented relative to control transfection as the mean ±S.E.M. of three independent 
experiments performed in triplicate. *P<0.05. 

In contrast to anti-apoptotic GATA4, wt FOXL2 induces GCT cell apoptosis (143, 
240). Interestingly, C134W-mutated FOXL2 has been shown to be less capable of 
inducing apoptosis compared to the wt version (143). Furthermore, SMAD3 has shown to 
promote GCT cell survival by activating ERK1/2 signaling pathway (152). 
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To examine the synergistic effects of GATA4, wt and C134W-mutated FOXL2, and 
SMAD3 on cell viability and apoptosis in GCT cells, we overexpressed these factors 
separately and simultaneously in KGN cells. After transfection cell viability and apoptosis 
were measured. Wt FOXL2 overexpression alone or together with GATA4 and/or 
SMAD3 significantly decreased the viable cell count compared to control, while 
overexpression of mutated FOXL2 alone or together with GATA4 and/or SMAD3 did not 
affect the cell viability. 

 
Moreover, in accordance with previous findings (143), wt FOXL2 induced a 

significant 3-fold increase in caspase3/7 activity, whereas mutated FOXL2 showed 
significantly weaker effect (Figure 17). Overexpression of GATA4 and SMAD3 alone or 
together did not affect the caspase activity. Interestingly, GATA4, but not SMAD3, 
significantly decreased wt FOXL2-induced apoptosis, but had no effect on mutated 
FOXL2-induced apoptosis (Figure 17) further supporting the anti-apoptotic role of 
GATA4 in GCTs. Interestingly, a recent study suggested that wt, but not mutated FOXL2, 
induces GCT cell apoptosis by increasing gonadotropin-releasing hormone receptor 
expression (241). Furthermore, our findings are in line with a recently published study by 
L’hôte  et al., in which they identified 10 novel partners for FOXL2 (240). Partners with 
pro-apoptotic capability were able to increase apoptosis induction by wt FOXL2, but not 
by the mutated form, whereas partners with an anti-apoptotic effect decreased apoptosis 
induction by both FOXL2 versions, and thus promote GCT cell viability and inhibit 
apoptosis (240). 

 
 

 
 

Figure 17 GATA4 protects GCT cells from wt FOXL2 induced apoptosis. KGN cells were 
transfected with wild type FOXL2, C134W mutated FOXL2, GATA4, and SMAD3 
expression plasmids. The activated caspase 3/7 was measured 24 h after 
transfection. Caspase 3/7 activity is presented relative to control transfection as the 
mean rSEM of at least three independent experiments performed in triplicate. Bars 
not connected by the same letter are significantly different. P < 0.05. 
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Altogether, our data indicate that GATA4 acts as an anti-apoptotic factor in GCT cells, 
and that GATA4 and SMAD3 exhibit distinct effects on cell survival and apoptosis 
compared to wt FOXL2. Furthermore, these factors do not modulate the deacreased ability 
of mutated FOXL2 to induce apoptosis, suggesting that the disturbance of the delicately 
balanced regulation of cell survival and apoptosis due to the C134W mutation is likely to 
contribute to GCT pathogenesis (hypothetical model is presented in figure 18). The 
regulation of granulosa cell growth and apoptosis is complex and includes numerous para- 
and autocrine factors, as well as transcription factors that have to co-operate precisely. In 
this study we chose to explore the effects of only three of these factors on GCT cell 
viability and apoptosis. Therefore it is plausible that several other factors are also involved 
in the complex molecular events leading to the malignant transformation of granulosa 
cells. 
 

 

 
 

Figure 18 Hypothetical model of the actions of C134W mutated FOXL2 in GCT pathogenesis. 
C134W mutation in FOXL2 gene gives GCT cells a growth advantage. A) Normal 
granulosa cell growth is modulated by interaction and co-operation between wt 
FOXL2, GATA4, and SMAD3. B) C134W mutation in FOXL2 disrupts this balance 
leading to malignant cell growth. 

3. TRAIL and anti-VEGF treatment inhibit growth in GCTs (III, IV) 

Although TRAIL ligand and its receptors are known to be expressed in various tissues 
(117), TRAIL has been most intensively studied in cancer cells due to its ability to induce 
apoptosis in malignant cells without affecting the healthy cells (242). The mechanism by 
which TRAIL induces apoptosis only in cancerous cells has been under debate, and it is 
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still largely unknown. Decoy receptor expression in normal cells but not in cancerous cells 
is thought to be one possible explanation (243, 244). Owing to its unique potential to 
selectively kill malignant cells, TRAIL has become a promising target for cancer therapy. 
Multiple preclinical and clinical studies have been carried out to assess the usefulness and 
safety of recombinant human TRAIL (rhTRAIL) in treatment of several cancer types, 
including metastatic colorectal cancer, prostate cancer, pancreatic cancer, and ovarian 
cancer (245).  
 

Another potential target for cancer therapy is anti-VEGF treatment with either VEGF 
targeting antagonists or VEGFR blocking agents. One of the most promising anti-VEGF 
drugs is bevacizumab, a humanized monoclonal antibody against VEGF (186, 187). 
Interestingly, in addition to endothelial cells, various cancer cells, including GCT cells 
(183), express VEGF and its receptor VEGFR-2, but the role of VEGF signaling in GCT 
cell growth has not been assessed before. 

3.1 GCTs express functional TRAIL receptors 

TRAIL pathway components are expressed in normal granulosa cells (121), but their 
expression in GCT cells have not been extensively studied before. Furthermore, we now 
assessed the functionality of TRAIL pathway in freshly isolated primary GCT cells. 

 
The expression of functional TRAIL receptors on the cell surface is a prerequisite for 

TRAIL-indused apoptosis in tumor cells. To study the protein expression of TRAIL 
receptors DR4 and DR5 in GCTs, the tumor tissue microarray of 93 GCT samples was 
subjected to immunohistochemical staining. Tumors were classified in three groups (low, 
intermediate, high) based on the staining intensity. Majority of GCTs exhibited strong or 
intermediate immunostaining for both DR4 and DR5 (Figure 19A and B, Table 5). 
Interestingly, 11/12 of recurrent GCTs showed strong or intermediate DR4 expression, 
and 12/12 tumors expressed DR5 at high or intermediate level. In epithelial ovarian cancer 
patients and breast cancer patients with invasive ductal carcinoma, DR4 expression levels 
have been shown to correlate with tumor grade (246, 247). No such correlation was found 
in GCT patients, and neither did DR4 and DR5 expression patterns correlate with the other 
clinicopathological parameters studied (clinical stage, tumor size, nuclear atypia, mitotic 
index, and recurrence tendency). 
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Table 5 The expression of TRAIL receptors in GCT tissue microarray 

 DR4 DR5 
Low/negative 8 (9%) 7 (8%) 
Intermediate 64 (73%) 65 (75%) 
Strong 16 (18%) 15 (17%) 
Total 88 87 

 

Next, we characterized the functional TRAIL receptor expression in six primary GCT 
cell cultures (two primary and four recurrent tumors). Immunocytochemistry staining and 
reverse transcription-PCR analysis of DR4 and DR5 showed that all the six primary GCT 
cell cultures expressed both of the receptors. 
 
 

 
 
Figure 19 TRAIL receptors are expressed in adult GCTs. Representative immunostaining 

images of high/intermediate expression (A and B) and low/negative expression (C 
and D) tumors. Scale bar = 50 µm. 

3.2 TRAIL pathway is active in GCT cells 

RhTRAIL induces apoptosis in GCT derived KGN cell line (121, 248). Now we tested 
the ability of TRAIL to indude apoptosis in freshly isolated primary GCT cells. Cultured 
primary cells were stimulated with increasing doses of rhTRAIL for 24h, after which 
apoptosis was measured by western blotting and DAPI staining. In all six primary GCT 
cell cultures studied, TRAIL dose dependently activated apoptosis (Figure 20A and B). 
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Figure 20 TRAIL induces apoptosis in primary GCT cells. A) Western blotting showing the 

activated caspase 3 after TRAIL treatment. B) DAPI staining of primary GCT cells 
after TRAIL administration. Arrows indicate apoptotic cells. 

 
 

Together these findings demonstrate a functional TRAIL pathway in GCT cells 
similarly to other ovarian cancer types (249), and set a preclinical basis for therapeutic use 
of TRAIL in treatment of GCT patients. In addition to rhTRAIL, another promising tool 
for TRAIL pathway activation are agonistic monoclonal antibodies towards functional 
TRAIL receptors. Several of these antibodies have been tested, and they have shown 
promising safety and efficacy in diverse preclinical cancer models as well as in clinical 
studies (250). Numerous preclinical studies have revealed that combination treatments of 
rhTRAIL and various chemotherapeutics (e.g. DNA damaging agents) or agents that target 
other points in the apoptosis pathway (e.g. BCL2 antagonists) lead to synergistic apoptotic 
activity (250). This synergism is thought to result from the combinatorial stress that 
sensitises the cell and triggers apoptosis more efficiently than single stress factor. In the 
future, combination of sensitizing treatment and the stimulation of TRAIL-dependent 
extrinsic apoptotic pathway could be used in the treatment of GCT patients. 

3.3 Serum VEGF is elevated in GCT patients 

Cancer patients often present with elevated levels of serum VEGF (176-178). To assess 
whether this is the case also in GCT patients we measured the circulating VEGF from the 
serum of 54 GCT patients. Mean serum VEGF was significantly higher in patients with 
non-operated GCT when compared with disease-free patiens (Figure 21A). Furthermore, 
in paired analyses  of  an  individual  patient’s  with-disease and disease-free samples, tumor 
removal significantly decreased serum VEGF (Figure 21B). No significant difference was 
seen when the serum VEGF levels of patients with large (<10 cm in diameter) tumors 
were compared with those of small (>10 cm in diameter) tumors. Furthermore, serum 
VEGF levels did not correlate with any of the clinicopathological parameters studied 
(patient age at sample retrieval, the type of treatment, haemoglobin levels, haematocrit, 
leucocyte, or platelet count). Since most of the GCTs in our study were diagnosed at early 
stage, the serum VEGF levels were only moderately increased in the GCT patients, and 
thus are of limited value as tumor marker in GCT patients. 
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Figure 21 Sirculating VEGF is elevated in GCT patients. A) Serum VEGF was measured from 

54 GCT patients. B) The paired analyses of serum VEGF in 20 GCT patients. 
Abbreviations: DF, disease free; WD, with disease. *P<0.05. 

 
 
To explore the origin of circulating VEGF in GCT patients, we analysed the VEGF 

production from primary GCT cell cultures. All 14 primary cell cultures studied secreted 
significant amounts of soluble VEGF into the supernatant, suggesting that the source of 
the serum VEGF are the tumor cells. This is in line with the finding that serum VEGF 
levels decrease after tumor removal. 

3.4 Human GCTs express phosphorylated VEGFR-2 

Various tumor cells, including GCTs, express VEGFR-2, the functional receptor of VEGF 
(180, 183). Furthermore, studies in ovarian (182) and various other cancer cells (180) have 
revealed an autocrine VEGF/VEGFR-2 signaling loop that promotes growth and survival 
of the tumor cells via phosphorylation and activation of VEGFR-2. In this study we 
analysed the expression of phosphorylated VEGFR-2 (pVEGFR-2) in our GCT tissue 
microarray of 93 GCT samples by immunohistochemisty. Tumors were classified in three 
groups (high, low, negative) based on the staining intensity, and the localisation of antigen 
was further categorized as cytoplasmic or nuclear. 
 

Most of the tumors (73/89) showed positive staining for pVEGFR-2, and 21 of them 
were highly positive. Interestingly, 95% of pVEGFR-2 positive tumors exhibited nuclear 
staining. This is in agreement with other studies in endothelial cells showing the nuclear 
localization of VEGFR-2 upon activation (251, 252). Nuclear localization of activated 
VEGFR-2 mediates distinct responses on gene expression depending on the VEGF 
isoform, phosphorylated tyrosine residues of the intracellular domain of receptor, and cell 
type (253, 254). No differences were found in pVEGFR-2 expression between primary 
and recurrent GCTs, and the pVEGFR-2 expression pattern did not correlate with any of 
the clinicopathological parameters studied (tumor size, subtupe, nuclear atypia, and 
mitotic index). Interestingly, high pVEGFR-2 expression positively correlated with the 
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expression of VEGF and VEGFR-2 (expression patterns previously published in (183)), 
suggesting an autocrine VEGF/VEGFR-2 signaling loop in GCT cells. 

3.5 BVZ inhibits GCT cell growth by inducing apoptosis 

To further study the possible growth-promoting role of VEGF in GCT cells, we blocked 
the tumor produced VEGF with BVZ, a humanized monoclonal antibody that inhibits 
VEGF. KGN cells were treated with increasing doses of BVZ and analysed for viable cell 
count and apoptosis. BVZ was able to induce apoptosis (Figure 22A and B), and it 
significantly decreased the viable cell number (Figure 22C) with highest concentration 
used. Similar results were obtained from primary GCT cells; BVZ induced apoptosis in all 
the six (4 primary and 2 recurrent tumors) primary cell cultures studied. Furthermore, 
BVZ treatment reduced the expression of pVEGFR-2 in KGN cells. 

 

 
 
Figure 22 BVZ inhibits GCT cell growth and activates apoptosis. KGN cells were treated with 

increasing doses of BVZ. After 1-3 d treatment apoptosis was measured using 
caspase 3/7 assay (A) and DAPI staining (B). C) Viable cell count was analysed 
using MTT assay. *, significant difference compared with BVZ 0 µg/ml. P<0.05. 

 
 
Our findings demonstrate an active VEGF signaling pathway in GCT cells, and that 

BVZ inhibits GCT cell growth by inhibiting this pathway. Thus, these data further prove 
the existence of survival-promoting VEGF/VEGFR-2 autoloop in GCT cells. Furthermore, 
our results set a molecular basis for the clinical use of BVZ in the treatment of GCT 
patients. BVZ is already widely used in the treatment of multiple cancer types, including 
epithelial ovarian carcinoma (186, 187). Moreover, small retrospective clinical studies 
have shown that BVZ is also active in treatment of recurrent GCTs (188-190). However, 
BVZ treatment has some severe side effects, including gastrointestinal perforations (255). 
Therefore other VEGF/VEGFR-2 targeting drugs, such as a monoclonal antibody against 
VEGFR-2, ramucirumab, that inhibits VEGF binding to its receptor, and has shown 
survival benefits in patients with advanced gastric adenocarcinoma, hepatocellular 
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carcinoma, and other cancer types (256-258), may provide safer and better-tolerated target 
for treatment of recurrent GCTs. 

4. GATA4 protects GCT cells from TRAIL-induced apoptosis (III) 

As discussed above, transcription factor GATA4 acts as an anti-apopotic factor in human 
GCT cells. Furthermore, during folliculogenesis in normal ovary GATA4 downregulation 
precedes the physiological apoptosis of ovulating follicles (96). To test whether TRAIL-
treatment affects the endogenous GATA4 levels, KGN cells were treated with increasing 
doses of rhTRAIL and GATA4 protein levels were determined by western blotting. Our 
results showed that the endogenous GATA4 levels did not change after TRAIL 
administration indicating that the apoptosis-inducing effect of TRAIL does not require 
GATA4 downregulation. 
 

Next, to assess whether GATA4 modulate the extrinsic apoptosis pathway, we 
overexpressed and silenced GATA4 in KGN cells using either adenoviral GATA4 
construct or lentiviral vectors expressing two different shGATA4. We also disrupted 
GATA4 function using dominant negative GATA4 adenoviral construct. Transfected cells 
were treated with increasing doses of rhTRAIL, after which apoptosis was measured. 
Overexpression of GATA4 effectively protected KGN cells from TRAIL-induced 
apoptosis (Figure 23A), while silencing GATA4 significantly enhanced it (Figure 23B). 
Furthermore, disrupting GATA4 function with dominant negative mutant GATA4 also 
sensitized the cells to TRAIL-induced apoptosis (Figure 23C). 

 
These findings further strengthen the anti-apoptotic role of GATA4 in GCTs. Similarly 

to our findings, in murine heart GATA4 has shown to protect cardiomyocytes from 
doxorubicin-induced apoptosis (149). The mechanism by which GATA4 protects GCT 
cells from TRAIL-induced apoptosis still remains unknown, but it is likely to exert its 
effects via intrinsic apoptotic pathway, since it is known that GATA4 regulates the 
intrinsic pathway by regulating the expression of anti-apoptotic BCL2 in cardiomyocytes 
and GCT cells (148, 150). Other parameters that sensitise tumor cells to TRAIL induced 
apoptosis include mutations in proapoptotic BAX and Caspase 8 genes, and altered 
expression of certain anti- and proapoptotic factors (250). Since GATA4 protein levels are 
known to be elevated in more aggressive tumors (147), one may speculate that in these 
tumors elevated GATA4 levels protect the tumor cells from exogenous apoptosis-inducing 
factors such as TRAIL. Furthermore, the evaluation of GATA4 expression levels of 
individual GCT patients could be used as a predictive marker of TRAIL treatment efficacy 
in clinic in the future. 
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Figure 23 GATA4 protects GCT cells from TRAIL induced apoptosis. KGN cells were 
transfected with A) adenoviral GATA4 construct (G4wt), B) lentiviral shGATA4 
constructs (sh1 and sh2) A), or C) adenoviral dominant negative GATA4 construct 
(G4dn). Transfected cells were treated with rhTRAIL for 6 h and caspase 3/7 activity 
was measured. All caspase activities are presented relative to control transfection as 
the mean ±SEM of three independent experiments performed in triplicate. *P<0.05. 

All in all, our data increase the knowledge of regulation of the GCT cell apoptosis. We 
show that transcription factor GATA4 acts as an anti-apoptotic factor in these cells by 
protecting them from FOXL2- and TRAIL-induced apoptosis. Furthermore, disrupting 
GATA4 function promotes GCT cell apoptosis. Our findings also indicate the existence of 
prosurvival VEGF/VEGFR-2 autoloop in GCT cells, and that blocking this pathway by 
BVZ leads to GCT cell apoptosis. A schematic depiction of these findings is presented in 
Figure 24. 



RESULTS AND DISCUSSION 

 
 
 
 

65 

 

Figure 24 Summary of the regulation of GCT cell apoptosis. 
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Conclusions and future prospects 

The main steroidogenic organs, adrenal cortex and gonads, originate from the 
common progenitor, and share partly the same molecular machinery, including 
transcription factors and signaling pathways that regulate their cell 
differentiation, hormone production, growth, and cell death. The studies 
presented herein focus on the transcriptional regulation of adrenocortical cell 
differentiation and GCT cell survival, as well as finding new potential targets 
for GCT treatment. 

 
1) Transcription factor GATA6 is important for the proper development and 

differentiation of murine adrenal cortex. Conditional deletion of Gata6 gene 
from Sf1-positive adrenocortical cells results in a complex adrenal phenotype 
including a thin and cytomegalic adrenal cortex, blunted aldosterone 
production, lack of X-zone, and increased subcapsular cell hyperplasia. All in 
all, this study demonstrates that GATA6 regulates the balance between 
progenitor cell prolifearation and differentiation in the adrenal cortex. 

 
In the present study we describe the phenotype of GATA6 cKO mouse, but 

further studies are needed to elucidate the mechanisms behind this pleiotropic 
phenotype, e.g. whether the key signaling pathways, including pathways 
implicated in stem cell function are disrupted in Gata6 cKO adrenals. 

 
 

2) Transcription factors GATA4, FOXL2, and SMAD3 interact and co-
operatively modulate GCT cell viability and apoptosis. Our study strengthens 
the concept of the anti-apoptotic role of GATA4 in GCTs by showing that 
disrupting its function significantly increases apoptosis in these cells, and that 
GATA4 protects GCT cells from FOXL2-induced apoptosis. Furthermore, 
GATA4 and SMAD3 demonstrate distinct effects compared to wild type 
FOXL2 in the regulation of cell survival, whereas they do not modulate the 
reduced ability of mutated FOXL2 to induce GCT cell apoptosis. Taken 
together, these findings suggest that C134W mutation in FOXL2 gene 
destabilises the balanced control of GCT cell growth and apoptosis leading to 
malignant transformation. 

 
This study demonstrates the previously unknown interaction of GATA4, 

FOXL2, and SMAD3. However, it does not unveil the exact molecular 
mechanisms by which C134W-mutated FOXL2 causes the GCT formation. 
Further studies are therefore needed to better understand the functional 
consequences of this mutation. 
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3) TRAIL and BVZ induce apoptosis in GCT cells. Human GCTs express 
functional TRAIL receptors, and TRAIL pathway is active in primary GCT 
cell cultures leading to apoptosis. Furthermore, GATA4 protects GCT cells 
from TRAIL-induced apoptosis. GCTs also express activated VEGF receptor 
VEGFR-2, and serum VEGF levels are elevated in GCT patients. Moreover, 
blocking the autocrine VEGF/VEGFR-2 pathway with BVZ results in GCT 
cell apoptosis. These findings set a preclinical basis for targeting these two 
pathways in the treatment of GCTs. 

 
The treatment of recurrent GCTs is challenging due to lack of biologically 

targeted treatment modalities. Our study provides two potential targets for new 
treatment options. However, several issues have to be considered before their 
clinical use. In addition to malignant cells, TRAIL receptors are also expressed 
in normal granulosa cells, and TRAIL has been suggested to involve in the 
regulation of follicular atresia. Therefore thorough evaluation of the effects of 
TRAIL on normal granulosa cells needs to be done. 

 
BVZ has shown to have severe side effects. Thus, other VEGF/VEGFR2 

pathway inhibitors, such as VEGFR-2 blockers, may serve better-tolerated 
options for GCT treatment. However, the efficacy and safety of these drugs 
must be assessed in preclinical and clinical studies before their clinical use. 
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