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Abstract

The purpose of medical computed tomography (CT) is to generate a three di-
mensional (3D) model of inner organs based on number of two dimensional (2D)
X-ray images taken from different directions around the patient. Clinical CT imag-
ing improves and extends the operational and diagnostic X-ray imaging since it
basically adds a new spatial dimension to the data by converting multiple 2D im-
ages into a single 3D volume. From the volume representation it is possible to
measure distances or observe relations between inner structures in detail.

The process that generates the 3D volume from number of projection images is
generally called reconstruction process, which can be considered to consists of three
stages: Pre-processing that modifies the projection images into suitable form for the
reconstruction, reconstruction itself that generates a 3D model from the projection
images and post-processing, which attenuates noise and other un-idealities and
emphasizes the clinically relevant information. Each of these steps has an impact
to the image quality and therefore has to be optimized to gain optimal image quality
for the given clinical task.

Conventional CT design is not optimal in the sense of cost, workflow or dose
for two reasons. Firstly, CT devices are typically expensive and bulky devices
because they require a stable X-ray production, rigid gantry with accurate and
repeatable movements, high scanning speed, solid patient support and a low-noise
X-ray detector. Secondly, current non-regularized reconstruction techniques require
high dose per projection image as well as a huge number of projection image. This
also limits the usage of the CT imaging to serious trauma cases and other lethal
diseases.

To overcome the limitations mentioned above, new approaches have been in-
troduced. For example, year 2007 a dental imaging technology company Palodex
Group (Tuusula, Finland) released an upgrade kit for standard digital panoramic
X-ray device, named Volumetric Tomography (VT), which enables limited angle low
dose 3D imaging for implant planning. VT can be considered as a limited angle
tomography device since it acquires between 5 to 11 projection images from 40−45
degree aperture with maximum 80 kVp X-ray energy, while in conventional dental
CT device over 300 projection images are taken from 180 − 360 degree aperture
with 90− 120 kVp X-ray energy.

The limited angle tomography is a well-known example of ill-posed problem
since the volume cannot be uniquely determined based on the projection image.
It has been estimated in this study that typically only 10% of the information is
defined by the projection data in extremely sparse and limited angle tomography.
Therefore, novel image processing methods for pre-processing, post-processing and
reconstruction are needed for feasible reconstruction quality from a limited number
of projection images.

The purpose of this thesis was to evaluate the capability of the VT device for
clinical implant planning and improve the reconstruction quality as well as the ver-
satility of the VT concept. For that reason, novel imaging processing and analyzing
methods were generated. These methods can also be adapted to other sparse or
limited angle tomography related reconstruction methods.
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In the article [I], we evaluated if VT -device can be clinically used for implant
planning. Based on these encouraging results, the VT system was also commer-
cialized. During the development phase three separate patents were filed and later
accepted.

In the article [II], a new image processing method based on modification of the
constrained least-square filter for extremely sparse situations was introduced. In
this method, called Wiener-filter based iterative reconstruction technique (WIRT),
we considered the uncertainty of the interpolation as noise and utilized the regular-
ization only in the regions where the uncertainty is the dominating factor. This was
possible by modeling the reconstruction process in the frequency domain, where the
known frequency components are located on the lines defined by the well-known
Fourier slice theorem.

In the article [III], a new sinogram estimation algorithm called sinogram inter-

polation technique (SINT) was created, where the missing sinogram columns were
estimated based on the known sinogram columns. Since the underlying sine waves
from the sinogram cannot be directly determined, a new concept called warp was
defined, which can be considered as a local sum of the underlying sine waves. The
numerical implementation clearly indicates that this method is more accurate and
reliable than basic interpolation methods if the angular difference between the pro-
jection images is spacious.

In the article [IV], a method namedmutual information based technology (MINT)
was developed to estimate the imaging geometry directly from the projection data.
Imaging geometry can be consider as information about a location of the X-ray
source and detector at the moment when each projection image was taken. This
information is essential for the reconstruction quality where even smallest error in
the image geometry model causes artifacts. In this method, the imaging angles can
be estimated based on the projection images without any external markers or addi-
tional constructions to the device. It was also indicated that the MINT method can
be expanded to several other tomographic situations, including local tomography,
fan- and cone beam tomography. These extensions were also implemented to the
study that was executed with clinical data.

In addition to the methods mentioned above, we also demonstrated that limited
angle tomography is able to give similar clinical information as full-scan CT devices
in dental implant planning. Therefore, the implant planning could be executed
more cost and dose effectively when suitable algorithms are applied throughout the
reconstruction process.
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1. Introduction

Nowadays, three dimensional (3D) X-ray images are needed for a wide range of
clinical procedures. The 3D data is generated by a computed tomography (CT)
device, which is a dedicated X-ray system that takes hundreds of projection images
around the target and calculates a 3D distribution of the attenuation coefficient,
volume, from those images. The method that calculates the volume from the pro-
jection images is called reconstruction. In addition to the projection images, the
reconstruction also requires imaging geometry, which can be considered as spatial
information of the X-ray source and detector for each individual exposure.

Although CT imaging has some benefits over two dimensional (2D) imaging,
there are some drawbacks as well. The biggest concerns in CT imaging are the high
device cost and the patient dose. However, it has been demonstrated that these
weaknesses could be solved by implementing sparse or limited angle tomography
methods.Sparse angle tomography means that the number of projection images is
limited, while limited angle tomography specifies that the aperture of the scan is
limited. There are no exactly determined or fixed limits for sparse or limited angle
tomography conditions, but it is generally supposed that if these limitations have
a significant impact to reconstruction quality, the terms sparse and limited angle
tomography are applicable.

In this thesis, we consider both sparse and limited angle tomography situations.
In the sparse angle tomography cases we used only 10− 20 projection images with
about 180 scanning aperture, while in limited angle tomography same number of
projection images are limited into 45 degrees aperture. The fundamental challenge
in sparse and limited angle tomography reconstruction can be seen in Figure 1,
which indicates that while in the full scan tomography (by its definition) all fre-
quency components of the volume can be defined, typically only under 10% of the
frequency components of the volume in limited or sparse angle tomography scan
are known. This lack of information calls for novel image processing methods to
achieve clinically acceptable image quality. See also figure 5f-h as an example how
conventional reconstruction fails in limited and sparse tomography situations.

The high cost and extensive construction of a CT device is mainly caused by
strict accuracy requirements for the gantry movements needed for modeling the
geometry information. This inconvenience could be avoided by determining the
imaging geometry either directly from projection images or from a set of fiducial
markers. Still, the drawback of this approach is that it requires more sophisticated
methods to determine the realized gantry movement.

Currently there is promising development on limited and sparse angle recon-
struction methods. However, most of these studies have been concentrated only
to the part on the reconstruction that converts the projection images into a 3D
model and not considering the complete process form the detector data to the final
volume.

For improved reconstruction quality additional image processing is also needed
before and after the reconstruction. Therefore, we consider in this thesis the com-
plete reconstruction imaging pipeline, which consists of three sub-processes; pre-
processing, reconstruction and post-processing. The purpose of the pre-processing
is to distinguish the un-idealities such as the detector read-out noise or corrupted
detector readings from the projection images and generate linearized grayvalues
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Figure 1. The fraction of known frequency components shown
as function of sparsity (i.e. the angular difference between two
adjacent projection images) for three different volume resolutions
(64×64, 128×128 and 256×256). When sparsity increases above 10
degrees, less than 10% of information is defined by the projection
data (see also Section 2.4). Originally published in the article [II].

for the reconstruction. Furthermore, after the reconstruction the clinically relevant
information is emphasized in the post-processing stage. See [1, Section 2.3].

Before giving an overview about these new methods, we will discuss about his-
torical, technical and clinical aspects of 3D imaging and explain some fundamental
issues about 3D imaging and reconstruction calculation.

1.1. History of computed tomography imaging. The X-rays were discovered
by German physicist Wilhelm Conrad Röntgen in the end of 19th century. The first
official document about this significant discovery was a letter from Röntgen to the
Physical Medical Society of Würzburg, dated December 1895. The X-ray source
that Röntgen was using in his experiments was a Hittorf-Crookes -tube, which was
very similar to the modern X-ray tubes. [2]

In the X-ray tube electrons are accelerated from anode to cathode by high voltage
electrical field. When the electrons hit the cathode, their kinetic energy is partly
transformed into electromagnetic radiation, which is capable to penetrate into the
human body and partly attenuate there. The amount of the attenuation depends
on the initial X-ray energy spectrum and the characteristics of the material. The
sum of the attenuation can then be detected by screen, by film or nowadays mainly
by digital detectors. [2]

The fundamental limitation of the X-ray image is that it indicates only the total
sum of the attenuation from the X-ray source to the detector element instead of the
exact position of the X-ray attenuation. To overcome this problem, A. E. M. Bocage
invented 1921 the first tomography system, which was based on the synchronized
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linear movement of the X-ray source and detector during the exposure. Since the X-
ray source and the detector moved linearly to the opposite direction with a specific
velocity, the projection of the object that lay in a fixed plane, called focus plane, was
relatively stationary leading to a sharp image of objects in the focus plane, while
all objects that are were located above or below were blurred out. See [1, Section
1.1].

Although Bocage’s invention solves the initial problem of superposition, it has
some disadvantages: Firstly, the focus plane has to be accurately defined before the
X-ray scan. Secondly, there can be only one focal plane per scan. Thirdly, amount
of blurring is weak near the focal plane leaving artifacts, called off-focal shadows,
to the tomographic image. Despite these limitations, this tomography technique is
still widely used for example in modern digital dental imaging devices [3–5].

The reconstruction calculation is based on the studies by Austrian mathemati-
cian Johann Radon, who showed in 1917 that 2D object can be reconstructed
uniquely from infinite number of one dimensional (1D) projections. The transform
from the object to the projection is called the Radon transform. The fundamental
theory of the Radon transform and especially the inverse Radon transform, i.e.
transformation from the projection images back to the object, are the basis of the
numerical computed tomography. Before the inverse Radon transform was used in
X-ray tomography, it was successfully applied in several other technologies from
microwave emission of the sun to the television technology. [1, Section 1.2]

The first public documentation related to CT imaging was a patent granted
as early as 1940 to Gabriel Frank. In this patent Frank clearly described the
principle of CT imaging. Since during that time it was impossible to actually
compute the slices because of limitations of digital imaging devices and computers,
the outcome from the device described in this patent was a sinogram instead of
slice or volume data. Therefore, there were hardly any interest on this innovation
that time. [6, Section 2.3]

Another important milestone in the history of CT imaging was William H. Old-
endorf’s experiment in 1961, where he demonstrated that the internal structure of
an object could be measured by utilizing an X-ray source, a photon multiplier and
a gantry with a rotating and linear scanning movement. [1, Section 1.2]

In 1963 and 1964 Allan M. Cormack published results from a similar experiment
as Oldendorf did several years earlier. However, unlike Oldendorf, Cormack also
implemented a working reconstruction algorithm and was therefore able to recon-
struct the internal structure of the object based on these measurements. For that
reason, Cormack’s experiment can be considered as a first functional CT system
ever. [1, Section 1.2]

Independently from the Cormack’s research work, Godfrey N. Hounsfield studied
the tomographic problem in Central Research Laboratories of EMI Ltd in England.
Based on the these studies, the development of the first clinical CT scanner started
year 1967. Twelve years later Cormack and Hounsfield shared a Nobel price of
Physiology and Medicine for their fundamental contribution in the CT imaging
development. [1, Section 1.2]

1.2. Clinical benefits of tomographic imaging. Nowadays, there are multiple
clinical applications based on CT imaging. One example is dental implant planning,
where a missing tooth is replaced by an artificial one. In the implant planning appli-
cation the optimal angle, depth and diameter of a screw hole have to be accurately
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X-ray technique Typical effective dose (µSv)
Intraoral 5

Cephalometric 6
Panoramic 19
Dental CT 200

Mammogram 400
Head CT 2 000
Chest CT 7 000

Lower gastrointestinal X-ray series 8 000
Coronary CT angiogram 12 000

Table 1. The effective dose of dental and medical X-ray tech-
niques. Despite dental CT study has typically lower dose than
medical CT examinations, it still gives significantly higher patient
dose than other dental X-ray techniques [10–12]

.

defined: If the hole is too deep, the surrounding tissue is unnecessarily harmed. On
the other hand, if the hole is too shallow, the attachment can be loose [7].

Another benefit of CT imaging is resolving the superposition problem. Super-
position means that multiple inner structures overlap, causing a situation where
the clinically relevant information is disturbed by extreme attenuation and pho-
ton starvation. This is a significant problem especially in low contrast imaging,
like mammography. However, since in the 3D imaging multiple images are taken
from different angles and the focal slice can be freely chosen, the clinical relevant
information can be unveiled. [8] [9]

The biggest concern in CT imaging has always been the patient dose. Since
CT imaging needs several projection images, the patient dose is significantly higher
than in conventional X-ray study. For that reason, some CT imaging procedures
are limited only to operations or diagnostic tasks where the high dose is justified,
such as lethal disease treatments (see Table 1).

Lately there has been increasing interest on low-dose CT imaging, which could
reduce the patient dose and expand the 3D imaging into less severe diseases or
cosmetic operations. The dose reduction is gained by decreasing the number of the
projection images, total scanning aperture and tube energy. However, this approach
requires also specific reconstruction algorithms to accomplish the clinical task. In
several clinical studies, significant dose savings have been reported by implementing
more advanced computing methods. [13–18]

1.3. Computed tomography apparatus. Digital X-ray images are projection
images, where each picture element, pixel, value is proportional to the amount of
X-ray flux that falls to the pixel area. If the initial X-ray flux is known, the sum
of the attenuation along the X-path can be defined based on the single image 1.

1To be exact, there are also other phenomenons, for example beam hardening and scattering,
that are ignored in current reconstruction algorithms and compensated later in post-processing.
For more detailed information, see for example [2, Section 3] and about the compensation refer [1,

Section 7]
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To generate 3D volume, the exact location of the attenuation has to be known,
which requires several projection images around the object and the corresponding
imaging geometry information. See [19, Section 3].

For example, in a dental CT system, typically hundreds of images are taken
around the object [16–18]. The exposure pulses during the scan are relative short
and therefore each projection image is considered as a stationary image. During the
calibration process, the location of the X-ray source and the detector are recorded
for each projection. After the calibration process has been completed, the scanning
movement is assumed to be repeatable. Typically, but not necessarily, the X-ray
source and the detector are rigidly mounted to one block, called gantry, that rotates
around the object. In such a case, if the mechanical dimensions of the device are
known, the imaging geometry is solely defined by the gantry angle, called projection

angle.

Figure 2. Classification of projection image geometries. a)
Parallel-beam imaging geometry with a linear scanning movemen-
t. The X-ray beams are orthogonal throughout the detector. b)
Fan-beam imaging geometry where the X-ray beams diverse in one
dimension form the stationary source. c) Cone-beam imaging ge-
ometry where the X-ray beams diverse in two dimensions.

1.3.1. Imaging geometry of the projection image. The imaging geometry plays an
important role in the reconstruction calculation. The imaging geometry of a single
projection image can be either parallel-beam, fan-beam or cone-beam depending
on the scanning movement and the detector type. In parallel beam geometry, all
X-ray beams are parallel to the detector plane while in fan-beam geometry the X-
rays deviate from the source causing a fan-shape flux. Furthermore, in cone beam
imaging geometry the deviation exists in both horizontal and vertical directions
(see Figure 2). The aperture of a single projection image in fan- and cone-beam
geometry is called the fan angle. See [20, Sections 3.4 and 3.5] and [21, Section
5.11.6].

Parallel beam imaging geometry is not a practical solution for modern CT s-
canners, because it requires an additional linear scanning movement for each inde-
pendent projection image, which leads to more complex mechanical structure and
longer scanning times. However, parallel beam imaging geometry is widely dis-
cussed in many theoretical studies and articles since it simplifies the reconstruction
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calculation. Moreover, since other imaging geometries can be converted into par-
allel beam situation by implementing an additional re-sampling step, the methods
that are introduced in the parallel beam situations can also be inevitably applied
into other imaging geometries as well. [1, Section 3.5.3].

Because of the decreasing price of large area X-ray sensors and request for faster
scanning times, the fan- and cone beam systems have replaced parallel beam sys-
tems in the CT imaging. There are two detector types for fan- and cone beam
devices; equi-spaced and equi-angular detectors. An equi-angular detector consists
of multiple detector modules that are concentric to the X-ray source, while the
equi-spaced approach is used in the single-module detectors, such as flat-panels or
detector with image intensifiers. CT devices that utilize flat single-module detec-
tors are generally called cone beam computed tomography (CBCT) devices. As an
example, see Figure 3. [1, Section 3.5]

Figure 3. Examples of CBCT devices for dental imaging pur-
pose. a) Orthopantomographr OP300 device (manufactured by
Instrumentarium Dental, Tuusula, Finland) for 3D, panoramic and
cephalostatic imaging. b) SCANORAr 3D device (manufactured
by SOREDEX, Tuusula, Finland) for 3D and panoramic imag-
ing. Original image courtesy of Palodex Group (Tuusula, Finland).

1.3.2. Imaging geometry of the tomography scan. Computed tomographic scans can
be divided into three categories based on the aperture of the scan: Full scan, limited

scan and sparse scan. In a full scan, the number of projection images and aperture
of the scan are sufficient to gain a uniform and isotropic resolution in the volume
2 (see Figures 4a and 5b). In practice, a full scan requires 180 degrees aperture
when parallel beam geometry is used and over 360 degrees aperture when fan- or

2In this thesis, we apply term uniform to indicate that the resolution does not spatially vary

and isotropic to indicate that the resolution is independent from the viewing angle in the volume
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cone-beam geometry is applied. Secondly, sparse scan means that the number of
projection images is insufficient to gain isotropic resolution, but the aperture of the
scan is unlimited (see Figures 4c and 5c). Thirdly, limited angle scan means that the
scanning aperture is strongly limited (see Figures 4b and 5d). In some literature,
limited angle tomography reconstruction techniques are called tomosynthesis. [13]

Since in sparse and limited angle scans the artifacts limit the suitable viewing
angle of the reconstructed volume, the projection angles of the scan have to be cho-
sen beforehand based on the given clinical tasks. Typically only when viewing the
volume from similar angle as projection images were taken, the quality is suitable.
From other viewing directions, the result is not blurred or disturbed by artifacts.
Theory behind this phenomenon will be later discussed in the Section 2.1.2.

Figure 4. Classification of scanning apertures. a) Full angle scan
with 195 projections, b) limited angle scan and c) sparse scan with
5 projections. In the Figure a) every fifth projection is plotted and
all cone lines are removed for clarity.

2. Reconstruction methods

As already mentioned in the Section 1, the purpose of the reconstruction algo-
rithm is to generate a 3D volume that spatially models the X-ray attenuation inside
the target object. As an input data, the reconstruction requires tomographic data,
which consists of the projection images and related imaging geometry information
to generate a 3D volume as an output data.

The reconstruction algorithm can be either non-iterative, e.g. filtered back-

projection (FBP), or iterative, e.g. algebraic reconstruction technique (ART). The
benefits of iterative reconstruction include more accurate modeling of various tomo-
graphic imaging situations and better handling of ill-posedness arising for example
from limited tomography or noisy projection data. These benefits are based on
more advanced and versatile modeling of the imaging, not the iterative nature it-
self. However, typically non-iterative reconstruction offers similar image quality
in significant shorter time when the number of images and scanning aperture are
sufficient. See [1, Section 3.6.1] and [20, Section 7].

The drawback of ART and FBP reconstructions is that they do not include
any regularization. In regularized reconstruction methods a priori information of
the object is implemented into reconstruction process to improve the stability. In
practice, this is handled by adding an additional cost function to the reconstruction
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algorithm that it complements the ill-posed problem into a well-posed problem.
This addition typically improves the convergence rate as well.

The result of the reconstruction consists of volume elements, voxels, which can
be considered as smallest addressable and controllable units in the volume. Inside
the voxel the attenuation is modeled as a constant number and defined typically in
Hounsfield scale, where zero is equivalent to the attenuation of water and −1000 is
equivalent to the attenuation of air. See [19, Chapter 3].

In the next Sections 2.2-2.4 we will introduce three common reconstruction tech-
niques; FBP, ART and regularized reconstruction. Before introducing these recon-
struction algorithms in detail, two essential mathematical methods related to the
reconstruction algorithms are introduced. The first method is the Radon trans-
form, which offers a mathematical model for the X-ray projection. The second
method is the Fourier slice theorem, also known as the projection theorem or cen-
tral slice theorem, which has several implementations in reconstruction calculation.
We also introduce a concept called sinogram, which is a specific representation of
a discrete projection data. For the sake of simplicity, we have considered the vol-
ume as a 2D object and the detector as an 1D object, unless otherwise mentioned.
See [22, Chapter 10.4] and [21, Section 5.11.4].

2.1. Essential concepts for the reconstruction calculation.

Figure 5. Reconstructions from the Shepp-Logan phantom. a)
Shepp-Logan phantom. b) Full scan back-projection from 180 pro-
jection images, aperture of 180 degrees. c) Sparse angle reconstruc-
tion from 9 projection images with a same aperture. d) Limited
angle reconstruction from 9 projection images with aperture of 20
degrees. e) Full scan FBP with Ram-Lak and Hanning filter. f)
Full scan FBP reconstruction g) sparse angle FBP reconstruction
and h) limited angle FBP reconstruction. In the Figures f) to g)
Ram-Lak filter was applied and projection angles were same than
in the Figures b) to d).
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Figure 6. In the 3D viewing applications, the volume is typically
represented either as individual slices or as a rendered 3D volume,
which is basically generated by stacking the slices. Example of
images related to CT scan a) one of the projection images, b) a
single reconstructed axial slice and c) a rendered 3D volume from
the same region.

2.1.1. Radon transform. A parallel X-ray projection of an object f(x, y) can be
modeled as a sum of attenuation values across the X-ray beam as

(1) gk(t) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ(c(t, θk))dxdy,

where k = 1, 2, 3 . . .K is the projection number, t ∈ R is the projection point in the
line perpendicular to the X-ray beam and the function c(t, θk) = x cos θk+y sin θk−t
is normal representation of a line that has angle of θk with respect to the x-axis
and distance t from the origin. Furthermore, the function δ is the unit impulse, i.e:

(2) δ(c) =

{

1 for c = 0
0 otherwise.

The equation (1) is called (forward) Radon transform. It defines the transformation
from the 2D object f(x, y) to the 1D projection gk(t).

2.1.2. Fourier slice theorem. The Fourier Slice theorem defines the frequency com-
ponents that are defined by the projection images and their angles. The Fourier
slice theorem states that (as written in [1, Section 3.3]):

The Fourier transform of a parallel projection of an object f(x, y)
obtained at known angle θ equals a line in a 2D Fourier transform
of f(x, y) taken at the angle θ.

In mathematical terms we can describe this as

(3) G(ω, θk) = F (u, v) ,where

{

u = ω cos θk
v = ω sin θk

In the equation (3) ω is frequency component and θk is the corresponding pro-
jection angle (see Figure 7). Moreover, G(ω, θk) is a 1D Fourier transform of the
projection gk(n) defined as

(4) G(ω, θk) = F(gk(t)) =

∫ ∞

−∞

gk(t)e
−j2πωdt
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and similarly F (u, v) is 2D Fourier transform of f(x, y)

(5) F (u, v) = F(f(x, y)) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)e−j2π(ux+vy)dxdy.

The Fourier slice theorem has several important consequences. Firstly, this the-
orem defines the upper limit for the spatial reconstruction resolution when the
number of projection images, pixel size and angles are known. Secondly, it im-
proves the back-projection operation computing time; instead of copying all pixel
values back to the volume, the Fourier transform of each projection image can be
copied into the single line in frequency domain and then perform 2D inverse Fourier
transform to gain the final reconstruction. Thirdly, the Fourier slice theorem offers
a theoretical framework for the filtering in FBP reconstruction.

Figure 7. Fourier slice theorem defines the relation between the
spatial (left) and the frequency domain (right) in tomography. A
single parallel beam projection image taken with θ degree projec-
tion angle defines frequency components in a single line with angle
θ respect to the horizontal frequency axis.

2.1.3. Sinogram. In the previous chapter, we considered the projection as a con-
tinuous data. However, in practice the readings of digital detectors are discrete
data. To create a discrete representation of the projection gk(t), we introduce a

matrix S ∈ R
N×K
+ , which consists of sampled detector readings from a tomogra-

phy scan such that each value Sn,k is a grayvalue of a single detector pixel, where
n = 1, 2, 3 . . . N is the pixel index and k is the projection index (as before) related
to the value t such that

(6) Sk,n = gk(t) ,such that n =

[

(N − 1)
t− tmin

tmax − tmin

]

+ 1,

where [·] is rounding operator to nearest integer and tmin,max are the minimum
and maximum values for t. The matrix S is commonly known as sinogram, where
each column is a projection image in ascending projection angle order such that
θ1 < θ2 < θ3 < . . . θK−1 < θK . In sinogram representation, each point in the object
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f(x, y) generates a sine shaped wave where the amplitude is proportional to the
distance between the point and the rotation axis (see Figure 8b as an example).
See [21, Section 5.11.3].

Figure 8. Example of sinogram representation. a) The original
object with two non-zero points. b) The sinogram presentation
of the same object when nine images are taken from 20 to 180
degree angles. c) The reconstruction done from the projection
data by using back-projection algorithm. Originally published in
the article [III].

2.2. Filtered back-projection.

2.2.1. Back-projection algorithm. The Radon transform described in the equation
(1) determines the projection g when the object f is fixed. However, in X-ray
tomography our intent is to define the object based on noisy projection images,
which is therefore considered as inverse problem 3. This is achieved by the back-
projection operator B(·), where each element of the g is copied back to the volume
across the line c(t, θk), which is in practice the direction of the X-ray beam. The

reconstruction f̂(s, t) is then the normed sum over all back-projections

(7) f̂(s, t) = B(g) =
1

K

K
∑

k=1

gk(t) where

{

t = x cos θk + y sin θk
s = −x sin θk + y cos θk

for all s.
Although in theory limK→∞ f̂ = f holds, it should be fully understood that f̂ is

only a approximation of the original object f when K is a finite number or any kind
of un-idealities or noise in tomographic data is present. This can be demonstrated
by considering a simple object where f(xi, yj) = 1 and zero elsewhere. Then, based
on equation (1), each projection image gk has also a single value of one and zero
elsewhere. However, the back-projection operation B(g) in equation (7) generates

K lines across the volume f̂(x, y) that intersects at the point (xi, yj). With small

3To be exact, the justification of concerning the tomography as an inverse problem is based
on the fact that, unlike the projection images, the attenuation in the volume cannot be directly

measured. [23, Chapter 1]
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value of K, the reconstruction is heavily distorted by individual lines. When the
value K increases, the number of these lines increases and finally they generate
a blurred point. Despite the fact that reconstruction quality improves when the
number of projections K increases, perfect reconstruction is never achieved with a
finite number of projections even in noiseless situation.

2.2.2. Filter design. The blurring effect of the back-projection operation described
above can be observed also in the Figure 5b. To compensate this blurring, a high-
pass filter is applied. The theory of the filter design is based on Fourier slice theorem
as introduced in the section 2.1.2.

The 2D inverse Fourier transform for the object is

(8) f(x, y) =

∫ ∞

−∞

∫ ∞

−∞

F (u, v)ej2π(ux+vy)dudv.

Since u = ω cos θ and v = ω sin θ we get from the Fourier slice theorem (equation
(3)) that

(9) dudv =

(

δu/δω δu/δθ
δv/δω δv/δθ

)

dωdθ = ωdωdθ,

then equation (8) transforms to form

(10) f(x, y) =

∫ 2π

0

∫ ∞

−∞

F (u, v)ej2π(ux+vy)ωdωdθ.

In the parallel beam projection, two projections π apart have exactly the same
set of ray path in reverse order such that g(t, θ) = g(−t, π − θ) and therefore also
G(ω, θ) = G(−ω, π − θ). Then, from the equations (3) and (10) we see that

(11) f̂(x, y) =

∫ π

0

∫ ∞

−∞

|ω|G(ω, θ)ej2πωtdωdθ,

where t = x cos θ + y sin θ.
In equation (11) the term |ω| is a ramp filter, called Ram-Lak filter, which at-

tenuates the blurring effect of the inverse Radon transform (see Figures 5f-5h).
Still, there is a drawback in applying the Ram-Lak -filter. The high-pass nature

of this filter is very sensitive to geometry inaccuracies as well as the noise in the
detector reading as indicated in the Figures 5f-5g. This is compensated by mul-
tiplying the Ram-Lak filter by a low-pass filter, such as Hamming, Box or Hann
-filter. This low-pass filter can also be designed such that it crops the frequencies
above the Nyquist frequency and therefore works as an anti-aliasing filter. When
the filter is added to the equation (11) we get

(12) f̂(x, y) =

∫ π

0

∫ ∞

−∞

|ω|H(ω)Gzp(ω, θ)e
j2πωtdωdθ,

where f̂(x, y) is the FBP reconstruction of the object f(x, y), H(ω) is the filter
combination mentioned above and Gzp is zero-padded Fourier transform of the
projection image (see Figures 5e-5f). For further information about the filtering,
zero-padding and sampling theory, see [21, Section 4.6]

In practice the FBP reconstruction is executed in multiple phases. The detail-
s of these steps are typically company confidential information based on clinical
know-how and subjective image quality rather than strict mathematical theory.
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Especially since each CT device design has its own characteristic noise and un-
idealities, device specific image processing and dedicated calibration routines are
typically needed.

2.2.3. FBP modifications for the fan- and cone-beam imaging geometries. The dis-
cussion so far has been on parallel beam imaging geometry while the imaging ge-
ometry of the modern CT is based on fan- or cone beam imaging geometry (see
discussion in the Section 1.3.1). Consequently, the results from the previous Sec-
tions 2.1.1-2.2.1 cannot be applied directly. However, the fan-beam geometry can
be transformed into parallel beam geometry by using following conversion

(13)
θ = β + γ
t = D sin γ

where D is the distance between the X-ray source and iso-center, β is the projection
angle γ is called detector angle, which is the angular deviation of each x-ray path
from detector normal normal (see Figure 9).

One approach to convert fan-beam geometry into parallel beam geometry is a
re-binning method, where fan-beam projection images are first re-projected into
iso-center plane. Then, additional weighting operation is applied before the actual
filtered back-projection process. This can be effectively executed in the sinogram
domain. See [1, Chapter 3.5.3] and [21, Section 5.11.6].

Figure 9. Parameters used in the FDK-algorithm (see equation
14). In the FDK method projection image (a) is remapped to the
imaginary detector (b) that is considered as a single layer in the
volume.
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One of the most implemented reconstruction algorithm for CBCT devices with
equi-spaced detector is Feldkamp-Davis-Kress (FDK) algorithm. The FDK algo-
rithm is based on re-projection, where each projection image is re-projected to
imaginary detector located in the iso-center with projection angle θ (see Figure
9). The re-projection is done directly in three dimensional domain by using weight
factors that are defined similarly to the fan beam case. The FDK algorithm has
several deviations, one intuitive approach is described in Hsieh book [1, Section
10.3] as

(14) f̂(x, y, z) =
1

2

∫ 2π

0

(

D

D + y′

)2

dβ

∫ ∞

−∞

cos(ξ)q(s, v, β)h(s′ − s)ds.

where the parameters are defined in the Figure 9. Here the reprojected projection
image q is filtered by the band-passed filter h and weighted based on the deviation
from the iso-ray and on the magnification factor. As discussed in Section 2.2, the
filter h includes Ram-Lak and low-pass filters as well as zero-padding operator.

The cone-beam imaging geometry has several theoretical challenges compared
to the parallel-beam imaging geometry. The FDK algorithm gives sufficient re-
construction quality near the x-y plane, but when the distance form the x-y plane
increases, also the sampling rate decreases. This generates artifacts to the top and
bottom of the reconstruction when a circular trajectory is applied. To overcome
this sampling problem, alternative trajectories with varying z-position of the focal
spot are proposed. For an overview to the FDK algorithm refer to [1, Section 10.3],
for the original article about the FDK method see [24].

2.3. Algebraic reconstruction technique. Despite the fact that FBP is the
most implemented reconstruction method in commercial CT systems, there are
some major imperfections in this method. Firstly, FBP method is based on the
inverse Radon transform that models both the X-ray source and detector elements
as non-dimensional points, which does not represent the real imaging situation.
Secondly, inevitable noise is not explicitly modeled in the FBP algorithm. Thirdly,
the FBP algorithm cannot handle ill-posed situations such as limited or sparse
imaging geometries, because of the lack of the regularization. ( [1] Section 3.6.1)

To correct the flaws mentioned above, new iterative reconstruction algorithms
have been developed such as Prior Image Constrained Compressed Sensing (PICCS)
or Ordered Subset Separable Paraboloid Surrogates (OS-SPS) [25–29]. Nowadays,
the most studied and implemented iterative method is the ART reconstruction,
where both measurement (i.e. all detector readings of the scan) m ∈ R

M
+ and the

voxel values of the volume x ∈ R
N
+ are modeled as vectors in a multidimensional do-

main. Moreover, the imaging geometry is included in geometry matrix A ∈ R
M×N
+ ,

where each matrix element aij indicates contribution of a voxel xi attenuation to
the detector reading mj .

(15) m = Ax+ ε,

where ε is the additive measurement noise. The model described in the equation
(15) allows more realistic and versatile approach to the tomographic problem than
Radon transform based approaches such as FBP. [20, Chapter 7]

From the equation (15) the X-ray projection m can be determined when the
imaging geometry A, volume x and noise ε are known, which is considered as the
forward problem in the tomography. However, in the tomographic calculation, the
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task is to determine the volume x when the imaging geometry matrix A and the
projection image vectorm are fixed, which is considered as the inverse problem. The
vector x can be defined from the equation (15) directly only if A is invertible, well-
conditioned and noise ε is known. None of these statements hold in a tomographic
problem.

The strategy in ART algorithm is to find a volume x̂ which minimizes the L2

norm of the noise ε, which is therefore considered as residual between the projected
volume and measurements. Then

(16) x̂ = argmin
x

|Ax−m|
2
2,

which is achieved when

(17) x̂ =
(

ATA
)−1

ATm.

and ATA is non-singular. Solving equation (17) directly is impractical, since the
size of the matrix A is extensive. For example, for a scan of 600 projection images
each consisting 400×400 pixels and a volume of 256×256×256 voxels, we get over
1.6 ∗ 1015 elements for the matrix A. It is obvious that generating the matrix A or
determining the inverse of the matrix ATA is computationally impractical.

For that reason, ART calculation utilizes a matrix free approach, based on Kacz-

marz’s iteration procedure, where each row in the matrix A is considered as a N−1
dimensional hyperplane. In this method, first an initial guess for the volume is cre-
ated, say x(0), and projected to the first hyperplane defined by a linear equation
< a1, x >= m1, where a1 indicates the first row of the matrix A. The projection
point in the hyperplane is then considered as the next estimate x(1) for the volume.
This process is repeated until feasible estimate for the volume x is found or a crite-
ria for residual ε is fulfilled. The estimate for the volume x on the iteration round
r is then

(18) x(r) = x(r−1) − λ
〈aj , x

(r−1)〉 −mj

< aj , aj >
aj ,

where λ is a relaxation factor, which is implemented to improve the convergence
rate. It is known that limr→∞ x(r) = x̂ when 0 < λ < 2. [30, Section 2.4.2].

There are many variations of ART algorithms, but essentially they all utilize
Kaczmarz’s iteration technique to minimize the residual described in equation (16).

One commonly referred variation of the ART method is simultaneous iterative
reconstruction method (SIRT), where the current guess of the volume is updated
after calculating the residual against all projection images. Then the iteration is
then formulated as

(19) x(r) = x(r−1) −
λ

∑M
j=1 aij

M
∑

j=1

〈aj , x
(r−1)〉 −mj

∑N
i=1 aij

aij .

Since the number of updates is less than in equation (18), SIRT offers faster con-
vergence rate and prefers more blurred estimate than basic ART but more blurred
result. [20, Section 7.3] Another frequently referred variation of the ART is si-
multaneous algebraic reconstruction technique (SART), which is based on simul-
taneous correction of all rays in same projection. Moreover, a Hamming window
and bi-linear interpolation are implemented in the back-projection stage to gain
a smoother result for the reconstruction. The benefit of the SART approach is
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more efficient convergence rate than in conventional ART reconstruction. Typi-
cally SART requires only one iteration round for sufficient reconstruction result.
See [31] and [20, Section 7.4].

Third important deviation of the ART algorithm is multiplicative algebraic re-
construction technique (MART), where the residual is defined as a relation between
back-projected current guess and corresponding measurement. the MART algorith-
m can be formulated as

(20) x(r) = x(r−1)

(

mj

〈aj , x(r−1)〉

)λ

.

MART offers better contrast than other ART methods, but it requires an excep-
tion handling for the case when 〈aj , x

(r−1)〉 = 0 and therefore it is less suitabel for
parallel computing, like graphic processing unit (GPU) techniques.

For more discussion about ART algorithms and its variations, see for example [20,
Section 7.5] and references within. Examples of ART reconstructions can be find
from the article [II] Figures 4 and 5.

2.4. Regularized reconstruction techniques. Despite the fact that ART has
been considered to be superior reconstruction technique compared to the FBP,
because its more versatile geometry modeling and implicit noise modeling, it still
lacks regularization, which is beneficial in limited and sparse angle tomography
where the volume cannot be uniquely defined based on the projection images.

Regularization is based on a priori information, which is considered as additional
information about the target object that is independent from the measured data
(i.e. projection images). For example, if the type of attenuating material in the
volume is known beforehand (e.g. volume typically includes air, bone, soft issue and
teeth), one could prefer reconstruction solution that includes expected attenuation
factors. Other examples are preferring smooth objects or sharp edges in the final
reconstruction volume. This can be implemented to the reconstruction process by
adding a cost-function with suitable norms.

Before the regularized reconstructions are explained in detail, we introduce two
important concepts related to the regularization in the reconstruction; namely the
ill-posed situation and the Bayesian framework.

The circumstances for the well-posed problem can be defined by the Hadamard’s
conditions, which are:

(1) A solution exists
(2) The solution is unique
(3) Behavior of the solution hardly changes when there’s a slight change in the

initial condition

If any of the conditions mentioned above is missing from the initial problem
setting, the problem is called an ill-posed problem. Since at least the second
Hadamard’s condition does not apply in the limited or sparse angle tomography,
they are considered as ill-posed situations by the nature. Moreover, if noise is
dominating the result, also the third Hadamard’s condition is lacking. [23]

In this thesis, the Bayesian framework has been chosen because it fluently com-
bines the well-defined forward problem (projection) to the ill-posed inverse problem
(back-projection) by implementing a priori information to the reconstruction. The
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Bayesian interpretation of the tomography problem is

(21) p(x|m) =
p(m|x)p(x)

p(m)
,

where x is the 3D volume and m is the measurements as before and p(·|·) is the
conditional probability. Moreover, p(x|m) is called posterior density, p(m|x) is
the likelihood and the p(x) is prior density. Since the term m is fixed during
the optimization process, also the term p(m) is constant and therefore it can be
considered only as a scaling factor and later ignored. See [30, Section 3.1].

One computationally effective way to find a suitable estimate for x, say x̂, is
to find maximum point of the posterior probability p(x|m) when a priori model
and the measurement m are fixed, then the value x̂ = argmax

x
p(x|m) is called

maximum a posteriori (MAP) estimate. If both likelihood and priori probability
density functions are considered as normal distributions, then

(22) x̂ = argmax
x

p(x|m) ∝ argmin
x

{

|Ax−m|
2
2 + α |Lx|

q
q

}

,

where the first term |Ax−m|
2
2 is called likelihood term (see Section 2.3) and the

term |Lx|
q
q is called prior term, where L ∈ R

N×J is typically a spatial differential
operator. Furthermore, the term α > 0 is called regularization parameter that
balances the effect of the likelihood and the prior in the posterior density.

The most common regularization type in the literature is Tikhonov regulariza-

tion mainly because of its simplicity and demonstrative nature. In the Tikhonov
regularization the parameter q = 2 and L is the identity matrix. However, since
Tikhonov regularization prefers smooth solutions for the volume, it is not the op-
timal prior in X-ray tomographic problems. [23, Chapter 5]

Currently, the most promising prior distribution in tomography is the total vari-
ation (TV), also in some articles called lasso, which minimizes the L1 -norm of the
local difference. The benefit of the L1 norm is that, unlike Tikhonov regularization,
it preserves sharp edges and regions with constant grayvalues in the reconstruction.
In the TV approach the norm type is fixed as q = 1 and differential operator L is
defined as

(23) Lij =







1 if i = j
−1 if xi and xj are adjacent voxels
0 otherwise

The iterative reconstructions, e.g. ART or regulated reconstructions, require
more computing time and resources than conventional FBP calculation. Howev-
er, since the general-purpose computing on graphics processing units (GPGPU)
-technology has become more cost-effective and the GPGPU coding is nowadays
more practical, the iterative reconstructions have recently been implemented also
to some commercial CT devices such as SCANORAr 3D CBCT device 4. More-
over, recently also some major medical companies, for example GE Healthcare and
Philips, have also implemented iterative reconstruction as an option to their medical
CT devices. [15]

Finally, we want to point out that the regularization approach described above
can also be achieved without introducing the Bayesian context. However, the

4SCANORA is registered trade mark by SOREDEX, Palodex Group, Tuusula, Finland
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Bayesian approach is a simple and illuminating example how the tomographic in-
verse problem and the forward problem can be combined by implementing a priori
information.

3. Summary of the articles

The purpose of this thesis was to evaluate the capability of the Volumetric To-
mography (VT) for clinical implant planning and improve reconstruction quality
as well as versatility of this concept. This thesis includes four scientific papers.

The article [I] clinically proves that limited angle tomography can be used in the
implant planning with significantly reduced device cost and patient dose by com-
bining a standard panoramic device, a novel reconstruction technique and usage
of reference markers. Next two articles, [II] and [III], introduce innovative image
processing methods that improve significantly the reconstruction quality in sparse
and limited angle situations. The article [IV] describes a novel method for estimat-
ing the imaging angle based on the projection data without any external markers
or other additional constructions. This significantly improves the workflow and
versatility of the limited angle tomography.

In all these articles we consider limited or sparse angle tomography, similar to
VT, where less than 20 images are taken. In this kind of situation, the part of the
known frequency components is under 10% of all frequency components (see Figure
1) and therefore we considered it as a extremely ill-posed situation where the basic
FBP reconstruction techniques do not provide sufficient image quality as indicated
in the Figure 5.

In this Section 3 we introduce these methods, discuss about the results and future
plans on limited and sparse angle tomography.

3.1. Volumetric tomography. Currently there are several CBCT devices on the
market, which are dedicated to the dental and head area imaging. These devices are
mainly used for implant planning, where missing or damaged teeth are replaced by
artificial ones. The artificial tooth is typically attached to the alveolar process by a
screw, which requires a screw hole. The orientation and diameter of the screw hole
is typically determined from the reconstructed 3D image. The screw hole should
be deep enough and in the right angle for a firm attachment. The dislocation of
the hole or screw can seriously harm inner organs and cause serious damage to the
patient. The CBCT devices can also be applied in other clinical studies related to
maxilla facial area, for example ear, nose and throat (ENT) studies, finding tooth
fractions or impacted teeth examinations.

Volumetric tomography (VT) is an add-on option for the Orthopantomographr

OP200 dental panoramic device that enables limited angle computed tomography
imaging for implant planning in mandibular and maxilla regions 5. The panoramic
device itself is an X-ray device that produces a single and predefined tomographic
layer from the dental arc. Therefore, unlike a CBCT study, panoramic imaging
can be considered as standard procedure in modern dental care. The VT upgrade

5Ortopantomograph is a registered trademark of Instrumentarium Dental, Palodex Group,

Tuusula, Finland
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consists of a firmware change, dedicated patient positioning system and image pro-
cessing program embedded into CliniviewTM viewing software in the Windowsr

environment 6.
The VT scan consists of projection images taken from 45 degree scanning aper-

ture. Since the panoramic X-ray detector is only 6mm wide and the movements of
the panoramic device are limited, each of these projection images are taken with a
particular scanning movement (see Figure 10). Moreover, accurate imaging geom-
etry for each projection image is determined by adding fiducial reference markers
to the bite plate.

The VT has three major benefits compared to dental CBCT devices: Firstly,
the cost of VT upgrade is significantly lower than the cost of a CBCT device since
there is no need for separate device.

Secondly, the dose is minimal compared to CBCT devices (see the Table on
page 2 in the article [II]), since VT uses only up to 11 projection images for the
reconstruction while CBCT requires typically hundreds of projection images for the
reconstruction. Finally, VT can be installed to any dental office with facilities for
a panoramic device and therefore the workflow is simpler.

In the VT procedure, from 5 to 11 X-ray images are taken to gain clinically
sufficient cross-sectional slices. After the scan, the projection images are transmit-
ted to a regular workstation where dedicated reconstruction algorithm calculates
about 250 slices orthogonal to a dental arc. Moreover, if a panoramic image has
been taken using the same bite plate as projection images, the slice position can be
associated to the re-projected panoramic layer to gain an orthogonal view along the
tooth arc. In practice this means that when viewing the slices in the workstation,
also corresponding slice position is indicated from the panoramic image (see Figure
12a). The final diagnosis can then be done based on projection images, orthogonal
slices and the panoramic slice. Despite the fact that the panoramic data is not used
in the reconstruction process itself, there is an interesting approach by Hyvönen et
al(2010) about the usage of the panoramic image as a part of the reconstruction in
the VT [7].

The VT approach calls for novel innovations to solve the system-level challenges
originated by the limitation of the movements, insufficient and imprecise gantry
movements, narrow panel size, anisotropic resolution of the reconstruction and the
lack of computational power. To solve these issues, there are three patented innova-
tions related to this product: Firstly, a method for combining linear and rotational
movements to produce a virtual focus based imaging geometry [32]. Secondly, a
computationally effective iterative reconstruction algorithm [33]. Thirdly, a method
for using fiducial markers for defining imaging geometry, slice orientation and com-
bining panoramic images to the slices [34].

Since modifications to the mechanical construction were excluded, the projec-
tion images were generated by using standard panoramic detector and panoramic
scanning movements. The panoramic device has a 6mm wide vertically oriented
detector and two fixed gantry movements; rotational movement around vertical axis
and linear movement of the vertical axis towards the column. By a linear move-
ment the rotational axis could be shifted within 60mm distance, while the rotation
movement enables at most 200 degree scanning aperture.

6CliniView is a common trademark of Instrumentarium Dental, Palodex Group, Tuusula, Fin-

land. Windows is registered trademark of Microsoft Corporation.



28

The goal of the imaging geometry design was to generate a scanning movement
that generates a cone-beam projection, where the X-ray focus point is fixed during
the scan and the vertical and horizontal magnification are equal. For that reason,
we applied a trajectory for the X-ray source where the virtual focus point could
be fixed inside the line intersecting the detector and rotation center and therefore
the horizontal magnification could be adjusted and fixed during the scan. The
trajectory of the X-ray source is then a cissoid curve, called conchoid. [32]

Figure 10. Scanning geometry of the VT device. A total of 11
projection images are taken orthogonal to the tooth arc to detect
location of the mandibular nerve.

Since movements of the VT device were inaccurate for a reconstruction calcu-
lation, reference markers for motion correction were implemented. Since multiple
reference steel balls were embedded to the bite plate with beforehand known dis-
tance, the imaging geometry could be defined even when only part of the reference
markers were visible. Beside defining the actual imaging geometry from the refer-
ence markers, the markers could be applied to associate the panoramic slice to the
tomographic slices, assuming that the panoramic image has been taken with the
same bite plate. Thirdly, the reference markers can be used as a landmark to define
the location of the slice, which is convenient especially in the edentulous region. [34]

The most essential innovation in VT was the implementation of the iterative re-
construction in the frequency domain, which is more deeply explained in the patent
US7853056 [33]. Unlike in spatial domain, in the frequency domain the components
that are known based on the imaging geometry can be identified. Then, instead
of updating all voxel values, we updated only the frequency components that were
located in a limited area. Even though Fourier and inverse Fourier transforms were
required during the reconstruction process, the number of floating-point operations
was significantly lower than in conventional back-projection and therefore clinically
acceptable computational time was gained without any spacial hardware or GPU
implementation.

In the VT approach the Fourier slice theorem was directly applied to the cone
beam imaging geometry, some compromises had to be made. Fourier slice theorem
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as described in the section 2.1.2 cannot be directly used in cone-beam geometry
since it assumes that the point spread function (PSF) is constant inside the volume,
which is not the case in cone-beam imaging geometry. This could be handled
by FDK algorithm as descibed in the Section 2.2.3, but this approach requires
workstation with a GPU computing capability and therefore it was not a valid
option. Instead, we solved this issue by determining frequency components inside
the bow tie shaped region, instead of single line, as shown in the Figure 11. The
frequency components that were not included in any projection, were determined
by the regularization. More advanced usage of the a priori information was later
discovered and described in details in the article [II].

Figure 11. The fan beam extension for the Fourier slice theorem
used in the VT reconstruction. A single projection image defines
the frequency components in a bow-tie shaped region as indicated
in the figure b). The opening angle and the orientation of the
bow-tie is defined by the corner points (C1 and C2) of the field of
view (FOV) in the figure a). Unlike the Fourier slice theorem, this
approach includes some approximations.

The results from clinical trials of the VT were encouraging. Despite the quanti-
tative imaging quality was better in CBCT device than in VT for obvious reasons,
the results indicated that VT can offer similar clinical information in implant plan-
ning than CBCT device (as an example, see Figure 12). Moreover, the measuring
accuracy was reported to be less than 0.5 mm, which is suitable for the implant
planning. Therefore, VT is an illuminating example how limited angle imaging
method can successfully replace conventional CT imaging in a clinical operation
when dedicated methods are applied.

In the other articles ([II], [III] and [IV]) included in this thesis, several improve-
ments to the VT system are introduced. The Wiener-filter based iterative recon-
struction technique (WIRT) and sinogram interpolation technique (SINT) methods
described in Sections 3.2 and 3.3 improve the reconstruction image quality and the
mutual information based technology (MINT) described in the Section 3.4 improves
the accuracy of the imaging geometry. These methods can also be used in any sparse
or limited angle X-ray based tomographic device.
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Figure 12. a) Panoramic image, where the position of the slice
b) is highlighted. Reconstructions taken with a b) VT and c)
CBCT device from the same location. The mandibular nerve is
highlighted in both images. The VT slice is generated with 11
projection images while in CBCT number of the images is over
300. Regardless of VT slice includes more artifacts, the mandibular
nerve is clearly visible in all images.

3.2. The WIRT method. The wiener filtered reconstruction technique (WIRT)
is a reconstruction method for extremely sparse and limited angle tomography.
This method operates in the frequency domain, where the components that require
more regularization can be identified and the regularization can be executed only
in the regions where less measured information exists or the noise dominates the
measured values.

The WIRT method can be divided to following four fundamental steps:

(1) Re-sampling the sinogram
(2) Create the confidence map

(3) Primary reconstruction
(4) Optimize the regularization factor

As described in the section 2.4, in typical regularized reconstruction methods
each voxel is partly defined by the likelihood and a priori information. The amount
of a priori information is defined by the regularization factor (see α in the equation
(22)).

Based on the well-known Fourier slice theorem (see Section 2.1.2) each projection
image defines the frequency components in a single line. Therefore, in the frequency
domain we can define regions where the likelihood should be more accurate since
the frequency components are more accurately known than in the regions located
away from these lines. Moreover, we can assume that across the projection images
the frequency components do not vary significantly, specially in the low frequency
region, when the projection angle changes. Obviously this assumption does not
hold with every object, but since the object in our case is a real X-ray of a scull,
part of the scull or a phantom that simulates the head area, this seems to be the
case.

In the WIRT method, we generate a 2D confidence map, where each component
represents confidence level of corresponding frequency component in the reconstruc-
tion. Confidence level has a value one when the frequency component of the recon-
struction is completely known based on the measurements (i.e. projection images).
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Furthermore, the confidence value is linearly decreasing when moving away from
the known frequency components (see Figure 2 in the article [II]). In the WIRT
method less regularization is applied in the regions where the confidence level is
higher and vice versa.

One can also analyze the role of confidence level in the sinogram domain by
considering a sinogram consisting few measured columns and estimated sinogram
columns between these measured columns. Since the certainty that the interpolated
value is correct decreases when the distance form the measured column increases.
Therefore, one can also assume that the confidence level also decreases when the
distance increases.

Finally, In the confidence map the noise can also be included to the model: If
certain projection has relatively more noise than other, the confidence level of noisy
projection images can be decreased and more regularization will be applied to that
measurement. Therefore, in this method the noise is considered also as uncertainty.

In the WIRT method, we define the optimal reconstruction Ψ in the frequency
domain based on the equation

(24) Ψ = argmin
Ψ̃

(
∣

∣

∣HΨ̃− Φ
∣

∣

∣

2

2
+ α

∣

∣

∣ΓΨ̃
∣

∣

∣

2

2
),

where Ψ̃ ∈ C
4N1N2 is the final reconstruction, Φ ∈ C

4N1N2 is the primary recon-

struction (i.e. unfiltered back-projection), H ∈ C
4N1N2×4N1N2 is the frequency

response matrix (see equations 3.13 and 3.17 in [II]), α ∈ R is the regularization
factor and Γ ∈ C

4N1N2×4N1N2 is the confidence map, where N1,2 is the size of the
reconstruction in the frequency domain (the dimension is multiplied by factor 2
because of the zero-padding).

Solving Ψ from equation (24) leads to

(25) Ψ = (H∗H + αΓTΓ)
−1

H∗Φ.

Since the H and Γ are diagonal matrices, equation (25) has the element-wise format

(26) ψ[ξ1, ξ2] =
ζ[ξ1, ξ2]

|ζ[ξ1, ξ2]|
2
+ α(1−Υ[ξ1, ξ2])

2ω[ξ1, ξ2],

where ζ[ξ1, ξ2] is the frequency response of the system (will be explained in detail
later in this section), and Υ[ξ1, ξ2] is the confidence level in the 2D frequency space
spanned by ξ1 and ξ2. Here the notation [·] indicates discrete values.

The equation (25) reminds the well-known constrained least square filter (see [21]
Section 5.9). However, in the WIRT method, the regularization term is replaced
by spatially varying uncertainty in the frequency domain. While in the ART re-
construction (see Section 2.3) the noise could be considered as the residual, in the
WIRT method we consider noise as uncertainty.

To define the frequency response, we need to calculate the Fourier transform
of the PSF. Generally, PSF is an output of the system when the input is an unit
impulse (i.e one in the origin and zero elsewhere). The PSF can be defined either by
modeling, by observation or by measuring. In the article [II] we measured the PSF
such that we first back-projected the unit impulse and then calculated a Fourier
transformation of it. The advantage in using a measured model is that it gives a
possibility to accurately model the noise as well.

In the equations (25) and (26) the confidence level defines the relative regular-
ization for each frequency component. The absolute value for the regularization
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is defined by the regularization parameter α. Since the regularization parameter
has a fundamental effect to the image quality (see Figure 10 in the article [II]), a
Newton-Raphson method was implemented to find an optimal value for the regu-
larization parameter that minimizes the total variation of x (see equations 3.24 and
3.25 in [II]).

The WIRT method was numerically implemented in the Octave application
GNU/Linux platform. To evaluate the versatility of the WIRT reconstruction, two
very different phantoms were chosen: Firstly, Shepp-Logan, since it is a de-facto
standard in tomographic articles and secondly a full-scan CT-slice of an dental arc
specimen since it indicates the clinical capability of this method. From both phan-
toms we took 18 projections and added 5% Gaussian noise to the projection images.
As references we used ART and SIRT reconstructions by using the same phantoms
and imaging geometries, which are known as feasible reconstruction methods for
the sparse and limited angle situations. For each algorithm we gave one minute
computation time to guarantee fair comparison.

The reconstruction results and metrics indicate that WIRT gives superior result
over ART and SIRT especially in the noisy cases and when the results were com-
pared against ground truth (see Figure 13). This result was expected since, unlike
in ART and SIRT, in the WIRT method the noise can be modeled and concentrated
regularization can be applied.

There are also computationally benefits in the WIRT optimization comparing
to the conventional total variation minimizing iterative reconstructions. Firstly,
the optimization of the WIRT algorithm can be done in one dimension, which
is computationally more effective for obvious reasons. Secondly, small number of
dimension enables more robust optimization algorithms that do not require gradient
calculations. This is a relevant aspect especially since gradient of the L1-norm
cannot be accurately defined. Finally, since the regularization term has minimal or
zero effect to the measured frequency components, there is no need to re-calculate
the likelihood values when optimizing the regularization factor.

Figure 13. Comparison of the Shepp-logan phantom reconstruc-
tion results. ART (left) SIRT (middle) and proposed method
WIRT (right). In each case, only 18 projection images were used.
Originally published in the Article [II]

3.3. The SINT method. The SINT (Sinogram Interpolation Technique) is a sino-
gram interpolation method for extremely sparse tomographic situations. Extremely
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sparse here means that only nine projection images around the object were used
with 20 degree angular difference between the projection images. In that kind of
situation, the non-dedicated interpolation methods fail since the correlation van-
ishes when the distance from the known sinogram column increases. However, the
SINT takes advantage of the characteristics of the underlying sine waves in the
sinogram and therefore offers more accurate interpolation resolution. As shortly
discussed in the Section 2.1.1, sinogram is a representation of the projection images
in an increasing imaging angular order. In this representation, a single point in the
volume creates a sine wave to the sinogram where the amplitude of the sine wave
equals to the distance between the point and the rotation axis while the wavelength
is 2π.

In the article [III] the sinogram is represented as a matrix S ∈ R
N×H
+ , where H

is number of projections and N is size of the projection. First we concentrate to
estimate a single unknown sinogram column, Sh ∈ R

N
+

7. We define the sinogram
as

(27) S = [S1, S2, S3, . . . S(h−1), S(h), S(h+1) . . . S(H−2), S(H−1), S(H)].

The corresponding projection angles are defined as vector θ ∈ R
H
+ where θ1 <

θ2 < θ3 . . . θH . Here all projection angles as well as all sinogram columns excluding
Sh are known and fixed.

In the SINT method, grayvalues of the estimated sinogram elements Si,h can be
considered as a weighted sum of the adjacent column elements. i.e.:

(28) Si,h = 〈w(h±1,i), S(h±1)〉,

where w(h±1,i) ∈ R
N
+ is called the weight factor vector related to the sinogram

element Si,h.
As expressed in equation (28), the grayvalue of a sinogram element Si,h can be

determined either based on weighted sum of the sinogram column Sh−1 or Sh+1. In
noise-free system both should produce same result since based on the equation 28
〈w(h−1,i), S(h−1)〉 = 〈w(h+1,i), S(h+1)〉. However, since we assume that the system
includes noise, we use estimation

(29) Si,h =
1

2
〈w(h−1,i), S(h−1)〉+

1

2
〈w(h+1,i), S(h+1)〉,

which indicates that the weight factors uniquely define the sinogram value Si,h since
the sinogram columns Sh−1 and Sh+1 are known.

Another important property of the sinogram is that the sum of the grayvalues
in each column is constant. This means in practice that the sum of weight factors
per sinogram element has to be exactly one. i.e.:

(30)
∑

j

w
(h±1,i)
j = 1 for each i.

However, these weight factors cannot be directly defined because of the ill-posed
nature of the problem.

The purpose of SINT method is to estimate the weight factors w introduced
above and then define the missing sinogram column Sh based on that estimation.
SINT is based on a novel concept called warp, which can be considered as a sum

7To simplify the notation, we have used notation Sh to indicate a h:th column of the matrix

S. However, to indicate a single element in the sinogram we used standard row, column -order
Si,h.
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of underlying sine waves in the sinogram. Then, the estimated column elements
between these two columns can be defined by the grayvalues in the known adjacent
columns and the characteristics of the warp. The warps have following essential
properties:

(1) Each warp has the shape of a sine wave and a frequency of one.
(2) Each warp connects two sinogram elements in known neighbor columns to

a single sinogram element in an estimated column.
(3) Each warp is related to two strictly positive weight factors defined by warp

factor.
(4) Each warp intersects non-zero sinogram elements in the whole sinogram

domain.
(5) All non-zero sinogram elements are associated to at least one warp and all

weight factors are associated to exactly one warp.

See also Figure 1.3 in the article [III] for illustration of a warp.
The strategy is to define the Sh by calculating the warp factor vector α ∈ R

L
+

(where L is the number of warps) mentioned in the item 3 above. Thus, two matrices
are generated to connect the warp vector to the grayvalues in the estimated column.
Firstly, matrix G ∈ R

2L×L is generated to transform the warp factors to the weight
factors such that w = Gα. Secondly, a matrix A ∈ R

2L×H is introduced for
combining the adjacent columns to the estimated column by weight factors based
on the equation (29) such that Sh = Aw.

Now the column Sh can be determined by solving the vector α from the equation

(31) Sh = AGα such that RGα = 1,

where the matrix R ∈ R
NN×2L implements equation (30).

Since the underlying problem is ill-posed, Tikhonov regularization (see Section
2.4) is used to solve the equation (31). Then the warp vector can be solved from
the equation

(32) α = ((RG)TRG+ βI)−1(RG)T 1,

where β is a regularization parameter. The equation (32) can be solved efficiently
by utilizing the singular value decomposition (SVD) of the matrix RG such that
RG = UΣV . Then

(33) α =
∑

n

σn

σ2
n + β

vn.

Finally, the regularization parameter β is defined based on the fact that the sum
of each sinogram column has to be equal and therefore known also for the estimated
column Sh

(34) β = argmin
β̂

∣

∣

∣

∑

S
(β̂)
h −

∑

Sh+1

∣

∣

∣
,

which is a small dimensional problem and therefore the optimal value for β can be
found by implementing a simple fixed step method.

The method described above gives an estimate for a single sinogram column Sh.
When multiple columns are estimated, the matrices introduced in the equation (31)
should be generated separately for each estimated column. Then, for each sinogram
column, matrices A, G and R have to be separately calculated.

Despite the fact that the SINT method described above is not mathematically
thoroughly proved, the preliminary studies indicate that it offers a significantly



35

better result than non-dedicated interpolation routines and it essentially improves
the reconstruction quality in the sparse and noisy situation, which can be observed
from the Table 2 and Figures 3,4 and 8. in the article [III]. Moreover, the Figure
2 indicates that the reference interpolation methods are superior to the SINT only
when the distance between the estimate and known sinogram columns is relatively
small. However, when the distance increases, also the error of the non-dedicated
interpolations increases while the error of the SINT method is stable. See also
Figure 14 as an example.

The reason for the significantly improved reconstruction quality comparing to
conventional interpolation techniques or applying non-interpolated sinogram is that
the interpolation routine in SINT method takes account the fact that sinogram
consists of rigid sine waves with a fixed wave length. Specially, SINT prevents the
warps to intersect the air region and therefore limits the number of the unknown
weight factors. Secondly, SINT prefers a solution, where the column sum in the
sinogram is constant, which holds specially in noise-free non-local tomography cases.

Figure 14. Comparison of the FBP and SINT reconstructions of
a tooth arc. a) original phantom b) FBP reconstruction and c)
proposed SINT method. Nine projection images were used in both
reconstructions. Originally published in the Article [III]

3.4. The MINT method. The purpose of the MINT is to define the imaging
angles of the tomography scan directly from the projection image data without
any external markers or angular information. The MINT method utilizes mutual
information, which is widely used in medical imaging especially in image fusion [35].
Mutual information is defined as

(35) Υ(g1, g2) :=
N
∑

i,j=1

p(g1(i), g2(j)) log2
p(g1(i), g2(j))

p(g1(i))p(g2(j))
,

where g1 and g2 are the grayvalue densities of two images, p(·, ·) is the joint proba-
bility distribution and p(g1,2) are the marginal distribution functions. The advan-
tage of this method comparing to other similar metrics is that re-mapping of the
grayvalues (i.e. windowing operation) does not effect the mutual information.

The MINT method consists of four steps:

(1) Filtering the projection images.
(2) Spatially truncating the projection images.
(3) Defining the relative imaging angle.
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(4) Defining the absolute angular values.

The first phase generates a phenomenon called shifting PSF, which can be de-
scribed by following simplified demonstration. Let us consider an object that in-
cludes a single point with non-zero value, while rest of the object is zero. Then,
three affine projections ph−1(n), ph(n) and ph+1(n) are calculated such that the
point is projected to the locations dh−1, dh and dh+1. The projection images are
filtered by Hann filter ψf (where f is the length of the filter) and blended as

(36) pαb (n) := (1− α)(ψf ∗ ph−1(n)) + α(ψf ∗ ph+1(n)),

where blending factor 0 < α < 1. In shifting PSF the maximum peak of the blended
projection pb(n, α) moves from the point dh−1 to the point dh+1 when α increases.
Furthermore, there is a value α = α̂ such that dh = argmax

n
pα̂b (n). Then, also the

mutual information between ph and pb(n) gains its maximum value (see equation
(35)). In the paper [IV] we have shown that the optimal filter size to generate the
phenomenon of shifting PSF is f = 4 |dh−1 − dh+1|. We also have demonstrated
that this idea can be used with more complex projection images.

In the second phase we determine optimal spatial truncation for the projection
images based on the acceptable error ε. Then

(37) θ̂h = (1− α̂h)θh−1 + α̂hθh+1 + ε,

where θ values are the projection angles.
In the third phase for each projection image h the optimal α̂h is determined by

the biggest mutual information value, i.e.

(38) α̂h = argmax
α

Υ{p̃h, p̃
α
b (n)},

where p̃h is filtered and spatially truncated projection image and p̃αb (n) is defined
in the equation (36).

Finally, the absolute values can be defined from the eigenvalue problem related
to eigenvalue one

(39) Γθ̃ = θ̃,

where θ̃ = [θ2, θ3, θ4 . . . θM−1]
T and Γ ∈ R

(M−1)×(M−1) is
(40)

Γ =























0 α̂2 0 . . . . . . . . . 0
1− α̂3 0 α̂3 0 . . . . . . 0

0 1− α̂4 0 α̂4 0 . . . 0
. . .

0 . . . 0 1− α̂(M−2) 0 α̂(M−2) 0
0 . . . . . . 0 1− α̂(M−1) 0 α̂(M−1)

0 . . . . . . . . . . . . 0 1























The matrix Γ in the equation (40) gives a unique solution for the equation (39).
Finally, we are ready to determine all angles θ ∈ R

M
+ by scaling the angles by known

aperture θM − θ1 and adding the starting angular value θ1 as follows

(41) θ =
θM − θ1

θ̃(M−1)

(

0

θ̃(α̂)

)

+ θ1

where θ̃(α̂) is the defined by the equation (39).
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We also expanded the method to the following situations:

• Fan and cone beam imaging geometry
• Partial volume
• Near full aperture data
• System with a priori angular information

This method was also evaluated by using the VT device introduced in the ar-
ticle [I]. For the evaluation purpose, we randomly selected six clinical cases and
removed the reference markers from the projection data to guarantee fair compar-
ison. Moreover, we removed some projection images to gain variability to angular
difference and increase the sparsity of the scan. The cone beam and the partial
volume extensions were implemented to this method.

The conclusion from this study was that it is possible to estimate the imaging
angle from the projection images based on the MINT method described above as
indicated in Table 1 in the Article [IV]. Therefore, by implementing this method,
basically any X-ray device can be adapted to a sparse or limited angle tomographic
device if the scanning aperture is known.

4. Conclusion

In this thesis we have indicated that relevant clinical information for implant
planning can be achieved from a small number of projection images taken with a
non-dedicated dental X-ray system by applying advanced image processing algo-
rithms. Furthermore, the we have introduced three novel methods to improve the
reconstruction quality in this context. Although this approach requires dedicated
and more advanced image processing methods and therefore also longer processing
times, the benefits are clear: dramatically decreased patient dose, reduced device
cost and simplified workflow.

It is also demonstrated in this thesis that besides the reconstruction itself, also
pre- and post processing steps play significant role in the reconstruction quality
in the limited and sparse tomographic imaging. In particular, the articles [II] and
[III] indicate that even when the simple back-projection algorithm was applied, the
reconstruction quality could be improved by implementing advanced pre- and post-
processing algorithms. Therefore, it is important to consider the reconstruction
process as a complete image processing pipeline and optimize each of these phases
to gain sufficient reconstruction quality.

One of the key factors of the clinically suitable reconstruction quality is the
accurately modeled imaging geometry. This can be achieved either by accurate
and repeatable gantry movements or fiducial markers. However, a more practical
method to solve this fundamental problem is to estimate the imaging geometry
directly form the projection images. In the article [IV] we demonstrated that this
is possible with acceptable tolerances in the limited and sparse angle tomography.

Comparing to the full scan CBCT approach, the usage of limited or sparse angle
tomography solution in the daily clinical practice requires different workflow and
point of view. So far the goal in the CT imaging has been defining the attenuation
factors in the individual voxels as accurately as possible by sacrificing the dose,
workflow and device cost. In that context, it is obvious that the image quality
of the limited or sparse reconstruction is inferior to the full scan reconstruction.
However, as indicated in this study, if similar clinical information can be achieved
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by using significantly less patient dose, how can one justify the extra dose and extra
device cost?

5. Errata

In the article [I], the unit of the DAP (Dose Area Product) was incorrectly
defined as mGycm−2. The correct unit is mGycm2.

The equation (3.6) in the article [II] should be

Υτ̃

(

1−
∆θ |τ | − 1

∆θΩN − 1
|τ − τ̃ |

)

The equation (3.13) in the article [II] should be

ζ[ξ1, ξ2] =
M
∑

K=1

(−1)N/2e−iπξ̂

The equation (3.17) in the article [II] should be

H = ⌈ζ(1, 1), ζ(2, 1), . . . , ζ(2N1, 1), ζ(1, 2), ζ(2, 2), . . . , ζ(2N1, 2N2)⌋,

The equation on the page 1111 in the article [II] should be

∇ΨF (Ψ) = 2H∗HΨ− 2H∗Φ+ 2αΓTΓΨ,

In the Section 4.2 in the article [II], the starting angle of the projection images
is 23, not 42. Moreover, in the Section 4.3 the value of N should be 128 instead of
185.
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