
Open Source Platforms, Applications and Tools for Software-
Defined Networking and 5G Research

Lauri Suomalainen, Emad Nikkhouy, Aaron Yi Ding, Sasu Tarkoma

Technical Report C-2014-2
University of Helsinki
Department of Computer Science

Helsinki, August 15, 2014

Faculty of Science Department of Computer Science

Lauri Suomalainen, Emad Nikkhouy, Aaron Yi Ding, Sasu Tarkoma

Open Source Platforms, Applications and Tools for Software-Defined Networking and 5G Research

Computer Science

Technical Report C-2014-2 August 15, 2014 29

SDN, Open Source, 5G Mobile Networks

University of Helsinki / Kumpulan Kampuskirjasto

Software-Defined Networking (SDN) is a novel solution to network configuration and manage-
ment. Its openness and programmability features have greatly motivated the open source
communities where numerous applications and tools are developed for various R&D purposes.
For the strength of SDN, the upcoming 5th Generation mobile networks (5G) can also benefit
from the modular and open design to innovate the network architecture and services. In
this report, we present a survey of existing open source platforms, applications and tools for
SDN and 5G research. We discuss the potential directions and share our perspectives in this
domain.

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Open Source SDN Components 1
2.1 Controllers . 1
2.2 Switches . 6
2.3 Testing and Simulating . 6
2.4 Other SDN projects . 7
2.5 Future developments . 8
2.6 Ongoing EU Projects . 8

2.6.1 FELIX . 8
2.6.2 SPARC . 9
2.6.3 OFELIA . 9
2.6.4 ALIEN . 9
2.6.5 OFERTIE . 10
2.6.6 FIRE . 10

3 SDN-based Service Chaining for Mobile Networks 11
3.1 Pantou and OpenWRT . 13
3.2 Network Service Chaining . 14
3.3 YANG Model and its usage in OpenDaylight 16
3.4 LISP and its usage in OpenDaylight 16
3.5 OpenEPC and nwEPC . 18

4 Discussions 21
4.1 Security concerns . 21
4.2 Service Chaining Obstacles 21

References 23

A Open Source Projects 29

ii

1 Introduction
Software-Defined Networking (SDN) is a novel solution to network configu-
ration and management. Its openness and programmability features have
greatly motivated the open source communities where numerous applications
and tools are developed for various R&D purposes. For the strength of
SDN, the upcoming 5th Generation mobile networks (5G) can also benefit
from the modular and open design to innovate the network architecture and
services. In this report, we present a survey of existing open source platforms,
applications and tools for SDN and 5G research. We discuss the potential
directions and share our perspectives in this domain.

2 Open Source SDN Components
Even though the concept of software-defined networking dates back to year
2004 [79] the first widely recognized applications did not follow until several
years later. The most notable one is the widespread OpenFlow protocol
[45] which made its official debut in 2009 and has since become the most
prevalent protocol for SDN. The available applications on the market reflect
the pervasiveness of OpenFlow as practically all of them are built to support
the protocol. Keeping SDN’s basic concepts and architectural solutions
in mind it does not come as a surprise that the network controllers and
switch implementations are the most common SDN-related applications.
In this section, we present a comprehensive survey of existing open source
components for SDN.

2.1 Controllers

Most OpenFlow controllers are organized in the same fashion as shown
in Figure 1. Most of the current controllers offer a so-called northbound
interface (usually a REST API) to communicate with applications and to
offer them services. The southbound interface is for communicating with the
actual physical and virtual switches in the network.

Hailed as the first OpenFlow controller, NOX was developed side-by-side
with OpenFlow but peculiarly released a year before OpenFlow’s official
release [26]. NOX is written in C++ and is meant for developing further
customized SDN controllers, but it is commonly regarded as complex and
cumbersome to use for anything but really performance-critical applications.
The developer Murphy McCauley himself recommends using POX [49], the
Python version of NOX, for most tasks [69]. There is also a newer version
of NOX that according to developers has more streamlined architecture,
cleaner codebase and is more efficient. At the time of writing this the latest
modification to source code was an over 7 months old bugfix, so NOX’s
actual viability in current SDN development is questionable.

1

Figure 1: General SDN controller architecture

Beacon is another notable OF controller [4]. It was released in 2010 and
it is written in Java. Despite Java’s reputation as an inefficient programming
language Beacon has fared well performance-wise in comparison with other
controllers [70]. Java was chosen to address C and C++ portability problems
and to reduce the developers’ burden with significantly shorter compilation
times and better error logging. Other controllers with similar focus on easier
development are for example Python-based Ryu [52] and Ruby-based Trema
[62].

One of the features that makes Beacon perhaps more notable than other
aforementioned controllers is the fact that it serves as the basis for one of the
most popular OpenFlow controllers: Floodlight [7]. Floodlight is developed
by Big Switch Networks, a startup founded by networking veterans with
notable work history in big companies like Cisco and Juniper. Unlike Beacon,
Floodlight does not rely on an OSGi framework and offers more features such
as REST API and support for non-OpenFlow domains. The documentation
for Floodlight is also generally good and surpasses the Beacon documentation
with ease. Big Switch has in the past lobbied for Floodlight to be included

2

in Open Daylight Project’s codebase [66] but the project opted for Cisco’s
controller implementation.

Open Daylight Project [34], or ODL in short, is commonly considered the
leading SDN project with its substantial company backing and large developer
community. The project members involved include practically every company
relevant to the field. These are for instance Cisco, Microsoft, IBM, Hewlett-
Packard, Juniper, Red Hat, VMware and many more. Feature highlights of
Open Daylight include a robust REST API and southbound communication
which allows using other non-Openflow protocols: OVSDB, NETCONF,
LISP, BGP, PCEP and SNMP. Naturally ODL contains components to
take advantage of the protocols as well as other components not found in
any other SDN projects e.g. DDOS detection and counter-measures. The
basic architecture is rather similar to other controllers, but different core
components, applications built on top of them and protocol plugins that offer
different services and use different interfaces complicate the organization a
bit. Figure 2 shows the architecture and some of the components in the
bundle. For prototyping applications that only make use of OpenFlow the
sheer number of different components in ODP may prove intimidating and
distracting, but generally the ODP community offers decent documentation
and guides though the quality varies from one component to another. In
comparison with Floodlight, ODP is likely to be more viable in a real business
environment because of the features it offers and its fast evolving nature.
However, when developing quick prototypes or SDN applications that only
make use of OpenFlow, Floodlight may be a better choice due to being
simpler, smaller and at the moment better documented.

Other lesser known controllers and controller frameworks are for example
a very bare bones Libfluid [18], Java-based Maestro [20], On.Lab’s FlowVisor
[10] which is meant to be used with other On.Lab SDN components, FLOWer
[8] which is written with Erlang, the event-driven Resonance[50], Node.js
-based NodeFlow [25], the lesser-known KulCloud Open MUL and SNAC
[16, 57], flowforwarding.org’s Warp [64], network virtualization bundle Open
VNet [46], IRIS which uses Floodlight and Beacon components to offer
horizontal scalability [15] and Juniper’s OpenContrail focusing on SDN and
Big Data [38]. Generally these pieces of software are either not in active
development or not as well received or otherwise as notable as the controllers
mentioned earlier. Table 1 shows comparison of some of the well known SDN
controllers.

3

Figure 2: Open Daylight architecture

4

Ta
bl
e
1:

SD
N

C
on

tr
ol
le
rs

C
om

pa
ris

on

N
am

e
P

ox
B

ea
co

n
F

lo
od

lig
ht

O
pe

nD
ay

lig
ht

R
yu

La
ng

ua
ge

Py
th
on

Ja
va

Ja
va
,P
yt
ho

n
Ja
va

Py
th
on

U
se

r
in

te
rf

ac
e

Py
th
on

+
Q
T
4

an
d
W
eb

W
eb

W
eb

an
d
Ja
va

W
eb

G
U
I
Pa

tc
h

Su
pp

or
ts

ho
st

s
w

it
h

m
ul

ti
pl

e
at

ta
ch

m
en

t
po

in
ts

N
o

N
o

Ye
s

Ye
s

N
o

C
om

pa
ti

bl
e

O
S(

s)

Li
nu

x
M
ac

W
in
do

w
s

Li
nu

x
A
nd

ro
id

Li
nu

x
M
ac

W
in
do

w
s

Li
nu

x
M
ac

W
in
do

w
s

Li
nu

x

D
ev

el
op

m
en

t
co

m
m

un
it

y
N
ic
ira

N
et
w
or
ks

D
av
id

Er
ic
so
n

St
an

fo
rd

U
ni
ve
rs
ity

B
ig

Sw
itc

h
N
et
w
or
ks

In
du

st
ry

Su
pp

or
te
d

N
T
T

C
om

m
un

ic
at
io
ns

A
ct

iv
el

y
de

ve
lo

pe
d

Ye
s

M
ai
nt
ai
ne

d
Ye

s
Ye

s
Ye

s
O

pe
n

so
ur

ce
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
O

pe
n

so
ur

ce
lic

en
se

G
N
U

B
SD

A
pa

ch
e

EP
L

A
pa

ch
e

Su
pp

or
ts

R
E

ST
A

P
I

Ye
s
(L

im
ite

d)
Ye

s
Ye

s
Ye

s
Ye

s
Su

pp
or

ts
O

pe
nS

ta
ck

Q
ua

nt
um

N
o

N
o

Ye
s

Ye
s

Ye
s

P
ro

vi
de

s
ab

st
ra

ct
io

n
la

ye
r

ab
ov

e
so

ut
hb

ou
nd

pr
ot

oc
ol

s
N
o

N
o

N
o

Ye
s

N
o

Su
pp

or
ts

to
po

lo
gi

es
w

it
h

lo
op

s
Ye

s
vi
a

sp
an

ni
ng

tr
ee

N
o

Ye
s

Ye
s

Ye
s
vi
a

sp
an

ni
ng

tr
ee

[7
3]

Su
pp

or
ts

no
n-

O
F

is
la

nd
co

nn
ec

ti
on

s
N
o

N
o

Ye
s

Ye
s

N
o

Su
pp

or
ts

O
F

is
la

nd
co

nn
ec

ti
on

s
w

it
h

lo
op

s
N
o

N
o

N
o

Ye
s

N
o

5

2.2 Switches

OpenFlow relies fundamentally on switches: there has to be at least one
in the network to connect to a controller, otherwise using OpenFlow is not
possible. OpenFlow being nearly synonymous to SDN and network functions
virtualisation and NFV being a hot topic for conversation along with SDN
there is a demand and supply for standardized, vendor-agnostic virtual and
physical switches. With SDN and network virtualization it is possible to
eliminate the need for specialized switches, routers, middle boxes etc. and
utilize the network elements on ordinary X86 servers.

VMWare’s Open VSwitch is undoubtedly the most well known of virtual
switches [37]. It has been ported to multiple virtualization platforms such as
VirtualBox and KVM, is included in few Linux kernels and bundled with
many SDN projects and is also integrated to various virtual management
systems like OpenStack. Open VSwitch offers many features like several QoS
and security components and it supports a few different protocols.

Other software switches include Indigo Virtual Switch meant to be used
with Floodlight and Indigo framework [14], CPqD’s OFSoftswitch [31], LINC-
switch [19], Snabb.co’s virtualized ethernet switch called Snabb Switch [56]
and protocol oblivious POFSwitch [48]. The previously mentioned open
VNet also includes a virtual switch [46].

Other switch-related projects are Centec’s Lantern [17] which includes
a modified Open VSwitch but is mainly designed for implementing cus-
tom hardware-based SDN switches with the accompanying software bundle.
Other partly similar software is Pantou [83]. It can be used to turn normal
commercial routers to OpenFlow-enabled switches. Pantou will be discussed
more in depth later in the report.

2.3 Testing and Simulating

Like in any other field in computer science, fast and professional development
and research is supported by tools for testing and quality assurance. SDN
technology is not an exception. The tools fall roughly into two categories:
Some are used for simulating networks and network events while others focus
on performance benchmarking and monitoring.

The most well known tool for simulating networks is Mininet [21]. Mininet
could be considered essential for conducting research on SDN and testing
software in a realistic network environment. Mininet supports custom net-
work topologies which can be easily created with its Python API and its
switches support OpenFlow. Connecting to real networks should be quite
straightforward though a single Linux OS can support over four thousand
switches and hosts simultaneously [21].

A slightly more specific tool is STS which stands for SDN Troubleshooting
System [53]. It can be used to simulate and troubleshoot specific devices

6

on the network. A bit similar program is ns-3 which is used for simulating
network events [27]. For performance testing and benchmarking there are
OFLOPS and PerfSonar [29, 47] and for testing SDN software itself one can
utilize NICE [24] for controller applications, OFTest for compliance testing
[32] and TestOn for testing automatization [59]. It is also worth to mention
HyperGlance by Real Status [12]. It is a network visualization tool which
supports Open Daylight. It could most likely be used for debugging as in
addition to network topology it displays traffic, too. Unlike the other pieces
of software mentioned HyperGlance is not an open source project or free
software, but at the time of writing it was in open beta phase and acquiring
the software required only registration to the site.

2.4 Other SDN projects

Apart from controllers, switches, testing and simulation tools there are many
notable projects that do not straightforwardly fall into these categories.

There has not been as much talk about security with SDN as there has
been on for example network virtualization, but the centralized network
control introduces fundamental vulnerabilities that need to be addressed.
Roy Chua of SDNCentral.com points out that the SDN controller should
always be closely controlled and also protected from an outside attack like
DDOS because without it SDN networks’ functionality is crippled [55]. Other
aspects to be aware of are protecting communication throughout the network
and maintaining and monitoring network performance and function. Open
Daylight for example includes a component for protection from Denial of
Service attacks and OpenFlowSec.org offers multiple security solutions for
SDN ranging from malware protection to security policy enforcement.

Other projects aim to enhance the performance of the network. InCntre’s
Flowscale [9] is a network load balancer, but the development has stopped
after version 0.6. This may be because of many controller applications
including a load balancer of their own. Both the BIRD by CZ.NIC Labs and
CPqD’s RouteFlow offer IP routing [60, 51].

Some components are made to enhance SDN development. These include
domain-specific languages like Frenetic and Pyretic developed in Princeton
University [11] and Haskell-based Nettle [23] from Yale University. In the
same vein FlowForwarding.org offers protocol libraries for NetConf and
OpenFlow written in Erlang [5, 30], Midokura has one for OpenFlow written
in Python [44] and Ericsson provides a library made with Node.js [28]. They
are named enetconf, of_protocol, OpenFaucet and Oflib-Node, respectively.

Other various projects include Big Switch’s Indigo [13], a hardware
abstraction layer and configuration layer meant for communication between
Floodlight and the physical layer, MirageOS [22], used for constructing
unikernels for network applications, wakame-vdc and Open Virtex for data
center virtualization [63, 36] and for wireless communication there is nwEPC

7

- EPC SAE Gateway by Thomas Batia [68] and Open Source IMS Core and
OpenEPC from Fraunhofer Fokus [35, 43] of which the latter is not an open
source project but otherwise worth mentioning in this context.

2.5 Future developments

SDN development seems to be thriving and especially different companies
have taken great interest in the concept. Open Daylight, being the biggest
company-backed SDN project to date, is evolving continuously. During this
year as many as 15 new project proposals have been accepted to be included
in Open Daylight, among those a dedicated Service Function Chaining
component, an Authentication, Authorization and Accounting component
and an application policy plugin to name a few [41]. While Floodlight is
not evolving with as rigorous a pace, the active development and moderate
company involvement is likely to keep Floodlight Open Daylight’s main
competition. However, the two big controllers might get a new rival in the
future. Currently the top trending project in sdncentral.com is On.Lab’s
upcoming network operating system ONOS [54, 33]. ONOS is to complete
On.Lab’s SDN stack consisting of ONOS, FlowVisor and Mininet. It is
to feature a controller function as well as horizontal co-ordination and
communication among multiple ONOS instances allowing easier scalability
for networks. The first prototype was demonstrated at Open Network
Summit 2013, and according to On.Lab ONOS will be released this year but
no definitive date has been given.

2.6 Ongoing EU Projects

There are numerous projects, which are operating under Framework Pro-
gramme for Research (FP7) in Europe. In this section we are going to
introduce some of these projects briefly.

2.6.1 FELIX

The main goal of the FELIX project (FEderated Test-beds for Large-scale
Infrastruction eXperiments) is to build a common ground for users, in order
to monitor, request, and manage a slice of distributed Internet network
in Japan and Europe. In FELIX, new technologies, which are rising and
Software Defined Networking control frameworks are investigated (such as
OFELIA OCF, and Open Grid Forum) in order to assess their applicability
in the project. [2]

Therefore FELIX, in order to succeed in its goal, proposes a novel
SDN-oriented service design, which has the ability to engage heterogeneous
high-end FI facilities (such as JGN-X RISE and OFELIA). Thus, in order to
satisfy the needs of Japanese and European research groups, high capable NSI-

8

enabled networks are used that offer building the experimental infrastructure
in a dynamic and seamless way.

2.6.2 SPARC

SPARC (Split architecture for carrier-grade networks) aims to examine divid-
ing the traditional IP router architecture into several control and forwarding
planes. Thus, in order to achieve this, SPARC will implement a prototype
based on the OpenFlow concept. Upon achievement, they are planning to
open the doors for new players in the market by reducing the obstacles
that exist in the complexity of each single element. Therefore, the starting
point for SPARC would be OpenFlow and GMPLS, and examining how with
mixing these two, current network quality can be improved by moving into
simpler and standardized hardware. [58]

2.6.3 OFELIA

OFELIA gives the ability to researchers to do experiments on a multi-layer
and multi-technology test network, and also gives permission to control the
network itself accurately and dynamically. It creates different tools with
various options and runs networks and services on top of it, in order to bring
innovation to the future Internet. Therefore, if a researcher has an idea, by
logging in to the OFELIA webpage, she or he can configure the network slice
and run experiments on it. OFELIA supports information centric networking
(ICN), thus researchers can deploy and test an ICN system. [65]

2.6.4 ALIEN

ALIEN aims to build a solid infrastructure for software defined networking
by abstracting the network mechanism and interoperability of heterogeneous
network components. ALIEN uses Network Operating System (NOS), which
is a distributed system operating on top of a heterogeneous network struc-
ture. NOS gives the ability to view the whole network components and
their functionalities. NOS in the ALIEN project will be supported by the
management and control framework of OFELIA FIRE facility. [1]

There are different network components that are unfamiliar with Open-
Flow technology such as network processors, switches, optical network com-
ponents, and programmable hardware. ALIEN expands OpenFlow control
of OFELIA and its design in order to abstract network information of the
above mentioned devices. NOS in the ALIEN project uses a new hardware
description language and also functional abstraction method in order to
have uniform demonstration of network components and their functionalities
that is not compatible with OpenFlow. This language will describe input
and output format, topology information, and different functionalities of the
hardware in order to show the pipelining of actions on a particular network

9

device. In short, ALIEN is a Hardware Abstraction Layer (HAL) in order to
make non-OpenFlow network components have seamless migration to SDN.

2.6.5 OFERTIE

OFERTIE (Open-Flow Experiment in Real-Time Internet Edutainment) is a
24-month project, which is founded by the EC FP7 programme. The goal of
OFERTIE is to use SDN in order to improve the way distributed applications
are delivered in the future Internet, known as Real-Time Online Interactive
Applications (ROIA). In this project, programmable networking techniques
are going to be discovered in order to handle networking bottlenecks that re-
strict ROIA applications for scalability and quality of experience. OFERTIE
with the help of the OFELIA testbed is going to run various experiments to
discover how programmable networks can be helpful for technical solutions
such as QoS and multicast, and what business models can benefit from these
solutions in an economically sustainable manner. [3]

2.6.6 FIRE

Fire (Future Internet Research and Experimentation) is launched in 2007
as a member of Framework Programme 7 (FP7). One of the goals of FIRE
is to promote experiments, on new instances, networking concepts and
architectures for the future Internet. The other goal of FIRE is to build
large-scale experimentation facilities in order to help medium as well as long-
term research on networks and services. FIRE currently has twelve projects,
eight of which are research-focused and experimentally-driven, whereas the
other four projects are “facility projects” to build empirical platforms for
future internet researchers. [6]

10

3 SDN-based Service Chaining for Mobile Networks
SDN (software-defined networking) has revolutionized designing and man-
aging networks over the past few years. Routers and switches operate with
complex software, which is closed source and dedicated to the private network
companies. Moreover, each of these devices come with their own configu-
ration interfaces that are different between vendors, which makes the work
of network administrators exhausting to configure each of these individual
network devices. [71]

SDN changes the way networks are managed and designed by defining
two characteristics. First, SDN detaches the control plane from the data
plane. Second, SDN unifies the control plane, thus a single software program
(controller) can control numerous data plane elements. The SDN controller
has direct access to the data plane through a well-defined API such as
OpenFlow. An OpenFlow switch has a packet-handling table, where different
rules can be defined in the table. Therefore, based on different rules that
match with a subset of traffic, different actions (such as dropping, forwarding
and header modification) can be taken. Thus, based on different rules
installed on OpenFlow by the controller, an OpenFlow switch can act as a
router, firewall, network address translator, switch or something in between.

As discussed earlier, network instruments are closed and proprietary,
which is a barrier to openness. Technical innovation can break down the
barrier caused by industry and government in order to breed openness. The
future perspective of wireless mobile networks is that any mobile device can
connect to any network and move from one network to another seamlessly
and freely. Thus, handheld devices can connect to any network regardless of
what radio technology it uses and who owns the network. Figure 3 illustrates
an overview of OpenFlow Wireless. [82]

Openness and an open architecture can provide improved features in the
network delivered by new industry suppliers, which can help the open source
community to flourish. OpenFlow is a protocol and also southbound API for
the SDN controller, which is installed on top of a router, switch, or access
point. Despite the fact that current networking devices such as switches and
routers do not have a common external interface, OpenFlow gives the ability
to the controller software to control the OpenFlow enabled device.

Kok-Kiong Yap et al., introduced a mobility manager for the network
users who move around. In this method, the mobility manager is aware of
every application flow in the network and can choose the route for a specific
flow. Therefore, when the user travels from one point to another, the mobility
manager becomes aware of the user’s movement and can decide to reroute
the flow. Due to the independency of OpenFlow from the physical layer,
vertical handoff between various radio networks is seamless and easy.

To conduct several simultaneous experiments, slicing (or virtualizing) the
network is used in order to make a service permit its users to move across

11

Figure 3: OpenRoads Architecture [81]

multiple physical networks freely. So with slicing, multiple controllers can
cooperate together, where each one is responsible for controlling its own slice
of network. A slice may comprise one network or many networks; one user or
many users; one subset of traffic or all traffic. FlowVisor is an open source
application, which can be used to slice OpenFlow networks.

FlowVisor is an extra layer added between the controllers and the data-
path. It slices the network and assigns control of various flows to different
controllers. Since FlowVisor communicates to the datapath and controllers
using the OpenFlow protocol, datapaths think that they are controlled by a
single controller, and the controllers believe that they are controlling their
own private network, but actually they are controlling a virtual network.
Here the method is to classify the flows based on a policy, which is defined
by the network manager, then FlowVisor can determine which flow belongs
to each slice, and transmit that to the corresponding controller for that slice.
For instance, if controller ‘Z’ is in charge of all John’s traffic, then FlowVisor
transmits all John’s traffic to controller ‘Z’.

Slicing makes experiments in the production network simple. Thus,
flowspace and topology define each experiment to be assigned to its own
slice, which is implemented by the FlowVisor. Moreover, slicing or network

12

virtualization enables the production network for the versioning, where new
features can be introduced in the production slice. Various slices can be
assigned with different versions. So in this method, new features can be
distributed and tested rapidly, and afterward made available to the whole
network, or even shared with other network owners.

Finally, slicing allows decomposition, so network administrators can
decompose a network to further slices with the aid of FlowVisor in order to
allocate more flow space to them. Repetition of slicing is logical when there
is a hierarchy of control in the network. For instance, the network manager
can dedicate a slice to a research group in the computer science department,
and then that research group can slice it among different experiments.

OpenFlow does not have the ability to control the datapath elements, such
as enable or disable interfaces, set power levels or assign channels. Controlling
the datapath elements is usually done with NetConf, command line interface,
or SNMP. This job is difficult when there are numerous slices of network and
each slice is suppose to be configured independently. SNMPVisor is a good
tool to configure the datapath, which works alongside FlowVisor. In order
to slice the configuration, SNMPVisor observes the SNMP control messages,
and forwards them to the correct datapath element. However, sometimes it
is infeasible to slice the configuration. For instance, assigning different power
levels for various slices on current existing WiFi Access Points is impossible.

3.1 Pantou and OpenWRT

Pantou transforms an access point or wireless router into an OpenFlow
enabled device. So, basically in Pantou, OpenFlow operates on top of
OpenWRT as an application [83]. OpenWRT is an open source extendable
operating system for the router, which is fully customizable for the needs
of users and developers. It competes with other existing solutions in perfor-
mance, robustness, extensibility, design and stability. OpenWRT is highly
customizable, so it is not intended only for professional high-end users, rather
other users who are seeking for high customisability can also benefit from it.
[75]

OpenWRT is designed in such a way to be user friendly, therefore users
can choose their desired packages, configure them, and build their own
custom firmware [75]. Depending on the model of router that the user is
using, there are numerous projects for Pantou that can be used to build
custom OpenWRT firmware with OpenFlow on top of it. For instance,
Backfire, Attitude Adjustment, and Trunk are some of the Pantou projects
that can be used to generate firmware. [61]

By employing OpenWRT, wireless freedom can be achieved. OpenWRT,
due to its open architecture, enables the user to use features that can be
added to OpenWRT. These features are, intrusion detection, stateful packet
inspection, and many other features that normally should be paid to physical

13

devices, cost thousands of dollars to do the job effectively. The OpenWRT
community goal is to keep this open source firmware generic and always up
to date alongside with the advancement of technology.

3.2 Network Service Chaining

The traditional network infrastructure has made network service providers
(NSPs) to struggle with the user increment and high traffic demands. While
users enjoy decrement of “price per bit”, NSPs are in battle with operational
cost (OPEX) and operator investment (CAPEX), which are increasing due
to the complexity of current network infrastructure. Current network infras-
tructure in NSPs, cannot fulfill their needs, and this is because of inflexibility
in their network. [72]

Conventionally, advanced services such as, firewall, deep packet inspection
(DPI), intrusion detection and prevention systems, caching, etc., are fixed
inside the network, which make the network inflexible and static. Moreover,
due to this inflexibility, configuration between these network services suffers
from lack of automation. Therefore, troubleshooting in the network might
consume a lot of time varying from hours to even weeks depending on the
size of the network.

Due to inter-dependencies and the low power of automatic configuration
that middleboxes (services) have, if there is a new service to be introduced
or removed from the network platform, they need careful engineering and
customization. By increasing the automation, the cost of OPEX and CAPEX
can be reduced. Decreasing the network touch points, consequently reduces
the possible configuration mistakes, which reduces the cost of OPEX. In addi-
tion, optimizing and refactoring the use of existing resources by virtualizing
certain network functions can reduce the CAPEX cost.

Today, network operators cannot reuse middleboxes, since they are config-
ured to provide only one service. So, if one box is removed from the network,
then the whole chain will break. With current issues that network platforms
are facing, the need for dynamic service chaining in SDN is gradually increas-
ing. Dynamic service chaining can bring high availability and rapid failure
restoration with reliable testing abilities, to the network platform.

Figure 4 illustrates the capabilities of network service chaining (NSC),
which can introduce dynamic, upgradable and configurable software to the
network. NSC enables data to flow without any interference caused by
middleboxes residing at different nodes. Therefore, different services in the
network can be utilized only if needed, and can be omitted whenever their
service is unnecessary. NSC takes advantage of virtualization, so regardless
of the layer (physical or higher layers) where middleboxes are implemented,
they can be integrated seamlessly.

Dynamic NSC, introduces more intelligent traffic steering to the network,
which accelerates the performance of the network. When there is a single

14

Figure 4: NSC vs. Current network service model [72]

network domain, middleboxes such as load balancers, traffic schedulers,
security gateways, etc., provide better fairness and security. However, when
it comes to multiple network domains, further operator investment is needed,
either in terms of software or hardware. Thus, this extra operator investment
causes serious decline in terms of delay, which depending on the number of
policy elements that the data is passing and the cross-domain network load,
this deferment varies. However, when NSC is implemented in the edge of
a network, multimedia flows and sensitive data can steer through different
network domains in predictable and reliable manner. Figure 5 depicts this
benefit of dynamic NSC.

Figure 5: Traffic steering in dynamic NSC [72]

15

3.3 YANG Model and its usage in OpenDaylight

YANG is a data modeling language, which is used to model the data for
network configuration protocol (NETCONF). YANG uses an XML tree to
model hierarchical data, where each node has a name, value or series of child
nodes. Moreover, the format of event notifications, which are published by
the network elements can be specified by YANG. In the YANG modeling
language, the signature of a remote procedure call (RPC) can be specified by
data modelers, which can be invoked on network components through the
NETCONF protocol. [67]

In OpenDaylight there are different projects such as Netconf Client (NCC)
and Model Driven Service Abstraction Layer (MD-SAL) controller, which use
YANG for their modeling language [40] [39]. In these projects, YANG permits
to model the structure of XML data, to describe the semantic components
and their connection, and to model all the elements as a unified system [40].

The YANG data model uses XML, which makes the data self-explanatory.
Moreover, it is easy for the data to be utilized in applications and controller
components that use controller’s northbound API. The YANG data model
facilitates the development of applications and controller components. There-
fore, the risk of bad interpretation of the data structure can be reduced
through a defined pattern, which creates easier, statically typed API for
developing a module with specific functionality.

3.4 LISP and its usage in OpenDaylight

Conventionally, IP addresses operate as both network and device identifier.
LISP (Locator/ID Separation Protocol) divides the address functionality into
two distinctive roles. Endpoint identifier (EID) identifies a network device
in a unique manner and routing locator (RLOC) is the routing address point
for endpoint identifiers on the network. One of the advantages of LISP is
that EID and RLOC can be utilized in the current IPv4 and IPv6 address
structure. In LISP, due to aggregation of EID addresses by more than only
one RLOC, scalability in the network deployment is feasible. Moreover,
because of this separation in the architecture, device mobility in the network
becomes possible, therefore an EID can be moved freely from one point in the
network to another by changing the RLOC without requiring modification
of the configuration of the device. [77]

Figure 6 illustrates the order of sending a packet from the client to the
server using the LISP infrastructure. First, the packet is forwarded to the
LISP router at the client side, which is called egress tunnel router (ETR),
then ETR tries to find the next hop router that can reach the destination
EID, by sending a MAP request to the MapServer. Next, MapServer tries
to find information binded between EIDs and RLOCs and then replies the
routing point address of destination EID to the ETR. ETR encapsulates the

16

packet after receiving the routing point address (RLOC) from the MapServer,
and then forwards it to the router that has the corresponding RLOC. The
router which has the RLOC, is called ingress tunnel router (ITR), the job
of which is to decapsulate the received packet and forward it to the chosen
sever.

Figure 6: Packet forwarding between LISP routers [77]

In a network, which is virtualized, EID can play the role of virtual
address space and RLOC can play the role of physical network address.
In software defined networking, the control plane is separated from the
data plane. Therefore, LISP in regards to the data plane, defines how
encapsulation of virtualized network addresses should be done in addresses
from the underlying network. In addition, the control plane stores the binding
information between EIDs and RLOCs, and associated forwarding policies,
therefore the data plane can fetch this information whenever it receives new
flows. [42]

LISP Flow Mapping project in OpenDaylight utilizes LISP infrastructure,
which provides mapping system services. This project, consists of the LISP
Map Resolver service and LISP Map Server service in order to store and
retrieve the mapping data to ODL applications and also data plane nodes.
Mapping data can contain different routing policies including load balancing
and traffic engineering. Moreover, it can also contain mapping of virtual
addresses (EIDs) to physical network addresses (RLOCs), in order to access
virtual nodes. In the LISP mapping service, mappings and policies can be
specified through the ODL northbound REST API, in order to utilize this
service. In addition, data plane devices, which are compatible with the
LISP control protocol can utilize this service via a southbound LISP plugin
through the LISP control protocol. Figure 7 illustrates the above-mentioned
components.

17

Figure 7: LISP in OpenDaylight [42]

3.5 OpenEPC and nwEPC

Testbeds are good platforms in order to understand and take advantage of new
technologies in short time, and in a realistic operator network environment.
Current network functionality is extremely complex and this is because
of a wide variety of protocols, components and interfaces that have to
work simultaneously, which can impact their behavior. There are numerous
challenges in order to have a reliable and cost-efficient testbed that can
test applications before the final product development. OpenEPC tries to
minimize these challenges by offering a novel approach. [43]

OpenEPC entirely simulates the operator core network, by providing a
good tool for demonstrations and a profound study of IP communication
devices, such as radio access networks, mobile devices and core network up
to the service platforms. Due to its openness, its source code can be used
to access 3GPP (3rd Generation Partnership Project) standard components.
Therefore, developers who are interested in LTE (Long Term Evolution)
and EPC (Evolved Packet Core) environments can update these standard
components in a shorter period of time.

OpenEPC is inspired by 3GPP EPC architecture, therefore it provides a
realistic testbed by binding different standard radio technologies, where it
has absolute control over the operator environment. Moreover, it contains all
the elements and main functionalities of 3GPP EPC standards, in addition
to its own features, which makes it enables all kinds of IP communications
such as LTE, EDGE, HSPA, and even non-3GPP accesses such as WiFi.

OpenEPC comes with different functionalities, some of which we are going
to discuss briefly. Core network mobility management is one of the OpenEPC
functionalities, where it has some necessary features for establishing the user
plane. These features include the implementation of PMIP (Proxy Mobile IP)

18

and GTP (GPRS Tunneling Protocol) mobility, zero packet loss handovers
and multiple APN (Access Point Name) support.

Integration of 3GPP access networks is another functionality of OpenEPC.
It incorporates with RAN (Radio Access Network) components, which makes
it enable control over wireless connectivity of devices to connect them to the
testbed. Therefore, it makes the experiments have realistic radio conditions
with complete support of PS (Packet Switch) and partial support of CS
(Circuit Switch). Moreover, aside from cost efficient components that are
integrated in OpenEPC, it comes with its own radio emulation nodes, which
can be engaged in a totally virtualized environment.

OpenEPC has a mobility management module along with network ANDSF
(Access Network Discovery and Selection Function) on mobile devices, and
also takes advantage of location-based handovers and radio conditions, which
makes the client choose the suitable access networks in order to prevent
packet loss. In addition to above-mentioned functionalities, policy and
charging control, harmonized AAA and subscriber management, accounting
and charging, distribution and user plane realization are other features of
OpenEPC.

OpenEPC is highly modular with configurable architecture, which makes
it suitable for any research development in the field of applications, networks
and services. It can simulate a number of different deployment scenarios,
which varies from the core network in a single box, to medium-scale dis-
tributed testbeds. Figure 8 depicts how OpenEPC virtualizes a real network
operator environment.

Figure 8: OpenEPC Testbed [43]

The nw-EPC is an open source software package, which is an implemen-
tation of the SAE (System Architecture Evolution) gateway. It is written
completely in the C programming language and runs as a single-threaded

19

UNIX process, where the data plane and control plane are both running
in the same address space. The goal of nw-EPC is to set up a framework,
which implements LTE SGW (Serving Gateway) and PGW (Packet Data
Network Gateway) [68]. Figure 9 illustrates how in SAE, different technolo-
gies such as 3GPP WLAN, GPRS, Evolved RAN, and non-3GPP networks
are transparently unified [76].

Figure 9: System Architecture Evolution [76]

The control plane in nw-EPC incorporates the SAE gateway behaviour
with the help of expandable FSM framework. This enables the nw-EPC
node gateway to function as both SAE, and PGW gateways and also other
gateway functions, such as WiMAX ASN-GW or GGSN. The data plane
in nw-EPC supports IPv4 packet classification, and basic GTP (GPRS
Tunneling Protocol) tunneling/detunneling. However, there is lack of support
for IPv6, DPI, QOS, traffic shaping and policing.

20

4 Discussions

4.1 Security concerns

There is a lot of theoretical discussion around SDN, but widely accepted
commercial products are still on their way [80]. Most of the discussion has
been about the SDN architecture and organization, but while SDN is by
no means more vulnerable than traditional networks, the threats exist and
are partly different and specific to SDN [74]. The most glaring issue comes
with one of the cornerstones of SDN. The centralization of control means
that a successful attack on a SDN controller could easily compromise the
functionality of the whole network. These attacks could be carried out as
Distributed Denial of Service (DDoS) attacks, attacking controller directly,
modifying switch behaviour (forged requests, cloning of flows etc.), exploiting
administrative stations (gaining access to controller servers themselves) or
exploiting a controller with a malicious network applications [74]. The
network should also be able to successfully recover from a problem or an
incident and hence correct and safe logging and tracing of network states are
likely to be required.

Kreutz et al. suggest other general solutions to counter possible security
threats. These are controller replication and systems diversity, dynamic
associations between network devices and controllers (e.g. if a controller
fails, switches associate with a new one), self-healing and software update
and patching mechanisms, establishing trust between network devices and
controllers and network applications and controllers, establishing security
domains (e.g. sandboxing) and using secure components. In conclusion, SDN
security is still a relatively unexplored area and for commercial uses of SDN
acknowledging and addressing the issues is required.

4.2 Service Chaining Obstacles

In Section 3, we discussed network service chaining and its benefits, however
NSC comes with its own challenges. The current network service structure
is tight with the network topology, which makes introducing new services or
removing them from the chain troublesome. If more services are needed in
the chain, the topology should be changed alongside with the new service
structure. Due to this coupling between network topology and the service
chain, service selection or changing the service transit order based on flow
direction is not feasible. [78]

A direct impact of topological dependency is that configuration of a
network becomes complex. If a new service needs to be introduced in the
service chain, the whole network should be configured again. Therefore once
the topology is installed, the network operator tries to avoid any changes
in order to not encounter any misconfiguration and consequently breaking
down the network, which can constrain the high availability of network.

21

Because of the topological nature of the current network deployment,
there is lack of traffic selection. So, all the traffic on a specific section should
go through the whole service function chain, no matter whether the traffic
needs to be processed by a particular service or not. Therefore, forwarding
technology forces how the data should traverse among services, which causes
inflexibility in the network. In addition, classification happens at every service
that the traffic passes through, which service functions cannot leverage the
classification results from other service functions.

Lastly, End-to-end service visibility is limited in current network de-
ployment. Therefore, when the service function chain is expanded across
administrative boundaries, the troubleshooting becomes tough and complex.
Moreover, different topologies are deployed on physical and virtual envi-
ronments, and this topological variance introduces more challenges to the
network.

22

References
[1] About alien. http://www.fp7-alien.eu/?page_id=12, visited on 13-

08-2014.

[2] About felix. http://www.ict-felix.eu/?page_id=25, visited on 12-
08-2014.

[3] About ofertie. http://www.ofertie.org/, visited on 13-08-2014.

[4] Beacon controller. https://openflow.stanford.edu/display/
Beacon/Home, visited on 07-08-2014.

[5] enetconf. https://github.com/FlowForwarding/enetconf, visited on
08-08-2014.

[6] The fire landscape. http://www.ict-fire.eu/home/
the-fire-landscape.html, visited on 13-08-2014.

[7] Floodlight project. http://www.projectfloodlight.org/
floodlight/, visited on 07-08-2014.

[8] Flower. https://github.com/travelping/flower, visited on 07-08-
2014.

[9] Flowscale. http://real-status.com/product/sdn, visited on 08-08-
2014.

[10] Flowvisor. https://openflow.stanford.edu/display/DOCS/
Flowvisor, visited on 07-08-2014.

[11] Frenetic and pyretic. http://www.frenetic-lang.org/, visited on
08-08-2014.

[12] Hyperglance. http://real-status.com/product/sdn, visited on 08-
08-2014.

[13] Indigo. http://www.projectfloodlight.org/indigo/, visited on 08-
08-2014.

[14] Indigo virtual switch. http://www.projectfloodlight.org/
indigo-virtual-switch/, visited on 08-08-2014.

[15] Iris. http://openiris.etri.re.kr/, visited on 07-08-2014.

[16] Kulcloud open mul. http://sourceforge.net/projects/mul/, visited
on 07-08-2014.

[17] Lantern. https://github.com/CentecNetworks/Lantern, visited on
08-08-2014.

23

http://www.fp7-alien.eu/?page_id=12
http://www.ict-felix.eu/?page_id=25
http://www.ofertie.org/
https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home
https://github.com/FlowForwarding/enetconf
http://www.ict-fire.eu/home/the-fire-landscape.html
http://www.ict-fire.eu/home/the-fire-landscape.html
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://github.com/travelping/flower
http://real-status.com/product/sdn
https://openflow.stanford.edu/display/DOCS/Flowvisor
https://openflow.stanford.edu/display/DOCS/Flowvisor
http://www.frenetic-lang.org/
http://real-status.com/product/sdn
http://www.projectfloodlight.org/indigo/
http://www.projectfloodlight.org/indigo-virtual-switch/
http://www.projectfloodlight.org/indigo-virtual-switch/
http://openiris.etri.re.kr/
http://sourceforge.net/projects/mul/
https://github.com/CentecNetworks/Lantern

[18] Libfluid. http://opennetworkingfoundation.github.io/libfluid/,
visited on 07-08-2014.

[19] Linc-switch. https://github.com/FlowForwarding/LINC-Switch,
visited on 08-08-2014.

[20] Maestro-platform. https://code.google.com/p/maestro-platform/,
visited on 07-08-2014.

[21] Mininet overview. http://mininet.org/overview/, visited on 05-08-
2014.

[22] Mirageos. http://www.openmirage.org/, visited on 08-08-2014.

[23] Nettle. http://hackage.haskell.org/package/nettle-openflow-0.
2.0, visited on 08-08-2014.

[24] Nice. https://code.google.com/p/nice-of/, visited on 08-08-2014.

[25] Nodeflow. http://garyberger.net/?p=537, visited on 07-08-2014.

[26] Nox controller. http://www.noxrepo.org/nox/about-nox/, visited on
07-08-2014.

[27] ns-3. http://www.nsnam.org/, visited on 08-08-2014.

[28] Oflib-node. https://github.com/TrafficLab/oflib-node, visited on
08-08-2014.

[29] Oflops. http://archive.openflow.org/wk/index.php/Oflops, vis-
ited on 08-08-2014.

[30] of_protocol. https://github.com/FlowForwarding/of_protocol,
visited on 08-08-2014.

[31] Ofsoftswitch. https://github.com/CPqD/ofsoftswitch13, visited on
08-08-2014.

[32] Oftest. http://www.projectfloodlight.org/oftest/, visited on 08-
08-2014.

[33] Onos. http://onlab.us/tools/onos.html, visited on 11-08-2014.

[34] Open daylight project. http://www.opendaylight.org/, visited on
07-08-2014.

[35] Open source ims core. http://www.openimscore.org/, visited on 08-
08-2014.

[36] Open virtex. http://ovx.onlab.us/, visited on 11-08-2014.

24

http://opennetworkingfoundation.github.io/libfluid/
https://github.com/FlowForwarding/LINC-Switch
https://code.google.com/p/maestro-platform/
http://mininet.org/overview/
http://www.openmirage.org/
http://hackage.haskell.org/package/nettle-openflow-0.2.0
http://hackage.haskell.org/package/nettle-openflow-0.2.0
https://code.google.com/p/nice-of/
http://garyberger.net/?p=537
http://www.noxrepo.org/nox/about-nox/
http://www.nsnam.org/
https://github.com/TrafficLab/oflib-node
http://archive.openflow.org/wk/index.php/Oflops
https://github.com/FlowForwarding/of_protocol
https://github.com/CPqD/ofsoftswitch13
http://www.projectfloodlight.org/oftest/
http://onlab.us/tools/onos.html
http://www.opendaylight.org/
http://www.openimscore.org/
http://ovx.onlab.us/

[37] Open vswitch. http://openvswitch.org/, visited on 08-08-2014.

[38] Opencontrail. https://github.com/Juniper/contrail-build, vis-
ited on 07-08-2014.

[39] Opendaylight controller:config:examples:netconf. https://wiki.
opendaylight.org/view/OpenDaylight_Controller:MD-SAL:
Architecture, visited on 04-08-2014.

[40] Opendaylight controller:md-sal:architecture. https://wiki.
opendaylight.org/view/OpenDaylight_Controller:MD-SAL:
Architecture, visited on 04-08-2014.

[41] Opendaylight controller:project proposals. https://wiki.
opendaylight.org/view/Project_Proposals:Main, visited on
11-08-2014.

[42] Opendaylight lisp flow mappin:architecture. https://wiki.
opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:
Architecture, visited on 6-08-2014.

[43] OpenEPC, building your own complete mobile broadband opera-
tor network testbed. White paper, Fraunhofer Institute for Open
Communication Systems FOKUS. http://www.openepc.net/_docs/
OpenEPC-Whitepaper_nov2012.pdf.

[44] Openfaucet. https://github.com/rlenglet/openfaucet, visited on
08-08-2014.

[45] The openflow switch specification. http://OpenFlowSwitch.org, http:
//OpenFlowSwitch.org.

[46] Openvnet. http://openvnet.com/, visited on 07-08-2014.

[47] Perfsonar. http://fasterdata.es.net/performance-testing/
perfsonar/, visited on 08-08-2014.

[48] Pofswitch. http://www.poforwarding.org/, visited on 08-08-2014.

[49] Pox controller. http://www.noxrepo.org/pox/about-pox/, visited on
07-08-2014.

[50] Resonance. http://resonance.noise.gatech.edu/, visited on 07-08-
2014.

[51] Routeflow. http://routeflow.github.io/RouteFlow/, visited on 08-
08-2014.

[52] Ryu controller. http://osrg.github.io/ryu/, visited on 07-08-2014.

25

http://openvswitch.org/
https://github.com/Juniper/contrail-build
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture
https://wiki.opendaylight.org/view/Project_Proposals:Main
https://wiki.opendaylight.org/view/Project_Proposals:Main
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Architecture
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Architecture
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Architecture
http://www.openepc.net/_docs/OpenEPC-Whitepaper_nov2012.pdf
http://www.openepc.net/_docs/OpenEPC-Whitepaper_nov2012.pdf
https://github.com/rlenglet/openfaucet
http://OpenFlowSwitch.org
http://OpenFlowSwitch.org
http://OpenFlowSwitch.org
http://openvnet.com/
http://fasterdata.es.net/performance-testing/perfsonar/
http://fasterdata.es.net/performance-testing/perfsonar/
http://www.poforwarding.org/
http://www.noxrepo.org/pox/about-pox/
http://resonance.noise.gatech.edu/
http://routeflow.github.io/RouteFlow/
http://osrg.github.io/ryu/

[53] Sdn troubleshooting system. http://ucb-sts.github.io/sts/, visited
on 08-08-2014.

[54] Sdncentral. http://www.sdncentral.com/, visited on 11-08-2014.

[55] Security challenges in SDN. http://www.sdncentral.com/
security-challenges-sdn-software-defined-networks/, vis-
ited on 06-08-2014.

[56] Snabb switch. https://github.com/SnabbCo/snabbswitch, visited on
08-08-2014.

[57] Snac. http://www.openflowhub.org/display/Snac/SNAC+Home, vis-
ited on 07-08-2014.

[58] Software defined networking for next generation internet components.
http://www.fp7-sparc.eu/goals/, visited on 12-08-2014.

[59] Teston. https://github.com/Paxterra/TestON/, visited on 08-08-
2014.

[60] the bird. http://bird.network.cz/, visited on 08-08-2014.

[61] Tp-link tl-1043nd. http://wiki.openwrt.org/toh/tp-link/
tl-wr1043nd, visited on 30-07-2014.

[62] Trema controller. http://trema.github.io/trema/, visited on 07-08-
2014.

[63] wakame-vdc. https://github.com/axsh/wakame-vdc, visited on 08-
08-2014.

[64] Warp. http://flowforwarding.github.io/warp/, visited on 07-08-
2014.

[65] What does ofelia? http://www.fp7-ofelia.eu/assets/Uploads/
About-OpenFlow-OFELIA.pdf, visited on 13-08-2014.

[66] Banks, Ethan: Big Switch leaves OpenDaylight, toutes white-
box future. http://www.networkcomputing.com/networking/
big-switch-leaves-opendaylight-touts-white-box-future/a/
d-id/1234231?

[67] Bjorklund", "M.: Yang - a data modeling language for the network
configuration protocol (netconf). Rfc 6020, Internet Engineering Task
Force, October 2010. http://tools.ietf.org/html/rfc6020.

[68] Chawre, Amit: nw-epc. http://web.archive.org/web/
20120622233936/http://www.amitchawre.net/nw-epc.html, visited
on 8-08-2014.

26

http://ucb-sts.github.io/sts/
http://www.sdncentral.com/
http://www.sdncentral.com/security-challenges-sdn-software-defined-networks/
http://www.sdncentral.com/security-challenges-sdn-software-defined-networks/
https://github.com/SnabbCo/snabbswitch
http://www.openflowhub.org/display/Snac/SNAC+Home
http://www.fp7-sparc.eu/goals/
https://github.com/Paxterra/TestON/
http://bird.network.cz/
http://wiki.openwrt.org/toh/tp-link/tl-wr1043nd
http://wiki.openwrt.org/toh/tp-link/tl-wr1043nd
http://trema.github.io/trema/
https://github.com/axsh/wakame-vdc
http://flowforwarding.github.io/warp/
http://www.fp7-ofelia.eu/assets/Uploads/About-OpenFlow-OFELIA.pdf
http://www.fp7-ofelia.eu/assets/Uploads/About-OpenFlow-OFELIA.pdf
http://www.networkcomputing.com/networking/big-switch-leaves-opendaylight-touts-white-box-future/a/d-id/1234231?
http://www.networkcomputing.com/networking/big-switch-leaves-opendaylight-touts-white-box-future/a/d-id/1234231?
http://www.networkcomputing.com/networking/big-switch-leaves-opendaylight-touts-white-box-future/a/d-id/1234231?
http://tools.ietf.org/html/rfc6020
http://web.archive.org/web/20120622233936/http://www.amitchawre.net/nw-epc.html
http://web.archive.org/web/20120622233936/http://www.amitchawre.net/nw-epc.html

[69] Chua, Roy: NOX, POX and controllers galore – Murphy McCauley in-
terview, 2012. http://www.sdncentral.com/sdn-nfv-open-source/
nox-pox-controllers-murphy-mccauley/2012/09/.

[70] Erickson, David: The Beacon Openflow controller. In Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 13–18, New York, NY, USA,
2013. ACM, ISBN 978-1-4503-2178-5. http://doi.acm.org/10.1145/
2491185.2491189.

[71] Feamster, Nick, Rexford, Jennifer, and Zegura, Ellen: The road to
sdn. Queue, 11(12), dec 2013. http://doi.acm.org/10.1145/2559899.
2560327.

[72] John, W., Pentikousis, K., Agapiou, G., Jacob, E., Kind, M., Manzalini,
A, Risso, F., Staessens, D., Steinert, R., and Meirosu, C.: Research
directions in network service chaining. In Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for, Nov 2013.

[73] KazuyaOkada: Topologydiscoverywithryu. http://www.
necoma-project.jp/ja/blog/ool-sdn-hackathon14/CloudSDN_
Hackathon_20140625_kazuya.pdf, visited on 11-08-2014.

[74] Kreutz, Diego, Ramos, Fernando M.V., and Verissimo, Paulo: Towards
secure and dependable software-defined networks. In Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 55–60, New York, NY, USA,
2013. ACM, ISBN 978-1-4503-2178-5. http://doi.acm.org/10.1145/
2491185.2491199.

[75] Lorema: about openwrt, 2014. http://wiki.openwrt.org/about/
start, visited on 30-07-2014.

[76] Marius Iulian Corici, Fabricio Carvalho de Gouveia, Thomas Magedanz:
A network controlled qos model over the 3gpp system architecture evo-
lution. In Wireless Broadband and Ultra Wideband Communications,
2007. AusWireless 2007. The 2nd International Conference on, Aug
2007.

[77] Okada, Kazuya, Hazeyama, Hiroaki, and Kadobayashi, Youki: Oblivious
ddos mitigation with locator/id separation protocol. In Proceedings of
The Ninth International Conference on Future Internet Technologies,
New York, NY, USA, 2014. ACM. http://doi.acm.org/10.1145/
2619287.2619291.

[78] P. Quinn, T. Nadeau: Service function chaining problem state-
ment. Technical report, August 2014. http://tools.ietf.org/html/
draft-ietf-sfc-problem-statement-09.

27

http://www.sdncentral.com/sdn-nfv-open-source/nox-pox-controllers-murphy-mccauley/2012/09/
http://www.sdncentral.com/sdn-nfv-open-source/nox-pox-controllers-murphy-mccauley/2012/09/
http://doi.acm.org/10.1145/2491185.2491189
http://doi.acm.org/10.1145/2491185.2491189
http://doi.acm.org/10.1145/2559899.2560327
http://doi.acm.org/10.1145/2559899.2560327
http://www.necoma-project.jp/ja/blog/ool-sdn-hackathon14/CloudSDN_Hackathon_20140625_kazuya.pdf
http://www.necoma-project.jp/ja/blog/ool-sdn-hackathon14/CloudSDN_Hackathon_20140625_kazuya.pdf
http://www.necoma-project.jp/ja/blog/ool-sdn-hackathon14/CloudSDN_Hackathon_20140625_kazuya.pdf
http://doi.acm.org/10.1145/2491185.2491199
http://doi.acm.org/10.1145/2491185.2491199
http://wiki.openwrt.org/about/start
http://wiki.openwrt.org/about/start
http://doi.acm.org/10.1145/2619287.2619291
http://doi.acm.org/10.1145/2619287.2619291
http://tools.ietf.org/html/draft-ietf-sfc-problem-statement-09
http://tools.ietf.org/html/draft-ietf-sfc-problem-statement-09

[79] Robert, B.I.I. and Carman, D.Z.: System for regulating access to and
distributing content in a network, feb 2012. http://www.google.com/
patents/US8122128, US Patent 8,122,128.

[80] Sorensen, Sarah: Security implications of software-defined networks.
Whitepaper, SDNCentral, 2012. http://www.sdncentral.com/
download-sdn-security-whitepaper/.

[81] Yap, Kok Kiong, Kobayashi, Masayoshi, Sherwood, Rob, Huang, Te
Yuan, Chan, Michael, Handigol, Nikhil, and McKeown, Nick: Openroads:
Empowering research in mobile networks. SIGCOMM Comput. Commun.
Rev., 40(1), jan 2010, ISSN 0146-4833. http://doi.acm.org/10.1145/
1672308.1672331.

[82] Yap, Kok Kiong, Sherwood, Rob, Kobayashi, Masayoshi, Huang, Te
Yuan, Chan, Michael, Handigol, Nikhil, McKeown, Nick, and Parulkar,
Guru: Blueprint for introducing innovation into wireless mobile networks.
In Proceedings of the Second ACM SIGCOMM Workshop on Virtualized
Infrastructure Systems and Architectures, VISA ’10, New York, NY,
USA, 2010. ACM, ISBN 978-1-4503-0199-2. http://doi.acm.org/10.
1145/1851399.1851404.

[83] Yiakoumis, Yiannis: Pantou : Openflow 1.0 for openwrt,
2004. http://archive.openflow.org/wk/index.php/Pantou_:
_OpenFlow_1.0_for_OpenWRT, visited on 29-07-2014.

28

http://www.google.com/patents/US8122128
http://www.google.com/patents/US8122128
http://www.sdncentral.com/download-sdn-security-whitepaper/
http://www.sdncentral.com/download-sdn-security-whitepaper/
http://doi.acm.org/10.1145/1672308.1672331
http://doi.acm.org/10.1145/1672308.1672331
http://doi.acm.org/10.1145/1851399.1851404
http://doi.acm.org/10.1145/1851399.1851404
http://archive.openflow.org/wk/index.php/Pantou_:_OpenFlow_1.0_for_OpenWRT
http://archive.openflow.org/wk/index.php/Pantou_:_OpenFlow_1.0_for_OpenWRT

A Open Source Projects

29

Ta
bl
e
2:

C
on

tr
ol
le
rs

an
d
re
la
te
d

N
am

e
U
sa
g
e

D
ev
el
o
p
er
s
&

L
ic
en

se
L
in
k

N
o
te
s

B
ea
co
n

O
p
en
F
lo
w

co
nt
ro
ll
er

th
at

su
pp

or
ts

ev
en
t-
ba

se
d
an

d
th
re
ad

ed
op

er
at
io
n

O
p
en

So
ur
ce
,

D
av

id
E
ri
ck
so
n/

St
an

fo
rd

U
ni
ve
rs
it
y,

L
ic
en
se
:
B
SD

L
ic
en
se

ht
tp
s:
//
op

en
fl
ow

.s
ta
nf
or
d.
ed
u/

di
sp
la
y/

B
ea
co
n/

H
om

e

F
lo
od

li
gh

t
A
lt
er
na

ti
ve

O
p
en
F
lo
w

C
on

tr
ol
le
r

O
p
en

So
ur
ce
,

sp
on

so
re
d
by

B
ig

Sw
it
ch

ht
tp
:/
/w

w
w
.p
ro
je
ct
fl
oo

dl
ig
ht
.o
rg
/fl

oo
dl
ig
ht
/

F
lo
w
E
R

E
rl
an

g
O
p
en
F
lo
w

co
nt
ro
ll
er

&
de
ve
lo
pm

en
t
pl
at
fo
rm

O
p
en

So
ur
ce
,

T
ra
ve
lP
in
g,

L
ic
en
se
:
M
IT

ht
tp
s:
//
gi
th
ub

.c
om

/t
ra
ve
lp
in
g/

fl
ow

er

F
lo
w
Fo

rw
ar
d
W
ar
p

P
ar
se
s
an

d
en
co
de
s

O
F
m
es
sa
ge
s
&

ha
nd

le
s
co
nn

ec
ti
on

s
w
it
h
O
F
da

ta
pa

th
el
em

en
ts
.

O
p
en

So
ur
ce
,

In
fo
B
lo
x
In
c.
,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/fl

ow
fo
rw

ar
di
ng

.g
it
hu

b.
io
/w

ar
p/

F
lo
w
V
is
or

C
on

tr
ol
le
r
th
at

ac
ts

as
a
hy

p
er
vi
so
r/
pr
ox
y
b
et
w
ee
n

O
p
en
F
lo
w

sw
it
ch
es

O
p
en

So
ur
ce
,

O
n.
L
ab

ht
tp
:/
/o
nl
ab

.u
s/
fl
ow

vi
so
r.
ht
m
l

P
ar
t
of

O
N
.L
A
B
’s

O
p
en

SD
N

St
ac
k.

IR
IS

R
ec
ur
si
ve

SD
N

co
nt
ro
ll
er

O
p
en

So
ur
ce
,

E
T
R
I,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/o
p
en
ir
is
.e
tr
i.
re
.k
r/

K
ul
C
lo
ud

O
p
en

M
U
L

O
p
en
F
lo
w

co
nt
ro
ll
er

O
p
en

So
ur
ce
,

K
ul
C
lo
ud

,
L
ic
en
se
:
G
P
L
v2

ht
tp
:/
/s
ou

rc
ef
or
ge
.n
et
/p

ro
je
ct
s/
m
ul
/

li
bfl

ui
d

B
as
ic

li
br
ar
y
to

im
pl
em

en
t

a
co
nt
ro
ll
er

up
on

.

O
p
en

So
ur
ce
,

O
p
en

N
et
w
or
ki
ng

F
ou

nd
at
io
n/

C
P
qD

,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/o
p
en
ne
tw

or
ki
ng

fo
un

da
ti
on

.g
it
hu

b.
io
/l
ib
fl
ui
d/

M
ae
st
ro

C
on

tr
ol

pl
at
fo
rm

w
it
h

su
pp

or
t
fo
r
O
p
en
F
lo
w

sw
it
ch
es

O
p
en

So
ur
ce
,

Z
he
ng

C
ai
/R

ic
e
U
ni
ve
rs
it
y,

L
ic
en
se
:
G
N
U

L
es
se
r
G
P
L

ht
tp
s:
//
co
de
.g
oo

gl
e.
co
m
/p

/m
ae
st
ro
-p
la
tf
or
m
/

N
od

eF
lo
w

N
od

e.
js

ba
se
d

O
p
en
F
lo
w

co
nt
ro
ll
er

O
p
en

So
ur
ce
,

G
ar
y
B
er
ge
r/
(C

is
co
?)
,

L
ic
en
se
:M

IT
L
ic
en
se

ht
tp
:/
/g
ar
yb

er
ge
r.
ne
t/
?p

=
53
7

N
O
X

F
ir
st

O
p
en
F
lo
w

co
nt
ro
ll
er

O
p
en

So
ur
ce
,

N
ox

R
ep

o,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/w

w
w
.n
ox
re
p
o.
or
g/
no

x/
ab

ou
t-
no

x/

O
p
en
C
on

tr
ai
l

V
ir
tu
al

N
et
w
or
k
C
on

tr
ol
le
r,

in
cl
ud

es
an

al
yt
ic
s
en
gi
ne

to
ha

nd
le

B
ig

D
at
a.

O
p
en

So
ur
ce
,

Ju
ni
p
er
,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
s:
//
gi
th
ub

.c
om

/J
un

ip
er
/c
on

tr
ai
l-
bu

il
d

O
p
en
V
N
et

P
ro
vi
de
s
ne
tw

or
k
vi
rt
ua

li
za
ti
on

al
on

g
w
it
h
co
m
p
on

en
ts

su
ch

as
SD

N
co
nt
ro
ll
er
,
vi
rt
ua

ls
w
it
ch

an
d
vi
rt
ua

l
ro
ut
er
.

O
p
en

So
ur
ce
,

A
xs
h.
co
,
L
ic
en
se
:
L
G
P
L
3

ht
tp
:/
/o
p
en
vn

et
.c
om

/

P
O
X

G
en
er
al

SD
N

co
nt
ro
ll
er

O
p
en

So
ur
ce
,

N
ox

R
ep

o,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/w

w
w
.n
ox
re
p
o.
or
g/
p
ox

/a
b
ou

t-
p
ox
/

R
es
on

an
ce

E
ve
nt
-d
ri
ve
n
ne
tw

or
k
co
nt
ro
ll
er

O
p
en

So
ur
ce
,

G
eo
rg
ia

in
st
it
ut
e
of

te
ch
no

lo
gy

ht
tp
:/
/r
es
on

an
ce
.n
oi
se
.g
at
ec
h.
ed
u/

R
yu

SD
N

Fr
am

ew
or
k
w
ri
tt
en

in
P
yt
ho

n
O
p
en

So
ur
ce
,

L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/o
sr
g.
gi
th
ub

.i
o/
ry
u/

SN
A
C

O
p
en
F
lo
w

co
nt
ro
ll
er

O
p
en

So
ur
ce
,

SN
A
C

te
am

,
L
ic
en
se
:
G
P
L

ht
tp
:/
/w

w
w
.o
p
en
fl
ow

hu
b.
or
g/
di
sp
la
y/

Sn
ac
/S

N
A
C
+
H
om

e

T
re
m
a

O
p
en
F
lo
w

co
nt
ro
ll
er

fr
am

ew
or
k

O
p
en

So
ur
ce
,

N
E
C
,
L
ic
en
se
:
G
P
L
v2

ht
tp
s:
//
gi
th
ub

.c
om

/t
re
m
a/
tr
em

a

30

Ta
bl
e
3:

Sw
itc

he
s

N
am

e
U
sa
g
e

D
ev
el
o
p
er
s
&

L
ic
en

se
L
in
k

N
o
te
s

In
di
go

V
ir
tu
al

Sw
it
ch

A
vi
rt
ua

l
sw

it
ch

O
p
en

So
ur
ce
,

sp
on

so
re
d
by

B
ig

Sw
it
ch
.

L
ic
en
se
:
E
cl
ip
se

P
ub

li
c
L
ic
en
se

ve
rs
io
n
1

ht
tp
:/
/w

w
w
.p
ro
je
ct
fl
oo

dl
ig
ht
.o
rg
/i
nd

ig
o-
vi
rt
ua

l-
sw

it
ch
/

U
se
s
In
di
go

F
ra
m
ew

or
k
an

d
L
ox

iG
en

L
an

te
rn

So
ft
w
ar
e
bu

nd
le

fo
r

im
pl
em

en
ti
ng

O
p
en
F
lo
w

sw
it
ch
es
.

In
cl
ud

es
e.
g.

SD
K
,

m
od

ifi
ed

O
p
en
V
Sw

it
ch

an
d
m
or
e.

O
p
en

So
ur
ce
,

C
en
te
c,

L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
s:
//
gi
th
ub

.c
om

/C
en
te
cN

et
w
or
ks
/L

an
te
rn

L
IN

C
-s
w
it
ch

So
ft
w
ar
e
Sw

it
ch

O
p
en

So
ur
ce
,

F
lo
w
Fo

rw
ar
di
ng

.o
rg
,

L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
s:
//
gi
th
ub

.c
om

/F
lo
w
F
or
w
ar
di
ng

/L
IN

C
-S
w
it
ch

O
F
So

ft
sw

it
ch

O
F
pr
ot
oc
ol

1.
3
co
m
pa

ti
bl
e

so
ft
w
ar
e
sw

it
ch

O
p
en

So
ur
ce
,

C
P
qD

,
L
ic
en
se
:
B
SD

ht
tp
s:
//
gi
th
ub

.c
om

/C
P
qD

/o
fs
of
ts
w
it
ch
13

O
p
en

vS
w
it
ch

A
vi
rt
ua

l
sw

it
ch

O
p
en

So
ur
ce
,
V
M
w
ar
e,

L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/o
p
en
vs
w
it
ch
.o
rg
/d

ow
nl
oa
d/

O
p
en
V
N
et

P
ro
vi
de
s
ne
tw

or
k
vi
rt
ua

li
za
ti
on

al
on

g
w
it
h
co
m
p
on

en
ts

su
ch

as
SD

N
co
nt
ro
ll
er
,
vi
rt
ua

l
sw

it
ch

an
d
vi
rt
ua

l
ro
ut
er
.

O
p
en

So
ur
ce
,

A
xs
h.
co
,
L
ic
en
se
:
L
G
P
L
3

ht
tp
:/
/o
p
en
vn

et
.c
om

/

P
an

to
u

T
ur
ns

co
m
m
er
ci
al

w
ir
el
es
s

ro
ut
er
s/
A
cc
es
s
P
oi
nt
s
to

O
p
en
F
lo
w
-e
na

bl
ed

sw
it
ch
es

Y
ia
nn

is
Y
ia
ko
um

is
ht
tp
:/
/a
rc
hi
ve
.o
p
en
fl
ow

.o
rg
/w

k/
in
de
x.
ph

p/
P
an

to
u_

:_
O
p
en
F
lo
w
_
1.
0_

fo
r_

O
p
en
W
R
T
#
C
on

ta
ct

P
O
F
Sw

it
ch

So
ft
w
ar
e
Sw

it
ch

fo
r
P
O
F

O
p
en

So
ur
ce
,

H
ua

w
ei
,
L
ic
en
se
:
B
SD

ht
tp
:/
/w

w
w
.p
of
or
w
ar
di
ng

.o
rg
/

Sn
ab

b
Sw

it
ch

V
ir
tu
al
iz
ed

E
th
er
ne
t

ne
tw

or
ki
ng

st
ac
k

O
p
en

So
ur
ce
,
Sn

ab
b.
co
,

L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
s:
//
gi
th
ub

.c
om

/S
na

bb
C
o/
sn
ab

bs
w
it
ch

31

Ta
bl
e
4:

Te
st
in
g
&

Si
m
ul
at
in
g

N
am

e
U
sa
g
e

D
ev
el
o
p
er
s
&

L
ic
en

se
L
in
k

N
o
te
s

H
yp

er
G
la
nc
e

N
et
w
or
k
m
od

el
in
g
an

d
vi
su
al
iz
at
io
n
to
ol
.

Su
pp

or
ts

O
D
L
,
O
p
en
St
ac
k

an
d
A
m
az
on
W
eb

Se
rv
ic
es
.

R
ea
l
St
at
us
,

F
re
e
b
et
a
si
gn

-u
p

ht
tp
:/
/r
ea
l-
st
at
us
.c
om

/p
ro
du

ct
/s
dn

M
in
in
et

U
se
d
fo
r
cr
ea
ti
ng

vi
rt
ua

l
ne
tw

or
ks
.
U
se
fu
l
fo
r

cr
ea
ti
ng

SD
N

te
st
b
ed
s.

O
p
en

So
ur
ce
,
O
n.
L
ab

,
L
ic
en
se
:
B
SD

O
p
en

So
ur
ce

ht
tp
:/
/m

in
in
et
.o
rg
/

P
ar
t
of

O
N
.L
A
B
’s

O
p
en

SD
N

St
ac
k.

N
IC

E
F
or

te
st
in
g

co
nt
ro
ll
er

ap
pl
ic
at
io
ns

O
p
en

So
ur
ce
,

N
IC

E
,
L
ic
en
se
:
B
SD

ht
tp
s:
//
co
de
.g
oo

gl
e.
co
m
/p

/n
ic
e-
of
/

ns
-3

di
sc
re
te
-e
ve
nt

ne
tw

or
k
si
m
ul
at
or

O
p
en

So
ur
ce
,

L
ic
en
se
:
L
G
P
lv
2

ht
tp
:/
/w

w
w
.n
sn
am

.o
rg
/

H
as

O
p
en
F
lo
w

su
pp

or
t

O
F
L
O
P
S

B
en
ch
m
ar
ki
ng

O
F
sw

it
ch
es

O
p
en

So
ur
ce
,

R
ob

Sh
er
w
oo

d
ht
tp
:/
/a
rc
hi
ve
.o
p
en
fl
ow

.o
rg
/w

k/
in
de
x.
ph

p/
O
fl
op

s

O
F
T
es
t

T
es
ti
ng

fr
am

ew
or
k

an
d
su
it
e
fo
r
O
F

co
m
pl
ia
nc
e
te
st
in
g.

O
p
en

So
ur
ce
,

sp
on

so
re
d
by

B
ig

Sw
it
ch
.

L
ic
en
se
:
O
p
en

F
lo
w

So
ft
w
ar
e
L
ic
en
se

ht
tp
:/
/w

w
w
.p
ro
je
ct
fl
oo

dl
ig
ht
.o
rg
/o
ft
es
t/

P
er
fS
on

ar
F
or

m
on

it
or
in
g
ne
tw

or
k
p
er
fo
rm

an
ce

O
p
en

So
ur
ce
,
E
sN

et
ht
tp
:/
/f
as
te
rd
at
a.
es
.n
et
/p

er
fo
rm

an
ce
-t
es
ti
ng

/p
er
fs
on

ar
/

ST
S

T
ro
ub

le
sh
oo

ti
ng

Si
m
ul
at
or

O
p
en

So
ur
ce
,

ST
S
te
am

,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/u

cb
-s
ts
.g
it
hu

b.
io
/s
ts
/

D
ep

en
ds

on
P
O
X

T
es
tO

n
F
or

au
to
m
at
in
g

O
p
en
F
lo
w
/S

D
N

co
m
p
on

en
ts

O
p
en

So
ur
ce
,
P
ax

te
rr
a

ht
tp
s:
//
gi
th
ub

.c
om

/P
ax

te
rr
a/
T
es
tO

N

32

Ta
bl
e
5:

O
th
er

pr
oj
ec
ts

N
am

e
U
sa
g
e

D
ev
el
o
p
er
s
&

L
ic
en

se
L
in
k

N
o
te
s

en
et
co
nf

N
et
C
on

f
li
br
ar
y

in
E
rl
an

g
O
p
en

So
ur
ce
,

F
lo
w
Fo

rw
ar
di
ng

.o
rg
,L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
s:
//
gi
th
ub

.c
om

/F
lo
w
F
or
w
ar
di
ng

/e
ne
tc
on

f
F
lo
w
sc
al
e

T
ra
ffi
c
b
al
an

ci
n
g

O
p
en

so
ur
ce
,
IN

C
nt
re

ht
tp
s:
//
gi
th
ub

.c
om

/I
nC

N
T
R
E
/F

lo
w
Sc
al
e

F
re
ne
ti
c/
P
yr
et
ic

D
SL

s
fo
r
SD

N
de
ve
lo
pm

en
t.

In
cl
ud

es
a
ru
nt
im

e
sy
st
em

O
p
en

So
ur
ce
,
P
ri
nc
et
on

U
ni
ve
rs
it
y,

L
ic
en
se
:
G
N
U

G
en
er
al

P
ub

li
c

L
ic
en
se

ve
rs
io
n
3

ht
tp
:/
/w

w
w
.f
re
ne
ti
c-
la
ng

.o
rg
/

In
di
go

H
A
L
an

d
co
nfi

gu
ra
ti
on

ab
st
ra
ct
io
n
fo
r
ru
nn

in
g

O
p
en
F
lo
w

in
hy

br
id

m
od

e.

O
p
en

So
ur
ce
,
sp
on

so
re
d
by

B
ig

Sw
it
ch
.
L
ic
en
se
:
E
cl
ip
se

P
ub

li
c

L
ic
en
se

ve
rs
io
n
1

ht
tp
:/
/w

w
w
.p
ro
je
ct
fl
oo

dl
ig
ht
.o
rg
/i
nd

ig
o/

U
se
s
L
ox
iG

en

M
ir
ag
eO

S
U
ni
ke
rn
el

fo
r
ne
tw

or
k

ap
pl
ic
at
io
n
de
ve
lo
pm

en
t

O
p
en

So
ur
ce
,

M
ir
ag
e
te
am

,
L
ic
en
se

L
G
P
lv
2

ht
tp
:/
/w

w
w
.o
p
en
m
ir
ag
e.
or
g/

Su
pp

or
ts

O
p
en
F
lo
w

N
et
tl
e

D
SL

w
ri
tt
en

in
H
as
ke
ll

fo
r
co
nt
ro
ll
in
g
O
F
sw

it
ch
es

O
p
en

So
ur
ce
,

Y
al
e
U
ni
ve
rs
it
y,

L
ic
en
se
:
B
SD

3
ht
tp
:/
/h

ac
ka

ge
.h
as
ke
ll
.o
rg
/p

ac
ka

ge
/n

et
tl
e-
op

en
fl
ow

-0
.2
.0

nw
E
P
C

-
E
P
C

SA
E

G
at
ew

ay
E
P
C

SA
E

G
at
ew

ay
O
p
en

So
ur
ce
,

T
ho

m
as

B
ha

ti
a
L
ic
en
se
:
B
SD

ht
tp
s:
//
gi
th
ub

.c
om

/
th
om

as
bh

at
ia
/n

w
E
P
C
—
E
P
C
-S
A
E
-G

at
ew

ay

O
E
SS

C
on

tr
ol
li
ng

V
L
A
N

w
it
h
O
F
en
ab

le
d
sw

it
ch
es

O
p
en

So
ur
ce
,
N
D
D
I,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
s:
//
co
de
.g
oo

gl
e.
co
m
/p

/n
dd

i/
w
ik
i/
R
E
A
D
M
E

of
_
pr
ot
oc
ol

O
p
en
F
lo
w

P
ro
to
co
l

L
ib
ra
ry

in
E
rl
an

g
O
p
en

So
ur
ce
,

F
lo
w
Fo

rw
ar
di
ng

.o
rg
,L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
s:
//
gi
th
ub

.c
om

/F
lo
w
F
or
w
ar
di
ng

/o
f_

pr
ot
oc
ol

O
fl
ib
-N

od
e

O
F
pr
ot
oc
ol

li
br
ar
y
fo
r

co
nv

er
ti
ng

O
F
w
ir
ep
ro
to
co
l
m
es
sa
ge
s

an
d
Ja
va
sc
ri
pt

O
p
en

So
ur
ce
,

E
ri
cs
so
n,

L
ic
en
se
:
C
us
to
m

ht
tp
s:
//
gi
th
ub

.c
om

/T
ra
ffi
cL

ab
/o
fl
ib
-n
od

e

O
N
O
S

N
et
w
or
k
O
S.

N
O
T

Y
E
T

R
E
L
E
A
SE

D
O
p
en

So
ur
ce
,
O
n.
L
ab

ht
tp
:/
/o
nl
ab

.u
s/
to
ol
s.
ht
m
l#

os
P
ar
t
of

O
N
.L
A
B
’s

O
p
en

SD
N

St
ac
k.

O
p
en

D
ay

li
gh

t
F
ul
l
SD

N
st
ac
k.

O
p
en

So
ur
ce
,
L
in
ux

F
ou

nd
at
io
n

C
ol
la
b
or
at
iv
e
P
ro
je
ct
s,

L
ic
en
se
:
E
cl
ip
se

P
ub

li
c
L
ic
en
se

ht
tp
:/
/w

w
w
.o
p
en
da

yl
ig
ht
.o
rg
/

O
p
en

So
ur
ce

IM
S
C
or
e

IM
S
-
pr
ov

id
es

C
SC

Fs
an

d
H
SS

O
p
en

So
ur
ce
,
F
ra
un

ho
fe
r
F
O
K
U
S

ht
tp
:/
/w

w
w
.o
p
en
im

sc
or
e.
or
g/

O
p
en
E
P
C

F
ul
l
ev
ol
ve
d
pa

ck
et

co
re

F
ra
un

ho
fe
r
F
O
K
U
S,

us
es

op
en

so
ur
ce
c
om

p
on

en
ts
.

L
ic
en
si
ng

pl
an

s
av
ai
la
bl
e
to

cu
st
om

er
s.

ht
tp
:/
/w

w
w
.o
p
en
ep

c.
ne
t/

O
p
en
F
au

ce
t

P
yt
ho

n
im

pl
em

en
ta
ti
on

of
O
p
en
F
lo
w

1.
0.
0
pr
ot
oc
ol

O
p
en

So
ur
ce
,
M
id
ok

ur
a,

L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
s:
//
gi
th
ub

.c
om

/r
le
ng

le
t/
op

en
fa
uc
et

O
p
en
F
lo
w
Se
c
ut
il
it
ie
s

SR
I
in
te
rn
at
io
na

l
pr
ov

id
es

a
pl
et
ho

ra
of

se
cu
ri
ty

pl
ug

in
s

an
d
ex
te
ns
io
ns
.

O
p
en

So
ur
ce
,
SR

I
In
te
rn
at
io
na

l
ht
tp
:/
/w

w
w
.o
p
en
fl
ow

se
c.
or
g/

O
p
en
V
ir
te
x
(O

V
X
)

N
et
w
or
k
hy

p
er
vi
so
r
fo
r
vi
rt
ua

l
ne
tw

or
ks

O
p
en

So
ur
ce
,
O
n.
L
ab

,
L
ic
en
se
:
A
pa

ch
e
2.
0

ht
tp
:/
/o
vx

.o
nl
ab

.u
s/

R
ou

te
F
lo
w

V
ir
tu
al

IP
R
ou

ti
ng

O
p
en

So
ur
ce
,
C
P
qD

ht
tp
:/
/r
ou

te
fl
ow

.g
it
hu

b.
io
/R

ou
te
F
lo
w
/

U
se
s
m
an

y
ot
he
r
co
m
p
on

en
ts
:

P
O
X
,
O
p
en
F
lo
w
,

O
p
en

vS
w
it
ch
,
Q
ua

gg
a,

M
on

go
D
B
,
jQ

ue
ry

an
d
JI
T
.

T
he

B
IR

D
In
te
rn
et

ro
ut
in
g
da

em
on

O
p
en

So
ur
ce
,

C
Z
.N

IC
L
ab

s,
L
ic
en
se
:
G
P
L

ht
tp
:/
/b

ir
d.
ne
tw

or
k.
cz
/

W
ak

am
e-
vd

c
U
se
d
fo
r
da

ta
ce
nt
er

vi
rt
ua

li
za
ti
on

.
O
p
en

So
ur
ce
,
A
xs
h.
co
,

L
ic
en
se
:
L
G
P
L
3.
0
an

d
A
pa

ch
e
2.
0

ht
tp
s:
//
gi
th
ub

.c
om

/a
xs
h/

w
ak

am
e-
vd

c

33

	Introduction
	Open Source SDN Components
	Controllers
	Switches
	Testing and Simulating
	Other SDN projects
	Future developments
	Ongoing EU Projects
	FELIX
	SPARC
	OFELIA
	ALIEN
	OFERTIE
	FIRE

	SDN-based Service Chaining for Mobile Networks
	Pantou and OpenWRT
	Network Service Chaining
	YANG Model and its usage in OpenDaylight
	LISP and its usage in OpenDaylight
	OpenEPC and nwEPC

	Discussions
	Security concerns
	Service Chaining Obstacles

	References
	Open Source Projects

