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ABSTRACT 

The main objectives of this study were to synthesize semifluorinated 

polymers and to study their solution and surface properties. 

 

Semifluorinated copolymers were synthesized either by free radical solution 

polymerization or by using atom transfer radical polymerization, ATRP. Free 

radical solution polymerizations of eicosanol methacrylate, (EIMA), and 

perfluorooctyl methacrylate, (FMA) resulted in semifluorinated copolymers 

with various fluorine contents. Copolymerization reactivity ratios of the 

monomers were estimated by using Fineman-Ross (F-R) and Kelen-Tüdős 

(K-T) methods. It was found that the polymers had a random comonomer 

distribution with some tendency to alternate.  

 

Further, ATRP reactions were used to build up diblock copolymers. First 

EIMA or styrene, (S), were polymerized and used as macroinitiators to 

polymerize different fluorine containing monomers, FMA, 2,3,5,6-

tetrafluoro-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluorodecaoxy)styrene, (FSF), perfluorooctyl-ethylene oxymethyl 

styrene, (EMS), pentafluorostyrene, (FS).  

 

Both block and random copolymers bearing CF3  showed high surface activity 

in toluene and had critical micellization concentration (CMC) below 0.5 wt%. 

Above the CMC aggregates with sizes ranging from 10 nm to 100 nm were 

observed by dynamic, (DLS), and static light scattering, (SLS). Combined LS 

and TEM studies showed that due to the rigidity of fluorinated blocks the 

aggregates were ellipsoidal when dispersed without heating but shrunk to 

spherical aggregates upon heating.   

 

Fluorinated surfaces and particles of the block copolymers were made by 

solvent casting, electrospinning or breath figure templating (BF).  All 

produced surfaces were hydrophobic (contact angle of water, CAw a ter  >100°). 

When the surface roughness was increased e.g. by  electrospinning or breath 

figure templating, it was possible to turn some surfaces superhydrophobic 

(CAw a ter  >150°) and their lipophobic properties were enhanced. Such films 

with enhanced hydro- or oleophobic characteristics may find application for 

example as dirt repelling surfaces or bringing anticorrosive properties to 

coatings. 

 

One of the studied block copolymers, polystyrene-block-

polypentafluorostyrene (PS-b-PFS) was modified with glucose or carboxylic 

acid moieties via thiol click reaction. These polymers were then prepared as 

porous BF films or made to nanoparticles with varying sizes (diameter 100 to 
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360 nm) utilising solvent exchange or aerosol technique. The introduction of 

glucose or carboxylic acid functionalities rendered the porous surfaces made 

of these polymers hydrophilic while the films with PS-b-PFS were 

hydrophobic. It was shown that the sugar residues in the pores of BF films or 

on the nanoparticles are capable of binding fluorescent markers, lectin ConA-

FITC and rhodamine B isothiocyanate (RITC) either via biorecognition or 

chemical reactions enabling the use of these materials for example in 

diagnostics applications.  
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ABBREVIATIONS AND SYMBOLS 

Fa , Fb Molar fractions of a and b in the copolymer. 

fa , fb Initial molar fractions of a and b in the feed 

ka ct  Rate constant of activation 

kdea ct  Rate constant of deactivation 
kp Rate constant of propagation 

kt  Rate constant of termination 
Ma * and Mb*Propagating species 

Mn  Number average molecular weight 

Mw  Weight average molecular weight 

Na g g  Aggregation number 

ra , rb Reactivity ratios 

Rg  Radius of gyration 

Rh  Hydrodynamic radius 

 

AFM Atomic force microscopy 

AIBN Azobisisobutyronitrile 

ATRP Atom transfer radical polymerization 

BF Breath figure 

CA Contact angle 

CMC Critical micelle concentration 

ConA-FITC lectin-fluorescein isothiocyanate conjugate from Canavalia 

ensiformis  

DHFOMA 1H,1H-perfluorooctyl methacrylate 

DLS Dynamic light scattering 

DMF Dimethylformamide 

EGMAFO ethylene glycol mono-methacrylate mono-perfluorooctanoate 

EIMA Eicosanol methacrylate 

EMS Perfluorooctyl-ethylene oxymethyl styrene 

FDA 1,1,2,2-tetrahydroperfluorodecyl acrylate 

FHMA 1,1-dihydroperfluoroheptyl methacrylate 

FNEMA 2-[(perfluorononenyl)oxy]ethyl methacrylate 

F-R Fineman-Ross method 

FMA Perfluorooctyl ethyl methacrylate 

FRET Fluoresence energy transfer 

FS Pentafluorostyrene 

FSF 2,3,5,6-tetrafluoro-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluorodecaoxy)styrene 

FT-IR Fourier transform infrared spectroscopy 

HEMA Hydroxyethyl methacrylate 

K-T Kelen-Tüdős method 

GTP Group transfer polymerization 
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MMA Methyl methacrylate 

NaMA Sodium methacrylate 

NFHMA Nonafluorohexyl methacrylate 

NMR Nuclear magnetic resonance spectroscopy 

PDI Polydispersity index 

PFOMA Poly(1,1,2,2-tetrahydroperfluorooctylethyl methacrylate) 

PMAGlc poly(3-O-methacryloy-α,β-D-glucopyranose 

PMDETA N,N,N′,N′′,N′′-pentamethyldiethylenetriamine 

PMMA Poly(methyl methacrylate) 

PEO Poly(ethyleneoxide) 

PS Polystyrene 

PS-b-PFS Polystyrene block polypentafluorostyrene 

RAFT Reversible addition fragmentation chain transfer polymerization 

RITC Rhodamine B isothiocyanate 

SANS Small-angle neutron scattering 

SEC Size exclusion chromatography 

SEM  Scanning electron microscopy 

SH-GlcAc4 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose 

SLS Static light scattering 

S Styrene 

TFEMA 2,2,2-trifluoroethylene methacrylate 

THFOMA 1H,1H,2H,2H-perfluorooctyl methacrylate 

TEM Transmission electron microscopy 

THF Tetrahydrofuran 

UV-vis Ultraviolet-visible spectroscopy 

XPS X-ray photoelectron spectroscopy



1 INTRODUCTION 

Chemistry of fluorous compounds started to develop in 1930’s when the first 

drops of a liquid perfluoroalkane were produced in synthesis.  The unique 

properties of fluorinated compounds, such as their high density and high 

surface activity were soon discovered.1 The term perfluorinated indicates that 

all hydrogen atoms are replaced by fluorine atoms in the molecule while in 

semifluorinated compounds there are still hydrogen atoms present.  

 

Polymers composed of flexible backbones having semi- or even 

perfluorinated alkyl side chains have unique and interesting characteristics, 

which originate from the nature of the C-F bonds as well as the fluorine 

atoms.2-5 Fluoroalkyl groups are generally insoluble in water and most 

organic solvents.  One possible way to increase the solubility of these 

materials is copolymerization of fluorine containing monomers together with 

nonfluorinated ones. This approach has resulted in a number of different 

copolymers, where fluorinated chain ends or random or block distribution of 

the fluorinated monomers in the polymer chains gives rise to new properties, 

such as amphiphilicity and tendency for microphase separation. The 

development of living/controlled polymerization techniques has allowed 

straightforward synthesis of various block copolymers with fluorinated 

segments. Especially atom transfer radical polymerization (ATRP) has been 

successfully used to synthesize various fluorinated (meth)acrylic and styrenic 

block copolymers with low dispersities and tailored molecular architectures 

including star-like or hyperbranched topologies.3 On the other hand, a class 

of fluorinated polymers contain aromatic fluorinated rings, such as 

pentafluorobenzene (FS),6 instead of a fluorinated alkyl chain. These 

polymers share the common properties brought by the C-F bonds and 

fluorine atoms. However, as FS does not contain the most surface active CF3  

groups, polymers based on for example pentafluorostyrene tend to be more 

soluble in organic solvents. The aromatic groups may also be functionalized 

with fluorinated alkyls, resulting in highly fluorinated monomers.7-9 Similarly 

as the fluoroalkyl polymers, the block copolymers based on fluorinated 

polystyrenes tend to microphase separate due to the incompatibility of the 

blocks.  

 

In general, semifluorinated polymers may have amphiphilic nature and can 

be used as surfactants. The term amphiphilic implies attraction to two 

different kinds of media. The surfactant structure can be described as 

consisting of two parts with vastly different solution characteristics: ”a 

solvent-soluble” lyophilic part and ”a solvent-insoluble” lyophobic part. 

Conventional surfactants consist of a water-soluble hydrophilic part and a 
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water-insoluble hydrophobic part, which is lipophilic, compatible with fats 

and hydrocarbons.  

 

In semifluorinated polymers the lyophobic part of the molecule contains 

fluorine and the hydrocarbon part is lyophilic. Fluorinated surfactants having 

water soluble parts can decrease the surface tension of water below the lower 

limit reached by purely hydrocarbon-type surfactants. In addition the 

fluorinated hydrophobes are more resistant to chemical attack. Therefore 

fluorinated surfactants are commonly used in media where conventional 

surfactants are not applicable. Partially fluorinated non-ionic hydrocarbons 

may be used as surfactants in non-aqueous media due to their amphiphilic 

nature. In concentration regimes where aggregates (micelles, reverse 

micelles or vesicles) are formed, a phase separated dispersion is obtained. 

The absence of water in these systems gives an advantage as reaction media 

for moisture sensitive reactions. The application of semifluorinated 

surfactants in the emulsification of reaction mixtures for example in liquid or 

supercritical carbon dioxide1 0  or other organic or fluorinated solvents,1 1 -1 3  

and stabilisation of oil-in-oil1 4  emulsions has been reported. The properties 

of these macromolecules make them possible substances to be used as gelling 

or foaming agents for various organic solvents.15-19 Semifluorinated materials 

exhibit many desirable physical properties, such as high surface activity, 

enhanced chemical resistance and high thermal stability 5  and can be used in 

a variety of applications, e.g. as low dielectric constant polymers in electronic 

industry,20 polymeric optical waveguides,21,22 friction modifiers in lubrication 

oil,23 surface modifiers24 and in membranes.25 

 

Although fluorinated compounds are often chemically inert, the aromatic 

pentafluorostyrene can be used for variety of reactions. One of such 

reactions, called thiol-para fluorine click reaction, is interesting due to its 

efficiency under mild reaction conditions.26-30 It is especially convenient as a 

post-modification reaction, as the synthesis of well-defined 

poly(pentafluorostyrene) copolymers is easily accomplished with many 

schemes6,31-38 and the reaction can be easily monitored e.g. via 1 9 F NMR.26,39 

Also, a large number of thiol reagents that can be used in the 

functionalization of pentafluorostyrene units are commercially available. 

Utilizing thiol-para fluorine click chemistry it is possible to produce for 

example glycopolymers bearing sugar functionalities with well-defined 

structures to be used in different kinds of applications such as sensing or 

separation materials.   
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1.1 SYNTHESIS OF SEMIFLUORINATED POLYMERS 

 

A variety of semifluorinated polymer structures are found in the literature, 

from homopolymers to block, random, graft and starlike polymers. 

Semifluorinated polymers can be prepared with copolymerization of 

fluorinated and non-fluorinated monomers for example via conventional free 

radical polymerization,40-45 atom transfer radical polymerization 

(ATRP),6,37,46-60 reversible addition−fragmentation chain-transfer 

polymerization (RAFT),61-63 nitroxide mediated polymerization 

(NMP),8,9,64,65 living cationic,66-72 living anionic3,73,74 and group transfer 

polymerization (GTP).7 5  Various styrenic6,37,59,76-79 as well as acrylate8,48,61 

and methacrylate46,47,49,50,53,55,62,74,80 based fluorinated monomers can be 

polymerized via these mentioned methods.40-43,81-85 While controlled 

polymerization techniques may lead to block copolymers, for traditional free 

radical copolymerizations it has been found that in most cases random 

polymers with somewhat alternating structures are obtained.40-43  Scheme 1 

presents chemical structures of two commonly used fluorinated monomers 

pentafluorostyrene and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluorodecyl acrylate. 

 

F

F
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F  
Scheme 1. Chemical structure of pentafluorostyrene and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
heptadecafluorodecyl acrylate. 
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1.1.1 REACTIVITY RATIOS IN FREE RADICAL 

COPOLYMERIZATION 

Copolymer properties depend largely on their structure, i.e. the molar ratios 

of the repeating units and their sequence distribution. Different monomers 

may have different reactivities in the polymerization process, sometimes 

ruling out copolymerization of certain monomers, leading to alternating or 

random structures or even block copolymers. Therefore the structure of the 

produced copolymer may differ drastically from the monomer feed of 

polymerization. In order to estimate the structure of copolymers the 

determination of the reactivity ratios of monomers (ra  and rb) is a viable 

method. Since, copolymers consists of at least two different repeating units, 

they can be classified according how these repeating units are arranged in 

polymer chain. The parameters ra  and rb are defined as the ratio of the rate 

constant for the propagating species when adding the own type monomer to 

the rate of the adding other type monomer. In ideal copolymerization rarb = 1. 

This means that two types of propagating species Ma * and Mb* show equal 

tendency for adding monomer 1 or monomer 2. 

 

In alternating copolymerization ra  = rb =0 two monomers polymerize in 

equimolar amounts with alternating arrangement.  

 

If the reactivity ratios of two monomers are ra  > 1 and rb > 1, there is 

tendency to form block copolymers.  

 
Reactivity ratios are determined by following the reaction rates of monomer 
species. This can be done for example by the use of  high resonance 1H NMR 
technique.81,86 Usually data from low conversions are used to minimize the 
errors. Other methods to characterize reactivity ratios include elemental 
analysis8 7  and other spectroscopy methods like UV-vis88 or IR.89

 

 

One way to do the reactivity ratio analysis is to use methods developed by 

Fineman and Ross (F-R)90 and Kelen and Tüdős et al. (K-T).91  

 

The Fineman-Ross equation (F-R) gives an estimation of the reactivity ratios 

ra  and rb according to 

 

G = raH-rb      (1) 

 

Where G=x(X-1) and H=x2 /X. x=fa/fb where fa , fb are the initial molar 

fractions of A and B in the feed. X=Fa/Fb where Fa, Fb are molar fractions of A 

and B in the copolymer.  Each copolymerization gives one point (G,H) and a 

straight line is expected to pass through these points. The slope of this line 

gives ra  and the ordinate intercept is rb. 
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The Kelen- Tüdős equation (K-T):  

 

η = (ra + α)ξ – rb/α     (2) 

 

Where, η = G/(α + H), ξ = H/( α + H), α = (Hm a x*Hm in). The slope of this line 

gives ra  + α and the ordinate intercept gives – rb/α. Successful determination 

of monomer reactivity ratios gives tools for the estimation of molecular 

composition of formed copolymer.  

1.1.2 ATOM TRANSFER RADICAL POLYMERIZATION OF 

FLUORINATED MONOMERS  

ATRP is a controlled radical polymerization method. It was reported 

separately in 1995 by Sawamoto’s group92 and by Wang and Matyjaszewski.93 

The most important step in ATRP mechanism is the reversible cleavage of 

the carbon-halide bond in the dormant species via a redox process. This 

process is catalysed by a transition metal complex,  see Scheme 2. 

 

 
Scheme 2. Mechanism of ATRP.93 

 

The transition metals that usually are used are ruthenium, iron or copper. 

Initiation system in ATRP consists of transition metal/ligand complex and 

initiator. Initiators typically are alkyl halides as shown in Scheme 3.  

 

   
Scheme 3. Typical ATRP initiators. 

 

ATRP is one of the most used controlled polymerization techniques. The 

reason for its popularity is the experimental simplicity and the availability of 

initiators and catalysts. DeSimone and co-workers reported several examples 

of the polymerization of 1H,1H-perfluorooctyl methacrylate (FOMA) by 

ATRP using different kinds of macroinitators made also by ATRP.46  ATRP of 

fluorinated monomers has also been used in supercritical CO2 ,47 a solvent in 

which fluorinated monomers and polymers are soluble. Haddleton and his 
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group have studied ATRP of 2,2,2-trifluoroethylene methacrylate (TFEMA) 

and perfluorooctylethyl methacrylate (FMA). These homopolymers were also 

used as macroinitiators for methacrylates.49,50 Poly(1,1,2,2-

tetrahydroperfluorooctyl methacrylate) (PFOMA) was prepared by Yang et 

al. with ATRP.51 Shemper et al. used ATRP to polymerize perfluorooctylethyl 

methacrylate (FMA) homopolymers and copolymers together with 

poly(propylene glycol) methacrylate.52 Lim et al. used PEO macroinitiators to 

polymerize 1H,1H-perfluorooctyl methacrylate (DHFOMA), and 

1H,1H,2H,2H-perfluorooctyl methacrylate (THFOMA) to be used as 

surfactants in supercritical carbon dioxide-water emulsions.53 Hussain et al. 

prepared di- and triblock copolymers via ATRP by using PEO macroinitiators 

and perfluorohexylethyl methacrylate as fluorinated monomer.54,55 Zhang et 

al. prepared di- and triblock copolymers via ATRP using 2-

[(perfluorononenyl)oxy]ethyl methacrylate (FNEMA) and ethylene glycol 

mono-methacrylate mono-perfluorooctanoate (EGMAFO) as fluorinated 

monomers.56,57 These block copolymers showed great potential to be used as 

surfactants, water- and oil-repellent agents. 

  

Radhakrishnan et al. synthesized surfactants for supercritical CO2  

applications and they used different kinds of styrene based monomers, which 

were further polymerized via ATRP.58 Jankova and Hvilsted polymerized 

styrene and pentafluorostyrene di-, tri-, and pentablock copolymers via 

ATRP.37,59 Hvilsted et al. also synthesized pentafluorostyrene based 

monomer by adding fluorinated alkyl chain in the para position of 

pentafluorostyrene. Monomer was further polymerized via ATRP to produce 

materials with low surface energy.6 Fu et al. used ATRP to polymerize 

pentafluorostyrene homopolymers and diblockcopolymer with tert-butyl 

acrylate.60 Tert-butyl acrylate was further hydrolyzed to polyacrylic acid to 

yield amphiphilic block copolymer. Ma and Lacroix-Desmazes synthesized 

block copolymer consisting PEO block and  1,1,2,2-tetrahydroperfluorodecyl 

acrylate (FDA) block to be used as surfactants in supercritical and liquid 

CO2 -water emulsions.61 
 

 

1.2 SOLUTION PROPERTIES OF FLUORINATED 
POLYMERS 

Usually fluorinated homopolymers are poorly soluble in common organic 

solvents. Solubility can, however, be increased by copolymerization of 

fluorinated monomers together with an organo-soluble monomer. The 

fluorinated macromolecules have some advantageous properties. In 

particular, they possess higher surface activity compared with ordinary non-

fluorinated polymers at water-air, water-oil or oil-air interfaces. The 
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investigation of these systems is therefore important for the study and 

development of oil-in-oil dispersions for example as medium for catalysis. 

 

Surface tension of organic solvents is generally decreased by semifluorinated 

copolymers. The efficiency of the surface tension reduction is generally 

increased by the length of  the fluoroalkyl chain.94 Morita et al.11 studied the 

effect of varying concentrations of the fluorinated surfactants on interfacial 

surface tension of toluene and perfluoropolyether emulsions and found out 

that there was no direct correlation between the depression of surface 

tension and emulsion stabilities. Various molecular assemblies, such as 

monolayers, bilayers, regular and reversed micelles or vesicles can be formed 

due to self-organization of semifluorinated block copolymers in organic, 

aqueous and fluorocarbon or even in solvent mixtures. 14,15,37,45,53,54,80,82,85,95-

104 Light scattering studies have shown that low molar mass semifluorinated 

block copolymers form micelles/aggregates of size of a few nm in 

perfluorooctane,96 perfluortributylamine,95 perfluorooctane/isooctane 

mixtures18 and dodecane.15 When the chain length is increased, 

semifluorinated block copolymers form larger aggregates or micelles in the 

size range of tens to hundreds in nm addition to unimers in 

chloroform,53,80,97 acetonitrile,97 or supercritical CO2 .98 Side chain fluorinated 

alkyl chains may pack with each other which increases the stiffness of the 

polymer backbone and may lead to non-spherical structures.53,80,99 For 

random copolymers well defined aggregation of micelles is usually not 

expected. However, due to the fact that fluorinated units are strongly 

incompatible with the hydrocarbon parts and the solvent, the polymers tend 

to aggregate. 

 

1.3 FLUORINATED SURFACES 

Fluorocarbon materials possess low surface energy. This property combined 

with possible surface structuring makes it possible to achieve very oleophobic 

or hydrophobic surfaces. One application that has raised interest for 

fluorocarbon materials are thus hydrophobic surface coatings.105,106 Partially 

due to the specific properties of fluorocarbon materials these surfaces display 

repelling properties and could be utilised as coatings with anti-fouling or 

self-cleaning activity.107 Fluorinated surfaces have also application in 

medicine, in systems where protein repellency is needed. Jie Gao et al. 

studied fluorinated films, for which fluorinated FMA end-capped poly n-alkyl 

methacrylate polymers were synthesized via ATRP method.108 Van de 

Grampel et al.83 studied surface energy of coatings by copolymerization of 

commonly used monomers such as methyl methacrylate with fluorine-

containing monomers. The surface energy (mNm-1 ) of copolymers of 1,1-

dihydroperfluoroheptyl methacrylate (FHMA) and methyl methacrylate 
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(MMA) decreases sharply with increasing FHMA content, resulting in a 

reduction of the surface energy by a factor about 2 at an incorporation of 15 

mol% of FHMA. Same trends were observed for copolymers using styrene 

and fluoroalkyl-modified styrene.109 

 

1.3.1 SURFACE WETTING 

Lipophobic and hydrophobic surfaces have found application in a variety of 

settings, including self-cleaning surfaces, prevention of snow sticking, 

oxidation and heat conduction processes, among others.110-112 

Superhydrophobic surfaces are defined as having contact angle of water 

above 150o. In nature superhydrophobic behavior is found for example in 

plant leaves,113  thus often described as the lotus leaf effect, where the 

topography of the surface together with chemical properties gives rise to the 

property. Lotus leaf effect can thus be achieved without non-fluorinated 

materials, but requires careful optimization of the structures. With 

fluorinated compounds superhydrophobicity is achievable without as 

stringent structure optimization due to their inherent hydrophobicity.114 

Though fluorinated compounds are good candidates for components for 

superhydrophobic surfaces, surface roughness is usually required as well to 

achieve superhydrophobicity. 

 

1.3.2 ELECTROSPINNING 

Electrospinning or electrospraying is a process by which either submicron 

polymer fibers or polymeric particles can be deposited on a surface using 

electrostatically driven jet of a polymer solution.104-106,115-118 If the molecular 

weight of the polymer is high enough and viscosity of the solution 

appropriate, mats of solid polymer (nano)fibers on the surface of choice can 

be achieved. If the polymer chains are too short to make chain entanglements 

during the process, typically micronsized particles are formed instead of 

fibers. These surfaces typically have the roughness needed to observe 

superhydrophobicity. Ma et al.105 coated electrospunned polycaprolactone 

with poly(perfluoroalkyl ethyl methacrylate) by initiated chemical vapor 

deposition to yield super hydrophobic fibers with contact angle of water 175 o. 

Agarval et al.106 compared surfaces made by spincoating and electrospinning 

of polypentafluorostyrene. A change from spincoating to electrospinning 

yielded a shift from hydrophobic to superhydrophobic surfaces.  Guo et al.115 

fabricated superhydrophobic films by electrospraying poly(methyl 

methacrylate)-b-poly(dodecafluoroheptyl methacrylate) diblock copolymers. 

Grignard et al.118 prepared superhydrophobic aluminum surfaces with 

excellent corrosion resistance by electrospinning of block copolymer 

consisting of   poly(heptadecafluorodecyl acrylate-co-acrylic acid) random 
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copolymer as the first block and poly(acrylonitrile) as the second one. 

Carboxylic moieties anchor the polymer to the aluminum surfaces after heat 

treatment, while fluorinated moieties promote hydrophobicity . 

Poly(acrylonitrile) block was selected to ensure the stability of surface 

structure during heat treatment.  

 

1.3.3 BREATH FIGURE FILMS 

Highly structured, porous polymeric films made via “breath figure technique” 

have gained considerable interest119-121 since the reports by Francois and 

coworkers.122,123 In breath figure technique a solution of polymer is typically 

deposited on a substrate in a humid atmosphere so that the evaporation of 

the volatile solvent causes the decrease in temperature in the polymer 

solution. Water droplets start to condensate at the air/liquid interface. As the 

solvent continues to evaporate, the droplets grow and self-organize into an 

array. If proper conditions are achieved the water droplets do not coalesce 

because the concentrated polymer solution keeps them separated. When the 

solvent evaporates completely, the polymer forms a mold around the water 

droplets. This is followed by the total evaporation of water molecules and an 

array of pores in the polymer film is formed.  

 

The breath figure formation has been shown to work in many different 

systems. Casting conditions, solvents, surfaces and polymers can be 

varied.119-121,124-126 The first reports of polymer films prepared by the method 

were based on star-like polystyrene122  and it has been stated that polymers 

that adopt a spherical shape are beneficial for the generation of regular 

porous structures.120,121 Also the balance between hydrophilic and 

hydrophobic properties of the polymers can be used to alter the obtained 

morphology.120,121 Although even homopolymers have been shown to 

produce porous films through BF technique, aggregated amphiphilic block 

copolymers in a selective solvent are a natural choice for such templating 

method. The breath figure formation of various amphiphilic diblock 

copolymers comprising a hydrophobic and a hydrophilic block127-132 have 

been studied using various solvents for the templating. Recently the breath 

figure formation of mixtures of different polymers, namely a mixture 

polystyrene-block-polypentafluorostyrene, polystyrene-block-

poly[poly(ethylene glycol) methyl ether methacrylate] and high molar mass 

polystyrene as the matrix133 has been reported. The combination of these 

polymers resulted in pores with varying hydrophilicity due to phase 

segregation of the blocks.   

 

Porous block copolymer films can be used in several applications. The pores 

and their regular arrangement can be utilized to obtain for example 

photoluminescence, biorecognition or cell adhesion as well as 
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superhydrophobicity.121 For applications it would be beneficial to tailor the 

hydrophilicity or the hydrophobicity depending on the desired application. It 

can be done in the case of amphiphilic polymers by selecting the right 

templating parameters and for example selectively promote or prevent cell or 

biomolecule adhesion.134-136 The surface properties of honeycomb structures 

have been modified by changing the casting conditions for a 

poly(pentafluorostyrene)-b-polystyrene-b-poly[poly(ethylene glycol) methyl 

ether methacrylate] triblock copolymer137,138 so that either hydrophobic or 

hydrophilic segments are oriented towards the surface. Further, the 

honeycomb structures can also be modified by stripping the outer layer of the 

polymer film made from poly(methyl methacrylate-co-perfluoro octyl ethyl 

methacrylate)139 or polystyrene-b-poly(2-vinylpyridine)140 with an adhesive 

tape. The resulting needle-like surface lead to superhydrophobicity and also 

enhanced lipophobic properties of the film due to the increased surface 

roughness. 
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2 OBJECTIVES OF THE STUDY 

 

The main objectives of the present research were the synthesis and 

characterization of organosoluble semifluorinated copolymers from various 

monomers. Polymers were synthesized either by free radical solution 

polymerization yielding random copolymers or by atom transfer radical 

polymerization to build up block structures.  

 

The polymers were characterized carefully and their ability to act as 

surfactants was studied. Secondly, electrospinning and breath figure 

techniques were used to make structured coatings aiming at 

superhydrophobicity and oleophobicity. These structured films were 

compared with flat films made by solvent casting. Breath figure films were 

further modified with hydrophilic moieties. Surfaces were all carefully 

characterized and their wetting properties were studied. This kind of 

manipulation of surface may lead to applications in biorecognizing surfaces, 

cell culturing, superhydrophobic surfaces and lithography. Biorecognition 

was studied with two sugar binding fluorescent markers, lectin ConA-FITC 

and rhodamine B isothiocyanate (RITC). ConA has an ability to bind sugars 

via specific protein-sugar interactions and rhodamine B via chemical 

reactions. 

 

Finally, glucose-decorated nanoparticles were prepared via nanoprecipitation 

and aerosol preparation. The effect of nanoparticle size and their surface 

glucose content on the lectin recognition efficiency was investigated.  
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3 EXPERIMENTAL 

This section summarizes the synthetic methods and the characterization of 

all monomers, homopolymers and copolymers used during the work. Also 

the post-functionalization of the polymers is described. The methods to 

prepare electrospun surfaces and nanoparticles prepared by solvent 

exchange or aerosol technique, as well as films with breath figure technique 

are discussed.  

3.1 MONOMER SYNTHESIS (I, II) 

Styrene (S), pentafluorostyrene (FS) and perfluorooctyl ethyl methacrylate 

(FMA) were commercially available and were distilled in reduced pressure to 

get rid of inhibitors and impurities. Eicosanol methacrylate (EIMA) was 

prepared by the reaction of 1-eicosanol and methacryloyl chloride with 71 % 

yield.  Synthesis of 2,3,5,6-tetrafluoro-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10, 10,10-

heptadecafluorodecaoxy)styrene (FSF) were synthesized by the reaction of 

1H,1H,2H,2H-perfluorodecanol and pentafluorostyrene with 30 % yield. 

Synthesis of perfluorooctyl-ethylene oxymethyl styrene (EMS) was prepared 

by following the procedure described by Höpken and Möller109 with 50 % 

yield.   

 

Scheme 4. Monomers used in this work. 
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3.2 POLYMER SYNTHESIS 

3.2.1 FREE RADICAL POLYMERIZATION (I) 

Free radical polymerizations were done in toluene by using AIBN as a 

initiator. Polymerization conditions and characteristics are listed in table 1. 

   
Table 1. Characteristics and polymerization conditions of free radical polymerizations .

 

3.2.2 ATRP  MACROINITIATORS (I, II, III) 

ATRP was used to synthesize bromine terminated macroinitiators. P(EIMA)-

Br was synthesized  in xylene by using phenyl 2-bromo isobutyrate as 

initiator and 2,2-bipyridine as ligand. Monomer/initiator /Cu(I)Br/ligand 

molar ratio was selected to be 50:1:1:2. SEC was used to measure the Mn  and 

PDI using PMMA standards. Bromine terminated polystyrenes were 

prepared in bulk by using phenyl 2-bromopropionate as initiator and 

PMDETA as ligand. Monomer/initiator /Cu(I)Br/ligand molar ratio was 

selected to be 100:1:1:2. SEC was used to measure Mn  and PDI of the PS-Br 

polymers using PS standards. 

3.2.3 ATRP COPOLYMERIZATION (I, II, III) 

The macroinitiators were chain extended using different monomers. Table 2 

collects the polymerization conditions and Table 3 collects the molecular 

characteristics of block copolymers.  

 

 

 

 

 

 

 

 

 

 

 

FMA EIMA AIBN V T t Yield Mn FMAa

(g) (g) (mol%) (ml) (oC) (hr) (%) (gmol-1) PDI (wt%)

P(EIMA) 0 5 0,7 36 50 168 96 54000 2,7 0

P(EIMA-FMA)-10% 0,25 2,75 3,4 18 70 24 92 14200 2,9 11,3

P(EIMA-FMA)-20% 0,3 1,5 3,4 10,8 70 24 91 14600 2,4 22,1

P(EIMA-FMA)-30% 1 2 3,4 18 70 24 90 16700 2,1 30,2

P(EIMA-FMA)-50% 1,5 1,5 3,4 18 70 24 71 16800 2 51,2

P(EIMA-FMA)-60% 5 3 3,4 48 70 24 74 6700 1,6 62,3

Mn and PDI is determined by SEC with THF and calibrated againts PMMA standards. 
a
Determined by 1H NMR in chloroform

Polymer
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Table 2. Polymerization data of block copolymers. 

    
Polymer Publication 

M Initiator CuBr Ligand Solvent Time  Yield 

(mmol) (mmol) (mmol) (mmol) (ml) (min) (%) 

PEIMA-b-PFMA I 2,5 0,05 0,05 0,25c 5a 90 67 

PS28-b-PFSF4 II 0,9 0,2 0,21 0,4 5b 180 75 

PS89-b-PFSF4 II, III 0,4 0,7 0,07 0,17 3b 180 76 

PS28-b-PEMS2  II 0,9 0,2 0,14 0,17 5b 180 49 

PS89-b-PEMS2  II 0,5 0,07 0,07 0,23 5b 180 54 

PS28-b-PFMA6 II, III 6,7 0,2 0,07 0,17 4b 60 17 

PS89-b-PFMA11 II 3,4 0,07 0,07 0,12 3b 60 34 

PS35-b-PFS35 II 10,3 0,14 0,14 0,22 5a 240 68 

PS35-b-PFS49 II 5,2 0,14 0,14 0,22 5a 180 69 

PS53-b-PFS35 II 5,2 0,09 0,09 0,18 5a 180 74 

PS74-b-PFS74 III, IV 27 0,27 0,27 0,53 5a 240 84 

PMDETA was used as ligand except with PEIMA-b-PFMA. axylene, banisole, c2,2'bipyridine. 

 

 

 

 

 

 
Table 3. Molecular characteristics of block copolymers. 

 
Polymer Publication 

MnNMR MnSEC 
PDI 

(gmol-1) (gmol-1) 

PEIMA-b-PFMA I 24000 11500 1,2 

PS28-b-PFSF4 II 5500 4000 1,3 

PS89-b-PFSF4 II, III 11900 11400 1,4 

PS28-b-PEMS2  II 4100 4300 1,2 

PS89-b-PEMS2  II 10500 10000 1,2 

PS28-b-PFMA6 II, III 6100 3200 1,3 

PS89-b-PFMA11 II 15200 9600 1,1 

PS35-b-PFS35 II 10500 12000 1,3 

PS35-b-PFS49 II 13200 16000 1,4 

PS53-b-PFS35 II 12400 12000 1,3 

PS74-b-PFS74 III, IV 22000 18000 1,25 
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3.2.4 MODIFICATION OF PS-B-PFS (III, IV) 

The pentafluorostyrene units react with thiols in clickfashion.26 Block 

copolymer PS74-b-PFS74 was reacted with two different thiols, thioglycolic 

acid and 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose (SH-GlcAc4) 

(Scheme 5). 

 

 
Scheme 5. Modification of the PS-b-PFS with thiols. Adapted with permission from Publication III. 
© 2014 Wiley Periodicals, Inc. 

 

Successful reactions were ascertained by 1 H NMR and 1 9 F NMR.  In the case 

of SH-GlcAc4 the deprotection of the acetyl groups of PS-b-PFS-GlcAc4 was 

monitored by 1 H NMR and IR. 

 

3.3 ELECTROSPINNING OF FLUORINATED BLOCK 
COPOLYMERS (II) 

PS35-b-PFS35, PS28-b-PFSF4 and PS89-b-PFMA11 were used in 

electrospinning.  Chloroform was used as solvent with polymer concentration 

of 30% w/v.  Mixtures of fluorinated block copolymer solutions and 

polystyrene (20% w/v) with Mn=123000 gmol-1  were also electrospun. All 

experiments were made using aluminum foil as the substrate.  
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3.4 BREATH FIGURE TEMPLATING (III) 

Polymers were dissolved in chloroform with polymer concentrations from 1 

to 100 gl-1 . Microscope glass slides were cleaned with Piranha solution before 

they were placed in humid environment (relative humidity, RH, 85%) and 

humid airflow was provided by bubbling air (2 lmin-1 ) through a water vessel 

and directing the flow through an inverted funnel. 5 μl of the polymer 

solution was injected on the glass slides and the solvent allowed to evaporate. 

For stripping the outermost polymer layer to expose the underlying structure 

an adhesive tape was applied on the film and removed. As the deprotected 

PS-b-PFS-GlcOH polymer was poorly soluble in chloroform, glycopolymer 

films were made from the acetonide protected intermediate polymer, PS-b-

PFS-GlcAc4, and the deprotection of the sugar residues was done after the 

film formation. The deprotection was carried out by immersing the BF films 

in methanol solution containing sodium methanolate for 2 h followed by 

washing with deionized water and drying at room temperature. 

3.5 PREPARATION OF FLUORINATED 
NANOPARTICLES (IV) 

Nanoparticles were prepared by three different methods, see Scheme 6. 

 

 
Scheme 6. Particle preparation pathways shown schematically. Adapted with permission from 
Publication IV. © 2014 Elsevier Ltd. 

3.5.1 MICELLIZATION OF PS-B-PFS-GLCOH (IV) 

PS-b-PFS-GlcOH in DMF with concentration of 2 gl-1  was titrated with 

distilled water until the solution turned turbid. The solution was dialysed 
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against distilled water for one week yielding glycomicelles, Glu-Mic with 

concentration of 1.0 gl-1 . 

 

3.5.2 PREPARATION OF NANOPARTICLES VIA AEROSOL 

TECHNIQUE (IV) 

The nanoparticles were produced from PS-b-PFS-GlcOH and PS-b-PFS 1 

wt% DMF precursor solution using an aerosol reactor.141,142 The particles 

were then dispersed in methanol-water mixture 1:1 v/v and dialyzed against 

distilled water for one week, yielding aerosol particles, Glu-AP1 with 

concentration of 0.1 gl-1 , determinated gravimetrically. 

 

In order to make glycosylated nanoparticles, PS-b-PFS aerosol nanoparticles 

were dispersed in methanol (concentration 1 gl-1 ) and reacted with SH-

GlcAc4 in the presence of triethylamine for 18 h, followed by deprotection 

with sodium methanolate. The solution were then titrated with distilled 

water and dialyzed against distilled water for one week, yielding aerosol 

particles, Glu-AP2.  Polymer concentration of the dispersion was adjusted to 

0.1 gl-1 . 

 

3.5.3 GLUCOSE QUANTIFICATION (IV) 

The amounts of glucose on the nanoparticles were quantified by the 

anthrone-sulfuric acid method.1 4 3  For glucose detachment from 

nanoparticles the dispersions were treated with 2 M HCl at 80 °C for 24 h. 

Solutions were then filtered to remove the precipitated polymer 

nanoparticles. The glucose solutions were treated with anthrone/H2 SO4 , kept 

at 100 °C for 10 minutes and the optical densities of solutions measured. The 

amount of glucose was determined by comparing the absorbance to standard 

glucose solutions treated with the same procedure. 

3.5.4 RHODAMINE LABELLING OF GLYCOSYLATED 

NANOPARTICLES (IV) 

In order to label the nanoparticles with rhodamine isothiocyanate (RITC) 

17.8 µl of aqueous RITC solution (concentration 0.1 gl-1 ) was added to a 200 

µl aqueous polymer solution (concentration 0.1 gl-1 ) and allowed to react at 

room temperature for 2 h. 
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3.6 INSTRUMENTATION 

Size exclusion chromatography (SEC) was used to measure molar masses and 

molar mass size distributions of polymers. SEC was performed with Waters 

SEC chromatograph equipped with Styragel columns, and a 410 differential 

refractometer (Waters Instruments, Rochester, MN).   

 

NMR analyses were conducted with Varian Gemini 2000 200 MHz, Varian 

UNITYINOVA 300 MHz or Bruker Avance III 500 MHz spectrometers. 

 

Differential scanning calorimetry (DSC) measurements were performed with 

a Mettler 822e DSC under nitrogen atmosphere.  

 

Surface tensions were measured either by a KSV Sigma with duNouy ring or 

by analyzing pendant drops using KSV CAM 200 instrument.  Contact angle 

studies were done with a KSV CAM200 instrument. 

 

A Brookhaven Instruments BI-200SM goniometer and a BI-9000AT digital 

correlator and Ar laser (LEXEL 85 l =488 or 514,5 nm) as light source were 

used for dynamic (DLS) and static light scattering (SLS). Specific refractive 

index increment (dn/dc) was measured with an Abbe 60/ED high precision 

refractometer (Bellingham and Stanley Ltd.) at a wavelength of 488 or 514,5 

nm. 

 

Transmission (TEM) and Scanning electron microscopy (SEM) as well as 

element mapping using energy dispersive spectroscopy (EDS) measurements 

were done with a Hitachi S-4800 field emission scanning microscope. Cryo-

transmission electron microscopy was done by using Cryo-TEM, JEM-

3200FSC, JEOL, Tokyo, Japan. 

 

Atomic force microscopy (AFM) was carried out with a NTEGRA Prima (NT -

MDT, Russia) atomic force microscope for analyzing the topography of the 

samples.  AFM images were processed and analyzed with the Scanning Probe 

Image Processor software (SPIPTM, Image Metrology, Denmark).  

 

Confocal laser scanning microscopy measurements were done by  using a 

Leica TCS SP5 confocal laser scanning system with Leica DM5000 upright 

microscope, HCX APO 63x/1.30 Corr (glycerol) CS 21 objective and DD 

488/561 beam splitter. Slice images were constructed with Imaris 7.6 

software (Bitplane) without deconvolution. 

 

IR measurements were carried out with a Bruker Alpha ATR-FTIR 

instrument.  

Fluorescence studies were conducted with a Horiba Jobin Yvon Fluoromax-4 

spectrofluorometer. For the determination of optical densities a Shimadzu 
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UV-1601PC UV/vis spectrometer was employed by monitoring the 

absorbance at 620 nm. 

 

Electrospinning device consisted of a syringe infusion pump, a positively 

charged stainless steel HPLC capillary (0.51 mm ID, 1.59 mm OD, Supelco), 

and a negatively charged collector. Stainless steel plate covered with 

aluminium foil was used as the collector. The +15 kV positive charge was 

achieved with Spellman SL30P30/220 high voltage generator (Spellman 

High Voltage Electronics Corp.) with a low current output (limited to a few 

mA). -5 kV negative charge on the collector was achieved with Philip Harris 

15kV high voltage generator (Philip Harris Ltd.) The polymer solution was 

delivered to metal capillary via a syringe pump (KDS-100-CE) with flow rate 

of 1 mlh-1 . The distance between blunt-end capillary and collector was 25 cm.   

 

For aerosol a Collison-type atomizer was operated in recycling mode to 

atomize the precursor solution into aerosol droplets, which were carried into 

a heated reactor tube at 180 °C by a nitrogen carrier gas flowing at 2.5 gl-1 . 

Before collection, the aerosol nitrogen mixture was diluted and cooled with 

excess nitrogen flowing at 30 lmin-1 . The nanoparticles were collected size-

selectively on aluminium foils using a Berner-type low pressure impactor. 
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4 RESULTS AND DISCUSSION 

4.1 POLYMER SYNTHESIS 

Synthesis and characterization of fluorinated polymers is challenging due to 

the fact that they often have limited solubility in common organic solvents.  

Copolymerization of fluorinated monomers with nonfluorinated ones is a 

viable methodology to improve their solubility without sacrificing the 

beneficial properties, e.g.  surface activity. 

4.1.1 RANDOM COPOLYMERIZATIONS (I) 

In radical polymerizations of EIMA and FMA good reaction yields were 

obtained. Polydispersities were reasonable and the correlation of monomer 

feed ratio to the resulting polymer composition was good as can be seen from 

Table 1. No precipitation was observed during the copolymerizations while 

attempts to synthesise PFMA homopolymers lead to precipitation. The 

accurate determination of molar masses of semifluorinated polymers with 

SEC is problematic due to the solubility issues. The molar mass values 

obtained in the present study for the copolymers using commercial PMMA 

standards are smaller than the expected Mn  of the copolymers. Reason for 

this is the fact that the eluent THF is a poorer solvent for semifluorinated 

copolymers than for PMMA. Semifluorinated copolymers therefore have 

compact conformation in THF which leads to smaller hydrodynamic radius 

and longer elution times compared with the standards used. When the 

fluorine content increases the solubilities and the hydrodynamic sizes 

decrease further. This explains why the observed Mn  of P(EIMA-FMA)-60% 

is much lower than in the case of other copolymers measured under identical 

conditions. Fluorine content of copolymers was determined with 1 H NMR by 

comparing the integrals of the methylene protons (3.9 ppm) next to the ester 

moiety of EIMA and methylene protons next to the ester moiety of 

fluorinated monomer (4.2 ppm).  In some cases addition of 

hexafluorobenzene to CDCl3  was required to break up possible micelles of the 

copolymers and to get improved signals for protons of fluorinated repeating 

units as shown Figure 1.  
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Figure 1. Chemical structures of copolymers  and  1H NMR spectra of the polymers in CDCl3.  1. 
P(EIMA), 2. P(EIMA-FMA)-50%, and 3. PEIMA-b-PFMA. Inset shows the 1H NMR spectra of 
PEIMA-b-PFMA in CDCl3 (bottom) and CDCl3/hexafluorobenzene (top). Adapted with permission 
from Publication I. © 2008 John Wiley & Sons, Ltd. 

 

4.1.2 ESTIMATION OF THE REACTIVITY RATIOS (I) 

In order to estimate monomer reactivity ratios the copolymerization of EIMA 

and FMA were performed in NMR tubes and followed online with 1 H NMR.  

 

To assess the reactivity ratios of the monomers Fineman-Ross (F-R) and 

Kelen-Tüdős (K-T) methods were employed. Figures 2 and 3 show the 

Fineman-Ross and Kelen-Tüdős plots, respectively, for the P(FMA-EIMA) 

copolymers and Table 4 summarizes the F-R and K-T parameters resulting 

from the analysis. The reactivity  ratios of the FMA (ra) and EIMA (rb), 

respectively, determined by these two methods are summarized in Table 5.  
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Figure 2. Fineman-Ross plot for FMA and EIMA copolymer. 

Figure 3. Kelen-Tüdős plot for FMA and EIMA copolymer. 

 

 

 

 

Table 4. F-R and K-T parameters obtained by data analysis. 
          x     X     G H η ξ α 

  fa  fb fa/fb Fa Fb Fa/Fb X/x
2
 (X-1)/x x(X-1)/X x

2
/X G/(H+ α) H/(H+ α)   

1 
0,7
4 

0,26 2,78 0,62 0,38 1,63 0,21 0,22 1,07 4,76 0,16 0,71 1,94 

2 
0,5
9 

0,41 1,47 0,5 0,5 0,99 0,46 -0,01 -0,01 2,17 0 0,53 1,94 

3 0,4 0,6 0,67 0,36 0,64 0,56 1,26 -0,66 -0,52 0,79 -0,19 0,29 1,94 

4 0,5 0,5 1 0,45 0,55 0,8 0,8 -0,19 -0,24 1,25 -0,08 0,39 1,94 

 

 

 
Table 5. Reactivity ratios for copolymer of FMA and EIMA. Adapted 
with permission from Publication I. © 2008 John Wiley & Sons, Ltd. 

  
Copolymer Method   ra rb ra*rb 

Nature of copolymer 
sequence 

P(FMA-EIMA) Kelen-Tüdős 0,39 0,79 0,31 Tendency to alternate 

  Fineman-Ross 0,39 0,8 0,31     
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Linear fits and very similar results were obtained using both methods. The 

reactivity ratios ra  and rb of both monomers were found to be less than 1 and 

rarb= 0.31 from both K-T and F-R analyses. This indicates that the resulting 

copolymers are not completely random since rb is not very much larger than 

ra . Rather the copolymers are likely to have a tendency to alternate, favouring 

longer blocks of EIMA monomers in the chain due to the higher value of rb 

compared with ra . The reactivity ratio obtained for EIMA is somewhat low 

compared with those obtained for a series of copolymers using acrylates with 

different side chain length41 where increasing reactivity ratios for the non-

fluorinated acrylate were observed with increasing aliphatic side chain length 

and for the longest chain, n=18, the reactivity ratio was over 2. These 

conflicting results may be explained by the different solvent that used by 

Morita et al.41 and also due to the different method used in obtaining the 

reactivity ratios. However, Morita et al.41 similarly concluded that for 

acrylates with different side chain lengths somewhat alternating random 

copolymers are obtained by copolymerization. Random copolymers with a 

tendency to alternate were also found in studies of copolymerizations of a 

fluorinated acrylate and styrene by Saïdi et al.81 The somewhat alternating 

nature of the P(FMA-EIMA) copolymers found with reactivity ratio analysis 

are in accordance with the observed thermal behaviour, where the 

crystallinity of the fluorine part is diminished and the EIMA crystallinity 

decreases more than is expected with increasing FMA mass fraction, see 

Figure 4. 

 

 
Figure 4. Calorimetric scans of polymers: 1. PFMA, 2. P(EIMA-FMA)-50%, 3. PEIMA-b-PFMA 
and 4. P(EIMA). Inset shows the melting enthalpies ΔHm of the P(EIMA-FMA) copolymers (♦) 
and PEIMA-b-PFMA block copolymer (■) divided by the melting enthalpy P(EIMA) homopolymer 
plotted against wt% of FMA. Straight dashed line shows linear decrease with wt% of FMA.  
Adapted with permission from Publication I. © 2008 John Wiley & Sons, Ltd. 
 

4.1.3 ATRP POLYMERIZATIONS (I, II, III) 

ATRP was selected as the method to build block copolymers.  The idea was to 

first build up a macroinitiator from eicosanyl methacrylate or styrene. This 

was successfully done by using phenyl 2-bromoisobutyrate or phenyl 2-
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bromopropionate as initiator. Decent polydispersities and expected molar 

masses (<10000 gmol-1 ) were obtained. 

 
The macroinitiators were used to polymerize fluorinated monomers shown in 

Scheme 4 and Tables 2 and 3.  Structural characterization of fluorinated 

block polymers is often complicated by the tendency of the molecules to 

associate due to their fluorinated segments.6 Monomodal SEC elution curves, 

Figure 5, were obtained for the products. Together with NMR signals from 

the fluorinated blocks, Figure 6, they enable the calculation of the number of 

fluorinated units in different block copolymers and estimation of the 

polydispersities of the products. 

 

 
Figure 5. SEC elution chromatograms of PS35 (line), PS35-b-PFS35 (dashed line) and PS35-b-
PFS49 (dotted line). Adapted with permission from Publication II. © 2009 Elsevier Ltd. 
 

 

 
Figure 6. 1H NMR spectra of the 1) PS28-b-PFSF4, 2) PS28-b-PEMS2 and 3) PS28-b-PFMA6. 
Adapted with permission from Publication II. © 2009 Elsevier Ltd.  

 

 

As is evident from the Table 3 the polymers bearing fluorinated alkyl 

substituted monomers, EMS, FSF and FMA, have low degrees of 
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polymerization of the fluorinated block, only a few monomer units. This is 

most probably due to the conditions chosen for polymerization and to the 

bulkiness of the monomers. Nevertheless, the weight fraction of the 

fluorinated monomers is high compared to their degree of polymerization 

due to the high molar mass of the fluorinated monomers.  

 

4.2 SURFACE ACTIVITY IN SOLUTION (I, II) 

All toluene solutions of the copolymers showed a declining surface tension 

when polymer concentration was increased, while the P(EIMA) or PS 

homopolymer do not affect the surface tension of toluene in the studied 

concentration range. See Figures 7 and 8.  

 

 
Figure 7. Surface tension as a function of P(EIMA-FMA) copolymers as function of polymer 
concentration in toluene. P(EIMA-FMA)-10% (□), P(EIMA-FMA)-30% (●), P(EIMA-FMA)-50% (∆) 
and PEIMA-b-FMA (♦). 

 

 
Figure 8. Surface tensions of 1 wt% the block copolymer solutions in toluene plotted against 
fraction of fluorinated monomers. PS-b-PFS (■),PS-b-PFSF(), PS-b-PEMS(●) and PS-b-PFMA 

(). 
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All PS-b-PFS polymers showed similar surface tensions regardless of the 
polymer composition in toluene. This shows that the effect of the lengths of 
PS macroinitiator or the fluorinated block is negligible on the resulting 
surface tension. The situation is different in the case of the polymers bearing 
fluorinated alkyl chains. They show a much more pronounced effect on the 
surface tension than the block copolymers based on 
poly(pentafluorostyrene), and also the fraction of fluorinated units has an 
effect. It can be seen from Figure 8, that the increasing fraction of fluorinated 
alkyl groups, especially the CF3  groups, is responsible for the enhanced 
surface activity. The surface tensions found for PS-b-PFSF, PS-b-PEMS and 
PS-b-PFMA are comparable to the ones found for other fluorinated acrylate 
copolymers in toluene. For example, Krupers et al.82 observed corresponding 
values for poly(methyl methacrylate)-b-poly(1H,1H,2H,2H-perfluorohexyl 
methacrylate) and poly(methyl methacrylate)-b-poly(1H,1H,2H,2H-
perfluorooctylmethacrylate) copolymers. 

4.3 ELECTROSPINNING (II) 

In the electrostatic coating process with polystyrene, PS123, a mixture of 

nanofibers with diameter of 200-300 nm and particles with diameter around 

10-20 µm was formed, see Figure 9 for scanning electron micrograph. The 

studied fluorinated block copolymers, PS35-b-PFS35, PS28-b-PFSF4 and 

PS89-b-PFMA11 electrospun as such formed 10-20 µm particles as shown in 

Figure 9, completely without the formation of nanofibers. This effect is most 

likely due to the rather low molar mass of the polymers and the aggregation 

tendency which result in insufficient viscosity and viscoelasticity. In all cases 

the polymer particles have a shape of shrunken spheres, which originates 

from the solvent-containing polymer spheres collapsing after the spinning 

process as chloroform evaporates. 

 

 
Figure 9. SEM micrographs (100 µm x 100 µm) of electrospun polymers. From left to right 
PS123, PS35-b-PFS35, PS89-b-PFMA11 and PS28-b-PFSF4. Adapted with permission from 
Publication II. © 2009 Elsevier Ltd. 

 
Higher magnification of the surface of the fibers or particles in Figure 10, 

show holes of the order of tens of nanometers which have formed after the 

electrospinning process upon solvent drying.  
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Figure 10. SEM micrographs (2 µm x 2 µm) of electrospun polymers PS123(left) and PS89-b-
PFMA11 (right). Adapted with permission from Publication II. © 2009 Elsevier Ltd. 

 

Due to the relatively high price of fluorinated compounds it would be very 

economical if the amount of fluorinated materials could be lowered without 

compromising the properties. We chose to use mixed solutions of PS123 and 

fluorinated block copolymers for further electrospinning experiments. 

Similar collapsed spheres as in the case of fluorinated block copolymers were 

formed, but also nanofibers with a diameter of 200-300 nm were created, see 

Figure 11. The formation of nanofibers is caused by the higher molecular 

weight polystyrene component, which allows the chain entanglement in the 

whipping process during the electrospinning. However, as particles were 

formed also during the electrospinning of PS123 itself and the electron 

micrographs resemble very much those of pure PS123, we conclude that 

mixing the fluorinated block copolymer did not change the behavior of the 

PS123 in the electrospinning process.  

 

 
Figure 11. SEM micrographs (100 µm x 100 µm) of electrospun polymer mixtures of PS123 
containing 10 wt% fluorinated polymer. From left to right PS35-b-PFS35, PS89-b-PFMA11 and 
PS28-b-PFSF4. Adapted with permission from Publication II. © 2009 Elsevier Ltd. 

 

4.4 GLYCOSYLATION OF PS-B-PFS (III, IV) 

The modification of the pentafluorostyrene units of PS-b-PFS was performed 

with 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose (SH-GlcAc4), shown in 

Scheme 5. 1 H NMR spectra show the appearance of the acetylated glucose 

units in the 1 H NMR of PS-b-PFS-GlcAc4 and the success of the deprotection 
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of the acetyl groups in the spectra of PS-b-PFS-GlcOH at 2 ppm as shown in 

Figure 12. 1 9 F NMR spectra of the PS-b-PFS and PS-b-PFS-GlcAc4 confirm 

the substitution of the para-fluorine position in pentafluorostyrene units to ~ 

90%, Figure 13.  

 

 

  
Figure 12. 1H NMR spectra (DMF-d6) of PS-b-PFS, acetylated PS-b-PFS-GlcAc4 and PS-b-
PFS-GlcOH. The solvent signals are marked with asterisk. Adapted with permission from 
Publication IV. © 2014 Elsevier Ltd. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. 19F NMR spectra of PS-b-PFS-COOH, PS-b-PFS-GlcAc4 and PS-b-PFS. Adapted 
with permission from Publication III. © 2014 Wiley Periodicals, Inc. 
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4.5 NANOPARTICLE PREPARATION (IV) 

Three different routes were selected to make glucose functionalized 

nanoparticles, Scheme 6. These routes were nanoprecipitation and aerosol 

preparation of two different polymers. In the nanoprecipitation the PS-b-

PFS-GlcOH was dissolved in DMF and the Glu-Mic particles were formed 

upon addition of water. In the aerosol method either PS-b-PFS or PS-b-PFS-

GlcOH were dissolved in DMF and particles formed in gas phase in the 

aerosol reactor. The method yields dry particles which can be dispersed in a 

desired solvent. Glycosylated nanoparticles, Glu-AP1 were formed from the 

aerosol processing of PS-b-PFS-GlcOH while aerosol processing of PS-b-PFS 

yields “naked” fluorinated nanoparticles. The latter particles were further 

glycosylated with SH-GlcAc4 from the surface and further deprotected, Glu-

AP2. In the case of Glu-AP2, the water dispersibility gave a direct proof of the 

successful glycosylation.  

 

Figure 14 presents TEM images of the particles and it can be observed that 

the particles are spherical in all cases. When the particles are dispersed in 

water, they can be observed by DLS, see Figure 15, showing that all have 

narrow size distributions but different particle sizes depending on the 

preparation method. Table 6 collects the data of the particle sizes by DLS and 

cryo-TEM. 

 

 
Table 6. Particle sizes from dynamic light scattering and TEM analysis and the glucose 
concentrations on the surfaces of the particles. Adapted with permission from Publication IV. © 
2014 Elsevier Ltd. 

 

 

 
Figure 14. Cryo-TEM images of the particles. A) PS-b-PFS, B) Glu-Mic and C) Glu-AP1. Adapted 
with permission from Publication IV. © 2014 Elsevier Ltd. 

Sample Preparation method
Diameter (DLS)  

nm

Diameter (TEM)  

nm                    

n=30

Glucose concentration   

moll-1a

Glu-Mic Titration 97 ± 2 69 ± 10 2.22E-07

Glu-AP1 Aerosol 357 ±10 289 ± 60 1.49E-07

Glu-AP2

Postfunctionalization of 

PS-b-PFS aerosol 

particles

194 ± 10 268 ± 46b 1.13E-07

a For a 1 gl-1 nanoparticle solution. Determined via the anthron sulfuric acid method.
b Measured for PS-b-PFS aerosol particles
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Smallest sizes were observed for the particles prepared by nanoprecipitation, 

with average diameter of 97 nm according to DLS. The particles prepared by 

aerosol technique have significantly larger mean diameters, Glu-AP1 357 nm 

and Glu-AP2 194 nm. The difference between the two types of aerosol 

particles is likely to result from the different interfacial activity of the non-

glycosylated and glycosylated polymers in aerosol reactor, respectively.  

 

The amount of glucose units on surfaces of nanoparticles was measured. 

Firstly the water dispersions were treated with HCl to detach glucose units 

from the surface of nanoparticles. After filtrating solid nanoparticles from the 

solution, anthron-sulphuric acid solution was reacted with detached glucose 

giving dark green colors in solutions. The optical densities were then 

measured with UV-vis spectrometer and compared with similarly treated 

standard glucose solutions, resulting in glucose concentrations shown in 

Table 6.  

 

Figure 15. Size distributions of Glu-Mic prepared by nanoprecipitation (black), aerosol particles 
Glu-AP1 (blue) and aerosol particles Glu-AP2 (red). Adapted with permission from Publication IV. 
© 2014 Elsevier Ltd. 
 

 

4.6 BREATH FIGURE FORMATION (III) 

After finding successful experimental conditions for porous breath figure 

formation from the solutions other experimental parameters were kept 

constant but the effect of polymer concentration was studied. SEM analyses 

of the BF films made with different polymer concentrations reveal that the 

polymer concentration plays a significant role. If the polymer concentration 

was below 50 gl-1 , regular breath figures were obtained only on rather small 

areas together with large disordered or flat areas. In the case of polymer 
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concentration of 50 gl-1  or more, large areas containing pores were formed, 

see Figure 16 and Table 7. For the hydrophobic fluorinated copolymers, the 

higher the polymer concentration was, the smaller pores were obtained. At 

the same time the pore size distribution became narrower. This is explained 

by the effect of increased polymer concentration that stops the growth of the 

water droplets at an earlier stage and leads to the formation of smaller pores. 

This is in agreement with previous reports,120 where the pore size has been 

found to be inversely dependent on the concentration and the size 

distribution has also narrowed with polymer concentration. 

 

 
Table 7. Average pore sizes from SEM and AFM analysis from films with different casting 
conditions. Adapted with permission from Publication III. © 2014 Wiley Periodicals, Inc.  

Solution Average pore size / µm 

  PS89-b-PFSF4 PS28-b-PFMA6 PS74-b-PFS74 PS-b-PFS-GlcOHa PS-b-PFS-COOHa 

CHCl3 50 gl
-1

 0,72 1,34 1,26/1,45 1,2 0,2-0,7 

CHCl3 100 gl
-1

 0,67 0,43 0,63  -  - 
aValues from AFM analysis. 

     

. 

A cross-sectional SEM image, Figure 17, of the PS74-b-PFS74 film reveals 

that the pores do not extend to the bottom of the film, but instead are formed 

by condensation of water droplets in the top layer, leaving a solid non-porous 

polymer film beneath the porous structure. This is explained by the higher 

density of chloroform used as a solvent compared to that of water acting as 

the pore forming agent. The SEM image also reveals that the porous surface 

layer is supported by pillar-like structures forming the pore walls. The depth 

of the pores was found to be roughly 1.7 μm and the diameter of the 

underlying pores observed from the side is ~3 μm compared with average 

pore diameter of 1.26 μm observed on the surface.  
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Figure 16. Scanning electron micrographs of breath figure films of PS74-b-PFS74 (a), PS28-b-
PFMA6 (b), PS89-b-PFSF4 (c), PS-b-PFS-GlcAc4 (d) and PS-b-PFS-COOH (e). Polymer 
concentrations 50 gl-1 in CHCl3. Adapted with permission from Publication III. © 2014 Wiley 
Periodicals, Inc. 

 

 

 

 
Figure 17. Cross-sectional SEM image of PS74-b-PFS74 BF film with scale bars indicating the 
depth and diameter of the pores. Polymer concentration 50 gl-1 in CHCl3. Adapted with 
permission from Publication III. © 2014 Wiley Periodicals, Inc. 

 

Due to the fact that PS-b-PFS-GlcOH is not fully soluble in CHCl3  in the 

studied concentration range, BF films were made of PS-b-PFS-GlcAc4 and 

then the hydroxyl groups at the surface were deprotected to yield PS-b-PFS-

GlcOH films. Successful deprotection was confirmed by IR measurements 

that show the disappearance of the acetyl groups, see Figure 18. 
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Figure 18. IR spectra of BF films of PS74-b-PFS74 (A), PS-b-PFS-GlcAc4 (B) and PS-b-PFS-
GlcOH (C). Adapted with permission from Publication III. © 2014 Wiley Periodicals, Inc. 

 

The BF films of PS-b-PFS-GlcAc4 and PS-b-PFS-COOH, respectively, made 
from 50 gL-1 chloroform solutions have also porous structures as shown in 

AFM analysis in Figure 19. It can also be clearly seen that in PS-b-PFS-

GlcOH (Figure 22b) the porous structure is retained.  

 

AFM analyses also indicate that the average sizes of the pores in the PS-b-

PFS-GlcOH BF film (~1.2 μm) are slightly smaller than for the corresponding 

PS74-b-PFS74 (1.45 μm). Further, the PS-b-PFS-COOH BF film shows 

smaller pores compared with the other two. This can be explained by the fact 

that with increasing the hydrophilicity of the block the polymer does not 

stabilize water droplets so efficiently leading to the loss of the regular pore 

structure. This phenomenon has been observed in the case of polystyrene-

block-poly(N,N-dimethylacrylamide) polymers.144 Also in the case of 

amphiphilic graft copolymers PS-g-PEO the increase in the PEO content led 

to sponge-like structured membranes and the polymers with the lowest PEO 

content produced regular porous membranes.145 The PS-b-PFS-COOH is 

more hydrophilic than the PS-b-PFS-GlcAc4 leading to the observed pore 

size decrease. The observed pore depths from AFM analyses (PS74-b-PFS74 

1.4 μm, PS-b-PFS-GlcOH 1.2 μm) correspond well to the observed surface 

pore diameter as shown in Figure 17.  
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Figure 19. AFM topographs (image size 20 µm × 20 µm) of (A) PS74-b-PFS74 (height scale 2 
µm), (B) PS-b-PFS-GlcOH(height scale 1.5 µm) and (C) PS-b-PFS-COOH (height scale 1.2 µm). 
Also shown are line profiles for respective samples over the porous structure. Adapted with 
permission from Publication III. © 2014 Wiley Periodicals, Inc. 

 

 

4.7 CONTACT ANGLE STUDIES (II, III) 

Depending on the fluorinated monomer used and the deposition technique, 

see Figure 20, fluorinated block copolymers have very different surface 

characteristics. The most hydrophobic surfaces are formed by 

electrospinning using the polymers based on CF3  containing monomers, 

PS28-b-PFSF4 and PS89-b-PFMA11. Both polymers exhibit a contact angle 

above 150°. The solvent casted films of these polymers have smaller contact 

angles, of the order of 115-120°. In the case of the electrospun block 

copolymer having poly(pentafluorostyrene) block, PS35-b-PFS35, enhanced 

hydrophobicity was not observed when compared with the solvent casted 

sample. Therefore it can be stated that in addition to surface roughness, the 

enrichment of the CF3  groups in to the polymer surface is responsible for the 

enhanced hydrophobicity.  
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Figure 20. Photographs of water droplets on electrospun materials (left) and solution casted 
surfaces (right) for different neat block copolymer solutions.  Adapted with permission from 
Publication II. © 2009 Elsevier Ltd. 

 

The known tendency of fluorinated units to enrich on the surface, 

encouraged us to electrospin materials containing only a fraction of 

fluorinated material, which would be beneficial also economically taking into 

account the high price of fluorinated materials. Polymer solutions containing 

fluorinated block copolymers were mixed with a solution of polystyrene with 

molecular weight of 123000 gmol-1  as described in Chapter 3.3. Figure 21 

shows how the concentration of the fluorinated block copolymer affects the 

contact angles of the electrospun surfaces. PS28-b-PFSF4 and PS89-b-

PFMA11 retained the surface hydrophobicity to a large degree even when the 

amount of fluorinated block copolymers decreased to 10 wt%.  The practical 

implication is that the amount of the fluorinated compound can be reduced 

significantly while retaining the properties, thus making the use of these 

materials more commercially viable. 
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Figure 21. Photographs of water droplets on electrospun mixed solutions of PS123 and 
fluorinated block copolymer with different block copolymer weight fractions (in wt% of block 
copolymer to PS123). Adapted with permission from Publication II. © 2009 Elsevier Ltd. 

 

Unlike in electrospinning, in the breath figure technique water is usually 

used as the templating solvent. This makes the system very different 

compared with an electrospun surface, because water is used as a “mold” and 

it therefore could prevent the enrichment of hydrophobic fluorinated 

moieties on the surface. To examine the effect of the BF process on the 

surface properties of the block copolymers, contact angles of water (CAw a ter) 

and dodecane (CAdodeca n e) were compared between flat surfaces made by 

solvent casting, BF films and tape stripped BF films. Table 8 collects the data 

of measured contact angles.  As can be seen from the Table 8 the BF films 

without thioglycolic acid or glucose in general exhibit higher contact angles 

compared with solvent casted films and, more importantly, the CF3  

containing polymers have highest contact angles for both water and 

dodecane. It was observed that the presence of water in the BF templating 

does not significantly alter the enrichment of fluorinated moieties on the 

surface.  

 

PS74-b-PFS74 BF films made from 50 or 100 gl-1  chloroform solutions have 

similar water contact angles indicating that the difference in pore sizes at this 

size range does not alter the contact angle. To increase the surface roughness 

film surface of the BF films was removed by tape stripping the surface. As 

shown in Table 8, tape peeled BF film surfaces show significantly increased 

CAw a ter  compared with either flat films or unmodified BF films. The polymers 

having CF3  groups, PS28-b-PFMA6 and PS89-b-PFSF4, somewhat 

PS89- -PFMA11                        PS28- -PFSF4     

30%

10%

b b
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surprisingly show smaller increase in CAw a ter  compared to PS74-b-PFS74. 

The different pillar structure of the peeled films is the explanation of the 

difference. As shown in Figures 17 and 22, the underlying pore structure of 

PS74-b-PFS74 consists of much larger pores and the increase in surface 

roughness is larger than in the case of the two other films. Consequently, the 

CAw a ter  increases due to the increased roughness and the peeled PS28-b-

PFMA6 and PS74-b-PFS74 films are superhydrophobic (CAw ater  >150 °). The 

CAdodeca n e is similarly affected by the chemical nature of the films, the CF3  

containing polymers having the highest CAdodeca n e. However, for most of the 

peeled surfaces CAdodecane decreases compared with the BF films, which is due 

to the low surface tension of the dodecane that allows it to spread on the 

rough needle-like surfaces. 

 

 
Table 8. Contact angle data for films with 50 gl-1 polymer concentration in CHCl3. Adapted 
with permission from Publication III. © 2014 Wiley Periodicals, Inc.  

Sample Solvent casted films Breath figure films 

  CA water /o CA dodecane / o CA water /o CA dodecane / o 

PS89-b-PFSF4 111 73 116 72 

PS89-b-PFSF4 peeled  -  - 130 45 

PS28-b-PFMA6 116 68 118 85 

PS28-b-PFMA6 peeled  -  - 153 93 

PS74-b-PFS74 96 52 112 30 

PS74-b-PFS74 peeled  -  - 155 18 

PS-b-PFS-COOH 93 7 106 47 

PS-b-PFS-GlcAc4 75 <5 100 10 

PS-b-PFS-GlcOH 70 <5 89  - 
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Figure 22. SEM images of the tape stripped interface of honeycomb structured films of A) PS74-
b-PFS52 B) PS28-b-PFMA6 and C) PS89-b-PFSF4. Polymer concentrations 50 gl-1 in CHCl3. 
Adapted with permission from Publication III. © 2014 Wiley Periodicals, Inc. 

 

 

For glucopyranose or thioglycolic acid containing polymers the CAw a ter  and 

CAdodeca n e are significantly lower than that of PS74-b-PFS74. For the 

deprotected glucose modified film, PS-b-PFS-GlcOH, the surface becomes 

hydrophilic (CAw a ter  <90°) both for a flat solvent casted film and the BF film. 

Tailoring the surfaces hydrophobicity or hydrophilicity is beneficial when 
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thinking about possible applications like in detection of water-soluble 

biomarkers, because the analytes can more efficiently wet the pores beneath 

the surface.  

 

 

4.8 AGGREGATE ANALYSIS (I, II) 

Surface tension measurements showed that discussed copolymers decreased 

the surface tension of toluene. DLS as well as SLS measurements were used 

to study what kind of structures these semifluorinated copolymers formed in 

a selective solvent for the fluorinated units.  

4.8.1 EICOSANOL METHACRYLATE BASED COPOLYMERS (I) 

Aggregation of EIMA and FMA copolymers in toluene were monitored by 

DLS. An apparent linear increase in scattering intensity against 

concentration is shown in Figure 23a.  

 
Figure 23. Normalised light scattering intensity from copolymer-toluene solutions plotted against 
the polymer concentration in a) PEIMA-b-PFMA (■),PEIMA-b-PFMA, heat treated at 50°C (♦), 
P(EIMA-FMA)-20% (), P(EIMA-FMA)-50% () and P(EIMA-FMA)-60% (○). Insets b) and c) show 
the same data plotted against the logarithm of polymer concentration.  Adapted with permission 
from Publication I. © 2008 John Wiley & Sons, Ltd. 

 

This behavior is different from those by Turberg and Brady 9 5  for 

semifluorinated hydrocarbons in fluorinated solvents and by Lo Nostro et 

al.14,96 for semifluorinated n-alkane in perfluorooctane,96 or for a 

semifluorinated copolymer in a fluorocarbon/hydrocarbon mixture.14 

However, when the data is plotted against the logarithm of the polymer 

concentration, an upward turn in the scattering intensity is observed for the 

solutions of highly fluorinated (>30 wt%) random copolymers at 

concentrations around 0.3 wt% and for the block copolymer solutions at 

around 0.1 wt%. This is roughly at the same concentration regime as the 

leveling off of the surface tension curves in Figure 6.  For the random 
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copolymers with fluorine content >30 wt% DLS measurements revealed 

aggregates with Rh  of the order of 5 to 10 nm with monomodal size 

distribution as shown in Figure 24.  

 

 
Figure 24. Hydrodynamic radii of the copolymer solutions plotted against the polymer 
concentration, and typical distributions of the hydrodynamic radii, P(EIMA-FMA)-50% (♦, a), 
P(EIMA-FMA)-60% (●, b). TEM micrograph shown is P(EIMA-FMA)-50%. Adapted with 
permission from Publication I. © 2008 John Wiley & Sons, Ltd.  

 

With an increase in fluorine content of the copolymers the size of the 

aggregates was increased. The average Rh  of the order of 5-10 nm of the 

aggregates is larger than what has been observed for aggregates of lower 

molecular weight semifluorinated substances.14,95,96 The Rh  kept constant 

regardless of the concentration once the aggregates were detected. This was 

also observed for a semifluorinated copolymer in fluorocarbon/hydrocarbon 

mixture by Lo Nostro et al.14  

 

In the case of the block copolymer solutions the scattering intensity curve has 

an upward turn at much lower concentration than observed for random 

copolymers and the scattering is more intense as was shown in Figure 23. 

The size distributions of the block copolymer aggregates are narrow, see 

Figure 25.  

 

 
Figure 25. Hydrodynamic radii of the aggregated block copolymer solutions plot ted against the 
polymer concentration, lines are to guide the eye only. Typical distributions of the hydrodynamic 

radii and corresponding TEM micrographs are plotted in the inset. PEIMA-b-PFMA (, a), PEIMA-
b-PFMA, heat-treated at 50°C (■, b). Adapted with permission from Publication I. © 2008 John 
Wiley & Sons, Ltd. 
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Also the size of the block copolymer aggregates is much larger compared with 

the random copolymers, of the order of Rh  ~ 50 nm for a sample dissolved at 

room temperature. This large difference in the sizes may originate from 

unequilibrium structures and thus the samples were kept overnight at 

elevated temperatures. Indeed, after heating at 50°C aggregates of the order 

of 20 nm were observed, with much lower scattering intensity. Heating at 

higher temperatures up to 105 °C did not lead to further reorganization of the 

structures. 

 

The effect of heat treatment was also ascertained by TEM measurements. 

The TEM micrographs shown in Figure 25 for the sample dissolved at room 

temperature show non-spherical structures, of the order of 60-100 nm in 

length and few tens of nm in width and thus correspond well to the light 

scattering data. The TEM micrographs of the heat-treated sample shown in 

Figure 25 show spherical structures of the order 40-50 nm and thus the 

hydrodynamic sizes observed by DLS agree well with the TEM data.    

 

Molecular weight of P(EIMA-FMA)-50%  aggregates were estimated by 

Zimm analysis, see Figure 26a. Analysis gave a value of molecular weight, 

Mw,agg, of 421000 gmol-1  and thus, using the molecular weight from the SEC 

analysis (34000 gmol-1 ), aggregation number, Na g g , of 12 is obtained. For the 

random copolymer P(EIMA-FMA)-50%  no angular dependence of the static 

light scattering intensity was observed. According to the TEM micrographs of 

the P(EIMA-FMA)-50% sample the aggregates of the order of 10 nm in 

diameter are spherical, agreeing well with the light scattering experiments. 

Heating the solutions overnight at 50°C did not change the particle sizes. 

  

In the case of a block copolymer solution prepared at room temperature 

notable angular dependence of the scattering intensity was observed, Figure 

26b. The Rg  value the sample was 88 nm which leads to Rg/Rh  value close to 

2, indicating non-spherical geometry. The Mw ,a g g  1.8*107  gmol-1  leads to an 

aggregation number (Na g g) of 2900 using the molecular weight of individual 

polymer (Mw =14200 gmol-1 ) determined by SEC. Heating the PEIMA-b-

PFMA solutions at 50°C overnight induced rearrangements in the 

aggregates. The light scattering intensity  decreased and the upward turn 

occurred at higher polymer concentration as seen in Figure 25. The average 

Rh  value for the heat-treated sample was 20 nm throughout the studied range 

of concentrations, and the samples did not show angular dependence. The 

Zimm plot shown in Figure 26c gave a Mw ,a g g  of 4.1*106  gmol-1  which means 

that the Na g g  decreased to 127.  

 

Comparison of the aggregates formed by PEIMA-b-PFMA to other 

fluorinated block copolymers in solutions shows similar features with 

regards to size and shape. A poly(methyl methacrylate)-block-poly(2-

perfluorooctyl ethyl methacrylate) diblock copolymer with Mw  of 78400 
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gmol-1  was reported by Imae et al.97 to form spherical self-assemblies with Rh  

of the order ~30 nm in acetonitrile. Matsumoto et al.100 studied association 

behavior of poly(sodium methacrylate)-block-poly(nonafluorohexyl 

methacrylate) (NaMA-b-NFHMA) copolymers in aqueous solutions and 

observed that the fluorine containing block copolymers formed micelles with 

bimodal size distribution. The Rh  of the micelles was reported to be 26 and 

140 nm for the NaMA7 2 -b-NFHMA3 3  polymer and 48 and 250 nm for the 

NaMA6 4 -b-NFHMA5 7  polymer. From the SANS data the authors concluded 

that the larger micelles are rodlike instead of spherical. Zhou et al.99 reported 

that a water-soluble fluorinated triblock copolymer poly(ethylene oxide)-b-

poly(styrene)-b-1,2-polybutadiene:C6 F1 3 I forms an ellipsoidal structure in 

aqueous solutions.  

 

 
Figure 26. Zimm plots of P(EIMA-FMA)-50% solution (a), PEIMA-b-PFMA solution (b) and heat 
treated PEIMA-b-PFMA solution (c). Adapted with permission from Publication I. © 2008 John 
Wiley & Sons, Ltd. 
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4.8.2 AGGREGATE ANALYSIS OF PS BASED BLOCK 

COPOLYMERS (II) 

DLS was used to study the aggregates formed in solution of the different 

polystyrene based polymers. It is known that the fluorinated blocks phase 

separate efficiently from the PS blocks in solution. However, no scattering 

were detected for PS-b-PFSF and PS-b-PEMS polymers in toluene at studied 

concentration range by DLS. On the other hand, solutions of polymers with 

other fluorinated blocks, PS-b-PFMA and PS-b-PFS, clearly aggregate and 

hence strongly scatter light. The different size distributions obtained are 

shown in Figure 27.  

 
Figure 27. Size distributions of the aggregated solutions, PS89-b-PFMA11 (full line), PS28-b-
PFMA6 (dashed line) and PS35-b-PFS35 (dotted line). Adapted with permission from Publication 
II. © 2009 Elsevier Ltd. 

 

The PS89-b-PFMA11 polymer showed aggregates with average Rh  ~20 nm. In 

the case of a PS28-b-PFMA6, the aggregates are significantly larger, with 

mean Rh  ~60 nm. This means that the aggregation number for the larger 

PS28-b-PFMA6 polymer is higher than what it is for PS89-b-PFMA11. This 

can be explained on the basis of the properties and length of the fluorinated 

block. When the rigid fluorinated block is long enough, it limits the curvature 

of the core of the micelles and thus results in lower aggregation number. In 

PS-b-PFS polymers the fluorine containing blocks are much longer than in 

the other studied polymers and although the poly(pentafluorostyrene) does 

not have as high surface activity as the polymers with CF3  groups, the length 

of the blocks induce phase separation. The length of the PFS block did not 

significantly influence on the size distribution of the aggregates. Thus also for 

these polymers the aggregation number tends to decrease slightly for the 

polymers having longer PFS blocks. 
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4.9 LECTIN BINDING AND FLUORESCENCE 
STUDIES (IV) 

The binding of lectin to the glycosylated polymer particles was studied by 

DLS. Water solution of lectin Con A was titrated with nanoparticle solution 

to see if the multivalent glucose bearing particles are capable to interact with 

lectin leading to aggregation. The result can be seen from Figure 28. The 

interaction between lectin and nanoparticles is based on reversible 

multivalent sugar-protein interactions and it was also possible to break down 

the formed aggregates by adding glucose as competing analyte as can be seen 

from Figure 28. All the three types of nanoparticles showed similar behavior.  

 

 

Figure 28. Change in size distributions of Glu-Mic aggregates. Original Glu-Mic (black) 
nanoparticle dispersion, titration with lectin Con A (red) and addition of glucose (blue).  

 

 Fluorescence Resonance Energy Transfer (FRET) technique was selected to 

study the interactions of the fluorescein labeled lectin (ConA-FITC) and 

rhodamine B isothiocyanate (RITC) labeled nanoparticles. FRET is a tool for 

detecting interactions and the length scales of interacting species.146,147 In 

this study fluorescein labeled lectin acted as a donor and RITC labeled 

nanoparticles as acceptor. The fluorescent probes were selected in a fashion 

that the other probe, donor, absorbs at a certain excitation wavelength where 

the other, acceptor, does not. On the other hand, the emission of the donor 

probe should overlap with the absorption of the acceptor probe leading to 
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FRET. This means that the emission of the acceptor moieties is only possible 

when the two probes are sufficiently close to each other.  
 

From Figure 29 we can see clearly that FRET occurs when RITC labeled 

nanoparticles is added to the solution. Signal of RITC starts to increase upon 

addition of the nanoparticles indicating close proximity of the probes.  

Figure 29. Fluorescence spectra of a) 0.1 gl-1 FITC solution, b) with 0.05 mg, c) 0.1 mg and d) 
0.18 mg of RITC labeled Glu-Mic nanoparticle solution added. Adapted with permission from 
Publication IV. © 2014 Elsevier Ltd. 

 

The fluorescence intensity ratio of the signals of FITC (520 nm) and RITC 

(580 nm) were compared to rule out any dilution effects. In Figure 30 the 

FRET signals are compared against mass concentration of nanoparticles 

added. It can be seen that Glu-Mic nanoparticles give highest FRET signal.  

 

 
Figure 30. FRET signal intensity measured upon titration of 0.1 gl-1 lectin (Con A-FITC) solution 
with the nanoparticle (RITC) solution, (■) Glu-Mic, (▲) Glu-AP1, (●) Glu-AP2. Adapted with 
permission from Publication IV. © 2014 Elsevier Ltd. 
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However, when the measured glucose concentration of different nanoparticle 

solutions is taken into account the Glu-AP2 nanoparticles have the highest 

slope, see Figure 31. Thus the post-modification of the PS-b-PFS 

nanoparticles yields the most lectin sensitive particles, as in these the glucose 

moieties are solely on the surfaces.  

 

 
Figure 31. FRET signal intensity ratio against the glucose concentration upon titration of 0.1 gl-1 
lectin solution with the nanoparticles, (■) Glu-Mic, (▲) Glu-AP1, (●) Glu-AP2. Adapted with 
permission from Publication IV. © 2014 Elsevier Ltd. 

 

4.10 BIORECOGNITION UTILIZING BF FILMS (III) 

Fluorescent ConA-FITC and RITC were also used to study the ligand binding 

capability of PS-b-PFS-GlcOH films. For control, porous PS-b-PFS and PS-b-

PFS-COOH films were studied. In Figure 32 the fluorescence images taken of 

fluorescently labeled films at 1 μm depth from the surface are shown. The PS-

b-PFS, PS-b-PFS-COOH BF films, Figure 32a, show only weak fluorescence 

signals regardless of the scanning depth. Similar result can be seen from 

Figure 32c where RITC is used as fluorescent marker.  Both samples thus 

show that the marker is effectively removed during the washing step, apart 

from maybe a small amount of marker trapped in the pores. On the other 

hand, the BF film of PS-b-PFS-GlcOH, Figure 32b, shows that Con A-FITC 

gives intense fluorescence signal mainly from the pore walls at the selected 

depth focus. Deeper scanning depth showed that also the bottom of PS-b-

PFS-GlcOH is covered with the fluorescence marker. This is also the case of 

fluorescence marker, RITC, which is able to bind to glucose moieties via the 

reaction of isothiocyanate groups, see Figure 32d. These findings indicate 

that the glucose bearing BF films have capability of binding the fluorescent 

markers both via specific protein-sugar interactions in the case of ConA and 

via chemical reactions in the case of rhodamine B.  
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Figure 32. Cross sectional images of confocal microscopy obtained from the films stained with 
Con A-FITC (a PS-b-PFS, b PS-b-PFS-GlcOH) and RITC (c PS-b-PFS, d PS-b-PFS-GlcOH). 
Adapted with permission from Publication III. © 2014 Wiley Periodicals, Inc. 
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5 CONCLUSIONS 

The objectives of the present research were the synthesis and 

characterization of organosoluble semifluorinated block copolymers. 

Copolymers solution properties were studied and they were used for 

constructing different kind of functional surfaces or nanoparticles. Polymers 

were prepared either by free radical solution polymerization or by atom 

transfer radical polymerization. Free radical solution polymerization yielded 

random copolymers and ATRP was used to build block copolymers. 

 

In the case of eicosanol methacrylate based copolymers the surface 

properties in toluene were found to depend on the comonomer ratio and 

structure. With increasing fluorine content lower minimum surface tensions 

were found for the random copolymers. The copolymers with fluorine 

content >30 wt% showed aggregation behaviour in toluene solutions at low 

polymer concentrations. Spherical aggregates with Rh  around 5-10 nm were 

observed by dynamic light scattering at concentrations above CMC for the 

random copolymers and non-spherical aggregates with diameter around 100 

nm for the block copolymer. The aggregate structure of the block copolymer 

was shown to be temperature dependent. Heating the polymer solution 

resulted in the formation of smaller spherical aggregates.   

 

Diblock copolymers based on polystyrene and various fluorinated blocks 

were made via ATRP and the properties of different monomers on polymer 

properties compared. These organosoluble polymers showed enhanced 

surface activity in toluene due to the fluorinated blocks. The polymers having 

CF3  groups at the ends of the fluorinated alkyl side chains had notably higher 

surface activity compared with materials having poly(pentafluorostyrene) as 

the fluorinated block. Due to the incompatibility of the fluorinated blocks 

with polystyrene or the solvent medium, aggregation of the polymers was 

observed in most cases when the fluorinated block was long enough. 

 

Selected block copolymers were then used in electrospinning. The surface 

properties of the fibrous or particle containing surfaces were then compared 

with those of solvent casted films. Superhydrophobicity, contact angle of 150° 

for water, were observed for electrospun polymers bearing CF3  groups, while 

solvent casted films of the same polymers had contact angles typical for 

surface enriched fluorinated compounds, ~120°. Additionally, mixtures of 

these fluorinated block copolymers with polystyrene were electrospun. The 

surfaces were found to retain their hydrophobicity nearly on a constant level 

down to fluorinated block copolymer concentration of 10 wt% to that of 

polystyrene.  
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Glucose functionalised nanoparticles were made via post-polymerization 

functionalization of polystyrene-block-poly(pentafluorostyrene), PS-b-PFS, 

with para-fluorine click reaction with thio-glucopyranose. High degrees 

(>90%) of glucose substitution of the PFS units was achieved when the 

reaction took place in solution. The modified polymers were made to 

nanoparticles either by titration based aggregation, nanoprecipitation, from 

solution or by aerosol method. It was also shown that the post-

functionalization of PS-b-PFS aerosol particles with the thiol para-fluorine 

reaction is possible and leads to glucose attachment on the surface of the 

particles. Furthermore, labeling of the nanoparticles with fluorescent probes 

is possible utilising the reaction between the glucose hydroxyls and an 

isothiocyanate marker.   

 

Interactions of the glycosylated nanoparticles with a fluorescent lectin were 

studied. It was shown that the nanoparticles bind lectins which leads to their 

aggregation. Fluorescence resonance energy transfer (FRET) studies on 

rhodamine labelled nanoparticles also revealed differences in the binding of 

lectin between different types of the nanoparticles.  

 

Honeycomb structured films utilising breath figure (BF) templating 

technique were made from selected block copolymers. Porous films with pore 

sizes from 0.2 μm to 1.7 μm depending on the polymer used and the polymer 

concentration were obtained. The surfaces of the porous films containing 

only hydrophobic blocks were more hydro- and oleophobic than flat solvent 

casted films due to the increased roughness. Peeling off the top layer further 

increased the roughness and the hydrophobicity increased, leading to 

superhydrophobic surfaces in case of PS-b-PFS and PS-b-PFMA. The 

pentafluorostyrene units of the PS-b-PFS were further modified with 

thioglycolic acid or a thiolated glucopyranose. Water contact angles 

decreased with the introduction of hydrophilic units and for the glucose 

modified BF film, PS-b-PFS-GlcOH, the surface turned hydrophilic with 

water contact angle <90°. Finally, fluorescence microscopy showed that the 

pores of the glucose containing BF films bind fluorescent markers lectin Con 

A-FITC via specific protein-sugar interactions and rhodamine B 

isothiocyanate by a chemical reaction between the glucose units and 

isothiocyanate.  
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