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1 Introduction
Multivariate Gaussian distribution is an often encountered continuous distri-
bution in applied mathematics and statistics due to its well known properties
and wide applicability. In the graphical models framework, we make use of
graphs to compactly represent the conditional independences between a set
of random variables. Combining these two together leads to the class of
Gaussian graphical models.

This thesis discusses learning of Gaussian graphical models from multi-
variate data. Given the data, our goal is to identify the graphical structure
that specifies the conditional independence statements between the variables
under consideration.

Following the footsteps of Pensar et al [10], we adopt a Bayesian, score-
based approach for learning graphical models. Using pseudo-likelihood to
approximate the true likelihood allows us to apply results of Consonni et al
[4] to compute marginal likelihood integrals in closed form. This results in
a method that can be used to make objective comparisons among Gaussian
graphical models.

We test the method numerically and show that it can be readily applied
in high-dimensional settings. According to our tests, the method presented
here outperforms the widely used graphical LASSO method in accuracy.

The structure of this thesis is as follows. The chapters 2-4 discuss graphi-
cal models, multivariate Normal distribution and Bayesian model comparison
in general. The fifth chapter goes through the results derived by Consonni,
which are utilised in the next chapter to develop a scoring function and a
learning algorithm for Gaussian graphical model selection. In the seventh
chapter, we test the method in practice and present the obtained numerical
results. The last appendix chapter is dedicated to the consistency proof,
which gives the theoretical justification for the presented method.
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2 Probabilistic graphical models
In this section, we will discuss probabilistic graphical models. After a short
general introduction, two important subclasses, directed acyclic graphs and
undirected graphs, are considered. Main references used in writing this chap-
ter are Whittaker’s [13] and Koller’s [8] books.

2.1 Graphical models framework

Probabilistic graphical models provide a convenient way to represent depen-
dency structures of complex distributions in high dimensional spaces with
the aid of mathematical objects called graphs. An ordinary graph is a fairly
simple object specified by its nodes and edges connecting them. Each node
is considered to correspond a random variable and the edges connected to
it represent probabilistic interactions between it and some other variables.
Absence of an edge between variables is a statement of a conditional inde-
pendence.

More generally, the graph provides a complete representation of all the
conditional independence assumptions that hold between the variables in
consideration. Through specifying the conditional independence assump-
tions, the graph provides us a way to factorize a complex joint distribution
into smaller components that are easier to handle and understand.

This compact and more tractable representation of complex objects is one
of the advantages in the probabilistic graphical models framework mentioned
by Koller and Friedman [8]. The other two important properties are related
to inference and learning.

Knowing the underlying graphical model makes the inference easier. For
example, consider a situation where we have hundreds of possibly intercon-
necting variables and we would be interested in the conditional distribution of
only few of them, given the others. The conditional independences specified
by the graph would provide us the information about the relevant variables,
which are sufficient to take under consideration in order to do the inference.

The framework of probabilistic graphical models makes also efficient learn-
ing of models from data possible. Of course one could construct models by
specifying them by hand, but usually it’s more sensible to just provide a rough
guideline, which should be fulfilled by the model and let other properties be
determined automatically by a learning algorithm. This automatic approach
might also reveal surprising connections between variables that might have
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otherwise gone unnoticed.
The broad and flexible framework of probabilistic graphical models makes

them also applicable in various real life problems. Applications can be found
in numerous fields such as medical diagnosis, fault diagnosis, analysis of
genetic and genomic data, communication and coding, analysis of marketing
data, speech recognition and natural language understanding [8].

Two common and widely used subclasses of graphical models are directed
acyclic graphs (DAG) and undirected graphical models. As is presumably
clear from the name, DAGs are graphical models in which all the edges have
a direction. This direction of probabilistic interaction allows one to also
use DAGs for example to study causal relationships between variables. On
the other hand, the undirected graphical models do not specify directions
of connections. We will start the more formal treatment of the subject by
introducing DAGs in detail.

2.2 Directed acyclic graphs

Let X = (X1, . . . , Xp)
T denote a p-dimensional random vector. In this chap-

ter and onwards, when referring to subvectors of X, we use similar notation
as in [13]: By writing Xa, a ⊂ {1, 2, . . . , p}, we are referring to a subvector
of X that consists of variables whose indices are included in the set a.

In the graphical models framework, each component Xi, i = 1, . . . p cor-
responds to a node in the graph. We will use V = {1, . . . , p} to denote
the set of nodes. When considering DAGs, we assume that every edge is
directed. An edge pointing from node j to node i is denoted by (j, i). We
use E ⊂ V × V to denote the set of edges. A graph G is then defined as the
pair G = (V,E).

One motivation for using graphical models was their ability to provide
us way a to factorize the joint probability distribution of several random
variables. This is also the reason why we do not allow directed cycles in our
graphs.

Definition 2.2.1. A cycle is a finite sequence of nodes (v1, . . . , vm), where
(vj, vj+1) ∈ E for every j = 1, . . . ,m− 1 and v1 = vm.

Consider a simple example of a graph containing cycle. Let V = {1, 2, 3}
be the set of nodes and E = {(1, 2), (2, 3), (3, 1)} the edge set. We would
now hope that the joint density f123 could be factorised into a product of
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conditional densities according to

f123 = f2|1 · f3|2 · f1|3.

However, the factorisation above defines a proper joint density in rare cases
[13].

Directed graphs that do not posses any cycles can be equivalently char-
acterized as graphs whose nodes can be completely ordered. Ordering means
here that we can find a binary relation 2 for the elements of V so that

1. i 2 j or j 2 i for every i, j ∈ V.

2. Relation 2 is irreflexive.

3. Relation 2 is transitive.

With the help of the relation, we can order the elements of V as 1 2 2 2
· · · 2 p. This is summarized by the following theorem (Lemma 3.5.1 in [13])

Theorem 2.2.2. In a directed graph G, the following statements are equiv-
alent

(i) There is no directed cycle in G.

(ii) There exists a complete ordering of the nodes that is respected in the
graph.

Ordering of the nodes can be seen to provide us a way to define "past" and
"present" for each of the variables. We can for example say rigorously if one
node is a descendent of the other and speak of the parents of a node.

Definition 2.2.3. Let G = (V,E) be a DAG. The set of parents of node j is
denoted by pa(j), and the set consists of nodes, which have an edge pointing
to j. More formally

pa(j) = {i ∈ V | (i, j) ∈ E}.

This allows us to specify the conditional independence assumptions implied
by a DAG.
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Definition 2.2.4. Let N(i) denote the set of variables that are not descen-
dants of node i in directed acyclic graph G = (V,E). The DAG G encodes
the following set of conditional independence assumptions

Xi ⊥⊥ N(i) | pa(i), i = 1, 2, . . . p,

that is, each variable Xi is conditionally independent of its non-descendants
given its parent nodes.

Definition 2.2.5. Let p denote the joint probability distribution of X =
(X1, . . . , Xp)

T . Assume G = (V,E) is a directed acyclic graph, where the
nodes correspond to components of X. We say that p factorises according to
G, if it can be expressed as

p(X) =

p∏
i=1

p(Xi | pa(i)). (1)

Now we are ready to define the DAG models.

Definition 2.2.6. A DAG model M is the pair M = (G,FG), where G is a
directed acyclic graph and FG is the set of allowable local distribution families.
The local distributions refer to the components of (1). In other words, a
DAG model is specified by the graph G and the set of joint distributions that
factorize according to G into local distributions such that each distribution
belongs to a family present in the set FG.

Our definition of a DAG model is the same as used for example by Geiger
and Heckerman in [5].

2.3 Undirected graphical models

Undirected graphical models, also called Markov networks or Markov random
fields use undirected graphs to represent the conditional independence state-
ments among a set of random variables. Statements that can be encoded
with an undirected graph may differ from those discussed in the previous
section.

As in the case of DAGs, we let V = {1, . . . , p} to denote a set of nodes,
which correspond to random variables X = (X1, . . . , Xp)

T . Likewise, the set
of edges is denoted by E ⊂ V × V .
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An undirected graph G = (V,E) is a graph were each edge is undirected.
If there is an undirected edge between nodes i and j, then (i, j) and (j, i)
are both in set the E. Absence of an edge in the graph is a statement of
conditional independence between the corresponding random variables. More
formally:

Theorem 2.3.1. The undirected graph G = (V,E) for a random vector X
encodes the following set of conditional independences:

Xi ⊥⊥ Xj | XV \{i,j} if, and only if (i, j) 6∈ E and (j, i) 6∈ E.

Somewhat similar concept as the set of parents in a DAG is the Markov
blanket defined in undirected graphs.

Definition 2.3.2. The Markov blanket of a node is the set of nodes directly
connected to it. More formally

mb(j) = {i ∈ V | (i, j) ∈ E and (j, i) ∈ E}.

Definition 2.3.3. We define a family of the node j to be the set

fa(j) = mb(j) ∪ {j}.

We can find two equivalent formulations for the Theorem 2.3.1.

Theorem 2.3.4. Assume the joint distribution of X = (X1, . . . , Xp)
T is

positive and let G = (V,E) be an undirected graph. Now the following three
statements are equivalent:

1. Xi ⊥⊥ Xj | XV \{i,j} if and only if (i, j) 6∈ E and (j, i) 6∈ E.

2. Xi ⊥⊥ XV \fa(i) | mb(i) for every i ∈ V.

3. Xa ⊥⊥ Xb | Xs for every disjoint subsets a, b and s of V ,
such that s separates a from b.

These statements are called pairwise, local and global Markov properties,
respectively. "To separate" means here that we cannot follow the edges of G
to end up from a node in set the a to a node in b without passing a node of
s on our way.

In Markov networks the joint distribution of variables can be expressed
as a product of individual factors corresponding to the maximal cliques in
the underlying graph G.
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Definition 2.3.5. A clique C ⊂ V is a set where every pair of nodes is
connected, that is,

{i, j} ∈ C, if (i, j) ∈ E and (j, i) ∈ E. (2)

A clique C ⊂ V is maximal, if adding any node i ∈ V to C would contradict
with (2).

Definition 2.3.6. Let p be a positive distribution for a random vector X.
Denote the set of maximal cliques related to the graph G by C(G). We say
that the p factorizes according to G if it can be expressed as

p(X) =
1

Z

∏
C∈C(G)

Φ(XC), (3)

where Z =
∫ ∏

C∈C(G) Φ(XC), is a normalizing constant, also called the par-
tition function.

An undirected graphical model is specified by the undirected graph G and
the family of multivariate probability distributions, that factorize according
to G.

Exact inference and learning of undirected graphical models from data
is hard due the global normalizing constant Z. In general, the constant Z
couples all the parameters of a model and prevents us from factorising the
problem into a simpler sub-problems.

Inference gets easier if one assumes that the underlying graph is chordal,
but this might be too restrictive [10]. Chordal graphs are undirected graphs,
which do not have any cycle longer than three that would not contain a
"short-cut", that is, an edge connecting a pair of nodes in the cycle.
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3 Multivariate Normal distribution
In this chapter we present the multivariate Normal distribution and some of
its basic properties. Main references used in writing this chapter are chapters
5 and 6 from the book of Whittaker [13] and all the results stated here can
be found in the book.

Definition 3.0.7. The p-dimensional random vector X follows multivariate
Normal distribution if and only if its density function can be written as

fX(x) = |Σ|−1/2(2π)−p/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ Rp,

or equivalently, using Ω = Σ−1,

fX(x) = |Ω|1/2(2π)−p/2 exp

(
−1

2
(x− µ)TΩ (x− µ)

)
, x ∈ Rp,

where Ω and Σ are symmetric and positive definite p× p matrices, and µ is
a fixed p-dimensional vector.

To state that a random vector X follows a p-variate Normal distribution
with parameters µ and Σ, we write

X ∼ Np(µ,Σ).

The meaning of these parameters is specified in the following theorem.

Theorem 3.0.8. Assume that X ∼ Np(µ,Σ). Then the expected value and
the variance of X are

E(X) = µ and var(X) = Σ.

Proof. Can be found in [13].

3.1 Marginal and conditional distributions

The following theorems establish the fact that the class of multivariate Nor-
mal distributions is closed under marginalization and conditioning. In other
words, every conditional or marginal density function obtained from multi-
variate Normal density is also multivariate Normal.
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Theorem 3.1.1. Assume that X ∼ Np(µ,Σ). Partition the vector X as X =
(Xa, Xb). Partition the mean vector µ and covariance matrix Σ accordingly
as

µ = (µa, µb) and Σ =

(
Σaa Σab

Σba Σbb

)
.

Now,

(i) the marginal distribution of Xa is Normal with mean µa and variance,
Σaa

(ii) the conditional distribution of Xb given Xa = xa is Normal with mean

Eb|a(Xb) = µb + (ΣbaΣ
−1
aa )(xa − µa),

and variance

var b|a(Xb) ≡ Σbb|a = Σbb − ΣbaΣ
−1
aa Σab.

Proof. Can be found in [13].

Conditional mean and variance are connected to linear least squares pre-
diction and partial variance under the Gaussian assumption. To see this,
recall the definitions of the linear least squares predictor and the partial
variance.

Definition 3.1.2. Let X and Y be p- and q-dimensional random vectors,
respectively. Assume that E[(X, Y )] = 0 and var[(X, Y )] is known. The
linear least squares predictor of Y from X is then defined as

Ŷ [X] = cov(X, Y )var(X)−1X = BX,

where B = cov(X, Y )var(X)−1 ∈ Rq×p is referred as the matrix of the linear
least squares prediction coefficients.

Note that the zero mean assumption is not really necessary. We could get
more general formula just by substituting X = X−E(X) and Y = Y −E(Y )
to the formula above.

When p = 1, then Y is a scalar random variable and Ŷ is found by
minimizing the expression E(Y − bTX) with respect to vector b. It can be
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shown that if and only if b minimizes this expression, it solves the normal
equations

cov(Y − bTX,X) = 0. (4)

In case p > 1, linear least squares predictor is found by solving the normal
equations (4), where instead of bT , we have the matrix B.
Now we can define the partial covariance and variance.

Definition 3.1.3. The partial covariance of Y and Z given X, is defined as

cov (Y, Z|X) = cov (Y − Ŷ [X], Z − Ẑ[X]).

Corollary 3.1.4. The partial covariance satisfies

cov (Y, Z|X) = cov (Y, Z)− cov (Y,X)var (X)−1cov (X,Z).

Proof. This can be seen easily by using the definition of partial covariance,
bilinearity of covariance operator and the fact that predictor coefficient ma-
trix satisfies the normal equations.

From the Corollary 3.1.4, we obtain

Corollary 3.1.5. The partial variance of Y given X,
var(Y |X) = cov(Y, Y |X) satisfies

var (Y |X) = var (Y )− var (Ŷ [X])

= var (Y )− cov (Y,X)var (X)−1cov (X, Y ).

Using these, we can establish the following theorem

Corollary 3.1.6. X = (Xa, Xb) ∼ Np(µ,Σ). Partition the covariance ma-
trix respectively, as in Theorem 3.1.1. Now it holds that

Eb|a(Xb) = X̂b(xa) and var b|a(Xb) = var(Xb|Xa).

Proof. Using the Definition 3.1.2, we can write the linear least squares
predictor of Xb from Xa = xa

X̂b(xa) = E(Xb) + cov(Xb, Xa)var(Xa)
−1(xa − E(Xa))

= µb + ΣbaΣ
−1
aa (xa − µa)

= Eb|a(Xb).

10



For the second part of the statement, Corollary 3.1.5 gives

var(Xb|Xa) = var(Xb)− cov(Xb, Xa)var(Xa)
−1cov(Xa, Xb)

= Σbb − ΣbaΣ
−1
aa Σab

= var b|a(Xb).

In general, partial variance and conditional variance are two different
things. The partial variance is evaluated in the joint distribution of Xa

and Xb, whereas the conditional variance is evaluated in the conditional
distribution of Xb given Xa = xa. Under the assumption of Normality, these
two are the same [13].

3.2 Independence and conditional independence

The following theorems consider independences and conditional indepen-
dences of random Normal vectors and how these are reflected to the elements
of covariance and precision matrices. These theorems are also the theoretical
basis for defining the Gaussian graphical models.

Theorem 3.2.1. Partition Normal random vector X as X = (Xa, Xb). Xa

and Xb are independent, if and only if

(i) cov(Xa, Xb) = Σab = 0, or

(ii) Ωab = 0, Ω = Σ−1.

Theorem 3.2.2. Partition Normal random vector X as X = (Xa, Xb, Xc).
Xa and Xb are independent conditional on Xc, Xa ⊥⊥ Xb|Xc, if and only if
either

(i) cov(Xa, Xb|Xc) = 0 or

(ii) Ωab = 0.

If we let Xa and Xb be one dimensional, then

Xi ⊥⊥ Xj| XV \{i,j} ⇔ Ωij = 0.

The message of these theorems is that the zeroes in the precision matrix
of a Gaussian random vector are statements of conditional independence
between the variables.
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3.3 Gaussian graphical models

Let X be a p-dimensional random vector with zero mean and precision ma-
trix Ω. Let G be an undirected graph. We define the Gaussian graphical
model (GGM) to be the family of multivariate Normal distributions for X
that satisfy the conditional independence statements implied by the graph.
Due the Theorem 3.2.2, this means that we force some of the elements of
the inverse covariance to be zero. The remaining elements can be chosen
arbitrarily as long as the matrix is symmetric and positive definite.

A simple example of Gaussian graphical model is given in Figure 1.

Σ =


σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44

 Ω =


ω11 ω12 ω13 0
ω21 ω22 0 ω24

ω31 0 ω33 ω34

0 ω42 ω43 ω44


Figure 1: An example network with four nodes and the corresponding co-
variance and precision matrices.

Absence of edges (1, 4) and (3, 2) in the graph implies that Ω14 = Ω23 = 0.
Due the symmetry the corresponding elements below the diagonal are also
zero. The Gaussian graphical model in this case would consist of all the
multivariate Normal distributions, whose symmetric and positive definite
precision matrices would have the same zero pattern as in the picture.

12



4 Bayes factors
This chapter discusses Bayes factors, which are tools for Bayesian model
comparison. We will start with ordinary Bayes factors and their properties.
In some cases, the use of Bayes factors is somewhat problematic. We study
the problem where we would like to do objective model comparison by using
improper priors for the model parameters. However, in this case the ordinary
Bayes factors become unspecified.

Two solutions are proposed to overcome this: partial and fractional Bayes
factors. This chapter is mainly based on O’Hagan’s article [9], where the
fractional Bayes factors were introduced for the first time. We will make use
of fractional Bayes factors later when we consider the objective comparison
of Gaussian DAGs.

4.1 Ordinary Bayes factors

Let M1 and M2 be two proposed models for data X = (x1, . . . ,xn). Denote
the sampling distribution of data under model Mi by fi(x|θi) and the corre-
sponding prior distribution of parameters θi by πi(θi). The marginal likeli-
hood, or marginal data density of X under Mi will be denoted by p(X|Mi).

Definition 4.1.1. The marginal likelihood of Mi given data X is

p(X|Mi) =

∫
πi(θi)f(X|θi)dθi,

where the integral is taken over all possible values of parameters θi of model
Mi.

The marginal likelihood can be seen to measure the fit of models to data,
after the effect of parameters is marginalized out.

A natural way to compare models in Bayesian statistics is to compute
their posterior probabilities given the observed data:

p(M1|X)

p(M2|X)
=
p(M1)

p(M2)
· p(X|M1)

p(X|M2)
=
p(M1)

p(M2)
B12(X), (5)

in which the quantity B12(X) = p(X|M1)/p(X|M2) is defined to be the Bayes
factor of model 1 against the model 2. Terms p(M1) and p(M2) are prior
probabilities assigned to models themselves and they do not depend on the
observed data.
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We see that the Bayes factor is a ratio of the marginal-likelihoods of the
models under comparison. If observed data provides more support to M1

than M2, we have B12(X) > 1 and vice versa.
Assuming identically distributed data X with sufficient regularity of the

sampling distribution, one can show that Bayes factors are consistent, when
comparing nested models. By saying that they are consistent, we mean that
if the model 1 would be the right one, then

B12(X)→∞,

and the posterior probability P (M1|X)→ 1, as the sample size n approaches
infinity. Likewise, if the right model would have been model 2, then

B12(x)→ 0 and P (M2|X)→ 1, when n→∞.

For more thorough discussion on the consistency of ordinary Bayes factors
we refer to O’Hagan [9] and further references therein.

4.2 Bayes factors with improper priors

Bayes factors are known to be sensitive to the choice of parameter prior πi(θi).
In order to do objective comparison between different models, we would like
choose πi(θi) to be as uninformative as possible. However, uninformative
priors are often improper, which is problematic as shown in the following
example.

Let πi(θi) be an improper prior. This means that πi(θi) ∝ hi(θi), where
hi(θi) is a real function, but the integral∫

hi(θi)dθi

diverges. Formally, we can write

πi(θi) = ci · hi(θi),

where the proportionality constant ci is unspecified and does not exist as a
real number. Despite this, we can still write the posterior density for the
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parameters θi:

πi(θi|X) =
πi(θi)fi(X|θi)
p(X|Mi)

=
ci
ci
· hi(θi)fi(X|θi)∫

hi(t)f(X|t)dt

=
hi(θi)fi(X|θi)∫
hi(t)f(X|t)dt

, (6)

we see that unspecified constants cancel each other and the posterior density
is proper if the integral in the denominator of (6) converges.

Consider now the situation of comparing two models, M1 and M2, for
data X. We assume improper prior for the parameters of model 1, so that
π1(θ1) = c1 · h1(θ1), with c1 unspecified. Now the Bayes factor becomes

B12(X) =
p(X|M1)

p(X|M2)

= c1 ·

∫
h1(θ1)f1(X|θ1)dθ1∫
π2(θ2)f2(X|θ2)dθ2

, (7)

we see that c1 doesn’t cancel and Bayes factor becomes unspecified. If we
assume also π2 to be improper, Bayes factor can be written as

B12(X) =
p(X|M1)

p(X|M2)

=
c1

c2

·

∫
h1(θ1)f1(X|θ1)dθ1∫
h2(θ2)f2(X|θ2)dθ2

, (8)

which is also clearly unspecified due the dependency on the ratio c1/c2. One
way to deal with this problem is based on the idea behind (6), where we
noticed that with certain assumptions, the posterior density of parameters
with improper prior is in fact proper. This notion leads us to partial Bayes
factors.

15



4.3 Partial Bayes factors

Consider the same two model example as before and partition the data in
two parts X = (Y,Z). Our aim is to use Y as a training sample to get rid
of the unspecified constants appearing in (7) and (8). The remaining data Z
is then used to perform comparison between M1 and M2. We define partial
Bayes factor as

B12(Z|Y) =
p(Z|Y,M1)

p(Z|Y,M2)
, (9)

where
p(Z|Y,Mi) =

∫
πi(θi|Y)f(Z|Y, θi)dθi.

If we take πi(θi) to be improper, we can use (6) to deduce that πi(θi|Y) is
a proper density given that the size of the training sample Y is sufficient.
Using this approach, unspecified constants will not appear in (9) and the
partial Bayes factor is well defined. Relationship between the full and the
partial Bayes factor is also easily seen by

B12(X) = B12(Y)B12(Z|Y).

Part of the problem is solved by using this approach, but partial Bayes
factors are clearly dependent on the choice of the training sample Y. One
has to pick Y so that the integrals involved in updating the improper prior
to a proper one converge, but otherwise the choice is arbitrary. If we denote
the minimum sample size of Y by m, we have

(
n
m

)
different possibilities to

choose from.
One can show that the same asymptotic results mentioned in the treat-

ment of the ordinary Bayes factors apply also here, if m is held fixed. If we
let m to vary with n, then the ratio n/m has to approach infinity as n grows
for consistency to be achieved.

To overcome the problems related to choosing Y one can compute partial
Bayes factors for all of the possible data sets and average the results. This
approach results in so called intrinsic Bayes factors, but it also comes with its
own difficulties. Computing the partial Bayes factors for all possible training
samples will quickly become inefficient if the m is relatively large. Also the
way one does the averaging has impact on the result. This motivation takes
us to O’Hagan’s solution, fractional Bayes factors.
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4.4 Fractional Bayes factors

Denote b = m/n. We define the fractional Bayes factor as

B12(X; b) =
pb(X|M1)

pb(X|M2)
, (10)

where the term pb(X|Mi) denotes fractional marginal likelihood and can be
written as

pb(X|Mi) =

∫
πi(θi)fi(X|θi)dθi∫
πi(θi)fi(X|θi)bdθi

(11)

From (11) it is easy to see that any unspecified constants related to improper
priors cancel, because they can be taken out of the integrals, which leaves
fractional marginal likelihood well defined, provided that the integrals con-
verge. The main idea behind the definition (11) is that if m and n and are
large, then the likelihood based on the m samples approximates the whole
likelihood to the power b, that is

fi(Y|θi) ≈ fi(X|θi)b.

O’Hagan proposes the use of fractional Bayes factors also in cases when m
and n are not large, even though the definition is justified asymptotically.
Consistency of fractional Bayes factors can be proven assuming that b → 0
as n→∞.

The fractional Bayes factor approach leaves the specification of the frac-
tion b open. This can be seen a far less critical problem than the arbitrary
selection of the training fraction in partial Bayes factors. O’Hagan proposes
three different choices for b. The most obvious choice is to pick b = n0/n,
where n0 is the minimum sample size for everything to be well defined. Ob-
vious choice means here that this selection of b leaves as much data for model
comparison as possible. If robustness is a great concern in sense of outliers,
O’Hagan proposes taking b = n−1max{n0,

√
n}. Last proposed value is to

choose b = n−1max{n0, log n}, which represents an intermediate choice.
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5 Objective comparison of Gaussian DAGs
The main goal of this chapter is to provide an analytical expression for the
marginal likelihood of any Gaussian DAG model. We do this by following the
work of Consonni and La Rocca (2012), who consider objective comparison
of Gaussian Directed Acyclic Graphical models in their article [4]. Their
approach to Gaussian DAG model comparison is based on using Bayes factors
and uninformative, typically improper prior on the space of unconstrained
covariance matrices. Concerns rising from using improper priors are dealt
with utilizing the fractional marginal likelihood.

We first review a result concerning the computation of marginal like-
lihood in a more general setting, presented by Geiger and Heckerman [5].
They present 5 assumptions about the sampling distribution of data and the
structure of the prior distribution for parameters, that allow one to construct
parameter priors for every DAG model with given set of vertices just by spec-
ifying one parameter prior for any of the complete DAG models related to
these given vertices.

This results in a convenient expression for the marginal likelihood, which
is also used in Consonni’s paper. Assumptions also guarantee that all Markov
equivalent DAGs are scored equally, which is important property when DAGs
are considered only as models of conditional independence instead of causal-
ity.

5.1 Marginal likelihood of a general DAG model

Let X = (X1, . . . , Xp)
T denote a p-dimensional random vector and M =

(G,Fs) be a DAG model defined over X. The DAG model M is specified by
the structure G, which is the set of conditional independences between the
components of X encoded in a graph. The notation FG denotes the set of al-
lowable local distribution families. Mc denotes a complete DAG model, which
is a model with no conditional independences. We use x = (x1, . . . , xp)

T to
denote a single observation of X and boldface X = (x1, . . . ,xn) to denote
a complete random sample of size n. The following five assumptions are
presented in [5]:

1. (Complete model equivalence). Let M1 = (G1,FG1) and
M2 = (G2,FG2) be complete DAG models for X. We assume, that M1

and M2 represent the same sets of joint probability distributions for X.
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2. (Regularity). Let M1 and M2 be two complete DAG models for X. We
assume that there exists a one-to-one mapping f(·) between the param-
eters θm1 of M1 and parameters θm2 of M2 such that the likelihoods
satisfy p(x|θm1,M1) = p(x|θm2,M2), where θm2 = f(θm1). The Jaco-
bian of the transformation is also assumed to exist and to be non-zero
everywhere in the parameter space.

3. (Likelihood modularity). If variable Xi has the same parents in models
M1 and M2, then the local distributions for xi are the same in both
models, that is, p(xi|pa(i), θi,M1) = p(xi|pa(i), θi,M2).

4. (Prior modularity). If variable Xi has same parents in models M1 and
M2, then p(θi|M1) = p(θi|M2).

5. (Global parameter independence). Let M be arbitrary DAG model for
X. Then p(θ|M) =

∏p
i=1 p(θi|M) .

Assumptions 1-3 consider the sampling the distribution of data. Geiger and
Heckerman point out that one case where these three assumptions are sat-
isfied, is if X follows multivariate Normal distribution. One implication of
assumption 1 is that any two complete DAG models have the same marginal
likelihood for every dataset X. This, in other words means that complete
models cannot be distinguished based on the data. Geiger and Heckerman
also state that in the multivariate Normal case with zero mean, both the
assumptions 4 and 5 hold if and only if the prior on the precision matrix Ω
is Wishart.

Using the assumptions above, the following propositions can be derived
(Theorem 1 and 2 in [5])

Theorem 5.1.1. Assume propositions 1-5. Now the parameter prior p(θ|M)
for an arbitrary DAG model M is determined by a parameter prior p(θc|Mc)
for an arbitrary complete DAG model Mc.

Theorem 5.1.2. Let M and Mc be any DAG model and any complete DAG
model for X, respectively. Let X denote a complete random sample. As-
sumptions 1-5 imply

p(X|M) =

p∏
i=1

p(Xfa(i)|Mc)

p(Xpa(i)|Mc)
, (12)
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where Xpa(i) denotes the data belonging to Xi’s parents. Notation fa(i) =
pa(i) ∪ i stands for the family of variable Xi.

Consonni and Rocca make use of (12) to derive their formula for the
marginal likelihood of the Gaussian DAGs. In order to apply (12), we need
results concerning the marginal likelihoods of X’s subvectors when X is mul-
tivariate Normal. The next sections follow quite strictly the treatment of
the subject in Consonni’s and Rocca’s paper. We will start with preliminary
results that are needed to go through the derivation.

5.2 Wishart distribution

The family of Wishart distributions is a conjugate prior family on the pre-
cision matrix of the multivariate Normal distribution. This allows us to get
closed form solutions for the marginal likelihood integrals.

Let X denote a p-dimensional random vector following multivariate nor-
mal distribution with zero mean and covariance matrix Ω−1 = Σ,

X ∼ Np(0,Ω−1).

We put no restrictions to elements of the precision matrix Ω, other than
requiring Ω to be symmetric and positive definite (s.p.d.).

Let Y be a p × p symmetric and positive definite random matrix. We
denote the set of all unconstrained s.p.d. matrices by U . Write Y ∼ Wp(a,A)
to say that Y follows a Wishart distribution. The density of the Wishart
distribution is given by

pW (Y ) = c(p, a)|A|
a
2 |Y |

a−p−1
2 exp

(
−1

2
tr(Y A)

)
, Y ∈ U , (13)

and pW (Y ) = 0, when Y 6∈ U . Here A ∈ U and a ∈ R. For the density to
be proper, a > p − 1 must hold. The term c(p, a) denotes the normalising
constant, and is defined as

c(p, a) =

(∫
U
|A|

a
2 |Y |

a−p−1
2 exp

(
−1

2
tr(Y A)

)
dY

)−1

=

(
2ap/2π

p(p−1)
4

p∏
j=1

Γ

(
a+ 1− j

2

))−1

, (14)
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where Γ(·) denotes the Gamma function.
In order to obtain the marginal likelihood of any Gaussian DAG, we will

need results concerning the marginal distributions of X’s subvectors when
X ∼ Np(0,Ω−1) and Ω ∼ Wp(a,A).

Partition X as X = (Xv, Xw), where subvector dimensions are pv and pw.
Naturally, p = pv + pw. Partition the precision and the covariance matrix, Ω
and Σ, respectively as

Σ =

(
Σvv Σvw

Σwv Σww

)
, Ω =

(
Ωvv Ωvw

Ωwv Ωww

)
. (15)

Using these, we have the following relationships between the blocks of ma-
trices

Σvv·w ≡ var(Xv|Xw) ≡ Σvv − ΣvwΣ−1
wwΣwv = (Ωvv)

−1. (16)

The quantity Σvv·w or var(Xv|Xw) is called partial variance of Xv given Xw.
It is defined as a residual variance of Xv after subtracting the variance based
on the linear least squares predictor of Xv from Xw. This equals also the
conditional variance of Xv given Xw in our case.

Since Σ = Ω−1, we can switch the roles of Σ and Ω in (16) to obtain

(Σvv)
−1 = Ωvv − ΩvwΩ−1

wwΩwv ≡ Ωvv·w,

which can be further written as

(Ω−1)vv = (Ωvv·w)−1, (17)

since Σvv = (Ω−1)vv.
The following theorem (Theorem 2.1 in Consonni [4]) is of great use when

we derive the marginal likelihood of the subvector Xv.

Theorem 5.2.1. Assume Ω ∼ Wp(a,A), where A is s.p.d. matrix and a >
p− 1. Use the partition in (15) for Ω and partition A accordingly, then

Ωvv·w ∼ Wpv(a− pw, Avv) (18)

Proof. We can use a theorem found in Applied Multivariate Analysis by Press
[11] to write that, if Ω ∼ W̃p(a,A), then Ωvv·w ∼ W̃p(a− pw, Avv·w). We use
tilde notation since Press defines Wishart distribution using A−1 in place of
A in the formula for the density (13).
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Now assume Ω ∼ Wp(a,A). Using Press’s parametrization, this is equiv-
alent with Ω ∼ W̃p(a, (A)−1). Then the theorem referred above implies that
Ωvv·w ∼ W̃p(a − pw, (A

−1)vv·w), which in our notation means that Ωvv·w ∼
Wp(a− pw, ((A−1)vv·w)−1). But using (17), one may conclude that
((A−1)vv·w)−1 = Avv, which finishes the proof.

5.3 Marginal likelihood with Wishart prior

Let X = (x1, . . . ,xn) denote an independent and identically distributed ran-
dom sample obtained from Np(0,Ω−1). Denote S =

∑n
i=1 xixT

i , which is
the unscaled sample covariance matrix. Now the marginal likelihood can be
computed

m(X) =

∫
U
f(X|Ω)pW (Ω)dΩ

=

∫
U

(2π)−
np
2 |Ω|

n
2 exp

(
−1

2
tr(ΩS)

)
c(p, a)|A|

a
2 |Ω|

a−p−1
2 exp

(
−1

2
tr(ΩA)

)
dΩ,

using the linearity of the trace operator, we get

m(X) = (2π)−
np
2 c(p, a)|A|

a
2

∫
U
|Ω|

n+a−p−1
2 exp

(
−1

2
tr(Ω(S + A))

)
dΩ

= (2π)−
np
2

c(p, a)

c(p, a+ n)

|A|a2
|A+ S|a+n

2

, (19)

where the last equality follows since the expression under the integral is
proportional to a Wishart density with parameters a + n and S + A, and
thus integrates to 1/(c(p, a+ n))|A+ S|a+n

2 . Note that m(X) is a shorthand
notation for p(X|M), where M refers to the underlying model.

Recalling the definition (14), one can compute the ratio of normalising
constants appearing in (19)

c(p, a)

c(p, a+ n)
= 2

np
2

∏p
j=1 Γ

(
a+n+1−j

2

)∏p
j=1 Γ

(
a+1−j

2

) . (20)

Inserting this back into (19), gives

m(X) = (π)−
np
2

∏p
j=1 Γ

(
a+n+1−j

2

)∏p
j=1 Γ

(
a+1−j

2

) |A|a2
|A+ S|a+n

2

. (21)
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Consider next the marginal likelihood of a data related to a subvector of
X, when X ∼ Np(0,Ω−1) and Ω ∼ Wp(a,A). We use the familiar partition
X = (Xv, Xw) and the corresponding partition for matrices defined in (15).

Now from the basic properties of multivariate Gaussians, it follows that
Xv ∼ Npv(0, (Ω−1)vv). By using (17), we can also write that

Xv ∼ Npv(0, (Ωvv·w)−1).

Then, Theorem 5.2.1 tells us that Ωvv·w ∼ Wpv(a− pw, Avv). But now the
situation is essentially the same as in the deriving the marginal likelihood
for the full vector. Thus, we get the marginal data density of Xv just by
substituting

p→ pv, a→ a− pw, A→ Avv and S → Svv

into (21), which results in the following expression

m(Xv) = (π)−
npv

2

∏pv
j=1 Γ

(
a−pw+n+1−j

2

)∏pv
j=1 Γ

(
a−pw+1−j

2

) |Avv|
a−pw

2

|Avv + Svv|
a−pw+n

2

. (22)

5.4 Exponential family setting

Consonni and La Rocca show that the expressions obtained for the marginal
likelihoods (21) and (22), can be also derived in a more general context using
exponential families paired with conjugate priors. We review this approach
here, since it also gives us a simple way to compute the fractional marginal
likelihood in closed form using improper priors. More thorough discussion
on exponential families can be found in [8].

We say that the sampling distribution of data y belongs to an exponential
family, if the density can be written as

f(y|θ) = hn(y) exp{〈θ, s〉 − nM(θ)}, y ∈ Y , (23)

where n is sample size, s = s(y) is the canonical statistic belonging to real
vector space with inner product 〈·, ·〉, θ denotes the canonical parameter and
exp{−nM(θ)} is the normalising constant for each given θ. The leading
factor is a product of base measures hn(y) =

∏n
i=1 h(yi) not absorbed into

the dominating measure. The dominating measure would be a product of
Lebesgue measures in case of multivariate Gaussian data.

23



Suppose we have an i.i.d sample of multivariate Normal data,
xi ∼ Np(0,Ω−1), i = 1, . . . , n. Now the sampling density can be written in
the form of (23) by using the following notation

1. s = −S
2
, where S =

∑n
i=1 xixT

i .

2. The inner product 〈A,B〉 is the trace, tr(ATB), where A and B are
p× p real matrices.

3. Canonical parameter θ is the precision matrix Ω
and M(θ) = −(1/2) log |Ω|.

4. hn(x1, . . . ,xn) = (2π)−
np
2 .

In the above setting, the family of conjugate prior densities on θ have the
form

pC(θ) = K(n•, s•) exp{〈θ, s•〉 − n•M(θ)} (24)

with respect to Lebesgue measure. Here s• is prior guess for s, n• is the
prior sample size and K(n•, s•) is the normalizing constant, if it exists. The
Wishart prior used in the last section is of the form (24), when we denote

1. n• = a− p− 1.

2. s• = −A
2
.

3. The normalizing constant K(n•, s•) = c(p, a)|A|a/2.

Pairing the sampling distribution (23) with the conjugate prior (24) leads to
a posterior density of a form

pC(θ|y) = K(n• + n, s• + s) exp{〈θ, s• + s〉 − (n• + n)M(θ)}. (25)

Now since posterior density can be written as

pC(θ|y) =
pC(θ)f(y|θ)∫

Θ

pC(θ)f(y|θ)dθ

=
pC(θ)f(y|θ)
mC(y)

,
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where mC(y) is the marginal likelihood of y, we can solve for mC(y) and
obtain the following expression for the marginal likelihood

mC(y) =
pC(θ)f(y|θ)
pC(θ|y)

= hn(y)
K(n•, s•)

K(n• + n, s• + s)
, (26)

where terms involving exponential functions have cancelled. It is straightfor-
ward to check that the marginal likelihood for full data (21) derived in the
last section can be obtained from (26). The general form (26) can be also
used to derive the expression for the marginal likelihood of the subvector by
using the Theorem 5.2.1.

5.5 Fractional marginal likelihood in general setting

Model comparison by using fractional Bayes factors (FBF) was more carefully
discussed in the previous chapter. Essentially it boils down to computing a
fractional marginal likelihood, since FBF is defined as a ratio of them. Let
b = n0/n be the training fraction. We use notation m(y, n0) to denote the
b-fractional marginal likelihood of y under some model M , which is given
according to

m(y, n0) =

∫
f(y|θ)pD(θ)dθ∫
f(y|θ)bpD(θ)dθ

, (27)

where f(y|θ) and pD(θ) are the sampling density of data and the default
parameter prior under M , respectively.

We can rewrite the expression (27) as a

m(y, n0) =

∫
f(y|θ)(1−b)pF (θ)dθ, (28)

where pF (θ) is the fractional prior, pF (θ) ∝ f(y|θ)bpD(θ). The fractional prior
is a posterior obtained by updating the possibly improper prior pD(θ) to a
proper one by sacrificing a b-fraction of likelihood.

Our next goal is to provide an expression for (28) using the exponential
family setting. To that end, assume that the sampling density belongs to an
exponential family and the default prior has the form

pD(θ) ∝ exp{〈θ, sD• 〉 − nD
• M(θ)}, (29)
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where sD• and nD
• are allowed to be chosen such that pD(θ) is improper. The

b-fractional likelihood can be written using (23) as

f(y|θ)b = hn(y)
n0
n exp{〈θ, n0s̄〉 − n0M(θ)}

= h̄n0 exp{〈θ, n0s̄〉 − n0M(θ)}, (30)

where we have used h̄ to denote the geometric mean of data set y and s̄ to
denote s/n. By comparing (30) to the general expression of the sampling
density in exponential family setting (23), we see that the b-fractional likeli-
hood can viewed as an ordinary likelihood based on n0 observations with a
leading factor h̄n0 and a canonical statistic n0s̄.

Similar reasoning applies to f(y|θ)(1−b) in (28), since it can be written as

f(y|θ)(1−b) = h̄n−n0 exp{〈θ, (n− n0)s̄〉 − (n− n0)M(θ)}, (31)

which implies that f(y|θ)(1−b) can be seen as a likelihood based on n − n0

observations, canonical statistic (n− n0)s̄ and a leading factor h̄n−n0 .
Now, since the fractional prior pF (θ) is actually a posterior based on the

likelihood (31) and the prior (29), we can use the formula (25) to write

pF (θ) ∝ exp{〈θ, n0s̄+ sD• 〉 − (n0 + nD
• )M(θ)}, (32)

where we assume that the training fraction n0 is chosen such as (32) defines
a proper density.

We have now seen that the fractional likelihood corresponds to a certain
actual likelihood and the fractional prior is of the conjugate form. Thus, the
fractional marginal likelihood

m(y, n0) =

∫
f(y|θ)(1−b)pF (θ)dθ,

can be computed utilizing the result (26), which leads to the expression

m(y, n0) = h̄n−n0
K(n0 + nD

• , n0s̄+ sD• )

K(n+ nD
• , s

D
• + s)

(33)

All in all, we have shown that the fractional marginal likelihood corresponds
to an ordinary conjugate marginal likelihood based on the reduced sample size
n− n0, the canonical statistic s̄ computed from full data and the conjugate
prior that depends on n0 and s̄. This means that the fractional marginal
likelihood can be computed analytically in the Gaussian case using the results
obtained at the beginning of this chapter.
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5.6 Fractional marginal likelihood for Gaussian distri-
butions

Let X = (x1, . . . ,xn) be complete i.i.d sample from Np(0,Ω−1). Denote the
unscaled empirical covariance matrix by S =

∑n
i=1 xixT

i and S̄ = S/n. We
select

pD(Ω) ∝ |Ω|
aΩ−p−1

2 (34)

to be our default improper prior. Remember, that the default prior (29) used
in the previous section had the form

pD(θ) ∝ exp{〈θ, sD• 〉 − nD
• M(θ)}.

By selecting θ = Ω, sD• = 0, nD
• = aΩ − p − 1 and M(Ω) = −(1/2) log |Ω|

in the formula above, we obtain (34). The updated fractional prior had the
conjugate form

pF (θ) ∝ exp{〈θ, n0s̄+ sD• 〉 − (n0 + nD
• )M(θ)}.

Specializing above to a multivariate Normal case with our default prior (34),
leads to an expression

pF (Ω) ∝ exp{〈Ω,−n0
S̄

2
〉 − (aΩ + n0 − p− 1)M(Ω)} (35)

which in this case shows, that the fractional prior for Ω is a Wishart distri-
bution Wp(aΩ + n0, n0S̄). The Wishart density is proper if aΩ + n0 > p− 1.
If we select aΩ = p− 1, then the default prior has the improper form

pD(Ω) ∝ |Ω|−1 (36)

and the corresponding minimum sample size to update this to a proper prior
is n0 = 1.

Consider now the previously used partition of X = (Xv, Xw) and the
fractional marginal likelihood corresponding to data related to variables in
Xv. We have shown that the situation is now essentially the same as it was in
deriving the expression (22). More specifically, we have a Gaussian likelihood
based on n− n0 observations and a conjugate prior Wp(aΩ + n0, n0S̄). Thus,
by making the following substitutions

a→ aΩ + n0, A→ n0S̄, n→ (n− n0), S → (n− n0)S̄,
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into (22), we obtain the fractional marginal likelihood related to data Xv.
This results in the following formula (the equation (22) of Consonni)

m(Xv, n0) = (π)−
(n−n0)pv

2

∏pv
j=1 Γ

(
aΩ−pw+n+1−j

2

)∏pv
j=1 Γ

(
aΩ−pw+n0+1−j

2

) (n0

n

) (aΩ−pw+n0)pv
2 |Svv|−

n−n0
2 .

(37)
The expression for the fractional marginal likelihood (37) is well defined if
Svv is positive definite, which requires that n ≥ pv.

5.7 Marginal likelihood of any Gaussian DAG

Recall, that the general formula for the marginal likelihood of any DAG
model M defined over variables X = (X1, . . . , Xp)

T was given according to
(12) as

p(X|M) =

p∏
j=1

p(Xfa(j)|Mc)

p(Xpa(j)|Mc)
,

where Xpa(j) and Xfa(j) and denote the data related to the parents and the
family of node j, respectively.

We have now all the results needed to compute (12) in closed form. More
in detail, take any complete Gaussian DAG Mc and let the prior for parame-
ters Ω be Wp(aΩ +n0, n0S̄), which is the fractional prior obtained in the last
section. Pair the fractional prior with ordinary Gaussian likelihood based on
n − n0 observations and a canonical statistic S̄. Denote the size of the set
pa(j) by pj. Then, the term p(Xpa(j)|Mc) is given by (37), when we do the
following substitutions

v → pa(j), pv → pj, pw = p− pj.

This results in

p(Xpa(j)|Mc) =(π)−
(n−n0)pj

2

∏pj
i=1 Γ

(
aΩ+n−p+pj+1−i

2

)
∏pj

i=1 Γ
(

aΩ+n0−p+pj+1−i
2

)
·
(n0

n

) (aΩ+n0−p+pj)pj
2 |Spa(j)|−

n−n0
2 , (38)

where we have used notation Spa(j) to mean Spa(j)pa(j), which refers to the
unscaled sample covariance matrix of variables in pa(j).
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By choosing aΩ = p − 1, which corresponds to the improper prior of a
type (36), the minimum sample size is n0 = 1 and (38) becomes

p(Xpa(j)|Mc) = π−
(n−1)pj

2

∏pj
i=1 Γ

(
n+pj−i

2

)
∏pj

i=1 Γ
(

pj+1−i
2

)n− p2
j
2 |Spa(j)|−

n−1
2 . (39)

The numerator p(Xfa(j)|Mc) of (12) can easily be written using (38). We
need only to make substitutions pa(j) → fa(j) and pj → pj + 1, since the
set fa(j) is always one element larger than the set pa(j). This allows us to
write

p(Xfa(j)|Mc) = π−
(n−1)(pj+1)

2

∏pj+1
i=1 Γ

(
n+pj+1−i

2

)
∏pj+1

i=1 Γ
(

pj+2−i
2

) n−
(pj+1)2

2 |Sfa(j)|−
n−1

2 . (40)

In order to obtain the final formula for the marginal likelihood of any Gaus-
sian DAG, we need to compute the ratio p(Xfa(j)|Mc)/p(Xpa(j)|Mc). This is
not done explicitly in Consonni, but it is straightforward to see that Gamma
functions cancel each other, except terms corresponding to i = 1 in the
p(Xfa(j)|Mc). Thus, we’ll get the following form for the local marginal like-
lihood

p(Xfa(j)|Mc)

p(Xpa(j)|Mc)
= π−

(n−1)
2

Γ
(n+pj

2

)
Γ
(

pj+1

2

)n− 2pj+1

2

(
|Sfa(j)|
|Spa(j)|

)−n−1
2

. (41)

And finally, for any Gaussian DAG M over X, the marginal likelihood is
given according to

p(X|M) =

p∏
j=1

π−
(n−1)

2
Γ
(n+pj

2

)
Γ
(

pj+1

2

)n− 2pj+1

2

(
|Sfa(j)|
|Spa(j)|

)−n−1
2

, (42)

where Spa(j) and Sfa(j) have to be positive definite for every j.
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6 Structure learning of Gaussian graphical mod-
els

This chapter discusses the problem of learning graphical models from mul-
tivariate Normal data. We adopt a score-based approach to learning, where
each candidate graph can be given a score. Given enough data, our scoring
function should assign the highest score to the true graph.

We present a fractional marginal pseudo-likelihood (FMPL), which will
be used as our scoring function for learning Gaussian graphical models. Im-
portant property of this scoring function is the node-wise factorization, which
makes it applicable also to a high-dimensional problems.

At the end of the chapter, we briefly present Graphical LASSO (GLASSO),
a common method for estimating the inverse covariance matrices related to
GGM’s. GLASSO will be used in the next chapter, where we test the per-
formance of FMPL numerically, and compare it to GLASSO.

6.1 Marginal likelihood

Consider an undirected graph G = (V,E), where V = {1, . . . , p} is the set
of nodes and E ⊂ V × V is the set of edges. Let X = (X1, . . . , Xp)

T be a
p-dimensional Normal vector and by Ω denote the precision matrix of X. We
assume that Ω is positive definite and for every i 6= j we have, that Ωij = 0,
if and only if there is no edge between nodes i and j. Assume zero mean for
X and denote Ω−1 = Σ, so X ∼ Np(0,Σ).

Suppose we have a sample of independent and identically distributed mul-
tivariate Normal data X = (x1, . . . ,xn), coming from a distribution whose
independence structure can be represented by a graph G∗. We would like to
identify G∗ based onX. This is done with a Bayesian approach by computing
posterior probabilities of different graphs and picking the one maximizing it.

Posterior probability of a graph G given data X is proportional to

p(G|X) ∝ p(G)p(X|G), (43)

where p(G) is prior probability assigned to a specific graph and p(X|G) is the
marginal likelihood. We leave the normalizing constant of posterior out, since
it is the same for all the graphs and therefore cancels when doing comparison.
At this stage, we are only interest in the marginal likelihood, since it is the
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data dependent term in (43). Later on, we will make use of the prior p(G)
term in order to promote sparseness in graph structures.

We recall that the marginal likelihood measures the fit of a model to data
after the effect of parameters has been taken out. By the definition, the
marginal likelihood of X under G is

p(X|G) =

∫
ΘG

p(θ|G)`(θ|X, G)dθ, (44)

where p(θ|G) denotes the parameter prior under G, the term `(θ|X, G) is
the likelihood function and the integral is taken over the set of all possible
parameters under G.

However, computing the marginal likelihood for a general undirected
graph is very difficult, due the global normalizing constant in the likelihood
term. Closed form solution exists only for chordal graphs, which might be a
too restrictive assumption in general [8].

6.2 Marginal pseudo-likelihood

We circumvent the problems involved in the true likelihood function by us-
ing pseudo-likelihood. Pseudo-likelihood was introduced for the first time in
Besag’s article (1972) [2]. The idea behind the pseudo-likelihood is to ap-
proximate the true likelihood by a product of conditional probabilities or
densities, where in each factor variable is conditioned on all the rest. More
formally, consider a likelihood of a single observation x = (x1, . . . , xp)

T . We
use the chain rule of probability to write

p(x|θ) =

p∏
j=1

p(xj|x1, . . . , xj−1, θ).

For every j, denote the remaining variables x1, . . . , xj−1, xj+1, . . . , xp by x−j.
We use an approximation p(xj|x1, . . . , xj−1) ≈ p(xj|x−j), which lets us to
write the pseudo-likelihood p̂(x|θ) as

p̂(x|θ) =

p∏
j=1

p(xj|x−j, θ).

In general, pseudo-likelihood should not be considered as a numerically ex-
act and accurate approximation of the likelihood but as an object that has
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computationally more attractive form and which can be used to obtain con-
sistent estimates of parameters. It can be shown that with certain regularity
assumptions, the pseudo-likelihood estimate for model parameters coincides
with the maximum likelihood estimator [8].

One advantage of using pseudo-likelihood instead of the true likelihood
is that it allows us to replace the global normalization constant by p local
normalising constants related to conditional distributions of variables and
thus makes the computations more tractable.

With help of pseudo-likelihood, our original problem (44) of computing
the marginal likelihood can be written as

p(X|G) =

∫
ΘG

p(θ|G)`(θ|X, G)dθ

≈
∫

ΘG

p(θ|G)

p∏
j=1

p(Xj|X−j, θ, G)dθ (45)

= p̂(X|G)

Term p̂(X|G) is referred as the marginal pseudo-likelihood (MPL), introduced
by Pensar et al in [10]. The global Markov property states that variable Xj

is conditionally independent of the rest given the variables in its Markov
blanket mb(j). More formally, we have that

p(Xj|X−j, θ) = p(Xj|Xmb(j), θ).

Thus, we get the following form for the marginal pseudo-likelihood

p̂(X|G) =

∫
ΘG

p(θ|G)

p∏
j=1

p(Xj|X−j, θ, G)dθ

=

∫
ΘG

p(θ|G)

p∏
j=1

p(Xj|Xmb(j), θ)dθ (46)

Assume global parameter independence, which means that the parameter
prior factorizes according to

p(θ|G) =

p∏
j=1

p(θj).

32



This allows us to factor the MPL integral into integrals over individual pa-
rameter sets Θj related to conditional distributions p(Xj|Xmb(j)). The MPL
integral (46) becomes

p̂(X|G) =

p∏
j=1

∫
Θj

p(θj)p(Xj|Xmb(j), θj)dθj. (47)

6.3 Fractional marginal pseudo-likelihood

One can think the expression (47) for the MPL as a product of terms, where
each term corresponds to a marginal likelihood of a DAG model. The idea is
visualized in Figure 2. This approach offers an interesting way to compute
MPL in closed form.

Figure 2: The factorization of a Markov network into simpler components
with pseudo-likelihood.

Recall the general formula for a marginal likelihood of any DAG model
M , used in the previous chapter:

p(Y|M) =

p∏
j=1

p(Yfa(j)|Mc)

p(Ypa(j)|Mc)
,
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It is useful to rewrite each factor in the expression above in a different form.
Since fa(j) = {j} ∪ pa(j), we have

p(Yfa(j)|Mc) = p(Yj|Ypa(j),Mc)p(Ypa(j)|Mc),

which allows us to write

p(Y|M) =

p∏
j=1

p(Yj|Ypa(j),Mc). (48)

We can see the clear resemblance between the forms (48) and (47). In both
of these, each factor corresponds to a marginal likelihood of a DAG model,
where we have a node and its parent nodes. In the case of Markov networks,
the set of node’s parents is its Markov blanket, mb(j).

Thus, we can use the closed form solution of (48) to compute the marginal
pseudo-likelihood (47) we are after, just by changing pa(j) → mb(j) and
defining fa(j) = {j} ∪mb(j). Then the closed form solution (42) gives

p̂(X|G) =

p∏
j=1

π−
(n−1)

2
Γ
(n+pj

2

)
Γ
(

pj+1

2

)n− 2pj+1

2

(
|Sfa(j)|
|Smb(j)|

)−n−1
2

≡
p∏

j=1

p(Xj|Xmb(j)), (49)

where pj = |mb(j)| and S refers to the full p× p unscaled sample covariance
matrix. As before, Smb(j) and Sfa(j) refer to submatrices of S restricted
to variables in sets mb(j) and fa(j). From now on, p̂(X|G) is referred as
a fractional marginal pseudo-likelihood (FMPL), due the fractional Bayes
factor approach used to derive the analytical form.

Derivation of (49) has been somewhat heuristic, but the next theorem
provides justification for the steps taken and puts FMPL on a firmer ground.
It also ultimately allows us to use FMPL efficiently as a scoring function for
learning undirected graphical models from data.

Theorem 6.3.1. Let X ∼ Np(0, (Ω∗)−1) and G∗ = (V,E∗) denote the the
undirected graph that completely determines the conditional independence
statements between X’s components. Let {mb∗(1), . . . ,mb∗(p)} denote the
set of Markov blankets, which uniquely define G∗.
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Suppose we have a complete random sample X of a size n obtained from
Np(0, (Ω∗)−1). Then the local FMPL estimator

m̂b(j) = arg max
mb(j)⊂V \{j}

p(Xj|Xmb(j))

is consistent, that is, m̂b(j) = mb∗(j) with a probability tending to 1, as
n→∞.

Proof. The proof is presented in the appendix chapter.

Corollary 6.3.2. Let G denote the set of all undirected graphs with p nodes.
Now the global FMPL estimator

Ĝ = arg max
G∈G

p(X|G)

is consistent, that is, Ĝ = G∗ with a probability tending to 1, as n→∞.

Proof. Theorem 6.3.1 guarantees, that each node’s true Markov blanket
is eventually found with probability tending to 1, as sample size increases.
Since the structure of Markov network is uniquely determined by its Markov
blankets, the result follows.

6.4 Search algorithm for graph learning

Since FMPL is a consistent scoring function, we could in theory consider all
the undirected graphs with p nodes and score them. Given enough data, the
true graph would eventually be identified. However, this approach is utterly
doomed in practice if p is even moderately large. To illustrate the inefficiency,
assume that the number of nodes in the graph is p. Then there are 2

p(p−1)
2

possible undirected graphs to consider.
We make use of the node-wise factorisation of FMPL-score and consis-

tency of local estimators to obtain a more efficient way to learn the graph.
We follow the approach used by Pensar et al [10], and the resulting algorithm
is exactly the same as presented there.

Our problem of learning the graph from data X, can be formulated as

arg max
G∈G

p̂(X|G)p(G), (50)
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where G is the set of undirected graphs with p nodes. For now, we assume
each graph equally probable a priori, so the prior term p(G) can be ignored.
Using the equation (49) and the consistency of local Markov blanket estima-
tors, our problem can be factorised to independent sub-problems according
to

arg max
mb(j)⊂V \{j}

p(Xj|Xmb(j)), (51)

where j = 1, . . . , p. We emphasize that the local consistency is the result
that ultimately allows this approach. This factorisation to independent sub-
problems is also the key that allows this method to be used when the number
of variables grows large.

However, since consistency is an asymptotic result, this procedure might
not produce consistent Markov blankets on small sample sizes. By consistent
Markov blankets, we mean that if the node k belongs to l’s Markov blanket,
then l has to be also part of k’s blanket. A method to overcome this will be
presented soon, but we will first go through the search algorithm for Markov
blanket discovery more in detail.

The search algorithm (Algorithm 1 in [10]) uses two operations, add and
delete, to find the score optimal Markov blanket for each node in the graph.
Given node j, we’ll start with an empty set ∅ as a candidate Markov blanket
mb(j). The set of possible Markov blanket members for the given node j is
denoted by C = V \{j}. At each step, the element of C yielding the greatest
improvement in local score p(Xj|Xmb(j)), is added to mb(j). When the size
of mb(j) becomes larger than two, algorithm moves to a deletion phase.

In the deletion phase, we delete nodes from mb(j) until there is no im-
provement in local score or mb(j)’s size is smaller than three. The algorithm
terminates and returns the score optimal Markov blanket, when we cannot
any more find a node, whose addition tomb(j) would increase the local score.
The described algorithm is presented more in detail using pseudo-code in Al-
gorithm 1.

As mentioned earlier, the discovered Markov blankets might not be con-
sistent. We present AND and OR methods that are able to cope with this
problem and combine the found Markov blankets into an undirected graph.
Consider a simple example presented in Figure 3 to illustrate the methods.

The lefter most picture in Figure 3 represents an example of learned
network structure in case of a three node graph. We have found Markov
blankets mb(1) = {2, 3}, mb(2) = ∅ and mb(3) = {1, 2}. These are combined
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Algorithm 1 Markov blanket discovery for node j
1: mb(j)← ∅
2: C ← V \ {j}
3: Add← True
4: while Add = True do
5: mb∗(j)← mb(j)
6: for i ∈ C do
7: if p(Xj|Xmb(j)∪{i}) > p(Xj|Xmb∗(j)) then
8: mb∗(j)← mb(j) ∪ {i}
9: end if

10: end for
11: if mb∗(j) 6= mb(j) then
12: mb(j)← mb∗(j)
13: C ← C \mb(j)
14: Add← True
15: Del← True
16: else
17: Add← False
18: Del← False
19: end if
20: while Del = True & size(mb(j)) > 2 do
21: mb∗(j)← mb(j)
22: for i ∈ mb(j) do
23: if p(Xj|Xmb(j)\{i}) > p(Xj|Xmb∗(j)) then
24: mb∗(j)← mb(j) \ {i}
25: end if
26: end for
27: if mb∗(j) 6= mb(j) then
28: mb(j)← mb∗(j)
29: Del← True
30: else
31: Del← False
32: end if
33: end while
34: end while
35: return mb(j)
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Figure 3: AND- and OR-method

to an edge set specifying an undirected graph by using OR-method

EOR = {(i, j) ⊂ E| i ∈ mb(j) or j ∈ mb(i)}

or AND-method

EAND = {(i, j) ⊂ E| i ∈ mb(j) and j ∈ mb(i)}.

In case of our example, EOR = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)} and
EAND = {(1, 3), (3, 1)}. The corresponding graphs are presented in Figure
3.

6.5 Prior over local graphs

Until now we have assumed that every graph structure is a priori equally
likely and thus the prior term p(G) in (50) was ignored. Consider next a
situation, where we would like to learn sparser graphs. This is done by using
the prior term p(G) to penalize nodes for having too many elements in their
Markov blankets. We make an assumption, that the prior also factorizes
node-wise, and thus the local score can be written as

p(Gj)p(Xj|Xmb(j)). (52)

We use a similar approach as used in [3] to assign prior probabilities over local
graph structures. In this approach, we imagine that the inclusion of an edge
in a graph happens with some unknown probability t, which corresponds to
a successful Bernoulli trial. A finite sequence of these inclusions is a repeated
Bernoulli trial and thus binomially distributed. We obtain the following form
for the local prior

p(Gj) ∝ tpj(1− t)m−pj , (53)
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where pj is the proposed size of j’s Markov blanket, equivalently the number
of edges connected to j (number of successes in repeated Bernoulli trials).
Here m stands for the maximum number of edges, that could be present in
the local graph, that has pj + 1 nodes. So the m corresponds to the number
of trials.

Of course, true probability t is unknown to us. It could be learned from
data, but we adopt a Bayesian approach and put a prior on it. Choosing a
conjugate prior t ∼ Beta(a, b) allows us to write (see [3])

p(Gj) ∝
∫ 1

0

p(Gj|t)p(t)dt ∝
β(a+ pj, b+m− pj)

β(a, b)
,

where β(·, ·) refers to the beta function. In the numerical tests, we use
a = b = 1/2. Motivation for this choice is that Beta(1/2, 1/2) is the Jeffreys
prior for the probability parameter of the binomial distribution (see [6]).

6.6 Graphical LASSO

The graphical LASSO (GLASSO) method can be considered as the current
state-of-the-art method for estimating the inverse covariance matrices related
to GGM’s. The method was introduced by Friedman et al [7] in 2008.

The idea of the method in general is to maximise L1-penalized Gaussian
log-likelihood with respect to the precision matrix Ω. By imposing the L1-
penalty we force some amount of Ω’s elements to be zero and thus obtain
sparser matrices. And since the zero pattern in precision matrix identifies
the underlying undirected graph, we obtain also sparser graphs.

To formulate the GLASSO method little more in detail, suppose we have
n samples from Np(µ, (Ω

∗)−1). Denote the sample covariance matrix by S.
Now, the aim of GLASSO is to find a symmetric positive definite matrix Ω,
that maximises the expression

log |Ω|+ tr(SΩ)− α‖Ω‖1, (54)

where tr(·) is the trace operator, α > 0 is called the tuning or regularisation
parameter. The L1 norm ‖Ω‖1 is defined as a sum of the absolute values
of Ω’s elements. The first two terms in (54) come from the Gaussian log-
likelihood, which has been partly maximised with respect to mean the vector
µ.
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Maximising the expression (54) is a convex optimisation problem. Fried-
man et al [7] propose a fast block coordinate descent algorithm to do the
optimisation in practice. Selecting a sensible value for α is one of the main
questions when applying GLASSO in practice. One way to determine α is
to learn it from data using cross-validation, for instance. This is also the
approach adopted in numerical examples presented in [7].

A GLASSO implementation written in R is available at Cran-repository
[14].
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7 Numerical results
In this section we study the performance of FMPL in learning the graphs from
multivariate Normal data. We use Hamming distance, the true positive rate
and the false positive rates to measure the accuracy of the FMPL method.
The results are compared to ones obtained by using GLASSO method on
same data sets.

7.1 Test setting

We create our data by first specifying the independence structure of the
generating network by using 4 synthetic subgraphs, each of which containing
16 nodes. These smaller graphs are combined together to form a bigger
64 node graph. The subgraphs used in data generation are represented in
Figure 4.

(a) A loopy network (b) A grid network

(c) A hub network (d) A clique network

Figure 4: Synthetic subgraphs. Pictures are taken from [10].
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The bigger 64 node network, that is formed using synthetic the subgraphs
as disconnected components is then replicated to obtain even bigger networks.
We consider the cases of 64, 128, 256, 512 and 1024 nodes.

After the independence structure is assigned, we construct the corre-
sponding precision matrix by first setting the values implied by graph to
zero. The absolute values of the remaining off-diagonal elements are chosen
randomly between 0.1 and 0.9 so that the half of the elements are negative.
The diagonal elements are also first chosen randomly from the same interval
and then a suitable vector is added to ascertain the positive definiteness of
the precision matrix.

Finally, the resulting matrix is inverted to obtain the covariance matrix,
which is used to sample multivariate Normal data using Matlab’s built-in
functions.

We use three methods to learn graphs from simulated data: FMPL
with uniform prior over graphs, FMPL with the sparsity promoting prior
and GLASSO. AND-method is used to form the undirected graph from the
Markov blankets discovered by FMPL. For every input data, we compute
GLASSO using 10 different values for the tuning parameter α. Then the pa-
rameter value leading to the least Hamming distance is chosen. The ten can-
didate parameter values are logarithmically spaced on the interval [0.01, 1].

7.2 Measured quantities

We are interested in three quantities: Hamming distance, true positive rate
and the false positive rate.

Since we know the true underlying graph structure that has been used to
generate the data, we can measure how much a learned structure differs from
it. For a learned graph G, the Hamming distance is defined as the number
of edges, that has to be added and subtracted to obtain the real underlying
graph.

True positive rate (TP) is defined as

TP (G) =
The number of true edges found by a method

Total number of edges in the true graph
.

Accordingly, false positive rate is given by

FP (G) =
The number of false edges found by a method
The number of "non-edges" in the true graph

.
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7.3 Results

Figure 5: A figure presenting Hamming distances of three methods with
different sample sizes, when the number of variables p = 1024.

Figure 6: A table showing TP and FP rates for all the methods.
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Figure 7: Hamming distance plots for dimensions p = 64, 128, 256, 512.

(a) p = 64 (b) p = 128

(c) p = 256 (d) p = 512

By examining the Hamming distance plots, it is clear that FMPL outperforms
GLASSO in every setting under consideration. When the dimension grows,
the generating network becomes sparser, which benefits GLASSO and the
FMPL with sparsity promoting prior.
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Figure 8: A table showing TP and FP rates in dimensions
p = 64, 128, 256, 512.

The tables presenting TP and FP rates show that adding a sparsity pro-
moting prior to FMPL greatly reduces the false positive rate, which is vital
in the high dimensional cases, where the generating network is sparse. These
tests indicate that GLASSO can maintain fairly good FP rate in every set-
ting used, but it needs quite a lot of data to be able the find all the true
edges.
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8 Conclusions
We have presented the fractional marginal pseudo-likelihood, a Bayesian
method for learning graphical models from multivariate Normal data. A
particular strength of the method is its objectivity: we do not need to assign
any subjective prior beliefs on model parameters, which makes the method
easily applicable by the user.

Often the interesting real world applications consider situations where
the number of variables is much larger than the available sample size. The
adopted Bayesian approach can cope with these situations naturally through
the marginalization over the nuisance parameters in the model. By assigning
a sparsity promoting prior over the graph structures, the method was also
shown to estimate sparse graphs accurately from synthetic data.

The FMPL method has a sound theoretical basis. Given enough data, the
true graph structure will be eventually identified. The result was proven by
showing the consistency of the local Markov blanket estimators. This result
also allows us to factorise our problem into independent sub-problems, which
can be then solved parallel. The factorisation property is the key component,
that makes the method applicable also in the high dimensional settings.

Future research would include further analysis of the method, its applica-
tions to real data and making the method more robust to outliers by relaxing
the Gaussian assumption. The robust method could be compared against a
method by Sun & Li [12], which was shown to perform better than GLASSO,
when the data include outliers.
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A Consistency proof
In this chapter we well provide the proof of the consistency of FMPL as a
local Markov blanket estimator, as stated in the chapter 6. During the proof,
we will make use of a couple well-known results, which are presented here.
The proof itself has not appeared anywhere before and it is result of original
work presented here. We will start by reviewing the notation and the setting
used in the chapter 6.

A.1 Statement of the theorem

Consider an undirected graph G = (V,E), where V = {1, . . . , p} is the set
of nodes and E ⊂ V × V is the set of edges. Let X = (X1, . . . , Xp) be a
p-dimensional Gaussian random vector and Ω denote the precision matrix of
X. We assume that Ω is positive definite and Ωij = 0, if and only if there
is no edge between nodes i and j. Assume zero mean for X and denote
Ω−1 = Σ, so X ∼ Np(0,Σ).

Let X = (x1, . . . ,xn)T denote a complete random sample obtained from
this distribution. The local fractional marginal pseudo-likelihood (FMPL)
for the node Xj can be written as

p(Xj|Xmb(j)) = π−
n−1

2
Γ
(n+pj

2

)
Γ
(

1+pj
2

) ( 1

n

) 1+2pj
2
(
|Sfa(j)|
|Smb(j)|

)−n−1
2

, (55)

in which mb(j) denotes the Markov blanket of Xj and fa(j) = mb(j) ∪ {j},
pj is the cardinality of the set mb(j) and S is a matrix containing sums of
squares and products of observation vectors’ coordinates. SA is a submatrix
of S restricted to variables in the set A.

Theorem A.1.1. Let X ∼ Np(0, (Ω∗)−1) and G = (V,E) denote the the
undirected graph that completely determines the conditional independence
statements between X’s components. Let {mb∗(1), . . . ,mb∗(p)} denote the
set of Markov blankets, which uniquely define G.

Suppose we have a complete random sample X of a size n obtained from
Np(0,Ω∗). Then the local FMPL estimator

m̂b(j) = arg max
mb(j)⊂V \{j}

p(Xj|Xmb(j))
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is consistent, that is, m̂b(j) = mb∗(j) with a probability tending to 1, as
n→∞.

A.2 Preliminary results

The following propositions are based on the ones found in [13].

Theorem A.2.1. (6.7.1; p. 179) Suppose the Normal random vector X can
be partitioned into three (XA, XB, XC) and all conditional independence con-
straints can be summarised by the single statement XB ⊥⊥ XC |XA. If XA, XB

and XC are p-,q- and r-dimensional respectively, then the deviance

dev(XB ⊥⊥ XC |XA) = −n log
|S||SA|

|SA∪B||SA∪C |
has an asymptotic chi-squared distribution with qr degrees of freedom.

Here S is defined as before, but in [13] S is used to denote the sample covari-
ance matrix. It is clear that this doesn’t change the statement of the theorem
in any manner. Note that theorem holds also if A = ∅, since complete inde-
pendence can be considered a special case of the conditional independence.
In this case, term |SA| in the expression of deviance just disappears.

Theorem A.2.2. (5.6.1; p. 138) Consider the partitioned random vector
X = (XA, XB, XC). Let X̂A[XB∪C ] denote the linear least squares predic-
tor of XA from XB∪C . Now it holds that

var(X̂A[XB∪C ]) = var(X̂A[XB]) + var(X̂A[XC − X̂C [XB]]),

where var(X̂A[XC − X̂C [XB]]) can be expressed using partial covariance as

cov(XA, XC |XB)var(XC |XB)−1cov(XC , XA|XB).

The next theorem considering a determinant of a partitioned matrix can be
found in [11].

Theorem A.2.3. (2.6.1; p. 26) Let A be an arbitrary (n+p)×(n+p) matrix.
Partition A as follows

A =

(
A11 A12

A21 A22

)
,

where A11 is p × p matrix, A12 is p × n, A21 is n × p and A22 is n × n. If
|A22| 6= 0, then

|A| = |A22| · |A11 − A12(A22)−1A21|.
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In the proof, we will study the asymptotic behaviour of the local FMPL
as sample size increases. The terms that are asymptotically constant with
respect to the sample size n will be ignored. We’ll use notation O(1) and
Op(1) to denote this. More formally:

Definition A.2.4. Let (xn)∞n=1 be a sequence of real numbers. We write

xn = O(1), as n→∞,

to say that the sequence (xn) is bounded. More formally, there is M > 0 such
that

|xn| ≤M, for every n ∈ N.

Definition A.2.5. Let (Xn)∞n=1 be a sequence of real valued random vari-
ables. We write

Xn = Op(1),

to say that the sequence (Xn) is bounded in probability, that is, for any ε > 0
there is M > 0 such that

P (|Xn| > M) < ε, for every n ∈ N.

The following asymptotic approximation for the logarithm of the Gamma
function is based on the result found in [1].

Theorem A.2.6. (6.1.41; p. 257) Let x→∞, x > 0. Now it holds, that

log Γ(x) ≈ (x− 1

2
) log x− x+O(1).

This theorem is referred in the proof as Stirling’s asymptotic formula.

A.3 The proof

The main idea of the proof is to examine the score given to node’s true
Markov blanket and compare it to a score given to some other Markov blanket
candidate. As n grows, we will show that the true Markov blanket will get
the higher score, despite the choice of the set to be compared against.

The proof is divided in two parts. First, we show that the FMPL score
does not overestimate. The true Markov blanket is preferred over the sets
containing unnecessary nodes. The second part shows that the score does
not underestimate. The set that does not contain all the members of the true
Markov blanket will get strictly lower score. Combining these two results will
prove our theorem.
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Overestimation

Let mb∗ ⊂ V and fa∗ ⊂ V denote the true Markov blanket and the true
family of the node Xj, respectively. We denote the cardinality of mb∗ by
pj. Let mb ⊂ V be a superset of the true Markov blanket mb∗. Denote
a = |mb| − pj. Since mb∗ ⊂ mb, we have a > 0.

We want to show that

log
p(Xj | Xmb∗)

p(Xj | Xmb)
→∞

in probability, as n → ∞. Showing this will guarantee that FMPL prefers
the true Markov blanket over its supersets as the sample size increases.

Consider next the log ratio of FMPLs. The term containing the power of
π appears in both of the FMPLs, and so it cancels. By noticing that

n
−
(

1+2pj
2

)

n
−
(

1+2(pj+a)

2

) = na,

we get the following form for the ratio

log
p(Xj|Xmb∗)

p(Xj|Xmb)
= log

Γ
(n+pj

2

)
Γ
(n+pj+a

2

) + log
Γ
(

1+pj+a

2

)
Γ
(

1+pj
2

)
+ a log n−

(
n− 1

2

)
log

(
|Sfa∗||Smb|
|Smb∗||Sfa|

)
. (56)

The second term in (56) doesn’t depend on n so it can be omitted. Denote
m = (n + pj)/2. Clearly m → ∞, as n → ∞. Now we can write the first
term in (56) as

log
Γ(m)

Γ
(
m+ a

2

) = log Γ(m)− log Γ
(
m+

a

2

)
. (57)

Now letting n → ∞ and by using Stirling’s asymptotic formula for each of
the terms in (57), we get

log Γ(m)− log Γ
(
m+

a

2

)
=

(
m− 1

2

)
logm−m

−
((

m+
a

2
− 1

2

)
log
(
m+

a

2

)
−
(
m+

a

2

))
+O(1).
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We see that m term cancels and the constant a/2 in the second term can be
omitted. After rearranging terms, result can be written as

m log

(
m

m+ a
2

)
+

1

2
log

(
m+ a

2

m

)
− a

2
log
(
m+

a

2

)
+O(1). (58)

Asymptotically only the last log-term in (58) is relevant and the formula
simplifies to

− a

2
log
(
m+

a

2

)
+O(1). (59)

This can be seen by noticing, that as n→∞, we have

m log

(
m

m+ a
2

)
=

1

2
log

(
1

1 + a
2m

)2m

→ 1

2
log e−a = −a

2

and
1

2
log

(
m+ a

2

m

)
=

1

2
log
(

1 +
a

2m

)
→ 0.

So far, we have shown that asymptotically

log
Γ(m)

Γ
(
m+ a

2

) = −a
2

log
(
m+

a

2

)
+O(1),

or equivalently by using variable n

log
Γ
(n+pj

2

)
Γ
(n+pj+a

2

) = −a
2

log

(
n+ pj + a

2

)
+O(1). (60)

No we can simplify the original formula (56) by combining the first and the
third term

log
Γ
(n+pj

2

)
Γ
(n+pj+a

2

) + a log n = −a
2

log

(
n+ pj + a

2

)
+
a

2
log n2 +O(1)

=
a

2
log

(
2n2

n+ pj + a

)
+O(1)

=
a

2
log

(
2n

1 +
pj
n

+ a
n

)
+O(1)

=
a

2
log n+O(1). (61)
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Consider next the last term in (56)

−
(
n− 1

2

)
log

(
|Sfa∗||Smb|
|Smb∗||Sfa|

)
. (62)

Since mb∗ ⊂ mb, we can write mb = mb∗ ∪ R, where R denotes the set of
unnecessary variables in mb. Recall the Theorem A.2.1 and notice that by
denoting

A = mb∗, B = {j} and C = R,

it holds that XB ⊥⊥ XC |XA, since mb∗ was Xj’s true Markov blanket. Note
also that in this case qr = 1 · a = a. Now the deviance can be written as

dev(Xj ⊥⊥ XR|Xmb∗) = −n log

(
|Sfa||Smb∗|
|Sfa∗||Smb|

)
, (63)

which is essentially just the determinant term (62) multiplied by a constant
−2. Let us denote Dn = dev(Xj ⊥⊥ XR|Xmb∗). The determinant term gets
the following representation

−
(
n− 1

2

)
log

(
|Sfa∗||Smb|
|Smb∗ ||Sfa|

)
= −n

2
log

(
|Sfa∗||Smb|
|Smb∗||Sfa|

)
+Op(1)

= −Dn

2
+Op(1). (64)

The Op(1) error on the first line comes from omitting the term

1

2
log

(
|Sfa∗||Smb|
|Smb∗||Sfa|

)
.

Theorem A.2.1 says that asymptotically, it holds that Dn ∼ χ2
a. In other

words
Dn

d−→ D, D ∼ χ2
a.

Convergence in distribution implies that the sequence (Dn) is bounded in
probability

Dn = Op(1).

All in all, asymptotically

−
(
n− 1

2

)
log

(
|Sfa∗||Smb|
|Smb∗||Sfa|

)
= Op(1).
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Adding the results together, we have shown that, as n→∞

log
p(Xj | Xmb∗)

p(Xj | Xmb)
=
a

2
log n+Op(1). (65)

Now since a > 0, then

log
p(Xj | Xmb∗)

p(Xj | Xmb)
→∞

in probability, as n→∞ .

Underestimation

Let mb∗ denote the true Markov blanket of node Xj and mb ( mb∗. Let
A ⊂ V \fa∗. Remember that fa∗ was defined to be mb∗ ∪ {j}. Note that A
could also be an empty set. We want to show that

log
p(Xj | Xmb∗∪A)

p(Xj | Xmb∪A)
→∞

in probability, as n→∞. Denote |mb∗∪A| = pj and a = |mb∪A|−pj. Here
a < 0, since mb is a subset of the true Markov blanket. We can now proceed
similarly as in the overestimation part, and write the log ratio as

log
p(Xj|Xmb∗∪A)

p(Xj|Xmb∪A)
= log

Γ
(n+pj

2

)
Γ
(n+pj+a

2

) + log
Γ
(

1+pj+a

2

)
Γ
(

1+pj
2

)
+ a log n−

(
n− 1

2

)
log

(
|Sfa∗∪A||Smb∪A|
|Smb∗∪A||Sfa∪A|

)
. (66)

The first three terms are just the same ones appearing in (56), which allows
us to write

log
p(Xj|Xmb∗∪A)

p(Xj|Xmb∪A)
=
a

2
log n−

(
n− 1

2

)
log

(
|Sfa∗∪A||Smb∪A|
|Smb∗∪A||Sfa∪A|

)
+O(1).

(67)

Consider next the determinant term

−
(
n− 1

2

)
log

(
|Sfa∗∪A||Smb∪A|
|Smb∗∪A||Sfa∪A|

)
. (68)
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By the definition of S, it is clear that

S

n
= Σ̂ =

1

n

n∑
i=1

Xi(Xi)T ,

where Σ̂ is the sample covariance matrix, or equivalently the maximum like-
lihood estimate of the true covariance matrix. As n approaches infinity, the
MLE converges in probability to the true covariance matrix Σ.

Letting n→∞, we can write the argument of logarithm in (68) as follows

|Σfa∗∪A|
|Σmb∗∪A|
|Σfa∪A|
|Σmb∪A|

(69)

We can simplify the numerator and denominator by noticing that,

Σfa∗∪A =


var(Xj) cov(Xj, Xmb∗∪A)

cov(Xj, Xmb∗∪A)T Σmb∗∪A

 ,

where var(Xj) is the variance of variable Xj, cov(Xj, Xmb∗∪A) is a horizontal
vector containing covariances between Xj and each of the variables in set
mb∗ ∪ A. Using the Theorem A.2.3, we have

|Σfa∗∪A| = |Σmb∗∪A| ·
(
var(Xj)− cov(Xj, Xmb∗∪A) (Σmb∗∪A)−1 cov(Xj, Xmb∗∪A)T

)
= |Σmb∗∪A| ·

(
var(Xj)− var(X̂j[Xmb∗∪A])

)
= |Σmb∗∪A| · var (Xj| Xmb∗∪A) .

Last equality follows from the definition of partial variance, which is the
residual variance of Xj after subtracting the variance based on X̂j[Xmb∗∪A],
the linear least squares predictor of Xj from variables in mb∗∪A. Using this,
we get

|Σfa∗∪A|
|Σmb∗∪A|

= var (Xj | Xmb∗∪A)

and
|Σfa∪A|
|Σmb∪A|

= var (Xj | Xmb∪A) .

55



Plugging these into (69) gives

|Σfa∗∪A|
|Σmb∗∪A|
|Σfa∪A|
|Σmb∪A|

=
var (Xj | Xmb∗∪A)

var (Xj | Xmb∪A)
(70)

The form (70) makes it easier to analyse the behaviour of the determinant
term and we can write the log ratio in (66) as follows

log
p(Xj|Xmb∗∪A)

p(Xj|Xmb∪A)
=
a

2
log n− n

2
log

var (Xj | Xmb∗∪A)

var (Xj | Xmb∪A)
+Op(1). (71)

By looking at (71), it’s clear that consistency is achieved if we can show that

var (Xj | Xmb∗∪A)

var (Xj | Xmb∪A)
< 1. (72)

The equation (72) is equivalent to

var (Xj | Xmb∗∪A) < var (Xj | Xmb∪A)

⇔ var(Xj)− var(X̂j[Xmb∗∪A]) < var(Xj)− var(X̂j[Xmb∪A])

⇔ var(X̂j[Xmb∗∪A]) > var(X̂j[Xmb∪A]). (73)

Now assume mb 6= ∅, and denote the missing true Markov blanket members
by R = mb∗\mb. Then with the help of Theorem A.2.2, we can write the
left side of (73) as

var(X̂j[Xmb∗∪A]) = var(X̂j[Xmb∪A∪R])

= var(X̂j[Xmb∪A]) + var(X̂j[XR − X̂R[Xmb∪A]]).

The term var(X̂j[XR − X̂R[Xmb∪A]]) > 0, since elements of R are in X ′js
Markov blanket. This shows that (72) holds.

If mb = ∅, the inequality (73) can be written as

var(X̂j[Xmb∗∪A]) > var(X̂j[XA]).

Using again the Theorem A.2.2, this becomes

var(X̂j[XA]) + var(X̂j[Xmb∗ − X̂mb∗ [XA]]) > var(X̂j[XA]),
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which clearly holds.
All in all, we have showed that

−n
2

log
var (Xj | Xmb∗∪A)

var (Xj | Xmb∪A)
→∞,

in probability, as n→∞. This implies that

log
p(Xj | Xmb∗∪A)

p(Xj | Xmb∪A)
→∞

in probability, as n→∞, since n increases faster than (a/2) log n decreases.

To make it more transparent to see why these two proposition are sufficient
to prove our theorem, consider a variable Xj and its true Markov blanket
mb∗. Take an arbitrary set A ⊂ V \{j}, A 6= mb∗. We will show that FMPL
prefers mb∗ over A.

1. Assume mb∗ = ∅. Now it holds that mb∗ ⊂ A and the overestimation
part of the proof guarantees that mb∗ is preferred over A.

2. Assume mb∗ 6= ∅. Now one of the following three cases has to hold.

(i) We have mb∗ ∩A = ∅. Now the underestimation part implies that
mb∗ ∪ A is preferred over A and mb∗ is preferred over mb∗ ∪ A
(overestimation). Note that this covers also the case when A = ∅.

(ii) We have mb∗ ∩ A ( mb∗. This case is similar to (i).

(iii) We have mb∗ ∩ A = mb∗. This is equivalent to mb∗ ⊂ A and the
overestimation statement implies that mb∗ is preferred over A.
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