
Dynamic Isolated Domains

Thomas Nyman

Helsinki October 6, 2014

MSc thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33725034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Thomas Nyman

Dynamic Isolated Domains

Computer Science

MSc thesis October 6, 2014 68 pages

mandatory access control, isolation, Linux, migration, namespaces, security, policy, virtualization

Operating System-level Virtualization is virtualization technology based on running multiple iso-

lated userspace instances, commonly referred to as containers, on top of a single operating system

kernel. The fundamental di�erence compared to traditional virtualization is that the targets of

virtualization in OS-level virtualization are kernel resources, not hardware. OS-level virtualization

is used to implement Bring Your Own Device (BYOD) policies on contemporary mobile platforms.

Current commercial BYOD solutions, however, don't allow for applications to be containerized dy-

namically upon user request. The ability to do so would greatly improve the �exibility and usability

of such schemes.

In this work we study if existing OS-level virtualization features in the Linux kernel can meet the

needs of use cases reliant on such dynamic isolation. We present the design and implementation

of a prototype which allows applications in dynamic isolated domains to be migrated from one

device to another. Our design �ts together with security features in the Linux kernel, allowing

the security policy in�uenced by user decisions to be migrated along with the application. The

deployability of the design is improved by basing the solution on functionality already available

in the mainline Linux kernel. Our evaluation shows that the OS-level virtualization features in

the Linux kernel indeed allow applications to be isolated in a dynamic fashion, although known

gaps in the compartmentalization of kernel resources require trade-o�s between the security and

interoperability to be made in the design of such containers.

ACM Computing Classi�cation System (CCS):

K.6.5 [Management of Computing and Information Systems][Security and Protection]

Tiedekunta � Fakultet � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

ii

Acknowledgments

First and foremost, I wish to express my sincere appreciation to my advisors, Prof.

Asokan, and Elena Reshetova for their guidance and advice throughout the course

of this work. I would like to thank Dr. Sini Ruohomaa for her invaluable support

and wish her further success in her future endeavors.

I also would like to extend my gratitude toward the faculty at the Department of

Computer Science at the University of Helsinki. I have thoroughly enjoyed my time

as a student at the university. They are too numerous to name here, but I would like

to single out senior lecturer Arto Wikla. His teaching style and enthusiasm made a

strong impression on me and I carry with me positive memories of his classes.

Last but not least I wish to thank my family � my Parents, for their love and

encouragement, and my partner Kajsa, for her patience and caring. This would not

have been possible without you.

This work was supported by the Intel Collaborative Research Institute for Secure

Computing.

iii

Contents

1 Introduction 1

2 Background 3

2.1 Virtualization . 4

2.2 The Dilemma of the Omnipotent Root 10

2.3 Chroot jails . 13

2.4 FreeBSD jails . 15

2.5 Resource namespaces . 16

2.5.1 Mount namespaces . 20

2.5.2 UTS namespaces . 21

2.5.3 IPC namespaces . 24

2.5.4 PID namespaces . 25

2.5.5 Network namespaces . 26

2.5.6 User namespaces . 27

2.6 Resource Control . 30

2.7 Discretionary and Mandatory Access Control 31

3 Design Goals 34

3.1 Requirements . 36

3.2 Assumptions . 37

4 System and Threat Model 38

4.1 System Model . 38

iv

4.2 Threat model . 42

5 Design and Implementation 43

5.1 Architecture . 43

5.2 Filesystem compartmentalization . 44

5.3 Process compartmentalization . 49

5.4 User compartmentalization . 50

5.5 Network compartmentalization . 51

5.6 Device compartmentalization . 52

5.7 Permission compartmentalization . 53

5.8 Application migration . 53

6 Results and Evaluation 54

7 Related Work 58

8 Conclusion 63

References 63

1

1 Introduction

In the 1960s, before multitasking operating systems, virtualization was developed for

mainframe computers as a method to logically divide the mainframe resources among

di�erent applications. Since then, virtualization has become commonplace both on

desktop, and warehouse scale computers. Virtualization has been instrumental in

the emergence of the cloud-computing paradigm.

A relatively recent research direction is Operating System-level Virtualization. OS-

level virtualization is based on running multiple isolated userspace instances, com-

monly referred to as containers, on a single operating system kernel. The fun-

damental di�erence compared to traditional virtualization is that the targets of

virtualization in OS-level virtualization are kernel resources, not hardware. As a

consequence, OS-level virtualization exhibits less overhead compared to traditional

virtualization technologies, as guests can share a common instance of the operating

system kernel. The challenge with OS-level virtualization lies in compartmentalizing

kernel functionality in a way which ensures adequate isolation between, potentially

untrusted, containers.

The principal motivations behind the development OS-level virtualization technol-

ogy have been use cases in high-performance computing, shared hosting and high-

availability environments. With this in mind, it is no surprise that OS-level vir-

tualization technology is primarily found on Unix-like operating systems. How-

ever, the technological advances in mobile computing combined with the emer-

gence of use cases such as Bring Your Own Device (BYOD) policies [MVH12],

have lead to the application of OS-level virtualization technology also on mobile

devices [ADH+11, TMO+12]. With regards to BYOD, OS-level virtualization can

provide strong isolation with less overhead compared to traditional virtualization

2

technologies. This is crucial on energy-constrained devices where increased CPU

usage translates into reduced battery lifetime.

Containerization is, however, no panacea. Current commercial BYOD solutions

are merely a stop-gap measure IT-departments can use to protect corporate assets

on employee devices against risks that follow from the di�erent sense of ownership

users may have about personal devices, as opposed corporate-issued ones. This

constitutes merely the low-hanging fruit as far as threats go. Compromise of the

host kernel makes any protection containers may provide moot. Still, this does

not mean that OS-level virtualization would not have a use as one layer in a more

comprehensive solution to mobile security, possibly combined with other platform

security measures.

Other challenges with OS-level virtualization on mobile devices lie in the area of

usability. While it is perfectly natural for containers to appear as completely sep-

arate entities in a server setting, the users of modern mobile devices have become

accustomed to �seamless� interaction between application on their device as well

easy access to new apps. The compartmentalization provided by containerization

needs to �exible enough to accommodate di�erent interaction patterns and novel

use cases. This leads to an inevitable trade-o� between security and ease-of-use.

To keep up with the demand of including new applications in existing work�ows,

applications need to be containerized dynamically upon user request.

As far as target platforms go, Linux-based operating systems constitute an appealing

target for research in this particular area. Not only are Linux-based mobile platforms

prominent, recent versions of the mainline Linux kernel also include a rich set of OS-

level virtualization features. These features are modular by design, allowing them

to be applied for process containment in a variety of ways and combinations. This

brings a high-level of �exibility, but the sometimes the subtle interaction between

these features makes applying them in a secure manner non-trivial. The purpose

3

of this thesis is to study the use of current container-based isolation mechanisms

in the Linux kernel, in particular their applicability to novel use cases in mobile

computing. In particular, we make the following contributions:

� We describe the use of existing Linux kernel features for dynamic applica-

tion containerization, and evaluate out setup with regards to the threat

model described in Section 4.2.

� We describe the design and implementation of a prototype system

for application migration, with the aim of preserving established security

domains for applications between devices.

This thesis is organized as follows: Chapter 2 provides a study of OS-level vir-

tualization features available in the mainline Linux kernel, as well as a historical

overview of the development of process isolation mechanisms leading up to current

container-based isolation. Chapter 3 describes the design goals behind the proto-

type, while Chapter 4 introduces the system and threat models we use as a basis

for the design. Chapter 5 presents the design and implementation of the prototype

itself. The methodology and results of the evaluation of the prototype is described

in Chapter 6. Related work is discussed in Chapter 7. Finally, Section 8 summarizes

our contributions and discusses open issues as well as directions for future work.

2 Background

In this section we give a brief overview of the origins of virtualization (Section 2.1), its

use cases, and the development of operating system-level virtualization technology

(Sections 2.3, 2.4). We also describe the current primitives for container-based

virtualization available in the Linux kernel (Section 2.5) as well security features

that are relevant to common use cases and our prototype (Sections 2.6, 2.7).

4

2.1 Virtualization

Conventional Virtual Machines (VMs) are e�cient, isolated duplicates of the real

machine they run on. The real machine or environment is known as the host, while

the virtual machines or environments are referred to as guests. Virtual machines

are created and run by a Virtual Machine Monitor (VMM). The VMM has three

essential properties [PG74]:

Equivalence

The VMM provides an environment which is essentially identical to the original

machine.

E�ciency

Programs run in the VM environment exhibit at worst minor performance

penalties.

Safety

The VMM is in complete control of system resources.

VMMs are traditionally classi�ed into two types:

Type I (native, or bare metal)

Type I VMMS are run directly on the host hardware, mediating access between

the hardware and a number of guests running on top of the VMM. The VMM

may be implemented in either hardware or �rmware. A schematic of a Type I

VMM architecture is shown in Figure 1a.

Type II (hosted, or host-based)

Type II VMMs are software VMMs which run within a conventional operating

system environment. Guest operating systems are run on top of the VMM. A

schematic view of a Type II VMM architecture is shown in Figure 1b.

5

(a) Bare metal virtualization (b) Host-based virtualization

Figure 1: VMM architectures

In both cases, the system software of each guest is a full-blown operating system in

its own right, with distinct kernels and userlands1. The guest operating systems that

run within each virtual machine either execute machine I/O instructions that the

VMM emulates, or the operating system is modi�ed to make system calls directly

to the VMM. The latter approach is called paravirtualization.

The term virtual machine most likely originates from the IBM M44/44X experimen-

tal paging system project [Var97], which in the mid-60s emulated multiple virtual

IBM 7044 machines on a single 7044 mainframe. The M44/44X was one of the

�rst instances of partial virtualization, where the virtual machine emulates multiple

instances of a signi�cant portion of an underlying hardware environment. A key

form of partial virtualization is address space virtualization, in which each virtual

machine consists of an independent address space.

The experimentation with partial virtualization eventually led to the creation of the

IBM CP-40 [Var97], the �rst system capable of full virtualization. In full virtual-

ization, the underlying virtual machine emulates hardware to such a degree that an

unmodi�ed guest operating system designed for the same instruction set may be run

1Userland software refers to any software part of, or running on top of the operating system

and not part of the operating system kernel.

6

in isolation within the virtual machine. The successor to CP-40, CP-67 was used

in IBM's CP-67/CMS operating system for the System/360-67 mainframe. CP-

67/CMS became the �rst widely available virtual machine architecture. CP-67 was

the Control Program portion of the Control Program / Cambridge Monitoring Sys-

tem (CP/CMS) time-sharing operating system. In the CP/CMS architecture, the

CP creates the virtual machine environment. Each virtual machine run a copy of

CMS, a lightweight single-user operating system. By emulating a full, stand-alone

computer for each user, CP/CMS could run any S/360 software in a time-sharing en-

vironment, not just applications speci�cally designed for time-sharing. In addition,

CP/CMS achieved unprecedented time-sharing performance compared to contem-

porary multi-tasking operating systems. The CP/CMS virtual machine concept was

also an important step in operating system design, as it greatly improved system

reliability and security.

The CP-67/CMS system was later reimplemented for the System/370 mainframe.

The successor, CP-370/CMS was never released as such, but became the foundation

of IBM's Virtual Machine Facility/370 (VM/370) operating system [Cre81], an-

nounced in 1972. The S/370 mainframe for use with VM/370 was the �rst system

to provide hardware-assisted virtualization, i.e. architectural support that facilitates

building a virtual machine monitor. In particular the processor architecture al-

lowed the VMM to set the processor into partial execution mode [Olb78]. In this

unprivileged mode, privileged instructions by the guest operating system are not

executed directly, but generate a trap instruction which results in a context switch

to the VMM. This greatly simpli�es the implementation of the VMM and improves

performance, as the VMM only needs emulate the traps to allow the correct exe-

cution of the guest operating system. This technique later became known as direct

execution [BDR02].

7

In CP-67, certain model-dependent and diagnostic instructions were not virtualized.

The diagnostic instruction DIAG was as used as a signal between a CMS instance and

the CP. This is one of the earliest examples of a paravirtualization interface, which

allowed the CMS to request the CP to perform �lesystem operations and request

other VM services directly, avoiding the overhead of of full emulation. In VM/370,

the term hypervisor was used to refer to the virtual DIAG instruction handler2. The

term has later become synonymous with VMM.

With the commoditization of microcomputers, in particular the emergence of the

PC platform, rapidly decreasing hardware costs, and more sophisticated operating

systems, mainframe virtualization architectures based on direct execution began

to lose their appeal. The x86 architecture initially lacked hardware support for

virtualization. Hence research on virtualization for the x86 architecture predating

the virtualization extensions to the x86 instruction set focused on software-based

techniques. The �rst commercial virtualization solutions for x86 were aimed at

workstation computers, allowing a guest operating system to be run on top of a

VMM running as a process on the host operating system. VMware workstation and

Virtual PC, the best known virtualization solutions for x86 at the time, utilized

dynamic binary translation [AA06] to achieve full virtualization support on the x86

architecture. Without hardware support for trap-and-emulate style direct execution

the VMM would, whenever possible, run user-mode and virtual real mode code di-

rectly. When direct execution was not possible, as in the case of kernel-mode or real

mode code, the VMM would resort to rewriting guest instructions to allow them to

be executed in non-privileged mode. Binary translation also allows cross-platform

virtualization, where the VMM is used provide compatibility between di�erent pro-

cessor architectures. This makes it possible to run entire operating systems written

for a particular processor architecture to be run as a guest on top of a host operating

2http://www.zdnet.com/blog/btl/etymology-of-hypervisor-surfaces/1710

8

system written for another architecture. However, binary translation incurs consid-

erable overhead, as no instructions may be executed directly prior to the binary

translation.

Software-based virtualization enabled the widespread use of commodity hardware

for contemporary use-cases of virtualization technology:

Alternate operating systems

Virtual machines allow an alternate operating system to be run as a guest

operating system, without modifying the host operating system. Reasons for

this include use of applications which are not supported on the host operating

system, or evaluating the guest operating system without altering the host

operating system setup.

Server consolidation

Multiple virtual machines can be run on one physical server, increasing the

hardware utilization and energy e�ciency in hosting environments. Virtual

machines can also be provisioned as needed without the need to purchase

additional hardware up-front. They can also be relocated from one physical

host to another.

Fault containment

Virtual machines can be used prevent the propagation of a software failure.

This could include studying malware or misbehaving software in a safe environ-

ment. When done, the VM can simply be discarded. Alternatively, multiple

copies of the VM might exist, allowing a malfunctioning system to be replaced

with a clean copy in high-availability environments.

Resource management

Virtual machines can also be used as a unit for resource allocation. VMs have

9

enabled Internet hosting providers to provide customers with dedicated VM

instances. Such Virtual Private Servers (VPSs) are for many purposes equiva-

lent to a dedicated physical server, including allowing the customer superuser

privileges on the guest operating system, but much more cost-e�ective, as they

share the physical hardware with other VPS instances. The customer may be

allocated a certain amount of resources, such as storage space and CPU cycles

for their VPS, to use as they please, or they might billed according to the

amount of resources used by their VM.

In the context of cloud computing, virtualization enables cloud computing platforms

to dynamically adapt to workload changes to match the current demand as closely

as possible [MH12]. This elasticity allows the cloud service provider to avoid over

or under-provisioning, which in the end reduces their expenses while still allowing

them to provide a certain level of service. A challenge in providing elasticity is the

delay between the provision of a VM, until it is ready to use.

In the mid 2000s, Intel and AMD, the major x86 CPU manufacturers indepen-

dently launched the AMD-V and Intel VT-x virtualization extensions for the x86

architecture. The �rst generations of chipsets supporting the virtualization exten-

sions allowed trap-and-emulate style direct execution. However, with the advances

in software-based virtualization, hardware-assisted virtualization on the x86 archi-

tecture alone didn't o�er any signi�cant improvement in performance. The sec-

ond generation of chipsets added support for MMU virtualization, increasing the

performance of virtualized system memory. Linux supports the x86 virtualization

extensions through the Kernel-based Virtual Machine3(KVM).

A fairly recent research direction with the aim of providing more lightweight vir-

tualization compared to hardware or host-based virtualization is operating system-

3http://www.linux-kvm.org

http://www.linux-kvm.org

10

Figure 2: Container-based virtualization

level virtualization. OS-level virtualization revolves around running multiple isolated

userspace instances, commonly referred to as containers on a single operating system

kernel. A schematic of a container architecture is shown in Figure 2. A fundamental

di�erence compared to the virtualization approaches mentioned above is that the

object of virtualization is not hardware, but global kernel resources. With the rise

of Linux-based mobile platforms, operating system-level virtualization mechanisms

in the Linux kernel have received attention with regards to virtualization on mo-

bile devices. The smaller resource footprint compared to traditional virtualization

approaches make these more suitable for use on resource constrained devices.

2.2 The Dilemma of the Omnipotent Root

Traditional Unix systems make a distinction between two types of processes; privi-

leged processes, and unprivileged processes. Privileged processes are able to bypass

all regular access control checks made by the system kernel, whereas unprivileged

processes are subject to access control checks based on the process' credentials.

Each process has certain identi�ers associated with it; a real User Identi�er (UID)

and Group Identi�er (GID), an e�ective UID and GID, a saved Set-User-ID (SUID)

and Set-Group-ID (SGID), and possibly a number of supplementary GIDs. The

e�ective UID and GID together with the supplementary group list usually act as

11

a process' credentials. The real UID identi�es the user who launched the process,

and is considered the processes' owner. The real GID is determined by the primary

group of that user. The saved SUID and SGID are the UID and GID respectively

the process had when it began its execution (at the point of the last exec() call).

Usually the real, e�ective and saved UIDs are the UID of the user who executed the

program.

Traditionally, processes are considered privileged by the virtue of having the e�ec-

tive UID 0. For convenience, this UID is by convention allocated to a superuser

account, usually named root. The ability to bypass any access control checks is due

to an e�ective UID of 0 being handled as a special case by access control checks in

the kernel. These checks serve two purposes; �rstly, they are used to uphold Discre-

tionary Access Control (DAC) policies, which are used to protect �lesystem objects

(see Section 2.7), and second, they protect functionality o�ered by the kernel which,

if unchecked, could be used to undermine the underlying security measures provided

by the kernel, e.g. memory protection, hardware access control etc.

Unfortunately concentrating the privilege to a single point of contact, the superuser,

makes adhering to the principle of least privilege [SS75] di�cult. Delegation of priv-

ileges in traditional Unix relies on setting the setuid access control �ag on program

binaries. This has the e�ect of setting the e�ective UID to the owner of the �le when

the binary is executed, as opposed to the UID of the owner of the process. When

set on root-owned binaries, the spawned process will be privileged with regards to

all access control, regardless of the intended functionality of the application. This

makes setuid binaries an attractive target for intruders looking to compromise the

security of a system. Programming errors in setuid binaries, in particular ones that

could be exploited for arbitrary code execution, are especially dangerous. The Unix

C Application Programming Interface (API) provides means for privileged processes

to drop its privileges, either temporary or permanently4. This occurs by toggling

12

the e�ective UID between the processes real UID or saved SUID. However, in order

to be e�ective, these mechanisms require the program to be structured in a way

that minimize the portions of the program run with privileges, and ideally allow it

to drop its privileges permanently as soon as possible. Even then, errors within the

privileged portions remain as dangerous as before, leaving much to be desired with

regards to avoiding over-privilege and the ability to compartmentalize functionality

available to privileged processes.

Modern Unix-like operating systems try to address this disparity between privileged

and unprivileged processes in various ways. Linux divides the privileges traditionally

associated with superuser into distinct units, known as capabilities5, which can be

independently adjusted programmatically on a per-thread basis. Capabilities can

also be set via �le system attributes. Linux capabilities are based on a proposal part

of the 1003.1e draft for the Portable Operating System Interface of Unix (POSIX)

standard. Even though the draft was eventually withdrawn, the capability model

employed by Linux is sometime referred to as POSIX capabilities.

Capabilities6allow for more �ne-grained control of privileges, but this alone is not

enough to meet the requirements of use cases such as server consolidation, where it

is desirable to delegate some, but not all, administrative functions to less trusted

parties, and simultaneously impose system-wide mandatory policies to system re-

sources. The Unix access control model makes compartmentalization of this kind

di�cult, as security domain the superuser has privilege over encompasses the entire

system.

4http://pubs.opengroup.org/onlinepubs/007904975/functions/setuid.html
5https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/

capfaq-0.2.txt
6We note that a more common meaning for the term capability comes from capability-based

security [Lev84], where it is used to refer to transferable, unforgeable tokens use to prove proper

authorization access an object.

http://pubs.opengroup.org/onlinepubs/007904975/functions/setuid.html
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt

13

Fundamentally operating system-level virtualization is about compartmentalizing

functionality available to processes. In Unix-like operating systems, mechanisms

such as chroot() have for a long time been used to provide a modest level of

compartmentalization for server applications. The problems with chroot() jails

are well understood. We describe some of these in the following section, and more

sophisticated approaches are discussed in the subsequent sections.

2.3 Chroot jails

The chroot()system call allows one to change the root directory of a running pro-

cess and its children, limiting their visibility of the global �lesystem hierarchy to a

single subtree. The modi�ed environment achieved via the chroot() system call is

commonly called a chroot jail.

Chroot jails were never intended as a security mechanism, but as a development

tool for building software in a con�ned tree, separated from the main directory

structure 7. Even so, the chroot mechanism has been used as a security measure

to limit �lesystem access. The classic example is the File Transfer Protocol (FTP)

daemon, which is largely dependent on the security provided by a chroot jail to

secure anonymous FTP access [Ker10, p.367].

While the chroot mechanism does provide a modest level of compartmentalization,

it has serious shortcomings in terms of functionality and e�ectiveness. There are

7According to Dr. Marshall Kirk McKusick, (as reported by Kamp and Watson [KW00]):

�According to the SCCS logs, the chroot call was added by Bill Joy on March 18, 1982 approximately

1.5 years before 4.2BSD was released. That was well before we had ftp servers of any sort (ftp did

not show up in the source tree until January 1983). My best guess as to its purpose was to allow

Bill to chroot into the /4.2BSD build directory and build a system using only the �les, include

�les, etc contained in that tree. That was the only use of chroot that I remember from the early

days.�

14

several possible routes for unprivileged processes to break out of a chroot jail [Ker10,

p.368]:

� The chroot() call does not change the working directory of the calling pro-

cess. Thus, the call to chroot() is typically preceded or followed by a call

to chdir(). If the directory change is omitted, the working directory of the

process might reside outside the new root directory tree. If this is the case,

the calling process, or child processes inheriting the parent's working directory,

can use relative pathnames to access directories outside the chroot jail.

� If a process obtains an open �le descriptor for a directory outside the chroot

jail (by, for instance, opening the directory before the chroot() call or by

receiving the �le descriptor from another process outside the chroot jail via an

Unix domain socket), then calling fchdir() with the open �le descriptor will

result in a current working directory outside the chroot jail.

By design, a privileged process can escape a chroot jail by setting its working di-

rectory to the altered root directory and change the root directory again by calling

chroot() for a subdirectory 8. Thus, the process has obtained a current working

directory outside of the chroot jail. Now it can traverse the directory tree up to the

original root directory.

Some BSD derivatives prevent this by changing the current directory to the new root

directory upon a chroot() call if the process is already running with an altered root

directory9. This prevents the current directory from being further up the directory

tree than the new root directory.

8This method is documented in the Linux Programmer's Manual page on chroot(2) from

September 20, 2010 (release 3.75).
9This behavior is documented in the OpenBSD Programmer's Manual page on chroot(2) from

June 17, 2013 (release 5.4).

15

2.4 FreeBSD jails

The shortcomings of Unix discretionary access control facilities and chroot() in

providing adequate compartmentalization of di�erent security domains in shared

hosting environments prompted the development of the jail [KW00] facility in the

FreeBSD operating system. While the compartmentalization provided by chroot()

is limited to �lesystem visibility, the FreeBSD jail mechanism extends the compart-

mentalization to include processes and networking. Jails can be created by privileged

processes by calling the jail() system call, but once a process has entered a jail, it

can never leave.

Processes in a jail have several restrictions placed on them. Filesystem access is lim-

ited to subtree visible in the jail. The chroot mechanism is used to provide �lesys-

tem compartmentalization. It has, however been augmented to refuse backwards

traversal across the �rst level chroot directory and disallow open �le descriptors to

directories at the point of the chroot() call.

Processes inside a jail cannot see or interact with processes outside the jail. Pro-

cess visibility in FreeBSD is provided through the procfs �le system and sysctl

mechanism. Both only divulge information on processes in the same jail to a jailed

process. To prevent Inter-Process Communication (IPC) across jail boundaries, ac-

cess to System V IPC primitives is inhibited. This restriction may be lifted on a

per-jail basis10, but as System V primitives in FreeBSD share a single namespace

across the host and jail environments, doing so will not only enable IPC within a

jail, but also across jail boundaries.

Each jail is assigned a set of Internet Protocol (IP) addresses. Processes in the jail

are unable to bind a socket with other IP addresses apart from the ones assigned to

the jail. Attempts to bind using wildcard addresses silently use the jailed addresses

instead. Alternatively binding to IPv4 or IPv6 accesses can be hindered altogether

16

on a jail-by-jail basis. A jail can also be created with a virtual network stack of its

own. This allows a jail modify its own (virtual) network con�guration, interfaces,

protocol addresses, routing tables etc. Typically sockets within a jail are restricted

to IPv4, IPv6 and local (Unix) sockets. Access to protocol stacks without explicit

support for jails, including raw, divert sockets used by the kernel packet diversion

mechanisms, and routing sockets can be enabled via a con�guration parameter.

The capabilities of privileged processes running inside a jail are severely restricted.

Privileged processes are not allowed to modify kernel runtime parameters, such as

sysctl settings, load kernel modules or create device nodes. Mounting and un-

mounting �lesystems is prohibited by default, although the ability to mount certain

�jail-friendly� �lesystem types can be granted on a per-jail basis. File �ags related

to BSD securelevel security pro�les cannot be modi�ed.

2.5 Resource namespaces

A kernel resource namespace [Ker13a] is an abstraction around a global system

resource. Fundamentally, a namespace is a container for a set of identi�ers. Identical

identi�ers may appear in multiple namespaces, but may refer to di�erent resources in

each namespace. In e�ect, processes within a namespace appear to access an isolated

instance of the resource. Typically, the existence of such isolation is invisible to the

processes within the namespace.

The principal application for resource namespaces are containers utilizing lightweight

operating system-level virtualization. Common use cases for containers are VPS

environments. When applied to a VPS environment, multiple distinct user-space

software stacks are run in distinct containers on top of a shared operating system

10Jail parameters are documented in the FreeBSD System Manager's Manual page on jail(8)

from October 12, 2013 (FreeBSD release 9.3)

17

kernel. This can be attractive in high-performance computing, as lightweight OS-

level virtualization can provide less overhead and improved performance compared

to traditional bare metal or host-based virtualization techniques.

Another use-case for resource namespaces is the implementation of process Check-

point and Restart (CR) functionality [Bie06]. In CR, the objective is to store the

execution state of a running process to a process image and restore it at a later

point in time, continuing the execution of the process from the state stored in the

image. Restoration can occur on another system than the one the process origi-

nated from. This is called live migration, and can be useful for load-balancing or in

high-availability environments.

The challenge in CR lies not so much in storing the process state, but in restoring

the process image, as a process might rely on possessing certain global resources,

such as process IDs, IPC identi�ers, �lesystem paths etc. When a process is restored

there is no guarantee that the process can reuse the same global identi�ers, as they

might be in use by other processes. The two main approaches to address this issue

have been to either make sure global identi�ers are unique across all machines in the

computing cluster process migration might occur on, or to provide means of allowing

the same set of identi�ers to be repeated on the same system. A major challenge

with the former approach is to allow the system to scale. Resource namespaces, in

turn, make the latter possible.

Resource namespaces can also be used as an isolation measure between processes

and system resources. While not strictly speaking a security mechanism, namespace

isolation and access control are nevertheless related. They both prevent processes

from having (unrestricted) access to system resources. Whereas conventional access

control is based on an explicit authorization and is visible to process being con-

trolled, namespace isolation prevents access by making only those resources that a

process is allowed to access visible in its environment. However, as we shall see,

18

namespace isolation is typically more coarse-grained than the corresponding access

control measures. On the other hand, the isolation provided by namespaces has the

advantage of being transparent to the process con�ned within the namespace.

Our primary interest in this thesis is the utilization of the Linux namespaces for

resource isolation in combination with security features provided by the Linux ker-

nel. While our use case involves the migration of applications, we limit ourselves

to so called cold migration, i.e. the migrated application is required to have ter-

minated before the migration occurs. We consider the problem of live migration

orthogonal to our e�orts; as long as the container setup provides an environment

su�ciently independent from the host environment, support for a live migration

system which serializes the state of a running application to �lesystem objects can

easily be incorporated as an add-on.

Current versions of the Linux kernel implement six di�erent types of resource name-

spaces. Linux namespaces are instantiated when a process is created via the

clone()11 system call, or a process disassociates itself from its parent's namespace

via the unshare() system call. The namespace to be unshared is in both cases

identi�ed via a bit �ag de�ned in bits/sched.h. The creation of namespaces, with

the exception of user namespaces, is a privileged operation.

Existing namespaces may be joined via the setns() system call. Linux namespaces

are identi�ed by �le descriptors visible via the proc �lesystem (procfs). In Unix-

like operating systems this special �lesystem provides information about existing

processes represented as a �le system hierarchy. It is typically mapped to a mount

point at /proc. Each running process is represented by a directory under /proc,

/proc/<pid> , where <pid> is the processes' numerical id. Each namespace sup-

ported by the kernel has an entry under the /proc/<pid> /ns directory. These

11Essentially clone() is a generalized version of the traditional Unix fork() system call, the

primary, and traditionally only means of process creation.

19

Namespace clone() �ag Kernel version

Mount namespaces CLONE_NEWNS 2.4.19

UTS namespaces CLONE_NEWUTS 2.6.19

IPC namespaces CLONE_NEWIPC 2.6.19

PID namespaces CLONE_NEWPID 2.6.24

Network namespaces CLONE_NEWNET 2.6.24 � 2.6.29

User namespaces CLONE_NEWUSER 2.6.23 � 2.6.29

Table 1: Linux namespaces

entries behave like �le descriptors. The inode number of the �le descriptor are

unique to the namespace they represent. Hence, the inode number can be used to

determine if two processes coexist in the same namespace.

The di�erent namespaces and corresponding clone() �ags are show in Table 1. The

kernel version indicates the version of the Linux kernel in which the corresponding

namespaces were introduced. Mount namespaces compartmentalize the visibility of

mounted �le systems. UTS namespaces allow for multiple host names and Network

Information Service (NIS) domain names to be used on a single host. IPC name-

spaces control the visibility of IPC primitives not represented by �le system objects.

PID namespaces interact with procfs to cordon o� visibility to process hierarchies,

as well as allowing the same PIDs to be possessed by several processes (in di�erent

namespaces) simultaneously. Network namespaces compartmentalize access to net-

working primitives such as network interfaces, IP addresses and routing tables as

well as port numbers. User namespaces compartmentalize UIDs and GIDs.

20

2.5.1 Mount namespaces

Mount namespaces [Ker13a] were the �rst namespaces to be implemented in the

Linux kernel. This accounts for the, rather undescriptive, NEWNS (short for "new

namespace") identi�er assigned to namespace type constant. The design of Linux

mount namespaces was in�uenced by the Plan 9 from Bell Labs operating sys-

tem [Bie06].

The central design goals behind the Plan 9 [PPTT90] operating system was to

integrate graphics and ubiquitous networking into a coherent, Unix-like framework.

Similarly to traditional Unix systems, access to system services are provided through

a single �lesystem interface. In fact, Many facilities that under Unix are accessed

through various ad-hoc interfaces like BSD sockets, fcntl(2), and ioctl(2) are in Plan

9 accessed through ordinary read and write operations on special �les analogous to

Unix device �les. Most system services, including the windowing system 8½, are �le

servers, which provide special �les or a directory tree representing resources they

provide access to. As all mounted �le servers export the same �lesystem interface

to users and client programs, access to each service looks the same regardless of

the implementation behind them. Some might correspond to local �lesystems, some

to remote �lesystems accessed over a network, some to instances of system servers

running in userspace (like the windowing system), and some to kernel interfaces.

Plan 9 introduced the notion of private namespaces [PPT+92]. Every process can

have its own view of the system's services by creating its own tree of �le-server

mounts. This allows for, for instance, /dev/cons always to refer to the user's termi-

nal device and /bin/date to the correct version of the date command to run, but

which �les those names represent depends on circumstances such as the architecture

of the machine executing date.

21

In a similar manner, Linux mount namespaces isolate the set of �lesystem mounts

visible to a group of processes. The mount() and umount() system calls only a�ect

the mount namespace associated with the calling process. In contrast to Plan 9

namespaces, which cannot be joined by other means than direct inheritance, Linux

provides the setns() system call, which can be used to join existing namespaces.

In Linux, mount namespaces interact interestingly with bind mounts, another �lesys-

tem feature in�uenced by Plan 912. Bind mounts act as a sort of symbolic link at the

�lesystem level. In Linux they are implemented entirely within the virtual �lesys-

tem (VFS) layer, making them independent of any particular low level �lesystem.

Bind mounts allows to remount parts of the �lesystem hierarchy at di�erent mount

points, making them visible at multiple points in the �lesystem hierarchy simulta-

neously. When a mount operation occurs, it is possible to mark the mount and

its submounts as shared or slave mounts. If a mount is marked shared, mounts

and unmounts within the subtree propagate to any bind-mounted instances of the

mount and vice versa. A slave bind mount receives propagated mounts and un-

mounts from its master (the original mount), but mounts within the slave are not

propagated back. The propagation may occur across mount namespace boundaries,

enabling schemes in which e.g. hot-pluggable mass storage devices may be made

visible within unprivileged containers (with their own root �lesystem) by mounting

them within a shared mount point with the host.

2.5.2 UTS namespaces

The name of UTS namespaces [Ker13b] derive from the name of the structure passed

to the uname() system call; struct utsname. There UTS stands for Unix Time-

sharing System, which is a term used for early Unix research systems developed at

Bell Labs by Ken Thompson and Dennis Ritchie. The purpose of UTS namespaces is

12http://plan9.bell-labs.com/magic/man2html/1/bind

http://plan9.bell-labs.com/magic/man2html/1/bind

22

1 struct utsname {

2 char sysname [] ; /* Operating system name (e . g . , "Linux ") */

3 char nodename [] ; /* Host name */

4 char r e l e a s e [] ; /* Operating system r e l e a s e (e . g . , "3 .13 .0") */

5 char ve r s i on [] ; /* Operating system vers ion (e . g . b u i l d number e t c .) */

6 char machine [] ; /* Hardware i d e n t i f i e r */

7 #i f d e f _GNU_SOURCE /* The domainname member i s a GNU ex tens ion */

8 char domainname [] ; /* NIS or YP domain name */

9 #end i f

10 } ;

Listing 1: De�nition of the utsname structure from the GNU C Library

to isolate two system identi�ers returned by the uname() system call; nodename and

domainname. The de�nition of struct utsname from the GNU C Library (glibc) is

shown in Listing 1. In practice, this allows VPS containers to have a hostname and

NIS domain name of their own.

The implementation of UTS namespaces is simple enough to function as an illus-

trative example of the changes to the mainline Linux kernel that the introduction

of resource namespaces has required. Let us consider the gethostname() system

call which is used to get the system hostname from kernel space into userspace.

Like in the case of uname(), the information originates from an in-kernel represen-

tation of the utsname structure. Unlike uname(), gethostname() merely copies the

nodename member, not the entire utsname structure.

Prior to kernel version 2.6.19, in which UTS namespaces were introduced, the

gethostname() system call would access the nodename member of a global utsname

structure, the system_utsname. Listing 2 shows a fragment of the implementa-

tion of the gethostname() system call prior to the introduction of UTS name-

spaces. From kernel version 2.6.19 onwards, two helper functions, utsname() and

init_utsname(), were introduced. Consequently users of system_utsname were

modi�ed to use these helpers instead. Instead of accessing a global system_utsname,

23

1 asmlinkage long sys_gethostname (char __user *name , int l en)

2 {

3 int i , e r rno ;

4 . . .

5 i = 1 + s t r l e n (system_utsname . nodename) ;

6 . . .

7 /* Copy the nodename member from the g l o b a l system_utsname to userspace */

8 i f (copy_to_user (name , system_utsname . nodename , i))

9 errno = −EFAULT;

10 . . .

11 }

Listing 2: Fragment from the gethostname() system call prior to 2.6.19

1 stat ic i n l i n e struct new_utsname *utsname (void)

2 {

3 return ¤t−>nsproxy−>uts_ns−>name ;

4 }

Listing 3: De�nition of utsname() helper function in 2.6.19

the utsname() helper returns a pointer to a utsname structure in the UTS name-

space associated with the current process. Listing 3 shows the de�nition of

utsname(). The nsproxy member in the task_struct for the current process

is a structure which contains pointers to all namespaces associated with the process.

In current kernel versions, the de�nition of the gethostname() system call is similar

to the fragment shown in Listing 4. Access to the utsname structure occurs via the

helper function.

The gethostname() example illustrates a pattern common to the currently imple-

mented Linux namespaces; previously global resources are encapsulated in a per-

process namespace. A handle to the namespace, and in extension any resources it

encapsulates is maintained for each process.

24

1 asmlinkage long sys_gethostname (char __user *name , int l en)

2 {

3 int i , e r rno ;

4 struct new_utsname *u ;

5 . . .

6 u = utsname () ;

7 i = 1 + s t r l e n (u−>nodename) ;

8 . . .

9 i f (copy_to_user (name , u−>nodename , i))

10 errno = −EFAULT;

11 . . .

12 }

Listing 4: Fragment from namespace-aware gethostname() system call

UTS namespaces might seem relatively harmless. However, access to them must be

restricted to avoid scenarios where applications relying on the hostname are fooled

into misbehaving because the system appears to have an unexpected hostname.

For instance, applications might use the hostname as part of a lock �le pathname.

Running such an application inside a UTS namespace with an altered hostname can

be used to circumvent the lock �le, possibly leading to misbehavior in application

instances running in di�erent UTS namespaces.

2.5.3 IPC namespaces

IPC namespaces [Ker13a] allow processes to unshare Inter-Process Communication

primitives and have a private set of primitives which are identi�ed by other means

than �lesystem pathnames. Namely this includes System V IPC objects and POSIX

message queues.

25

2.5.4 PID namespaces

The objects of isolation in PID namespaces [Ker13a, Ker13c, Ker13d] are process

ID numbers. Processes in di�erent PID namespaces may obtain the same PID. In

addition, PID namespaces may be nested. A process a receives a PID for each layer

of PID namespaces it resides in. A process is visible in its own namespace and all

ancestors, although via a di�erent PID number. A process in a particular namespace

is not visible in child namespaces.

The �rst process created within a PID namespace receives a process ID of 1 within

the namespace and becomes thus the init process for the namespace. In a similar

manner to the init process in the root namespace of the host that has a special role

in the system, so do init processes within a namespace. In particular, the init

process of a namespace becomes the parent of processes that become orphaned

within the namespace. In VPS environments, the init process for the namespace

is also responsible for starting system daemons and other processes part of the

environment within the namespace.

In order to prevent the essential init process in the root PID namespace from

being accidentally killed, only signals for which the process has established signal

handlers are delivered to the init process. Similarly, the init process in child PID

namespaces only receives signals for which it is has established signal handlers from

processes within its namespace. However, contrary to the init in the root PID

namespace, the init within a child namespace may receive signals from processes

in ancestor namespaces. Unless the init process has established signal handlers for

them, these are ignored as well, with the exception of SIGKILL and SIGTERM. These

are forcibly delivered, and can be used by processes in ancestor PID namespaces

to stop or terminate the child namespace init process. If the init process in a

namespace terminates for some reason, the kernel proceeds to terminate all other

26

processes within the namespace via SIGKILL signals, essentially shutting down the

container in a VPS environment. This also has the e�ect of destroying13 the, now

empty, PID namespace.

Instances of the proc �lesystem mounted from within a PID a namespace, display

only information regarding processes inside the namespace (and nested namespaces)

via /proc/pid/ . While a procfs instance mounted from outside the PID namespace

a process belongs to will display pid subdirectories for processes in another PID

namespace, those PIDs will not be meaningful for processes in any other PID name-

space. System calls made by processes always interpret PIDs in the context of the

PID namespace in which they reside. As various utilities like ps rely on the procfs

being mounted at the traditional /proc mount point, PID namespaces are usually

used in combination with a mount namespace to allow the procfs for the namespace

to replace the parent profcs mounted at /proc. Another possibility is to con�ne

processes in a PID namespace to a chroot() jail (see Section 2.3) and mount a

procfs at /proc within the con�ned directory hierarchy.

2.5.5 Network namespaces

Network namespaces [Ker14] encapsulate resources useful to containers from a net-

working perspective. Each network namespace contains a logical copy of of the

network stack, with ts own network interfaces, IP addresses, IP routing tables, port

numbers and /proc/net directory (as long a procfs is mounted from within a name-

space, as with PID namespaces).

13An unusual corner case related to the dismantling of PID namespaces is that the namespace

will not be destroyed as long as /proc/pid /ns/pid descriptor to it is held open. It is, however,

impossible to create new processes in the namespace (via setns() or clone()), as the init process

for the namespace is no more (clone() fails in this case with an ENOMEM error value to indicate

that a PID cannot be allocated.)

27

Network namespaces can be con�gured from userspace via the ip utility14. By

convention, con�guration �les that would ordinarily be stored under /etc, such

as /etc/resolv.conf, can be made speci�c to a particular network namespace by

storing them under /etc/netns/<name> , e.g. /etc/netns/mynetns /resolv.conf.

In applications that are aware of network namespaces this search path will precede

/etc when looking for global con�guration �les. For applications that are unaware of

network namespaces, the namespace speci�c con�guration �les may be bind mounted

over their regular counterparts under /etc. By utilizing mount namespace, this can

be done without disrupting the behaviour of processes outside the namespace. The

ip utility also supports processless network namespaces by exposing the namespace

descriptor via /var/run/netns/name /. Processless network namespaces may be

kept alive by keeping the corresponding �le descriptor open.

2.5.6 User namespaces

The principal motivation for user namespaces [Ker13e] is to allow unprivileged users

to safely unshare namespaces. Users will be privileged with respect to the new

namespace, but restricted to resources they already own. User namespaces also

provide separate limits and accounting for UIDs in di�erent namespaces.

As with PID namespaces, user namespaces may be nested. The parent of a user

namespaces is the user namespace of the process that creates the child user name-

space. An exception to this rule is the initial host system user namespace, which

has no parent. Each user namespace may have zero or more children.

The current implementation of user namespaces introduces two new types to rep-

resent in-kernel UIDs and GIDs; kuid_t and kgid_t [Cor12]. The purpose of the

kernel UID and GID is to describe a process's identity on the host system, regardless

14Network namespace support was added to ip in version 3.0.0 of iproute2

http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2

http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2

28

1 typedef struct {

2 uid_t va l ;

3 } kuid_t ;

Listing 5: In-kernel UID de�nition

of any UIDs it may appear to have inside a user namespace. The namespace-speci�c

IDs visible to userspace retain the integer types uid_t and gid_t as before. How-

ever, most privilege checks are done based on the kernel IDs.

The kuid_t and kgid_t types are simply C typedefs for single-�eld structures con-

taining the corresponding integer UID or GID type (see the de�nition of kuid_t in

Listing 5). This makes kuid_t and kgid_t type-incompatible with the integer UIDs

and GIDs. This is intentional in order to cause mismatched operations between ker-

nel IDs and userspace IDs cause compiler errors. The rational is that this will help

to avoid a large portion of potential errors in kernel code that deals with user and

groups IDs.

The userspace UIDs map one-to-one to kernel UIDs. The translation occurs at

the boundary between kernel space and userspace. The mapping is established by

writing mapping information to the /proc/pid /uid_map and /proc/pid /gid_map

�les corresponding to one of the processes in the user namespace the mappings

a�ects. Initially the �les are empty. Mapping rules are added to the �les in the form

of integer 3-tuples consisting of:

< ID−inside−namespace > < ID−outside−namespace > < length >

where < ID − inside − namespace > together with < length > de�nes a range

of UIDs/GIDs inside the a�ected namespaces that are mapped to a corresponding

range in the immediate parent namespace starting at < ID−outside−namespace >.

Note that from the point of view of userspace processes, mappings are always done

29

relative to two user namespaces, although from the point of view of the kernel the

mappings are always �attened directly to and from kernel IDs, even with multiple

layers of nested user namespaces.

Mapping rules may be added by processes either inside the a�ected namespace, or

inside the immediate parent user namespace. In addition, the process performing the

mapping must have write access to /proc/pid /uid_map and /proc/pid /gid_map,

which are owned by the UID that created the user namespace the process identi-

�ed by pid belongs to. The process performing the mapping must also have the

CAP_SETUID (for uid_map, or CAP_SETGID for gid_map) capability in the a�ected

user namespace.

Mappings may only be established once per user namespace, i.e. only one write

can be performed to any mapping �les belonging to a particular user namespace. If

the process performing the mapping possesses the CAP_SETUID (for UID mappings)

or CAP_SETGID (for GID mappings) in the parent namespace, it is allowed to de�ne

mappings to arbitrary user or group IDs in the parent user namespace by performing

a single write to the corresponding mapping �le that may contain multiple newline-

delimited triples. If the process does not possess the necessary capabilities in the

parent namespace (as in the case of the initial process in a newly created user

namespace), it is only allowed to write a single line to each mapping �le to map its

UID or GID inside the namespace to its corresponding e�ective UID or GID in the

parent namespace. This arrangement guarantees that privileged processes inside a

user namespace remain unprivileged with regards to the parent namespace, i.e. they

cannot elevate their privileges via an ID mapping unless they already possessed the

corresponding privileges in the parent user namespace.

A problem with this arrangement as described so far is that it does not lend itself to

server consolidation, which is perhaps the most important use case for the namespace

isolation mechanisms in the �rst place. The reason is that in server consolidation, it

30

is often desirable to allow an unprivileged user with regards to the host system e�ec-

tively full privileges in a container assigned to them, including the ability to create

additional user accounts. The problem we encounter in the above arrangement is

twofold; �rstly, the user initializing the container, i.e. creating the namespaces lacks

the privilege to add mappings for other than the initial UID and GID inside the con-

tainer to his UID and GID on the host; secondly, the user lacks knowledge of suitable

ID ranges outside the namespace to use as targets for mapping distinct IDs inside

the namespace to. These issues are solved in userspace by introducing the notion

of subordinate UIDs and subordinate GIDs. These are IDs, typically above 100000

that can be allocated to users, either manually, or automatically upon user creation

by the root user15. The allocations are stored in /etc/subuid or /etc/subgid re-

spectively. These can be mapped to UIDs in containers the owning user creates via

the use of the setuid programs newuidmap and setgidmap. This userspace support

allows unprivileged users to establish ID mappings from a container user namespace

to subordinate IDs assigned to them.

2.6 Resource Control

In addition to resource namespaces and access control, resource control provides a

third approach to limiting the access processes have to system resources. It concerns

itself with the utilization CPU, memory, disk I/O and other �nite resources that are

consumed by processes. It is instrumental in preventing Denial of Service conditions

due to resource exhaustion.

15Version 4.2 of the shadow tool suite adds support for subordinate ID assignment. Manual

assignment can be done using command line options added to the usermod utility, and automatic

assignment can occur based on appropriate stanzas added to the login.defs con�guration �le.

The newuidmap and newgidmap programs are also provided by the shadow tool suite. http://pkg-

shadow.alioth.debian.org/

http://pkg-shadow.alioth.debian.org/
http://pkg-shadow.alioth.debian.org/

31

Linux Control Groups (cgroups) provide a mechanism for partitioning processes

into hierarchical groups that constitute units of resource control. All processes in

a control group are bound by similar resource consumption criteria. Often this

criteria may be inherited by the parent group. As such, control groups provide a

uni�ed interface to resource control scaling from single processes to entire userspace

instances, as in the case with containers.

Control groups support resource limiting, e.g. memory consumption limits that may

not be exceeded; prioritization, e.g. the assignment of a certain share of the CPU

throughput to a particular group; accounting that allows the use of system resources

to be measured for e.g. billing purposes. Control groups can also act as the unit for

freezing processes for the purposes of CR.

2.7 Discretionary and Mandatory Access Control

The core access control model in Linux is based on Unix Discretionary Access Con-

trol (DAC). In Unix DAC, the owner of a �lesystem object is allowed set the security

policies associated with the object. In other words, the access control policies for

�lesystem objects are at the discretion of their respective owners. Unix DAC is typ-

ically implemented via a bit mask associated with the inode of a �lesystem object.

The bit mask represents a simple access control list (ACL), with each bits corre-

sponding to a certain type of privilege, e.g. read, write, execute etc. Traditionally,

distinct access rights can be assigned to the owner of the object, users in a certain

group associated with the object, and other users not in one of the previous two

categories.

The security requirements for many use cases require more �ne-grained access control

than what traditional Unix DAC can provide, including the ability to specify a

centrally controlled access control policy, which cannot be overridden by users. This

32

type of access control is commonly referred to as Mandatory Access Control (MAC).

MAC is typically formalized as an access control matrix which constrains the ability

of a subject to access or generally perform some sort of operation on a target object.

The necessary infrastructure for MAC in Linux is provided by the Linux Security

Modules (LSM) framework. The LSM framework consists of a series of hooks in

kernel code at points where access control decisions are made. LSMs implement these

hooks, providing access control decisions based on their individual access control

schemes. In MAC LSMs, the subjects are typically individual processes, as opposed

to users.

MAC LSMs in Linux can be categorized into two groups; label and path-based.

In label-based LSMs, all subjects (processes) and objects on the system (such as

�les) are assigned security labels, typically stored as extended �lesystem attributes

(xattrs). All interaction between subjects and objects is subject to review by the

LSM, which consults its security policy to determine if the access should be allowed.

Security Enhanced Linux (SELinux) is currently the most widely deployed label-

based LSM. It was originally developed at the Trusted Systems Research division

of the United States National Security Agency (NSA) for the purposes hardening

Linux for use in government and military systems which manage classi�ed informa-

tion. SELinux is an implementation of the Flux Advanced Security Kernel [SSL+99]

(FLASK) operating system security architecture. SELinux provides a feature-rich

policy de�nition language used by software maintainers and administrators to for-

mulate a system policy. SELinux also provides a rigorously structured reference

policy that is commonly used as a basis for the system policy shipped with Linux

distributions using SELinux such as Fedora and Red Hat Enterprise Linux distribu-

tions.

33

SELinux policy con�guration requires expertise in the behavior of applications sub-

ject to MAC. SELinux policies also tend to be quite large. The Fedora SELinux

policy for instance de�nes over 700 distinct classes of subjects, over 3000 classes of

objects and close to 100 000 access rules. As a result, SELinux has been criticized

for being too complex for many use cases. The Simple Mandatory Access Control

(SMACK) LSM was developed as an alternative to SELinux. SMACK also features

a label-based scheme providing a basic form of MAC, but with a much simpler

grammar for policy de�nition. SMACK supplied the MAC for the Mobile Simpli�ed

Security Framework [KREA11] (MSSF) used in the MeeGo mobile platform, and its

successor Tizen 16.

In contrast, path-based LSMs do not make access control decisions based on on-

disk security labels (e.g. xattrs), but policy de�nition is done based on �lesystem

pathnames. This has the bene�t of policies which are more easily amendable to

support di�erent access control policies for the di�erent appearances of the same

object (e.g. symbolic links, bind mounts etc.), but may require additional controls

to avoid circumventing the policy by means of such alternate pathnames. Path-based

LSMs in Linux are AppArmor17 and TOMOYO18.

The development of TOMOYO was also in part motivated by the perceived com-

plexity of SELinux policy con�guration. Most MAC LSMs support a permissive

mode, in which policy violations are logged, but not prevented. This can be useful

during policy con�guration. A distinguishing feature of TOMOYO is a �learning

mode� which allows a policy to be automatically generated based on the observed

behavior of processes.

16https://www.tizen.org/
17http://wiki.apparmor.net
18http://tomoyo.sourceforge.jp/

https://www.tizen.org/
http://wiki.apparmor.net
http://tomoyo.sourceforge.jp/

34

AppArmor is a successor to security extensions originally developed for Immunix, a

commercial Linux distribution specializing in host-based application security. Im-

munix Inc., which was eventually acquired by Novell also developed AppArmor for

Novell's SUSE Linux. AppArmor is currently maintained by Canonical Inc., and is

the default LSM used by Ubuntu.

3 Design Goals

The research question behind this thesis is to study the feasibility to utilize existing

Linux kernel features to enable the ability to migrate the data and settings of user

installed applications between distinct, general purpose devices. We consider this

functionality to be useful for both personal devices and shared environments. Usage

scenarios involving personal devices include setting up a new device purchased by a

user, as well as rental devices, which remain in a user's possession only for a limited

time. Shared environments may include In-Vehicle Infotainment (IVI) systems or

smart displays which would allow users to temporarily provision application to the

devices. In these cases a user would typically only have a transitory relationship

with the device. Since the same device may allow multiple users to interact with it,

possibly simultaneously, providing suitable isolation of applications becomes espe-

cially important. Di�erent device stakeholders may also wish to place restrictions

on the use of the device, which might di�er from the restrictions on the device from

where the migrated application originates.

When used for server consolidation, containers are typically used to house entirely

self-contained environments, which share only the underlying operating system ker-

nel. Even with potentially untrusted containers, assuming that host kernel com-

promise is not viable, this kind of setup poses very few points of contact to other

containers. Also, migration of such an environment to another physical server is

35

straightforward, especially when the underlying hardware and host operating sys-

tem setups are largely homogeneous. If the underlying storage is network-based, the

migration can be a simple manner of shutting down the container on one host, and

starting it on another.

In this work we consider deployment scenarios where it is infeasible for containers to

be entirely self-contained. Consider for instance application containers, i.e. contain-

ers that only have a single application or service instance running inside them are

commonly used for fault containment. When dealing with user-facing applications,

it is desirable to allow applications to be containerized dynamically upon user re-

quest without the need for users to possess the expertise to con�gure the container

environment themselves. Such applications may need to interact with host services,

e.g. applications with graphical user interfaces should still be allowed to draw to

the screen, receive input etc., even though it is desirable that access to a subset of

resources remain strongly compartmentalized.

While container migration in server environments is well understood, the migration

of dynamically established applications containers that share various resources with

the host or other containers poses additional challenges. The origin and target

environment can exhibit heterogeneity, while it would be desirable for users that the

containerized application would behave in the same manner as it did prior to the

migration. Speci�cally, our problem statement is twofold:

� Can existing operating system-level virtualization mechanisms in the Linux

kernel be used to set up, on demand, isolated security domains for applications?

� Can such dynamically established security domains be migrated from one de-

vice to another?

It should be noted that an application design pattern fairly common in modern

mobile platforms are applications that store user data and preferences in the cloud,

36

allowing the data to be retrieved when the user installs the application on a new

device. This approach, however, comes with a number of drawbacks. Firstly, these

kinds of cloud synchronization solutions are application or platform speci�c, and in

the latter case requires use of platform speci�c libraries. Secondly, such applications

tend to require continuous network connectivity during use in order synchronize user

data with the cloud. Thirdly, these kinds of solutions can raise privacy concerns

regarding the information stored in the cloud.

3.1 Requirements

In order to address both security and usability aspects in our design, we have iden-

ti�ed the following requirements:

Isolation: Dynamically set up domains should be isolated from each other and

other applications present on the device. However, the isolation mechanisms in

place should not restrict the use of common operating system services (provided the

applications inside the container possess the appropriate permissions).

Authentication: It should only be possible to migrate application containers to

a device that belongs to a user or is temporarily in use by a user (such as a rental

device). Furthermore application migration should only be done upon explicit user

consent. If applications are allowed to be migrated to to a third party device without

user consent, security issues such as privacy violation, abuse of credentials etc. might

follow.

Policy migration: Although security policies associated with the migrated ap-

plication container must be preserved, the existing security policies of the target

device must take precedence during the migration. Some devices might have secu-

rity policies established by other entities than the user. Mechanisms such as content

protection schemes might disallow user applications certain permissions. Circumven-

37

tion of such security measures by migrating applications with more lenient security

policies on other devices must not be possible.

Full cleanup: It must be possible to fully remove a migrated application container

and all associated data from a device. Failure to completely wipe out application

data might lead to privacy violations etc., especially in the case of rental devices.

Interoperability: Applications should be able to to be migrated and continue

operation without modi�cation and without relying on uncommon frameworks or

programming languages.

Deployability: In order to make the adoption of the system feasible, the core

operating system of the target devices must not be modi�ed. Even the same OS

from di�erent vendors can di�er and core parts of the OS should not be interchanged,

since this might introduce software �aws, leading to system instability or security

issues. Furthermore requiring signi�cant changes to the operating system is sure to

hamper the adoption of such systems.

Performance: As the ultimate target of the application migration scheme are mo-

bile devices with limited resources in terms of battery capacity, processing power,

and storage space, the mechanisms facilitating application migration should be suf-

�ciently lightweight in order to be fast and e�cient on contemporary mobile devices.

Usability: From a usability perspective, the migration process should be easy to

learn, easily remembered as well as e�cient and satisfying to use. Users should not

be prompted for any information that is possible to obtain from the previous setup

on the originating device, such as permissions, application preferences etc.

3.2 Assumptions

For the purposes of this thesis we limit ourselves to cold migration, i.e. the migrated

application is halted before the migration occurs. We consider the problem of live

38

migration orthogonal to our e�orts; as long as the container setup provides an

environment su�ciently independent from the host environment, support for a live

migration system which serializes the state of a running application to �lesystem

objects can easily be incorporated as part of future work.

If users continue to use a migrated application container on both devices (i.e. the

source and target device), the state of the applications will diverge. A previously

migrated application container along with its state should be migratable back to the

original device. In such cases synchronization of diverged application states becomes

a challenge. For out purposes we consider a usage scenario where only one canonical

copy of a container exists at any time. When the container is migrated, it ceases to

be available on the source device.

In our design, the integrity of the container relies in part on the integrity and

con�dentiality of the transfer of data from one device to another. We leave securing

this transfer outside the scope of this thesis, although we acknowledge that this is

an integral part of the security of the scheme if it were to be deployed in a real-world

scenario.

4 System and Threat Model

4.1 System Model

In this section we explain the speci�cs our target system model. The model de-

scribed here is generalized in such a way that it may apply to many di�erent variants

of Linux-based operating systems. Our design is intended to allow for integration

into systems which �t this general model. The main reference points used in the

formulation of the system model are the freedesktop.org19 base platform for desk-

top software that has become a de facto standard in modern desktop GNU/Linux

39

Figure 3: System model

distributions, and the MSSF which plays a somewhat similar role on some mobile

Linux-based platforms. An overview of the components that comprise the system

model are shown in Figure 3. These are described in detail below.

PermissionsModern application platforms use permission systems to protect access

to resources that warrant protections, such as hardware capabilities and personal

data. Prime examples of permission use can be found in prominent mobile plat-

forms such as Android20 and iOS21. However, the wide disparity in how permissions

are presented to users and how users are involved in permission assignment is evi-

dence of the fact there is no consensus on the best way to design such permission

system [FEF+12].

For our purposes we consider a permission system where applications can acquire

permissions in three ways:

19http://freedesktop.org
20https://www.android.com/
21https://www.apple.com/ios/

40

� Automatically at install time.

� At install time as a result of explicit user consent.

� At runtime as a result of explicit user consent.

If allowed by the device policy the user is allowed to grant a blanket permission

when prompted for consent on a particular access control decisions. In this case, the

user is not prompted again for consent on that particular permission and application

pair, but the permission is granted permanently.

Device Policy: The device security policy is the collected state of the system

security framework. It is in�uenced by the needs of di�erent stakeholders. For

contemporary mobile platforms, this includes the platform provider, device manu-

facturer, mobile operator and in some cases an enterprise administrator. The device

policy is not always managed centrally.

For our purposes, the device policy consists of a list of permissions that may be

assigned to applications. The device policy de�nes if a permission is allowed or

denied automatically, or if the permission is granted only after being approved by

the user. If a permission is not de�ned in the device policy, it is denied by default

to any application which might request it.

Package manager: The package manager is responsible of overseeing the instal-

lation of applications. The package manager also grants any automatically granted

permissions to the application, as per the device policy, and prompts the user to

con�rm any permissions that require his or her consent. The result is an application

policy, which accurately depicts the permissions the application has been granted

on a particular system.

Reference monitor: Most contemporary Linux-based systems include a frame-

work for IPC at a higher level of abstraction than traditional Unix System V IPC

41

primitives. This usually involves a message bus architecture, such as in the case

of D-Bus in freedesktop.org-compliant systems, or a component object model, such

as in the case of the Android Binder [FCH+11]. Both of these facilitate Remote

Procedure Calls (RPC) between applications. The reference monitor is responsible

for mediating access on the IPC channel.

We note that adding support for allowing LSMs to mediate IPC occurring over the

message bus is being pursued by several parties. At the time of writing, active ef-

forts are being made in order to enable mediation of D-Bus IPC by AppArmor 22,23

and SMACK24. Similarly in Android, SELinux allows userspace object managers to

retrieve the SELinux context of the calling process in RPC occurring over Binder. It

has even been proposed that the SELinux context of the caller should be passed with

each Binder call25 in order to avoid potential Time-of-Check Time-of-Use (TOC-

TOU) race conditions26in cases where the calling process context changes during the

time between the Binder call and the context query is made. The X Access Control

Extension (XACE) allows the access control of X11 display server graphics objects

in a manner similar LSMs in the Linux kernel. XACE support for SMACK is also

being done [Sha09].

Policy daemon and agent: The policy daemon decides if intercepted access at-

tempts are allowed or not. In systems where the underlying policy is managed by an

LSM, the policy daemon might not have knowledge of the policy itself, but consult

the LSM when policy decisions are to be made. In our system model we describe

the policy daemon as a separate entity, but it is entirely possible that the responsi-

22https://blueprints.launchpad.net/ubuntu/+spec/security-o-apparmor-dbus
23https://wiki.ubuntu.com/SecurityTeam/Specifications/Oneiric/AppArmorDbus
24https://bugs.freedesktop.org/show_bug.cgi?id=47581
25https://code.google.com/p/android/issues/detail?id=72971
26CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

http://cwe.mitre.org/data/definitions/367.html

https://blueprints.launchpad.net/ubuntu/+spec/security-o-apparmor-dbus
https://wiki.ubuntu.com/SecurityTeam/Specifications/Oneiric/AppArmorDbus
https://bugs.freedesktop.org/show_bug.cgi?id=47581
https://code.google.com/p/android/issues/detail?id=72971
http://cwe.mitre.org/data/definitions/367.html

42

bilities of the reference monitor and policy daemon are placed in a single software

component.

The policy agent is the part visible to end users. It's responsible for interacting with

the user when the user is involved in access control decisions.

4.2 Threat model

In our threat model we assume that a certain subset of containers are fully controlled

by an attacker, while the remaining containers are legitimate. Attacker goals include:

Compromise of Legitimate Containers or Host: Means of compromise include

illegitimate access to information belonging to legitimate containers or host including

�le system resources, information about running processes, network tra�c etc. More

serious threats include the ability to mount Man-in-the-Middle (MitM) attacks on

network communications or IPC, or the ability to a�ect the control �ow of programs

executed in a legitimate container or the host.

Privilege Escalation: The ability to obtain privileges not originally granted to

processes in the container. This includes both applications permissions, as well as

operating system capabilities, which could potentially allow the attacker to override

the protections set in place by the permission system.

Denial of Service: The ability to disrupt the normal operations of the host or

legitimate containers. Means of DoS include resource exhaustion of CPU, memory

or persistent storage.

An earlier version of our threat model appears in the survey by

Reshetova et.al. [RKNA14].

43

Figure 4: Architecture

5 Design and Implementation

In this section we present our design and describe the implementation of a proof-of-

concept prototype.

5.1 Architecture

Our design consists of a client-server architecture comprising of a client (cntctl),

and a server daemon (cntctld)). Each server instance operates in one of two distinct

modes of operation we call host mode and remote mode. In host mode, the cntctld

server provides a number container management services to local clients, including

the creation of containers and the execution of containerized application. In remote

mode, the server principally acts as an endpoint for container migration for remote

clients. An overview of the architecture is shown in Figure 4. Container migration in

the other direction (back from the target to source device) uses a symmetric setup.

44

The cntctl client implements the user-visible interface for container management.

This component is entirely unprivileged, and needs a server instance operating in

host mode to perform privileged operations, such as namespace creation on its be-

half. Container creation consists of the host mode server spawning an initial process

in the container (henceforth referred to as the container init) which together with

the host mode server coordinates the setup of the containerized environment, and

�nally executes the target applications placed inside the container.

The target environment for our prototype enforces applications permissions using

SMACK. The device policy de�nes a number of SMACK domains that correspond

to security domains applications may be granted access to. For the purposes of

our prototype we consider a Three Domain Model27. The top-level security do-

mains are subdivided into peer domains corresponding to distinct permissions (e.g.

System::Audio for audio access). In our prototype the host mode server is respon-

sible for the loading container speci�c policy rules in accordance with the device

policy to the SMACK policy maintained in the kernel. In a real-world deployment

we see that this will occur in collaboration with the system components described

in Section 4.1.

5.2 Filesystem compartmentalization

To minimize the overhead with regards to �lesystem resources that must be made

available to the container (e.g. shared libraries and other dependencies) our design

allows such resources to be shared between the host and a guest container. In

order to avoid information about processes on the host or other containers to be

accessible from inside a container, and to prevent processes inside the container from

27https://wiki.tizen.org/wiki/Security:SmackThreeDomainModel

https://wiki.tizen.org/wiki/Security:SmackThreeDomainModel

45

potentially in�uencing processes outside the container, we con�ne the container to a

subtree where host resources are made available via the use of an overlay �lesystem28.

Overlay �lesystems are a way to provide a uni�ed view of two directory trees (some-

times referred to as branches) as a single hierarchy. The directory trees involved

in the union are designated as the 'upper ', and 'lower ' branch. When a particular

pathname exists in both branches, the corresponding �lesystem object in the upper

branch is visible in the union, while the object in the 'lower' branch is either hidden

or, in the case of directories, merged with the corresponding object in the 'upper'

branch. The lower branch may be read-only, as the overlay �le system provides copy-

on-write semantics for operations on the union. When a �le residing on the 'lower'

branch would be modi�ed, the operations results in a copy-up of the �le to the 'up-

per' branch. The modi�cations are always made to the copy in the 'upper' branch.

Removal of �les and directories in the union are recorded to the 'upper' branch as

whiteouts, which cause the corresponding pathname to in the 'lower' branch to be

ignored in the union. The whiteout itself is also hidden.

The particular overlay �lesystem implementation utilized in our prototype is Over-

layFS 29by Miklos Szeredi. OverlayFS is characterized as a 'hybrid' approach to

overlay �lesystem because unlike its predecessors, such as Unionfs30 and Aufs31,

which provide virtual �lesystems with persistent inode renumbering and dynamic

branch management, OverlayFS merely modi�es pathname lookups. This occurs

mainly in the readdir() system call. As a result, �lesystem objects that appear

in the union do not all appear to belong to that �lesystem. Non-standard behavior

includes any �le locks obtained before a copy-up not applying to the copied up �le

as that is essentially a new �le appearing with the same pathname. Similarly the

28The term 'overlay �lesystem' is somewhat of a misnomer, as most implementations in fact

operate on directory subtrees that may very well exists on the same �lesystem.
30http://unionfs.�lesystems.org/
31http://aufs.sourceforge.net/

46

inode number of the �le may change as a result of a copy-up, as well as the device

number if the branches exist on di�erent �le systems. We expect that for many

applications these di�erences can be ignored. OverlayFS mounts are also limited to

two branches, although several OverlayFS mounts may be nested in order to unify

more than two directory trees. The level of nesting is currently limited to a stack of

two OverlayFS mounts by an arbitrary value hardcoded into the kernel.

We also utilize the fact that modern Linux distributions, including Debian and

Fedora, have introduced /run to store �les that contain runtime information which

does not require preserving across reboots. The /run directory is a mount point for

a tmpfs instance, a temporary �le storage facility that appears as a mounted �le

system, but stores �les in volatile memory instead of persistent storage. This location

replaces several existing locations described in the Filesystem Hierarchy Standard32,

including /var/run, /var/lock, and /dev/shm33. For backwards compatibility,

these directories are provided by symbolic links pointing to appropriate locations

under /run.

In our design, each container is assigned a subtree in the �lesystem hierarchy that is

a result of the union of the host root �lesystem and a writable branch which acts as

a copy-on-write overlay for the container. This makes �les on host root �lesystem

visible, and even writable inside the container with the necessary privileges, but any

31https://git.kernel.org/cgit/linux/kernel/git/mszeredi/vfs.git/?h=overlayfs.

current
32http://www.pathname.com/fhs/pub/fhs-2.3.html
33Recently there has also been attempts to switch /tmp to tmpfs as well. Reasons for this

include minimizing the wear on Solid-State Drives (SSDs) utilizing �ash storage technology with

a limited number of write cycles. These attempts have, however, been met with a fair amount

on controversy. Counter-arguments revolve around the added complexity caused by breaking the

register/cache/memory/disk hierarchy. For instance, as tmpfs size is limited to a certain percentage

of main memory, it is not suitable for storing (very) large �les. For the purposes of this thesis we

assume a that /tmp is backed by a tmpfs and treat it like other transient �le storage.

https://git.kernel.org/cgit/linux/kernel/git/mszeredi/vfs.git/?h=overlayfs.current
https://git.kernel.org/cgit/linux/kernel/git/mszeredi/vfs.git/?h=overlayfs.current
http://www.pathname.com/fhs/pub/fhs-2.3.html

47

Figure 5: Container �lesystem compartmentalization

changes made to the root �lesystem are stored by the copy-on-write overlay, and

thus do not a�ect the actual host root �lesystem. Transient �les stored in /run are

not visible to the container, as they exists on a separate �lesystem and thus not

made visible by OverlayFS. The copy-on-write overlay also allows us to isolate �les

for migration. We use another, nested overlay for local, non-migratable container

speci�c �les (see Section 5.7). The local overlay remains read-only. Additional

locations, for which copy-on-write semantics are undesirable can be made available

to the container via bind mounts. All this occurs before the initial process in the

container is spawned. A schematic view of the setup is shown in Figure 5

We note that as an alternate approach, the read-only root �lesystem for the container

can be constructed by bind mounting desired locations from the host to locations

where the conventional mount points have been prepared. This precludes the need

for overlay �lesystems, but also prevents writing to shared locations from inside the

container.

In order to prevent processes from accessing �lesystem resources outside the subtree

designated for the container, the container init process employs the Linux speci�c

pivot_root() system call in combination with the conventional chroot() system

48

call and a distinct mount namespace created for the container to render the host

root �lesystem inaccessible to processes placed in the container.

The pivot_root() system call is typically used during a Linux boot sequence to

change from a temporary root �lesystem (e.g. an initrd) to the actual root �lesystem

on a block device. As its name suggests, the pivot_root() system call moves the

mount point of the old root �lesystem to a directory under the new root �lesystem,

and places the new root �lesystem at its place. When done inside a distinct mount

namespace, the old root �lesystem can be unmounted, thus rendering the host root

�lesystem inaccessible for processes inside the container, without a�ecting processes

belonging to the root, or any other mount namespaces on the host system.

At the time of writing, the implementation of pivot_root() also changes the root

directory and current working directory of the process to the mount point of the new

root �lesystem if they point to the old root directory. This prevents kernel threads

from keeping the old root directory busy with their root and current working direc-

tory. It seems that the intention is to keep changes to the process directories separate

from changes to the root �lesystem, so in the future there may be a mechanism for

kernel threads to explicitly relinquish any access to the �lesystem. This would al-

low this mechanism to be removed from pivot_root()34. As the root directory and

working directory may or may not change as a result of calling pivot_root(), proper

usage dictates that he caller of pivot_root() must ensure that processes with root

directory or current working directory at the old root operate correctly regardless

of the behavior of pivot_root(). To ensure this, we change the root directory and

current working directory to the mount point of the new root �lesystem subsequent

to invoking pivot_root(), then proceed to perform a lazy unmount of the old root

�lesystem. This makes the mount point immediately unavailable for new accesses,

49

1 /* Change the current working d i r e c t o r y (cwd) o f the c a l l i n g process

2 * to the new root d i r e c t o r y . */

3 i f (chd i r (r o o t f s) == −1) { /* Abort i f change o f cwd f a i l s */ }

4

5 /* put_old conta ins a r e l a t i v e path to a l o c a t i on under the new r o o t f s

6 * used as the d e s t i na t i on fo r the o ld r o o t f s a f t e r the p i v o t . */

7 i f (pivot_root (" . " , put_old) == −1) { /* Abort o f the p i v o t f a i l s */ }

8

9 /* Depending on the implementation o f p ivot_root () , the root d i r e c t o r y

10 * and cwd of the c a l l e r may or may not change . Ca l l i n g chroot () (and

11 * sub s equen t l y chd i r ()) here makes sure t ha t the root d i r e c t o r y (and

12 * cwd) change r e g a r d l e s s o f whether pivot_root () has changed the root

13 * d i r e c t o r y or not . */

14 i f (chroot (" . ") == −1) { /* Abort i f the change o f root d i r e c t o r y f a i l s }

15

16 /* Perform la z y unmount o f the o ld r o o t f s . This makes the mount po in t

17 * immediate ly unava i l a b l e f o r new acces se s . */

18 i f (umount2 (put_old , MNT_DETACH) == −1) { /* Abort i f l a z y unmount f a i l s */ }

Listing 6: �lesystem compartmentalization system call sequence

but the actual unmount is delayed until a time when the mount point ceases to be

busy. The corresponding sequence of system calls is shown in Listing 6.

5.3 Process compartmentalization

Process compartmentalization is provided by a separate PID namespace created for

each container. This, combined with the mount namespace used for �lesystem com-

partmentalization allows a separate procfs instance to be mounted at /proc inside

the container. As described in Section 2.5.4, profcs instances mounted from within

a PID namespaces only provide information on processes within that namespace.

An IPC namespace can also easily be combined with the setup described so far. It

34This design rationale is documented in the Linux Programmer's Manual page on pivot_root(2)

from July 13, 2012 (release 3.73).

50

requires no additional setup apart from adding the appropriate �ag to the clone()

call when the container init process is spawned.

As described in the previous section of �lesystem isolation, we also took care not

to expose transient �les which might contain process runtime information or com-

munication primitives visible as �lesystem objects, such as Unix-domain sockets,

FIFOs and shared memory used for IPC within the container. To �nish this o�,

environment variables which expose the (from within a container meaningless) loca-

tions of such IPC sockets may be pruned from the environment inside the container.

Explicit exceptions can be made in cases where it is desired to allow applications

within containers access to host services. For instance, we make communications

sockets for the X11 display server and PulseAudio sound system35available inside

the container along with the environment variables that de�ne their location. This

is achieved by bind-mounting the corresponding sockets to their respective locations

within the container subtree. This allows applications inside the container to draw

to the screen and play audio in a regular fashion. Access to the communication

sockets are still mediated by the permission system, as described earlier.

5.4 User compartmentalization

In our prototype, the containerized applications are run with the UID of the user who

created the container. Multiple concurrent users can in principle be supported by

running multiple instances of the host mode daemon. This approach, however, does

not lend itself well to usage models where the user does not necessarily have a Unix

user account on the target device. Examples of such usage scenarios are IVI systems

or smart displays which act as shared computing environment with which the user

has only a �eeting encounter with. For these kinds of environments we suggest a

35http://www.freedesktop.org/wiki/Software/PulseAudio/

http://www.freedesktop.org/wiki/Software/PulseAudio/

51

model where multiple users are served by the same server instance running under a

dedicated UID with a certain number of subordinate UIDs assigned to it. A distinct

user namespace is created for each container, and UIDs inside user namespaces are

mapped to distinct subordinate UIDs.

5.5 Network compartmentalization

Linux provides several possible approaches to provide networking for a container

running in a distinct network namespace. A new created network namespace is

initially empty, except for a loopback interface. Additional interfaces must be as-

signed to the network namespace via a kernel interface exposed through the netlink

protocol. However, each network interface may only be present in a single network

namespace at any time. In hosts with multiple physical interfaces, one or more

physical interfaces may be dedicated to a container. In devices where this is not

practical, the container must be assigned a virtual interface. We will discuss the

use of two di�erent types of virtual interfaces: Virtual Ethernet and MACVLAN

interfaces.

A Virtual Ethernet device consists of a pair of virtual interfaces that act essentially

as a pipe, i.e. Ethernet frames transmitted one peer are received by the other. When

used with containers, a pair of Virtual Ethernet devices is created on the host. One

peer is assigned to the container network namespaces, while the peer remaining on

the host is connected to a virtual bridge. This can be used to either create virtual

networks between container by linking them via di�erent bridges, or provide a link

to the outside network by binding the bridge to bound to a physical interface.

Whereas Virtual Local Area Networks (VLANs) allow a single network interface to

be mapped to multiple virtual networks, MACVLAN interfaces perform the opposite

role, allowing a single physical interface (usually referred to as the lower device) to be

52

mapped to multiple virtual interfaces, each with its own MAC address. MACVLAN

interfaces can operate in three distinct modes:

Private: In this mode the interface cannot communicate with any other endpoints

on the lower device i.e. all incoming frames are dropped if their source MAC address

matches one of the MACVLAN interfaces present on the host. This isolates con-

tainers from each other, preventing direct communication between containers, but

not from the outside network.

Bridge: This modes provides MACVLAN endpoints bound to the same lower device

a bridge that allows the to communicate with each other or the host directly without

transmitting frames through the physical link.

Virtual Ethernet Port Aggregator (VEPA): In VEPA mode, transmitted

frames are always sent out via the lower device, even if they are destined to other

endpoints bound to the same device. If the physical switch on the receiving complies

with the 802.1Qbg standard for Edge Virtual Bridging36, it may act as a Re�ective

Relay (a.k.a �Hairpin switch�), allowing it to transmit the frame back on the same

link it received it on. This not only allows containers to communicate with each

other and the host, but has the added bene�t of allowing network level policies

to be enforced by the switches (e.g. DHCP �ltering). Unfortunately this mode of

operation is not widely supported yet.

5.6 Device compartmentalization

Each container is created with a distinct /dev with a minimal set of device nodes (in

particular /dev/null, /dev/zero, /dev/full, /dev/random and /dev/urandom).

In addition, we share certain device nodes with the host by bind-mounting them to

36http://www.ieee802.org/1/pages/802.1bg.html

53

appropriate locations on container creation. For instance, by making /dev/dri/card0

we available enable hardware accelerated graphics within the container.

It is important that the devices that are visible to containers are chosen with care,

especially in cases when processes within the container are allowed privileges. For

instance, access to the device node corresponding to the block device housing the

host root �lesystem would allow a suitably privileged process inside the container

to circumvent the �lesystem compartmentalization described in Section 5.2.

5.7 Permission compartmentalization

Placing the container in a distinct SMACK domain without a�ecting existing policies

on the device poses some challenges. At the time of writing, the Linux MAC LSMs

have not yet been made aware of containers. In our prototype, we instead utilize the

nested overlay �lesystem to allow the relabeling of native binaries executed within

the container. This allows both an containerized and non-containerized version of

the application to co-exist on the host. The relabeling consists of appending an

identi�er unique to the container to the existing label. The host mode daemon

is responsible for relabeling SMACK policy rules pertaining to the containerized

application and loading them to the enforced policy. This particular functionality

requires the host mode daemon to obtain privileges to override existing SMACK

labels and modify the enforced policy.

5.8 Application migration

Application migrations consists of simply transferring the contents of the copy-on-

write overlay to the target device. This can occur over a network connection, or

some other medium. We have also experimented with a usage scenario where users

54

carry the migratable containers with them on portable USB drivers. In this case,

the containers were encrypted on-disk using a passphrase known to the users.

The overlay also contains a description of permissions assigned on the host device

and the origin of the particular permission. When the containerized environment is

recreated on the target device, the container speci�c policy is reconciled with the

device policy on the target device according to the following rules:

1. If the device policy always allows a permission, it is granted automatically.

2. If the device policy always denies a permission, or the permission is not de�ned

by the policy, it is never granted for any reason.

3. If the device policy disallows a blanket prompt for a permission, the user is

prompted for consent upon each startup of the container.

4. If the device policy allows a blanket prompt for a permission, and the user has

consented to a blanket prompt on the source device, the permission is granted

automatically.

6 Results and Evaluation

Our design employs resource namespaces and mandatory access controls to con�ne

applications within dynamically isolated domains based on the notion of containers.

Resource namespaces provide the necessary building blocks to compartmentalize op-

erating system resources available to containerized applications. The MAC based

on the Linux LSM framework provides the basis of the permission system in our

prototype. In this section we describe how each of requirements identi�ed in Sec-

tion 3.1 were taken into account in the design and how well out withstands against

the threat model described in Section 4.2.

55

Isolation: Although Linux resource namespaces provide a �exible toolset for re-

source isolation, we believe our design is evidence of the fact that the evaluation

of the security of container-based virtualization solutions should in detail take into

account resources crossing namespace boundaries. Due to our goal of allowing con-

tainers to share resources with the host system, we needed to consider many venues

of potential information leakage on the �lesystem layer, including transient runtime

�les and host device nodes. In this light, we believe an approach to container con-

struction where the containerized environment is initialized as empty as possible,

and resources to be shared with the host are introduced one by one in a controlled

manner is imperative in avoiding unintended information leakage.

Authentication: We did not explicitly address the issue of authentication in our

design because existing solutions for demonstrative authentication, such as those

widely-deployed in Bluetooth and Wi� protected setup [SVA09] can be layered on

top of our design.

Policy migration: In our prototype we explored the migration of policies in the

context of two devices with potentially con�icting device policies. Our scheme allows

the policy associated with a migrated container to retain user policy decisions to

the extent allowed by the local device policy.

Full cleanup: In our design, the copy-on-write overlay isolates all �les subject

to migration. Therefore, removing the �les in the copy-on-write overlay should be

su�cient to remove all potentially sensitive data associated with the container from

a device after successful migration.

Interoperability: Since our design relies modifying the environment container-

ized applications are run in, rather than modifying the applications themselves, we

believe our approach can be applied to a wide variety of applications. For appli-

cations which depend on services running on the device for persistent storage (e.g.

56

databases etc.), the container could be extended to include private instances of nec-

essary dependencies. For the purposes of our prototype we only considered relatively

self-contained applications which relied on �les for persistent storage, but in princi-

ple our design could be extended to compartmentalize interdependent applications

as the cost of a higher overall resource footprint.

Deployability: In this work, we have intentionally limited ourselves to existing

features available in the mainline kernel with the exception of OverlayFS, which at

the time of writing has been proposed for inclusion in Linux 3.1837. Furthermore, we

have based our design on a system model which �ts real-world Linux-based systems.

https://lkml.org/lkml/2014/9/29/350

Performance:

We evaluated the performance of our design with a small number of unmodi�ed

applications. Of these we wish to note especially Extreme Tux Racer 38an OpenGL39

racing game which requires 3D acceleration to operate properly.

Bind-mounts proved to be very �exible in allowing devices and IPC sockets to be

shared across container boundaries. This allowed us to containerize applications

utilizing hardware-accelerated OpenGL graphics with no human-perceivable degra-

dation in performance.

We note that our prototype exhibits increased overhead in �lename lookups due to

the design of OverlayFS. For the applications we evaluated, this overhead turned

out to be negligible, but it is possible that this may be an issue for applications

which perform a large number of repeated �lename lookups.

Compromise of Legitimate Containers or Host: From a security perspective

exposing certain device nodes to containers poses a major challenge as device drivers

39https://www.opengl.org/
39http://sourceforge.net/projects/extremetuxracer/

https://lkml.org/lkml/2014/9/29/350
http://sourceforge.net/projects/extremetuxracer/

57

pose and signi�cant attack vector by exposing uncompartmentalized interfaces to

code running in kernel space.

Privilege Escalation: Our design allows mandatory access control policies to be

enforced for containerized applications. This forms the basis for the permission

system considered in the system model described in Section 4.1. Permissions that

can be granted to an application is limited by the local device policy. The policy

reconciliation used in the migration scheme respects the device policy.

Our design relies on system services supporting RPC, such as D-Bus and the X11

display server being able to enforce access control policies based on callers security

context in order to avoid so called Confused Deputy40attacks.

The lack of container-awareness in LSMs poses a challenge in our design. The need

for compartmentalization of both device drivers and LSM policies has been known

for some time [Bie06]. Our overlay-based relabeling is only a workaround for this

de�cit. Path-based MAC LSMs allow for some additional �exibility in this regard,

but with a separate set of drawbacks.

Denial of Service: Although we also exposed /dev/random and /dev/urandom in

our container setup, as these devices access a global entropy pool exposing these

poses a couple or risks that are not easily addressed. For /dev/random there exists

theoretical risk that a malicious container might be able to predict the output for

another container or host [DPR+13]. In addition, as /dev/urandom employs blocking

semantics, there exists a very real risk that a malicious container may attempt

to exhaust all available entropy in the entropy pool and thus mount a DoS on

cryptographic applications relying on high-entropy random number generation for

e.g. key generation.

40CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

http://cwe.mitre.org/data/definitions/441.html

http://cwe.mitre.org/data/definitions/441.html

58

Our prototype also does not currently provide resource control, making it susceptible

to resource exhaustion attacks. In Section 2.6 we account for kernel features that

can be used to address this.

7 Related Work

Zap [OSSN02] is a system for process migration for Linux. Zap introduces the

notion of PrOcess Domains (PODs), which are used to contain migratable processes.

A POD decouples processes from dependencies on the host operating system and

other processes by providing processes a virtualized view of the operating system by

associating virtual identi�ers with operating system resources. The approach bears

some resemblance to Linux namespaces, although Zap predates the Linux namespace

implementation by several years. Zap virtualization is achieved by intercepting

system calls and translating physical resource names in arguments and returns values

to virtual names and vice versa.

During migration, a POD along with all processes it contains is suspended and the

state of the POD written to a �le. This checkpoint �le can subsequently be used

to restart the POD along with its processes and restore the state at time of the

checkpoint. In order to reduce the amount of data that has to been transferred

during a migration, Zap leverages distributed �lesystems such as NFS to store the

�lesystem visible within a POD and mounts the �lesystem within the POD's virtual

�lesystem hierarchy.

Linux-VServer 41 is another solution for compartmentalizing the userspace environ-

ment into multiple distinct units. It is mainly aimed at providing VPS environments

for server consolidation. Linux-VServer is not based on mainline Linux namespaces,

but distributed as a set of kernel patches that extend existing kernel structures to

make them aware of Linux-VServer contexts. Each context hides processes outside

59

its scope and prevents interaction between processes in di�erent contexts. This is

achieved by providing isolation of shared memory and IPC primitives, user and

process IDs, Unix pseudo-teletype devices and sockets. Linux-Vserver also adds a

per-context capability mask that limits the capabilities available to processes within

a context. It also provides Plan 9-style private namespaces for �lesystem isolation,

chroot barrier support and a uni�cation mechanism for sharing �les between dis-

tinct contexts utilizing a shared �lesystem. The purpose of uni�cation is to reduce

the overall resource consumption via the use of hard links. If the �le is modi�ed in

a particular context, the link is broken to avoid the changes from being visible in

other contexts.

OpenVZ 42 is a open source, container-based virtualization solution for Linux, com-

mercialized by Parallels, Inc. OpenVZ is the basis for the commercial Parallels

Cloud Server which supports both traditional and container-based virtualization for

Internet hosting services. OpenVZ is notable, because the team behind it has made

signi�cant contributions to the operating system-level virtualization mechanisms

merged in the mainline kernel. As a result, the OpenVZ tools are able to operate,

although with reduced functionality, on a upstream Linux kernel.

One of the distinguishing features of OpenVZ is CR functionality that is supported

via an in-kernel implementation. E�orts were made to merge CR support into

the upstream Linux kernel. However, the considerable complexity of the in-kernel

implementation eventually lead to the rejection of the OpenVZ CR patches.

Not deterred by the rejection of the in-kernel CR implementation, the OpenVZ team

took another approach. Checkpoint/Restore In Userspace43 (CRIU) is a users pace

tool for Linux which allows running applications to be suspended, and checkpointed

to the �lesystem as a collection of �les. These �les can later be used to restore

41http://linux-vserver.org
42http://openvz.org

http://linux-vserver.org
http://openvz.org

60

the application to the state at the point it was suspended, and continue execution.

CRIU di�ers from the OpenVZ CR feature in that it is, as the name implies, mainly

implemented in userspace, with only minor changes to the kernel exposing various

internal kernel resources to be read and modi�ed from userspace.

With the inclusion of resource namespaces in the mainline Linux kernel, a number

of e�orts to provide containers based on these have been proposed. The most promi-

nent of these is the LXC Linux Containers project44. LXC provides an userspace

interface for the mainline kernel operating system-level virtualization features. It

can make use of the kernel resource namespaces, AppArmor and SELinux MAC pro-

�les, seccomp, chroots, capabilities and control groups. LXC consists of the liblxc C

library with language bindings for several other programming languages, and a set

of a command line tools for managing containers.

The libvirt virtualization API45is a toolkit with the goal of providing a common

interface to the di�erence virtualization capabilities supported in recent versions of

Linux and other operating system. It supports both OpenVZ and LxC containers,

as well as a number of traditional hypervisors such as the KVM/QEMU hypervisor

on Linux, the XEN hypervisor on Linux and Solaris, the FreeBSD bhyve46 hypervi-

sor, the VMware ESX and GSX hypervisors and the Microsoft Hyper-V hypervisor.

The libvirt API provides operations to provision, create, modify, monitor, control,

migrate and stop the virtualized domains, depending on the capabilities of the un-

derlying virtualization solution.

A recent user of operating system-level virtualization primitives in Linux is Docker 47,

a platform for automating the deployment of distributed applications in cloud en-

vironments. In the Docker deployment model, system administrators can provide

43http://criu.org
44http://linuxcontainers.org
46http://bhyve.org/
46http://libvirt.org/

http://criu.org
http://linuxcontainers.org
http://bhyve.org/
http://libvirt.org/

61

standardized environments to development, QA, or operations personnel in the form

of Docker containers. Docker containers consist of a �lesystem image used to set up

the application to be deployed along with any dependencies. The Docker Engine

provides packaging tools to automate the creation of containers to a high degree.

Docker containers also allow di�erences in in the underlying infrastructure, such as

the speci�c OS variant (distribution), to be abstracted away. The containers can

then be deployed on any system which provides the Docker Engine.

Docker can use LXC, either on its own or via libvirt as a back-end for the execution

environments used to run containers, but LXC was recently superseded by libcon-

tainer 48 speci�cally developed for Docker, as the default back-end. The Docker

libcontainer is a Go library which o�ers an interface to the kernel's without depen-

dencies such as LXC. It has support for namespaces, control groups, capabilities,

AppArmor pro�les, network interfaces and �rewalling rules.

Cells [ADH+11] is a virtualization architecture for Android, which allows multiple

virtual phones to run concurrently on a single physical phone. Only one virtual

phone, the foreground virtual phone, is displayed at a time, while other virtual

phones are invisible in the background.

Virtual phones are isolated from each other by the means of resource namespaces.

Cells introduces a new kernel-level mechanism, device namespaces49, which provide

hardware resource multiplexing and isolation. Unlike other kernel namespaces, de-

vice namespaces do not virtualize identi�ers, but are used by device drivers or kernel

subsystems to tag data structures or register callback functions, which are called

when a device namespace changes state. Each virtual phone in Cells is running in

a device namespace of its own. Callbacks triggered when a virtual phone changes

between foreground and background state allow devices to respond di�erently de-

47https://www.docker.com/
48https://github.com/docker/libcontainer

https://www.docker.com/
https://github.com/docker/libcontainer

62

pending on whether a virtual phone is in the foreground or in the background. The

implementation of device namespaces in cells provides either wrappers around ex-

isting device drivers, modi�es kernel subsystems to take into account device state

or modi�es individual device drivers to take device namespace state into account.

In 2011, the company Cellrox50 was founded to commercialize Cells. The Cell-

rox multi-persona platform is marketed as an enterprise mobility solution enabling

BYOD. It adds remote management support to Cells that allows corporate IT de-

partments to manage the corporate persona on their employees' devices. Other

commercial BYOD solutions include Samsung KNOX�51and VMware Horizon Mo-

bile�52

Current technology in the �eld of IVI connectivity include MirrorLink�53, which is

a device interoperability standard for integration between smartphones and vehicle

infotainment systems. In the MirrorLink� architecture, applications are hosted and

run on the smartphone while the driver and passengers interact with the applica-

tions via IVI system peripherals such as steering wheel controls, dashboard buttons

or touch screens. MirrorLink� utilizes well-established, non-proprietary technolo-

gies such as IP, USB, Wi-Fi, Bluetooth, Real-Time Protocol (RTP, for audio) and

Universal Plug and Play (UPnP). The Virtual Network Computing (VNC) protocol

is used to replicate the phone display in the car navigation display and communicate

user input back to the mobile device.

The MirrorLink� architecture is in�uenced by the state of current IVI systems,

which are not able to match the functionality of contemporary smartphones. To-

49https://github.com/Cellrox/devns-patches
50http://www.cellrox.com/
52http://www.vmware.com/mobile-secure-desktop/overview
52https://www.samsung.com/global/business/mobile/platform/mobile-platform/knox/
53http://www.mirrorlink.com/technology

https://github.com/Cellrox/devns-patches
http://www.cellrox.com/
http://www.vmware.com/mobile-secure-desktop/overview
https://www.samsung.com/global/business/mobile/platform/mobile-platform/knox/
http://www.mirrorlink.com/technology

63

day, the GENIVI®54industry consortium drives the broad adoption of Linux-based

operating systems, middleware and platforms for automotive IVI systems.

8 Conclusion

In this thesis we present the detailed design of a container-based isolation solution

for Linux comprised of isolated dynamic security domains. Its de�ning features are

the use of mandatory access control to strengthen the isolation provided by the

resource namespaces. We also present a proof-of-concept prototype which utilizes

dynamic isolated domains for application migrations which takes into account access

control policies associated with the migrated application.

Our design shows that existing OS-level virtualization features in the Linux kernel

can be used for dynamic application con�nement. In an attempt to improve the

deployability of the solution, we intentionally restricted ourselves to kernel features

already available in contemporary Linux variants. Our evaluations identi�es a num-

ber of gaps in the design, which are not easily addressed without appropriate kernel

primitives not currently readily available. The major gaps in the compartmental-

izations capabilities of Linux which are visible in our design are the lack of device

and security namespaces. Both are topics of ongoing work by the Linux kernel

community.

It is easy to draw parallels between the development of hardware virtualization

technology in the 60s and the development of OS-level virtualization in Unix-like

operating system. Currently there exists many systems that are capable of com-

partmentalizing a partial set of operating system resources. Despite its limitations

Linux namespaces are one of the more mature solutions currently available.

54http://www.genivi.org

64

References

AA06 Adams, K. and Agesen, O., A comparison of software and hardware

techniques for x86 virtualization. Proceedings of the 12th International

Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XII, New York, NY, USA, 2006, ACM,

pages 2�13, URL http://doi.acm.org/10.1145/1168857.1168860.

ADH+11 Andrus, J., Dall, C., Hof, A. V., Laadan, O. and Nieh, J., Cells: a

virtual mobile smartphone architecture. Proceedings of the Twenty-

Third ACM Symposium on Operating Systems Principles, SOSP '11,

New York, NY, USA, 2011, ACM, pages 173�187, URL http://doi.

acm.org/10.1145/2043556.2043574.

BDR02 Bugnion, E., Devine, S. and Rosenblum, M., System and method for

virtualizing computer systems, December 17 2002. URL http://www.

google.com/patents/US6496847. US Patent 6,496,847.

Bie06 Biederman, E. W., Multiple instances of the global linux namespaces.

Proceedings of the Linux Symposium, Ottawa, Ontario, Canada, July

2006, pages 101�111.

Cor12 Corbet, J., A new approach to user namespaces, http://lwn.net/

Articles/491310/, 2012. [Retrieved 11.09.2014].

Cre81 Creasy, R. J., The origin of the vm/370 time-sharing system. IBM J.

Res. Dev., 25,5(1981), pages 483�490. URL http://dx.doi.org/10.

1147/rd.255.0483.

DPR+13 Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D. and Wichs,

D., Security analysis of pseudo-random number generators with in-

put: /dev/random is not robust. Proceedings of the 2013 ACM

http://doi.acm.org/10.1145/1168857.1168860
http://doi.acm.org/10.1145/2043556.2043574
http://doi.acm.org/10.1145/2043556.2043574
http://www.google.com/patents/US6496847
http://www.google.com/patents/US6496847
http://lwn.net/Articles/491310/
http://lwn.net/Articles/491310/
http://dx.doi.org/10.1147/rd.255.0483
http://dx.doi.org/10.1147/rd.255.0483

65

SIGSAC Conference on Computer & Communications Security,

CCS '13, New York, NY, USA, 2013, ACM, pages 647�658, URL

http://doi.acm.org/10.1145/2508859.2516653.

FCH+11 Felt, A. P., Chin, E., Hanna, S., Song, D. and Wagner, D., An-

droid Permissions Demysti�ed. Proceedings of the 18th ACM Confer-

ence on Computer and Communications Security, CCS '11, New York,

NY, USA, 2011, ACM, pages 627�638, URL http://doi.acm.org/10.

1145/2046707.2046779.

FEF+12 Felt, A. P., Egelman, S., Finifter, M., Akhawe, D. and Wagner, D., How

to ask for permission. Proceedings of the 7th USENIX Conference on

Hot Topics in Security, HotSec'12, Berkeley, CA, USA, 2012, USENIX

Association, pages 7�7, URL http://dl.acm.org/citation.cfm?id=

2372387.2372394.

Ker10 Kerrisk, M., The Linux Programming Interface: A Linux and UNIX

System Programming Handbook. No Starch Press, San Francisco, CA,

USA, �rst edition, 2010.

Ker13a Kerrisk, M., Namespaces in operation, part 1: namespaces overview,

http://lwn.net/Articles/531114/, 2013. [Retrieved 05.10.2014].

Ker13b Kerrisk, M., Namespaces in operation, part 2: the namespaces api,

http://lwn.net/Articles/531381/, 2013. [Retrieved 05.10.2014].

Ker13c Kerrisk, M., Namespaces in operation, part 3: Pid namespaces, http:

//lwn.net/Articles/531419/, 2013. [Retrieved 05.10.2014].

Ker13d Kerrisk, M., Namespaces in operation, part 4: more on pid namespaces,

http://lwn.net/Articles/532748/, 2013. [Retrieved 05.10.2040].

http://doi.acm.org/10.1145/2508859.2516653
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779
http://dl.acm.org/citation.cfm?id=2372387.2372394
http://dl.acm.org/citation.cfm?id=2372387.2372394
http://lwn.net/Articles/531114/
http://lwn.net/Articles/531381/
http://lwn.net/Articles/531419/
http://lwn.net/Articles/531419/
http://lwn.net/Articles/532748/

66

Ker13e Kerrisk, M., Namespaces in operation, part 5: User namespaces, http:

//lwn.net/Articles/532593/, 2013. [Retrieved 05.10.2014].

Ker14 Kerrisk, M., Namespaces in operation, part 5: Network namespaces,

http://lwn.net/Articles/580893/, 2014. [Retrieved 05.10.2014].

KREA11 Kostiainen, K., Reshetova, E., Ekberg, J.-E. and Asokan, N., Old, new,

borrowed, blue �: A perspective on the evolution of mobile platform

security architectures. Proceedings of the First ACM Conference on

Data and Application Security and Privacy, CODASPY '11, New York,

NY, USA, 2011, ACM, pages 13�24, URL http://doi.acm.org/10.

1145/1943513.1943517.

KW00 Kamp, P.-H. and Watson, R. N. M., Jails: Con�ning the omnipotent

root. In Proc. 2nd Intl. SANE Conference, 2000.

Lev84 Levy, H. M., Capability-Based Computer Systems. Butterworth-

Heinemann, Newton, MA, USA, 1984.

MH12 Mao, M. and Humphrey, M., A performance study on the vm startup

time in the cloud. Proceedings of the 2012 IEEE Fifth International

Conference on Cloud Computing, CLOUD '12, Washington, DC, USA,

2012, IEEE Computer Society, pages 423�430, URL http://dx.doi.

org/10.1109/CLOUD.2012.103.

MVH12 Miller, K., Voas, J. and Hurlburt, G., Byod: Security and privacy con-

siderations. IT Professional, 14,5(2012), pages 53�55.

Olb78 Olbert, A. G., Extended control program support: Vm/370: A hard-

ware assist for the ibm virtual machine facility/370. SIGMICRO Newsl.,

9,3(1978), pages 8�25. URL http://doi.acm.org/10.1145/1096532.

1096534.

http://lwn.net/Articles/532593/
http://lwn.net/Articles/532593/
http://lwn.net/Articles/580893/
http://doi.acm.org/10.1145/1943513.1943517
http://doi.acm.org/10.1145/1943513.1943517
http://dx.doi.org/10.1109/CLOUD.2012.103
http://dx.doi.org/10.1109/CLOUD.2012.103
http://doi.acm.org/10.1145/1096532.1096534
http://doi.acm.org/10.1145/1096532.1096534

67

OSSN02 Osman, S., Subhraveti, D., Su, G. and Nieh, J., The design and

implementation of zap: a system for migrating computing environ-

ments. SIGOPS Oper. Syst. Rev., 36,SI(2002), pages 361�376. URL

http://doi.acm.org/10.1145/844128.844162.

PG74 Popek, G. J. and Goldberg, R. P., Formal requirements for virtual-

izable third generation architectures. Communications of the ACM,

17,7(1974), pages 412�421. URL http://doi.acm.org/10.1145/

361011.361073.

PPT+92 Pike, R., Presotto, D., Thompson, K., rickey, H. and Winterbottom,

P., The use of name spaces in plan 9. Proceedings of the 5th work-

shop on ACM SIGOPS European workshop: Models and paradigms

for distributed systems structuring, New York, NY 10036, USA, 1992,

ACM Press, pages 1�5, URL http://doi.acm.org/10.1145/506378.

506413.

PPTT90 Pike, R., Presotto, D., Thompson, K. and Trickey, H., Plan 9 from bell

labs. In Proceedings of the Summer 1990 UKUUG Conference, 1990,

pages 1�9.

RKNA14 Reshetova, E., Karhunen, J., Nyman, T. and Asokan, N., Security of

operating system virtualization technologies. To appear in Secure IT

Systems - 19th Nordic Conference, NordSec 2014, Tromsø, Norway,

October 15-17, 2014, Proceedings. Springer, 2014.

Sha09 Shau�er, C., SMACK and the Application Ecosystem, September

2009. URL http://www.linuxfoundation.jp/news-media/videos/

2009/10/lpc-2009-smack-and-application-ecosystem. Remarks

by Casey Shau�er at the Linux Plumbers Conference, Portland, OR

[Retrieved: 02.10.2014].

http://doi.acm.org/10.1145/844128.844162
http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/506378.506413
http://doi.acm.org/10.1145/506378.506413
http://www.linuxfoundation.jp/news-media/videos/2009/10/lpc-2009-smack-and-application-ecosystem
http://www.linuxfoundation.jp/news-media/videos/2009/10/lpc-2009-smack-and-application-ecosystem

68

SS75 Saltzer, J. H. and Schroeder, M. D., The protection of information in

computer systems. Proceedings of the IEEE.

SSL+99 Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D.

and Lepreau, J., The �ask security architecture: System support

for diverse security policies. Proceedings of the 8th Conference on

USENIX Security Symposium - Volume 8, SSYM'99, Berkeley, CA,

USA, 1999, USENIX Association, pages 11�11, URL http://dl.acm.

org/citation.cfm?id=1251421.1251432.

SVA09 Suomalainen, J., Valkonen, J. and Asokan, N., Standards for secu-

rity associations in personal networks: a comparative analysis. IJSN,

4,1/2(2009), pages 87�100. URL http://dx.doi.org/10.1504/IJSN.

2009.023428.

TMO+12 Tiwari, M., Mohan, P., Oshero�, A., Alka�, H., Shi, E., Love, E., Song,

D. and Asanovi¢, K., Context-centric security. Proceedings of the 7th

USENIX conference on Hot Topics in Security, HotSec'12, Berkeley,

CA, USA, 2012, USENIX Association, pages 9�9, URL http://dl.

acm.org/citation.cfm?id=2372387.2372396.

Var97 Varian, M., Vm and the vm community: Past, present, and future.

HARE 89 Sessions 9059�61.

http://dl.acm.org/citation.cfm?id=1251421.1251432
http://dl.acm.org/citation.cfm?id=1251421.1251432
http://dx.doi.org/10.1504/IJSN.2009.023428
http://dx.doi.org/10.1504/IJSN.2009.023428
http://dl.acm.org/citation.cfm?id=2372387.2372396
http://dl.acm.org/citation.cfm?id=2372387.2372396

	Introduction
	Background
	Virtualization
	The Dilemma of the Omnipotent Root
	Chroot jails
	FreeBSD jails
	Resource namespaces
	Mount namespaces
	UTS namespaces
	IPC namespaces
	PID namespaces
	Network namespaces
	User namespaces

	Resource Control
	Discretionary and Mandatory Access Control

	Design Goals
	Requirements
	Assumptions

	System and Threat Model
	System Model
	Threat model

	Design and Implementation
	Architecture
	Filesystem compartmentalization
	Process compartmentalization
	User compartmentalization
	Network compartmentalization
	Device compartmentalization
	Permission compartmentalization
	Application migration

	Results and Evaluation
	Related Work
	Conclusion
	References

