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Abstract 

Neuronal ceroid lipofuscinoses (NCL) are the most common inherited progressive 

encephalopathies of childhood. NCL disease genes were first identified in 1995 and 

since then, nearly 400 mutations (mostly autosomal recessively inherited) in thirteen 

known genes (CLN1-8, CLN10-14; http://www.ucl.ac.uk/ncl) have been described. 

Despite progress in the NCL field, the primary function and physiological roles of 

most NCL proteins remain unresolved. In this thesis we employed systematic 

approaches, including: functional proteomics, bioinformatics and mouse disease 

models, in an effort to clarify disease pathways associated with congenital, infantile 

and juvenile NCL in the human brain. We focused on four disease genes with 

different ages of onset: CLN10 (congenital), CLN1 (infantile classic, late infantile, 

juvenile, adult), CLN3 (juvenile, classic) and CLN5 (late infantile variant, juvenile, 

adult).  

First, we systematically examined the synaptic proteome in a cathepsin D (Ctsd / 

Cln10) knockout (Ctsd
−/−

) mouse model of congenital NCL (CLN10 disease), where 

the synaptic pathology resembles that of patients. Mouse brain synaptosomal 

fractions isolated from Ctsd
−/−

 knockout and control mice, were analysed by 

quantitative mass spectrometry. This work yielded nearly 600 identified proteins from 

three biological replicate measurements, out of which 43 proteins were differentially 

expressed in the Ctsd
−/−

 mice. We utilized protein-protein interaction (PPI) databases 

to connect and bridge the differentially expressed proteins then overlaid the resulting 

network with brain specific expression data from the Human Gene Atlas. The 

network of differentially expressed proteins was subjected to Gene ontology, pathway 

analysis and checked for involvement in disease phenotype. Finally, a subset of the 

data was systematically validated by quantitative Western blotting, 

immunohistochemistry and immunofluorescence confocal microscopy. This work 

highlighted defects in migratory functions of cathepsin D deficient cells that were 

attributed to downregulation of cytoskeletal proteins.  

Secondly, we aimed to map the CLN3-CLN5 protein interactome in the brain by 

identifying their associated proteins. We isolated and identified protein complexes 

from SH-SY5Y stable cells, followed by stringent filtration with Significance 

Analysis of INTeractome (SAINT), functional assignment by bioinformatics and 

validation analyses to unravel molecular mechanisms underlying CLN3 and CLN5 

diseases. This work revealed 42 / 31 novel CLN3 / CLN5 interacting partners (IP), 

respectively. The extent of crosstalk (several bridging IP) amongst CLN3 and CLN5, 

http://www.ucl.ac.uk/ncl
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suggests that the mechanisms leading to the functional deficits are shared between 

them. CLN3 was implicated in new roles of G-protein signalling and protein folding / 

sorting in the ER. 

Finally, we isolated protein complexes from human PPT1 (CLN1) expressing  

SH-SY5Y stable cells by single step affinity purification and subjected them to filter 

assisted sample preparation, prior to analysis by mass spectrometry. The goal of this 

study was to identify in vivo PPT1 substrates that could provide insight on the onset 

and progression of CLN1 disease. Findings from our proteomic analysis of the human 

PPT1 interactome support suggested roles of the protein in axon guidance and lipid 

metabolism, as well as point to putative new roles of PPT1 in neuronal migration and 

dopamine receptor mediated signalling pathway.  
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Résumé 

 Les céroïde-lipofuscinoses neuronales (CLN) sont les encéphalopathies progressives 

héréditaires les plus fréquentes chez l'enfant. Les gènes responsables de la maladie 

CLN ont été identifiés en 1995 et depuis, près de 400 mutations (principalement 

autosomiques récessives) dans treize gènes connus (CLN1-8, CLN10-14; 

http://www.ucl.ac.uk/ncl) ont été décrites. Malgré les progrès réalisés dans le 

domaine des CLN, la fonction principale et les rôles physiologiques de la plupart des 

protéines impliquées dans les CLN restent indéterminés. Les travaux présentés dans 

cette thèse ont contribué à clarifier les mécanismes associés aux CLN congénitales, 

infantiles et juvéniles dans le cerveau humain en utilisant des approches 

systématiques telles que, la protéomique fonctionnelle, la bio-informatique, ainsi que 

par l'étude de modèles de la maladie chez la souris. Nous nous sommes concentrés sur 

quatre gènes de la maladie auxquels correspondent différents âges de développement: 

CLN10 (congénitale), CLN1 (classique infantile, infantile tardive, juvénile, adulte),  

CLN3 (juvénile, classique) et CLN5 (variante infantile tardive, juvénile, adulte).        

 Afin de mieux comprendre les disfonctions liées à la maladie CLN10, nous avons 

réalisé une étude du protéome synaptique de souris cathepsin Ctsd / Cln10 knockout 

(Ctsd−/−), c'est à dire de souris modèles NCL congénital pour lesquelles les 

pathologies sont similaires à celles de patients humains atteints de la maladie CLN10. 

Dans un premier temps, l'analyse par spectrometrie de masse de fractions 

synaptosomales isolées de de souris controles et de souris Ctsd−/− knockout a permis 

d'identifier 600 protéines parmis lesquelles 43 sont exprimées de facon differentielle 

chez les souris Ctsd−/− knock-out. Des connections entre ces différents candidats ont 

ensuite été établies en utilisant la base de données PPI (protein-protein interaction) et 

ces résultats ont été corrélés avec les données provenant du Human Gene Atlas 

concernant les protéines exprimées spécifiquement dans le cerveau. Le réseau ainsi 

créée a été annotaté avec les termes de Gene ontology, selon leur appartenance èa des 

voix de signalisation connues et aussi en fonction de leur implication dans des 

phenotypes liés aux maladies. Afin de valider ces résultats bio-informatiques, certains 

candidats ont été testés par immunobavargae quantifitatif, immuno-histo-chime et 

microscopie confocale. En conclusion, ce travail aura permis de mettre en évidence 

les défauts de migrations dans les cellules déficientes en Cathepsin D due à une 

dérégulation des protéines des cytosquelettes. 

Deuxièmement, nous avons cherché à cartographier l’interactome des protéines 

qui interagissent avec CLN3 et CLN5. Nous avons utilisé la technique TAP (Tandem 

http://www.ucl.ac.uk/ncl
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Affinity Purification) dans les cellules de neuroblastome humains. Les protéines 

identifiées par SM ont ensuite été analysées à l'aide du logiciel SAINT (Significance 

Analysis of INTeractome). L'affectation fonctionnelle des protéines identifiées par la 

bio-informatique et la validation des analyses a permis de démêler les mécanismes 

moléculaires sous-jacents des maladies de CLN3 et CLN5. Ce travail a révélé 42 et 

31 nouvelles CLN3 / CLN5 partenaires d'interaction, respectivement. Le faite que de 

nombreuses protéines aient été identifiées lors des essais avec CLN3 et CLN5, 

suggère que les mécanismes conduisant à des déficits fonctionnels sont communs aux 

deux. L'étude a mis en évidence l'implication de CLN3 dans petite protéine G de 

signalisation ainsi que le repliement des protéines au niveau du RE dans cette 

maladie. 

Enfin, nous avons isolé des complexes protéiques de PPT1 (CLN1) chez l'homme 

à partir de cellules SH-SY5Y-PPT1-CTAP-Puro stables utilisant la purification par 

affinité. Ces derniers ont ensuite été préparés selon la technique FASP (Filter Assisted 

Sample Preparation) avant d'être analysé à l’aide de la spectrométrie de masse. 

L'objectif de cette étude était d'identifier les substrats (in vivo) de PPT1 qui peuvent 

nous éclairer sur l'apparition et la progression de la maladie de CLN1. Les 

conclusions de l'analyse protéomique de l'interactome PPT1 suggèrent que ce 

complexe serait impliqué dans la migration neuronale et les voies de signalisation du 

récepteur de la dopamine. 
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 Introduction

The brain is the command centre of the nervous system in all vertebrates and most
invertebrates (with a few exceptions e.g. jelly fish, sponges). Structurally, the human
brain is similar to other mammalian brains, except that it is more encephalised  i.e.
is relatively larger in proportion to body size (Hofman, 2014). Given its complexity,
understanding how the human brain functions requires studies at different spatial and
temporal scales: from genes, proteins, synapses and cells to microcircuits, brain
regions and the whole brain, at varying stages. Invasive techniques on humans are
limited because of ethical issues, hence the use of model organisms (e.g. mouse, rat,
zebra fish) which can easily be manipulated to provide insight into the function of the
brain.

Neuronal ceroid lipofuscinoses (NCL) which are the focus of this thesis, are
mostly childhood-onset autosomal recessively inherited neurodegenerative disorders
(Mole SE, 2011). They are characterised by early accumulation of auto-fluorescent
storage material in lysosomes of neurons or other cells and degeneration of cortical
neurons. NCL patients suffer from progressive loss of vision, mental and motor
deterioration, epileptic seizures and premature death (Haltia, 2006). NCL are caused
by mutations in 13 known genes (CLN1-8, CLN10-14)  (http://www.ucl.ac.uk/ncl),
some of which have only been recently identified. The estimated incidence of NCL is
1 per 12,500-200,000 persons in the USA and Northern Europe (Haltia, 2006;
Uvebrant and Hagberg, 1997). Although NCL are heterogeneous, they share a similar
phenotypic profile which is suggestive for shared molecular mechanisms. These
diseases have proven challenging to study with traditional cell biology or
biochemistry based methods and are therefore good candidates for systematic
approaches that rely on interdisciplinary methods to provide a holistic view of disease
pathogenesis. After nearly two decades of NCL research, the precise function or
physiological role of most NCL proteins remain unresolved. This thesis work
attempts to narrow the knowledge gap through studies of protein-protein interactions
(PPI) associated with CLN10, CLN3 / CLN5 and CLN1.

We investigated the mouse brain synaptic proteome of Ctsd-/- / Cln10-/- knockout
using a combination of quantitative mass spectrometry, bioinformatics, quantitative
Western blotting and qualitative immunohistochemistry. Protein interaction data was
utilised to connect and bridge differentially expressed proteins identified from the
cathepsin D knockout mice. The resulting protein map was further enriched with
brain specific gene expression, functional ontologies / pathways and disease
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phenotype information. This enabled us to construct a dynamic, disease-protein
centred network with predicted functional modules. We also mapped the CLN3-
CLN5 interactome in the brain by isolating and identifying CLN3 / CLN5 protein
complexes from SH-SY5Y stables cells using tandem affinity purification coupled to
mass spectrometry (TAP-MS), in concert with stringent Significance Analysis of
INTeractome (SAINT), co-localisation and co-immunoprecipitation assays. The study
implicated CLN3 in G-protein signalling and protein folding / sorting in the ER.
Finally, we isolated protein complexes from human CLN1 (PPT1) expressing stable
cells and identified them by single step affinity purification coupled to mass
spectrometry (AP-MS). PPT1 IP from this work linked the protein to putative new
roles in neuronal migration and the dopamine receptor mediated signalling pathway.
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2 Review of the literature

2.1 Functional proteomics and quantitative mass
spectrometry

Functional proteomics is the study of protein dynamics, including protein-protein
interactions (PPI) and posttranslational modifications (PTM) of individual proteins, in
the context of their impact on biological function. Quantitative mass spectrometry
(MS) is an unbiased tool for probing protein complexes at near to endogenous levels
and determining protein abundance, PPI, or PTM of individual constituent proteins
(Aebersold and Mann, 2003; Matthiesen et al., 2011). Label-free quantitative MS was
recently utilised to draft a map of the human proteome and create two publicly
available database resources (Proteomics DB and human proteome map), for analysis
of proteomic datasets from human samples (Kim et al., 2014; Wilhelm et al., 2014).
Similarly to the impact of next generation sequencing on genomics and
transcriptomics (Stapley et al., 2010), mass spectrometry has revolutionalised
proteomic studies. However, MS technology is still limited by its reliance on protein
databases with predefined sequences, for identification of proteins. Sample
preparation for MS involves several critical features, e.g. sample pre-fractionation,
protein digestion, sample clean-up / separation, which precede the MS runs and data
analysis.

Several stable isotope labelling methods are currently used for robust
measurements of relative protein abundance within complex samples. Examples
include: isotope-coded affinity tags (ICAT) (Gygi et al., 1999), stable isotope labeling
by amino acids in cell culture (SILAC) (Ong et al., 2002), isobaric tags for relative
and absolute quantification (iTRAQ) (Ross et al., 2004), tandem mass tags (TMTs)
(Dayon et al., 2008; Thompson et al., 2003) and triple-stage mass spectrometry
(MS3) (Ting et al., 2011). A comparison of protein abundance in multiple tissue
samples is possible with iTRAQ and TMT labelling, since there is no requirement to
grow cells in isotope-containing culture medium (Altelaar et al., 2013). Quantitative
MS data from iTRAQ and TMT experiments may be compromised in accuracy or
precision due to inefficient labelling and contamination from nearby isobaric ions,
which are isolated and fragmented alongside the target ions (Karp et al., 2010;
Shirran and Botting, 2010). The use of MS3 and improvements in data analysis
should circumvent this problem (Karp et al., 2010; Ting et al., 2011).
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Labelling based quantitative MS strategies are limited by: the high cost of
reagents, incomplete labelling, increased time / complexity of sample preparation,
sample concentration and specific software for analysis (Elliott et al., 2009). As such,
label-free quantitative proteomics based on relative quantitation of peptide ion
intensity or spectral counts may also be utilised to estimate relative abundance of
proteins within a complex sample (Old et al., 2005). Bioinformatic platforms,
including: SAINT (Skarra et al., 2011), OpenMS (Kohlbacher et al., 2007; Rost et al.,
2014) and MaxQuant (Cox and Mann, 2008; Cox et al., 2009), have been designed
for analysis of label-free or isotope-labeled MS data. Virtual expert mass
spectrometrist (VEMS) which is a specific software for iTRAQ or TMT data analysis
is utilised to obtain more accurate peptide ratios (Matthiesen, 2007; Rodriguez-Suarez
et al., 2010).

2.2 Protein-Protein Interaction Networks

Understanding how protein-protein interaction networks can become dysfunctional
allows us to apply therapeutic intervention with drugs, genetic or environmental tools.
Affinity purification-based methods combined with mass spectrometry and
systematic yeast two-hybrid (Y2H) screens (Ewing et al., 2007; Gavin et al., 2006;
Gavin et al., 2002; Krogan et al., 2006) have been used to generate large-scale
protein-protein interaction (PPI) networks for human (Rual et al., 2005; Stelzl et al.,
2005), and several model organisms including C. elegans (Li et al., 2004),
Drosophila (Formstecher et al., 2005; Giot et al., 2003) and yeast (Ito et al., 2001;
Uetz et al., 2000). Moreover, medium-scale PPI maps were created for signalling
pathways (Colland et al., 2004).

However, the currently available interaction data are static and incomplete, thus
inadequate for understanding the function of proteins within their cellular milieu. It is
also well understood that methods for the generation of protein interaction data differ
to such an extent that they result in complementary rather than overlapping data
(Kaltenbach et al., 2007; Zhao et al., 2005). Therefore, to further probe disease
pathways at a molecular level, highly focused PPI screens and several confirmation
studies that minimize false positives should be performed to refine interaction
networks. Integration of interaction data with qualitative and quantitative information
(gene expression / localisation studies and bioinformatics), is necessary to construct
maps of protein function that reflect dynamic cellular processes (Figeys, 2008; Stelzl
and Wanker, 2006).
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2.2.1 Protein connectivity in oligogenic and complex diseases

Although the onset and progression of several monogenic diseases (e.g.
phenylketonuria and cystic fibrosis) was once attributed to a single gene (Mendelian
Inheritance), they have since proven to be oligogenic, i.e. modulated by one or more
modifier genes (Badano and Katsanis, 2002). Causative genes associated with both
oligogenic and complex diseases usually have similar cellular functions and
overlapping biological modules or pathways (Badano and Katsanis, 2002; Oti and
Brunner, 2007), thus providing a strong correlation between protein connectivity and
disease. Structural studies on a subset of disease genes, suggest that their phenotypes
are associated with mutations that probably perturb the quaternary structure of the
proteins and consequently disrupt protein-protein interactions (Ferrer-Costa et al.,
2002). A survey of mutations that disrupt protein interactions in 65 diseases, showed
most of them to have a loss of function phenotype often attributed to disturbed
transient protein-protein interactions (Schuster-Bockler and Bateman, 2008).

Human protein-protein interaction datasets from large-scale experiments (Rual et
al., 2005; Stelzl et al., 2005) and literature mining (Chatr-aryamontri et al., 2007;
Kerrien et al., 2007), have provided a global view of disease gene networks. Inherited
disease genes have often been assumed to encode proteins with a larger number of
interactions in comparison to non-disease genes and thereby favor interactions with
other disease gene products (Feldman et al., 2008; Gandhi et al., 2006; Goh et al.,
2007), hence forming the hubs within interaction networks (Xu and Li, 2006).
However, recent evidence suggests that the hub-ness  of inherited disease genes
maybe apparent. Exclusion of essential genes from analysis of interaction networks,
disassociates hubs from disease genes and shifts non-essential disease genes to the

(Goh et al., 2007).

2.2.2 Interactome networks in human health and disease

High-throughput interactome studies of a few human diseases where interaction data
is of sufficient quality are useful in understanding underlying disease mechanisms
(Rual et al., 2005; Stelzl and Wanker, 2006). The first large-scale affinity purification
mass spectrometry of PPI in human cells (Ewing et al., 2007) identified 6463
high-confidence interactions of particular relevance to various human diseases.
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A method for purification of native protein complexes at sub-endogenous levels
(tandem affinity purification, TAP) was first described in yeast and later successfully
applied to mammalian cells (Burckstummer et al., 2006; Puig et al., 2001). In TAP, a
target protein fused to a protein tag is expressed in a cellular or organism host, for
purposes of isolating it along with associated interacting partners. Extracts from the
host cell or organism are utilised to isolate protein complexes, at near to endogenous
levels in dual affinity purification steps (Burckstummer et al., 2006; Rigaut et al.,
1999). Similarly to co-immunoprecipitation (affinity matrix-antibody), TAP is
dependent on specific high affinity protein-protein (affinity matrix-tag) interactions
for isolation of in vivo-associated target protein complexes from extracts (Puig et al.,
2001; Rigaut et al., 1999). Unlike co-immunoprecipitation, the various steps in TAP
(Figure 1) ensure reduced background contamination from abundant cellular proteins.
As such, highly purified protein complexes present at low concentrations can be
isolated from the starting material (Puig et al., 2001; Rigaut et al., 1999).

Figure 1 Illustration of the tandem affinity purification (TAP) method used for isolation of
protein complexes from SH-SY5Y cells stably expressing NCL proteins. IgG beads refers to
IgG Sepharose beads and Protein G to Protein G domain.  Strep beads and SBP are
abbreviations for Streptavidin agarose beads and Streptavidin binding peptide, respectively.
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High throughput affinity capture mass spectrometry (AP-MS) experiments have
been utilised to analyse protein networks relevant to human disease. A few examples
are surveyed below. Proteomic analysis of the human autophagy network in HEK 293
cells, revealed 409 interacting proteins with 751 interactions within the network
(Behrends et al., 2010). Autophagy is known to be disrupted in many human diseases,
including NCL (Cao et al., 2006; Shacka et al., 2008) . In an in vivo proteomic
interactome study, brains from the BACHD mouse model that expresses full length
human mutant Huntingtin (mHtt) were utilised to identify 747 potential Huntingtin
(Htt) interacting partners in distinct mouse brain regions (Shirasaki et al., 2012).
Mutations in the Htt gene that lead to expansion of the (CAG)n repeats are known to

(Goldberg et al., 1994).  Recently, the
human Hippo interaction proteome was characterized in HEK 293 cells thereby
demonstrating 270 interacting partners with 480 protein-protein interactions (PPI)
(Hauri et al., 2013).  Another study of the human cyclin-dependent kinase [CDK],
mitogen-activated protein kinase [MAPK], glycogen synthase kinase [GSK3], CDC-
like kinase [CLK]) (CMGC) kinome, utilised HEK 293 cells to identify 652 high-
confidence kinase-protein interactions. Cancer-associated proteins (CAPs) were
particularly enriched in the CMGC kinase complexes. This work is a potentially
important resource for use in studying human pathologies, in which the CMGC
kinase complexes maybe perturbed (Varjosalo et al., 2013).

Yeast two-hybrid assays were used to construct interaction networks for ataxias
and disease (HD) (Kaltenbach et al., 2007; Lim et al., 2006). In the
ataxia study, 770 PPI (mostly novel) were detected by a stringent yeast two-hybrid
screen and a subset of 62 interactions was validated by co-immunoprecipitation in
HEK 293T cells. Several ataxia-causing proteins clustered in a well-connected sub-
network and shared many interactors, some of which proved to be ataxia modifying
genes in Drosophila and mouse models (Lim et al. 2006). HD-centered experiments
yielded 234 HD-associated proteins, 104 and 130 identified by yeast two-hybrid and
AP-MS (in HEK 293, HeLa, and M17 neuroblastoma cells), respectively. After
randomly probing a subset of 60, 45% were found to be genetic modifiers of
neurodegeneration in an HD Drosophila model (Kaltenbach et al. 2007).

Computational modeling and experimental techniques were employed (Pujana et
al., 2007) to identify biomarker genes associated with breast cancer. Several omic
datasets (human and other organisms) with 118 genes linked by 866 functional
associations were used to construct a breast cancer network. Yeast two-hybrid and co-
immunoprecipitation assays were applied to the network, thereby extending it and
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identifying putative disease genes. This work genetically linked breast cancer
susceptibility and centrosome dysfunction.

2.2.3 PPI networks and therapeutic Intervention

Detailed PPI maps of disease genes may clarify disease mechanisms (Pache et al.,
2008) and suggest potential points for therapeutic intervention (i.e. drug targets).
Interactome maps are robust and therefore well suited for selection of strategic
network nodes, in contrast to gene-centreed approaches in which the target biological
context is usually ignored. Biological systems, such as disease states, are generally
resistant to perturbations and often maintain their functions through various
mechanisms (e.g. back-up circuits and fail-safe mechanisms) (Kitano, 2004).
Consequently, network positioning (i.e. preference for fewer pathways or topological
properties), prioritization of regions critical for driving network traffic and avoidance
of back-up circuits that could neutralize drug effects, should all be considered during
the selection of new putative drug targets.

Moreover, PPI network based approaches may also further the identification of
protein-protein interactions suitable for direct targeting with drug-like compounds
(Neduva and Russell, 2006; Wells and McClendon, 2007). This approach presents
several advantages over conventional targets (such as enzyme active sites). It offers a
more subtle, specific form of regulation that can avoid off-target side effects or total
ablation of normal enzyme activity. For instance, Nutlins (a class of drug cancer
candidates) were used to block the interaction between tumor suppressor p53 and its
negative regulator MDM2, thereby allowing p53 to mediate apoptosis (Vassilev et al.,
2004). Several other chemicals have been designed in order to disrupt interactions
among translation initiation factors (Moerke et al., 2007) or to sequestrate cytokines,
in efforts to impede receptor binding (He et al., 2005). Despite the complexity of
identifying small molecules that interfere with specific PPI, new methodologies
(Parthasarathi et al., 2008) and technical improvements should provide the necessary
toolkit to expand this domain of drug discovery.
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2.3 Cells of the central nervous system (CNS)

The brain and spinal cord form the central nervous system (CNS). All multicellular
animals (bilateria) with the exception of sponges and jellyfish rely on the CNS to
integrate received information and co-ordinate activity to all parts of the body.
Our thoughts, actions and emotions all flow through the CNS. Analogous to the
computer, the CNS is the motherboard and control panel of the human body. Specific
sensory stimuli trigger the CNS to initiate a cascade of physical reactions aimed at
interpreting and communicating the signal to the rest of the body, via a network of
organs and cells. At a cellular level, the CNS is comprised of neurons and glial cells.
Neurons communicate with one another via synapses (Kandel ER, 2000; Purves D,
2011).

2.3.1 Neurons and Glial Cells

A neuron or nerve cell is the fundamental unit of the nervous system. Typically, a
human brain comprises of 1011 neurons that vary in type and carry-out a multitude of
tasks. Similarly to other cells of the human body, neurons comprise of a nucleus,
organelles (mitochondria, Golgi), cytoplasm and a cell membrane. However, neurons
are unique because they are specialized for electrical signalling due to their extensive
branching e.g. arborization of dendrites (Nicholls JG, 2011; Purves D, 2011).
Although they no longer regenerate shortly after birth, neurons form connections
throughout life. Axons and dendrites are specialized structures of neurons that
transmit and receive information, respectively. During communicaton between the
nerve cells, connections between neurons (synapses) act as the sites of
neurotransmitter release.

Most neurons constitute of three basic parts: a cell body, dendrites, and an axon
(Figure 2A). Cell body refers to the bulbous end of a neuron, where the nucleus is
located. Dendrites are branched projections that conduct electrochemical stimulation
received from other neural cells, to the cell body of the neuron from which they
project. An axon is a long, slender projection of a neuron that typically conducts
electrical impulses away from the neuron's cell body. The shape of a neuron is mostly
determined by its cytoskeleton, which constitutes of microtubules, neurofilaments and
actin microfilaments. Asymmetric distribution of organelles within the cytoplasm is
facilitated by these filaments (Kandel ER, 2000). Signals are usually transferred from
the axon of one neuron to a dendrite of another via a synapse. Neurons are electrically
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excitable and maintain voltage gradients across their membranes by coupling
metabolically driven ion pumps with membrane ion channels, to generate
intracellular-versus-extracellular concentration differences of ions. Changes in the
cross-membrane voltage can alter the function of voltage-dependent ion channels.
A significant voltage change generates an all-or-none electrochemical pulse (action
potential) which travels rapidly along the cell's axon, and activates synaptic
connections with other neurons.

Figure 2 Cell types of the CNS include: (A) Neurons and (B) Glial cells (oligodendrocytes,
astrocytes and microglia).

Unlike neurons, glial cells do not participate directly in synaptic interactions or
electrical signalling, but are involved in supportive roles that define synaptic contacts
and maintain neuronal signalling (Purves D, 2011). Glial cells are generally smaller
than neurons, lack axons or dendrites and outnumber neurons in the brain by three
fold. Known roles of glial cells include: maintenance of the ionic milieu of nerve
cells, modulation of nerve signal propagation and synaptic action (control the uptake
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of neurotransmitters), providing a scaffold for some aspects of neural development,
and aiding in recovery from neural injury.

Three types of glial cells are found in the mature central nervous system (CNS):
astrocytes, oligodendrocytes, and microglial cells (Figure 2B). Astrocytes, which are
exclusively found in the brain and spinal cord, have a star-like shape derived from
their elaborate local processes (Purves D, 2011). They are the most abundant cell of
the human brain and have various functions, including: biochemical support of
endothelial cells that form the blood-brain barrier, provision of nutrients to the
nervous tissue, maintenance of extracellular ion balance, and a role in the repair and
scarring process of the brain and spinal cord following traumatic injuries.

Oligodendrocytes are also restricted to the CNS and wrap myelin sheaths around
some axons. Myelin sheaths facilitate fast salutatory conduction of action potential by
reducing membrane capacitance, while increasing membrane resistance in the
internode intervals (Simons and Trotter, 2007). In the peripheral nervous system, the
cells that elaborate myelin are called Schwann cells. Microglia constitute 20% of the
total glial cell population within the brain (Lawson et al., 1992). They are the resident
macrophages of the brain and spinal cord, and thus act as the first and main form of
active immune defense in the CNS. Microglia are constantly scavenging the CNS for
plaques, damaged neurons and infectious agents (Gehrmann et al., 1995). The brain
and spinal cord are considered immune privileged  organs in that they are separated
from the rest of the body by a series of endothelial cells known as the blood-brain
barrier, which prevents most infections from reaching the vulnerable nervous tissue.

2.3.2 Synapses

Santiago Ramón y Cajal proposed that neurons are not continuous throughout the
body, yet still communicate with each other, an idea known as the neuron doctrine
(Lopez-Munoz et al., 2006). A synapse is a point of intersection between the axon
and dendrite of a pre- and postsynaptic neuron, respectively (Kandel ER, 2000).
Although most synapses have presynaptic sites on their axons, they maybe localised
on a dendrite or soma in a few cases. Synapses are found where neurons connect with
each other or with muscles and glands. Neural signals are transmitted from the pre- to
postsynaptic termini, via a synaptic cleft. The molecular machinery of the presynaptic
termini includes: small GTP binding proteins, vesicle-SNARES, calcium and
synaptotagmin. Postsynaptic termini comprise of neuroreceptors and target-SNARES
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(Kandel ER, 2000). The three basic parts of a synapse include: pre- and postsynaptic
termini and a synaptic cleft between the two cells (Figure 3).

Figure 3 In a typical synapse, pre- and post- synaptic neurons are separated by a synaptic
cleft. The pre-synaptic neuron has synaptic vesicles with neurotransmitters whereas
neuroreceptors are found on the post-synaptic neuron.

Individual neurons form thousands of connections with other neurons via synaptic
termini, hence a typical brain has over 100 trillion synapses (Kandel ER, 2000;
Nicholls JG, 2011). Functionally related neurons connect to each other to form neural
networks (neural nets or assemblies). Astrocytes also exchange information with
synaptic neurons, respond to synaptic activity and regulate neurotransmission (Perea
et al., 2009). Synapses maybe distinguished as chemical or electrical. In a chemical
synapse, the presynaptic neuron releases a neurotransmitter that binds to receptors
located in the postsynaptic cell, usually embedded in the plasma membrane (Purves
D, 2011). The neurotransmitter may initiate an electrical response or a secondary
messenger pathway that may either excite or inhibit the postsynaptic neuron. In an
electrical synapse, the presynaptic and postsynaptic cell membranes are connected by
special channels called gap junctions that are capable of passing electric current,
causing voltage changes in the presynaptic cell to induce voltage changes in the
postsynaptic cell. The main advantage of an electrical synapse is the rapid transfer of
signals from one cell to the next (Kandel ER, 2000).
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2.3.3 Midbrain dopaminergic (DA) neurons and their projections

Nearly 75% of dopaminergic neurons in the adult CNS are found in the ventral
midbrain (VM), accounting for 400,000 - 600,000 and 20,000 - 30,000 in the human
and mouse brains, respectively (German et al., 1983). Midbrain dopaminergic
neurons (DA) arise from the floor plate of the mesenphalon during embryogenesis
and develop into three major DA neuron subtypes, namely: A8, A9 and A10 neurons
(Ono et al., 2007). A8 neurons which dorsally and caudally extend from A9 neurons
form the retrorubal field (RRF) and project to striatal, limbic and cortical areas.
Nigral A9 neurons form the substantia nigra pars compacta (SNc) and project to the
dorsal striatum along the nigrostriatal pathway, whereas A10 neurons of the ventral
tegmental area (VTA) innervate the ventral striatum via the mesocortico-limbic
system (Tzschentke and Schmidt, 2000).  (PD), the loss of A9
neurons and their striatal projections leads to impaired motor function (Lees et al.,
2009; Toulouse and Sullivan, 2008). A9 neurons are critical for the control of
voluntary movement, whereas A8 and A10 neurons are involved in the regulation of
emotion and reward. The SNc DA (A9) neurons which are known to progressively
degenerate in PD, have been observed to be more susceptible to cell death than the
A8 and A10 neurons (Alavian et al., 2008; Betarbet et al., 2000). This difference in
relative sensitivities of the three dopaminergic neuron groups probably arises from
slight variations in their development cues. Alterations in neurotransmission by the
mesocortico-limbic dopaminergic pathway are implicated in onset of schizophrenia,
drug addiction and depression (Meyer-Lindenberg et al., 2002; Robinson and
Berridge, 1993).

Midbrain DA neurons may also be categorized into dorsal and ventral subgroups,
on the basis of their morphology and connectivity. The dorsal subgroup (A8, dorsal
VTA and SN DA neurons) comprises of round / fusiform shaped, calbindin-positive
neurons that express low levels of the DAT transporter and innervate the matrix of the
dorsal stiratum, ventral striatal, limbic and cortical areas (Gerfen et al., 1987; Lynd-
Balta and Haber, 1994).  In contrast, calbindin-negative cells that express higher
levels of DAT constitute the ventral subgroup (ventral VTA and SN DA neurons).
These more densely packed, angular cells innervate the patch compartment of the
striatum and SN pars reticulata (SNr) (Gerfen et al., 1987; Prensa and Parent, 2001).
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2.4 Neuronal Ceroid Lipofuscinoses

NCL are the most common inherited progressive encephalopathy of childhood
worldwide. Incidence rates vary from 1:67000 in Italy and Germany to 1:12500 in the
USA and Scandinavian countries (Santavuori, 1988). The first NCL patients (4
siblings) were described in 1826 by Christian Stengel in Norway. In 1903, F.E.
Batten made pioneering clinicopathological studies on several families and later
differentiated NCL from Tay-Sachs disease in 1914. Characteristic features of the
disease include: early accumulation of auto-fluorescent ceroid-like lipopigment in
lysosomes of most cells and degeneration of cortical neurons. Clinically, NCL
patients suffer from progressive loss of vision, mental and motor deterioration,
epileptic seizures, premature death and dementia, in the rarer adult-onset forms
(Haltia, 2006).

Despite progress in NCL genetics, little is known about the physiological
functions or interactions of most NCL proteins. From available interaction and
genetic data it becomes very clear that system-wide approaches are necessary to
reveal all the NCL-related pathways (Jalanko et al., 2006). Bioinformatic analyses
and literature searches reveal that several of the NCL proteins can interact with each
other, reviewed in (Getty and Pearce, 2011; Kollmann et al., 2013). Similarly to other
multifactor gene disorders, NCL proteins may be involved in cross-talk between
many cellular pathways and result in similar mechanisms of neurotoxicity. In our
recent studies on CLN3-CLN5 and CTSD interactomes, human SH-SY5Y-NTAP-
CLN3 / SH-SY5Y-CLN5-CTAP-Puro stable cells and Ctsd human / mouse
fibroblasts were used as cellular models, respectively (Koch et al., 2013; Scifo et al.,
2013). This work pinpointed inter-connections between these NCL proteins with
other proteins involved in neurodegeneration, mental retardation and epileptic
seizures, as well as functional modules, which can be targeted pharmaceutically.

2.4.1 Genetic basis and disease phenotype correlations of NCL

Genetic linkage analysis and exome sequencing have mostly been utilised to find
gene mutations implicated in NCL, reviewed in (Warrier et al., 2013). The human
genome sequencing project facilitated the identification of more sequence variants
which provided sufficient power for genetic linkage, even with fewer affected
families. For instance, the discovery of some genes (CLN5, CLN6, CLN7 / MFSD8,
CLN8) causative for relatively fewer NCL cases was aided by these technological
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advances (Ranta et al., 1999; Savukoski et al., 1998; Siintola et al., 2007; Wheeler et
al., 2002). Morever, several mutations in a single gene have been documented to
cause different diseases. Examples include: mutations in CLN14 / KCTD7 which
cause three different diseases (Blumkin et al., 2012; Kousi et al., 2012; Staropoli et
al., 2012a; Van Bogaert et al., 2007), whereas mutations in CLN12 / ATP13A2 are
implicated in an atypical NCL and Kufor Rakeb syndrome (Smith et al., 2013).
Several mutations in NCL causative genes which are more prevalent in certain
populations may be attributed to a founder effect in these regions. An example of this
occurence is the 1 kb deletion mutation causing juvenile CLN3 disease cases
worldwide.  Mutations in NCL causative genes have also been reported to modify
disease phenotypes in patients with other gene mutations or diseases. A patient with
hetereozygous mutations in CLN5 and a mutation in POLGI exhibited a modified
disease profile, with disease onset shortly after birth instead of late infancy (Staropoli
et al., 2012b). A genome-wide association study of Ashkenazi Jewish patients with

sease (GD1), revealed CLN8 as a candidate modifier gene for
GD1 that probably functions in sphingolipid sensing or glycosphingolipid
trafficking. COSMIC (http://www.sanger.ac.uk/genetics/CGP/cosmic/), which is a
comprehensive curated database for somatic mutations in human cancer cells revealed
changes in all known NCL genes changes (Zhang et al., 2012).

The NCL mutation database (http://www.ucl.ac.uk/ncl) is a comprehensive
resource for known mutations and sequence variations in NCL genes. It has recently
been updated to incorporate genetic data of NCL disease patients as reported
scientific literature, which should facilitate better correlations between gene changes
and disease phenotype. The NCL exhibit both phenotypic convergence and
divergence. For instance, clinically similar late infantile variant NCL disease is
caused by mutations in CLN5, CLN6, MFSD8, or CLN8, reviewed in (Warrier et al.,
2013). In contrast, different mutations in CLN8 cause  a  mild  (Epilepsy  with
Progressive Mental Retardation, EPMR) or severe (late infantile variant) CLN8
disease (Ranta et al., 1999; Vantaggiato et al., 2009). To date, the mutation in CLN9
remains unknown whereas most of the mutations in the recently identified NCL
causative genes (CLN11 / GRN, CLN12 and CLN14) with the exception of CLN13 /
CTSF were observed in single families (Bras et al., 2012; Smith et al., 2012; Staropoli
et al., 2012a). After nearly two decades of research, it is apparent that the molecular
genetics of NCL is much more complex than initially predicted.
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2.4.2 NCL disease mechanisms

NCL are associated with several disease mechanisms, including: abnormalities in
lipid metabolism, myelination; apoptosis; mitochondrial dysfunction and oxidative
stress; as well as abnormalities in intracellular metabolism and trafficking, reviewed
in (Palmer et al., 2013). Defects in the latter particularly, alterations in autophagy and
synaptic vesicle trafficking are explored in detail, below.

Alterations in autophagic pathways are well documented in CLN3, CLN6 and
CLN10 diseases. Autophagic vacuoles isolated from Cln3 ex7/8 knockin mice were
observed to have less mature ultrastructural morphology in comparison to those from
wild type mice. Microtubule-associated protein 1A / 1B-light chain,
3-phosphatidylethanolamine conjugate (LC3-II) which is an autophagosomal marker
was also increased in Cln3 ex7/8 knockin mice (Cao et al., 2006). Moreover, ATP
synthase subunit c was showed to accumulate in cerebellar cells from Cln3 ex7/8 and
Cln6 / nclf knockin mice, which suggests a defect in the autophagosome-lysosomal
pathway of these NCL (Cao et al., 2011). Cln10 / Ctsd knockout mice brains were
also reported to have an increased number of autophagic vacuoles and to
simultaneously accumulate ATP synthase subunit c (Koike et al., 2005). Cln6 / nclf
knockin mice displayed age dependent increases in LC3-II and associated generation
of neuronal p62 positive aggregates, which is suggestive of disruption in the
autophagy-lysosome pathway.  It was hypothesized that lysosomal dysfunction
during CLN6 deficiency facilitates impairment of constitutive autophagy, which
probably enhances neurodegeneration via cell toxicity from formed p62 positive
aggregates (Thelen et al., 2012).

Synaptic alterations have been observed in most NCL. Electron microscopy
studies of cultured neurons from Cln1 / Ppt1 knockout mice and postmortem brain
tissues from an INCL patient, showed that CLN1 deficiency led to reduced synaptic
vesicle pools (Kim et al., 2008; Virmani et al., 2005). A possible explanation for the
progressive decline in synaptic vesicle pools is that during CLN1 deficiency,
palmitoylated synaptic vesicle proteins, such as: synaptotagmin, synaptosomal-
associated protein 25 (SNAP-25) and syntaxin 1, remained associated with the
membrane (Kim et al., 2008). Reduced synaptic vesicle pools were similarly observed
in Cln6 / nclf knockout mice, thereby supporting the hypothesis that the presynaptic
compartment is re-organised prior to synaptic loss (Kielar et al., 2009). Electron
microscopic analysis of Cln10 / Ctsd knockout mice brains showed a progressive
increase in the number of synaptic vesicles, but a decrease in the frequency of
miniature synaptic currents which is suggestive of disruption in the release of
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synaptic vesicles (Koch et al., 2011). In recent cysteine-string protein  (CSP )
knockout mice experiments, SNAP-25 levels and SNARE complex assembly were
decreased by 40% and 50%, respectively. The CSP  / CLN4 interaction with
SNAP-25 is essential for synaptic vesicle fusion (Sharma et al., 2012).

 In addition to impaired intracellular trafficking and endocytosis in CLN1 and
CLN3 diseases, there is evidence that synaptic failure and possible defects in
recycling of synaptic vesicles constitute part of the pathogenesis of CLN1, CLN4 and
CLN10 diseases, reviewed in (Palmer et al., 2013).

2.4.3 NCL proteins  and diseases

Nearly 400 mutations in thirteen genes (CLN1-8, CLN10-14) are known to cause
NCL, with several of them only recently identified (http://www.ucl.ac.uk/ncl). Most
human NCL show an autosomal recessive mode of inheritance, and may have
variable ages of onset such as congenital, infantile, late infantile, juvenile, adult or
even late adult onset according to the severity of mutation. In this study, we focused
on four NCL with different ages of onset i.e CLN10 (Congenital NCL), CLN1
(Infantile NCL), CLN3 (Juvenile NCL) and CLN5 (Finnish variant NCL), which are
profiled in greater detail in the next sections. NCL phenotypes and their known
associated genes are shown in Table 1.
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2.4.3.1 CLN10 (CTSD) and Congenital NCL

The CLN10 gene localised on chromosome 11p15.5 encodes a lysosomal aspartyl
protease, cathepsin D (CTSD). Human CLN10 or CTSD is synthesized as a 53 kDa
inactive preproenzyme of 412 amino acids, prior to posttranslational modification by
glycosylation, mannose 6-phosphate (M6P) residues, and limited proteolysis to yield
enzyme isoforms of 47, 31 and 14 kDa, respectively (Gieselmann et al., 1985).
Transport of CTSD to lysosomes occurs via M6PR-dependent or -independent
pathways (Dittmer et al., 1999; van Meel and Klumperman, 2008), depending on cell
type.  Amongst several in vitro substrates of CTSD is Prosaposin (proSAP), which is
cleaved into saposins (A -da D) (Gopalakrishnan et al., 2004) that constitute essential
cofactors for hydrolysis of sphingolipids (Kolter and Sandhoff, 2006). In vivo
substrates of CTSD are yet to be characterized. Besides a role in proteolytic
processing, CTSD is also involved in cell proliferation, antigen processing, apoptosis,
and regulation of plasma HDL-cholesterol level (Benes et al., 2008; Berchem et al.,
2002; Haidar et al., 2006; Moss et al., 2005).

Mutations in the CLN10 gene are known to cause congenital NCL in human
(CLN10, OMIM: 610127) (Fritchie et al., 2009; Siintola et al., 2006) and sheep
(Tyynela et al., 2000). Moreover, CTSD has been linked to various neurodegenerative
disorders associated with ageing, including: Alzheimer's (Bishop et al., 2008;
Nakanishi, 2003; Schuur et al., 2011; Sevlever et al., 2008), Parkinson's (Sevlever et
al., 2008)  and Creutzfeldt-Jakob (Bishop et al., 2008) diseases. To date, four disease-
causing mutations of CLN10 are known (NCL mutation database
www.ucl.ac.uk/ncl/mutation). Ten patients with autosomal recessively inherited
congenital NCL were reported, but remain genetically undefined (Siintola et al.,
2006). Clinical symptoms of congenital NCL patients include: respiratory
insufficiency, rigidity, status epilepticus, and death, within a few weeks after birth.
Autopsies of the patients indicated microcephaly with substantial loss of neurons in
the cerebral cortex, extensive gliosis, absence of myelin and autofluorescent inclusion
bodies with  granular osmiophilic deposit, GROD (Steinfeld et al., 2006).

2.4.3.2 CLN1 (PPT1) and Infantile NCL

CLN1 or palmitoyl protein thioesterase 1 (PPT1) is a small 306 amino acid
glycoprotein encoded by the CLN1 gene on chromosome 1p32 (Vesa et al., 1995).
The enzyme removes palmitate groups from cysteines of lipid modified proteins
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(Camp and Hofmann, 1993). PPT1 is heavily glycosylated and appears as a 37 / 35-
kDa doublet in Western blot analysis. Based on the crystal structure of bovine PPT1
(95% homology to the human protein), the enzyme has an  / -serine hydrolase
structure reminiscent of lipases and a catalytic triad constituting of Ser115-His289-
Asp233 (Bellizzi et al., 2000). Transport of the overexpressed protein to lysosomes
occurs by mannose 6-phosphate receptor (M6PR)-mediated pathway in non-neuronal
cells, but is yet to be experimentally validated in neurons (Hellsten et al., 1996;
Verkruyse and Hofmann, 1996). Similarly to other posttranslational modifications,
palmitoylation is a dynamic process that is utilised by the cell to alter subcellular
localization, protein-protein interactions (PPI) or binding capacities of a protein.
Palmitoylation is also critical in targeting of proteins for transport to nerve terminals
and regulation of trafficking at synapses (Huang and El-Husseini, 2005). Although
the in vivo substrates and physiological function of PPT1 are unknown, the protein is
suggested to be involved in apoptosis (Cho and Dawson, 2000; Zhang et al., 2006),
endocytosis (Ahtiainen et al., 2006), vesicular trafficking (Kim et al., 2008), synaptic
function (Kielar et al., 2009) and lipid metabolism (Lyly et al., 2008).

Infantile neuronal ceroid lipofuscinosis (INCL, MIM#256730)  is  caused  by
mutations in the CLN1 or PPT1 gene (Vesa et al., 1995). A total of 45 disease
causing mutations have been identified for the CLN1 gene
(http://www.ucl.ac.uk/ncl/), including the [R122W] missense mutation that is
prevalent in the Finnish population (Das et al., 1998). INCL is apparent after 6
months and is associated with various clinical symptoms, such as: visual failure,
microcephaly, seizures, mental / motor deterioration and finally death at 10 years old
(Santavuori, 1988). GRODs are present in most cell types of INCL patients (Das et
al., 1998).

2.4.3.3 CLN3 and Juvenile NCL

CLN3 is a hydrophobic integral membrane protein comprising of  438 amino acids
and encoded by the CLN3 gene on chromosome 16p12 (Consortium, 1995). The
protein has six transmembrane domains with cytoplasmic N- and C-termini (Ezaki et
al., 2003; Nugent et al., 2008). CLN3 is differentially glycosylated depending on
tissue type (Ezaki et al., 2003; Storch et al., 2007) and in neurons is localised in
endosomes/lysosomes, as well as transported to synaptosomes (Kyttala et al., 2004;
Luiro et al., 2001; Storch et al., 2007). Although CLN3 has been studied extensively
over the past two decades, there is still no consensus on its function. Based on yeast
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experiments, CLN3 was proposed to function in endosome-Golgi-retrograde transport
(Kama et al., 2011), vacuole protein sorting (Codlin and Mole, 2009), vacuolar pH
homeostasis and arginine transport (Kim et al., 2003; Padilla-Lopez and Pearce,
2006). Involvement of CLN3 in intracellular trafficking (Luiro et al., 2004; Metcalf et
al., 2008; Uusi-Rauva et al., 2012), lipid metabolism (Hobert and Dawson, 2007;
Narayan et al., 2006), galactosyl-ceramide transport (Rusyn et al., 2008), sphingolipid
homeostasis (Rusyn et al., 2008), autophagy (Behrends et al., 2010; Cao et al., 2006),
lysosomal arginine transport (Ramirez-Montealegre and Pearce, 2005), pH
homeostasis (Golabek et al., 2000), and apoptosis (Lane et al., 1996), was
demonstrated in mammalian cells and mouse models.

Juvenile neuronal ceroid lipofuscinosis (JNCL / CLN3 disease; MIM#204200)
(Consortium, 1995) is caused by mutations in the CLN3 gene. Globally, JNCL is the
most common NCL with onset between 4 and 10 years of age (Consortium, 1995).
Thus far, 57 CLN3 gene mutations (including 20% with a JNCL phenotype) are
known (http://www.ucl.ac.uk/ncl). The most prevalent CLN3 gene mutation is the
1.02 kb deletion carried by 73% and 90% of the CLN3 disease patients worldwide
and in Finland, respectively (Consortium, 1995; Jarvela et al., 1996). Clinical
symptoms of JNCL include: progressive loss of vision starting at 5-10 years of age,
mental deterioration, followed by epileptic seizures, loss of motor skills and death by
the third decade (Haltia, 2006). JNCL patients may also display various psychiatric
symptoms, such as aggressiveness, depression and sleep deficits (Williams et al.,
2006). Autopsy examination of the CLN3 disease brains shows a narrow cerebral
cortex and decreased brain weight. The presence of vacuolated lymphocytes is a
distinguishing feature of JNCL (Mole et al., 2005).

2.4.3.4 CLN5 and Finnish variant LINCL

Mutations in CLN5 are implicated in Finnish variant late infantile NCL (vLINCLFin).
The function of the soluble 407 amino acid CLN5 protein is unclear. CLN5 isoforms
of various molecular weights (46.3, 43.4, 41.5, and 40.3 kDa) are generated from the
four (Met-1, Met-30, Met-50, and Met-62) in-frame alternative initiator codons,
respectively (Savukoski et al., 1998). Similarly to other NCL, CLN5 is also heavily
glycosylated and so is expected to migrate at higher molecular weights (60-80 kDa),
relative to its predicted size (Isosomppi et al., 2002; Vesa et al., 2002). Experiments
with mouse CLN5 have suggested trafficking of the protein to lysosomes via the
mannose-6-phosphate receptor (MPR) pathway, however alternative trafficking
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routes to the lysosomes have also been demonstrated in MPR-deficient fibroblasts
(Holmberg et al., 2004; Schmiedt et al., 2010; Sleat et al., 2006).

CLN5 is mostly localised to lysosomes (Bessa et al., 2006; Isosomppi et al., 2002;
Schmiedt et al., 2010), however, pathogenic mutations may cause the protein to be
retained in the ER / Golgi (Isosomppi et al., 2002; Lebrun et al., 2009; Schmiedt et
al., 2010). Mutated CLN5 proteins are known to be glycosylated, which suggests that
they are trafficked from the ER to the Golgi apparatus, where they are glycosylated
(Vesa et al., 2002). CLN5 is synthesized as a preprotein from any of the four initiator
codons (depending on cell type / condition), followed by cleavage of its N-terminal
signal peptide in the ER. Mannose-type sugars are then attached to the protein, prior
to its trafficking to the Golgi apparatus for more glycosylation and maturation to a 50
kDa protein. The mature CLN5 is trafficked to the lysosomes either through the MPR
or secretory pathway (Schmiedt et al., 2010).

Although CLN5 has been suggested to interact with other NCL proteins (Vesa et
al., 2002), our investigations of CLN5 interacting partners (IP) using a TAP-MS
strategy in SH-SY5Y stable cells did not yield any NCL proteins.  A possible
explanation for the discrepancy is that previous CLN5 studies relied on
overexpression of the protein in COS-1 or BHK cells, which probably fails to account
for important posttranslational modifications critical for the protein (Isosomppi et al.,
2002; Lebrun et al., 2009; Vesa et al., 2002). CLN5 probably has an important
unknown function because loss of the protein results in CLN5 disease (vLINCLFin).
Recent experiments using CLN5 depleted HeLa cells suggest a role for CLN5 as an
endosomal switch for recycling of lysosome sorting receptors to the Golgi apparatus,
thus enabling vesicular trafficking and cargo sorting through its recruitment /
activation of Rab7 and a retromer (Mamo et al., 2012).
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2.4.4 Mouse models of NCL

Mouse models of NCL share a similar phenotype with the human disorder, including
widespread regional atrophy and significant loss of GABAergic interneurons in the
hippocampus and cortex (Cooper et al., 2006; Mitchison et al., 2004). As such, the
various available NCL mouse models (Table 2) are relevant for understanding the
pathology and pathophysiology of the disease. Moreover, due to the severity of NCL,
therapeutic strategies to combat the disease need to be first established in mouse
models before translation to humans.
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2.4.4.1 Ctsd knockout mouse model of congenital NCL

The Ctsd knockout (Ctsd ) mouse model for congenital NCL was created by
targeted disruption of the Ctsd gene in the open reading frame of exon 4, which
abolished CTSD protein levels and enzyme activity (Saftig et al., 1995). Although
Ctsd mice appear normal during the first two weeks of life, they progressively and
rapidly lose weight, exhibit severe intestinal necrosis, thromboembolia, lymphopenia
and finally die by postnatal day 26 ±1(Saftig et al., 1995). Similarly to human patients
of congenital NCL, Ctsd knockout mice are also characterized by ultrastructural
appearance of GRODs (Mole et al., 2010). Robust autofluorescence and
ultrastructural appearance of lamellar structures are observed in both human
congenital NCL and Ctsd mouse brains (Koike et al., 2000; Shacka et al., 2007).
The predominant lysosomal storage product in Ctsd knockout mice is subunit c of
mitochondrial ATP synthase (SCMAS) (Shacka et al., 2007). Ultrastructural and
Western blot analyses show that Ctsd-deficient mouse brains dramatically accumulate
autophagic vacuoles adjacent to the GROD (Koike et al., 2000; Koike et al., 2005;
Shacka et al., 2008; Walls et al., 2007)

2.4.4.2 Ppt1 (exon 9) and Ppt1 knockouts: mouse models of Infantile
NCL

There are two different mouse models of Infantile NCL (INCL): Ppt1 (exon 9) and
Ppt1 ex4 knockouts. The Ppt1 (exon 9) knockout was created by inserting a neo
cassette into exon 9 of the Ppt1 gene (Gupta et al., 2001); and the Ppt1 ex4 model
involved Cre / lox-mediated deletion of exon 4 (Jalanko et al., 2005). PPT1 activity
and protein levels were abolished in both mutations (Gupta et al., 2001; Jalanko et al.,
2005). GRODs were observed in Ppt1-deficient mice brains (Galvin et al., 2008;
Gupta et al., 2001; Jalanko et al., 2005), and an increase in saposins A & D was
shown in neurons or fibroblasts derived from Ppt1 ex4 mice (Ahtiainen et al., 2007).
These characteristic pathological features of Ppt1-deficient mice closely mimic
human INCL (Mole et al., 2010; Tyynela et al., 1993). Ppt1 ex4 and Ppt1-exon 9 mice
undergo progressive weight loss and have a shortened lifespan of about 200 and 216
days, respectively (Gupta et al., 2001; Jalanko et al., 2005).

Neurologically, Ppt1-deficient mice display a progressive onset of seizures,
abnormal clasping behavior, loss of motor coordination and vision loss, which are
collectively suggestive of a sudden loss of brain mass (Bible et al., 2004; Jalanko et
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al., 2005; Macauley et al., 2009). Dramatic neuron loss has been observed in the
thalamus, cortex, hippocampus (both pyramidal neurons and GABAergic
interneurons) and cerebellum (Purkinje- early and granule cells- later) by 6-7 months
(Gupta et al., 2001; Jalanko et al., 2005; Kielar et al., 2009).

2.4.4.3 Cln5 knockout mouse model of Finnish variant LINCL

The Cln5 knockout mouse model of Finnish variant LINCL (vLINCLFin), was created
by inserting a neomycin cassette into exon 3 of the Cln5 gene, thus resulting in a
frame shift mutation that introduces a premature stop codon, and leads to a truncated
protein (Kopra et al., 2004). Similarly to features of human vLINCLFin, Cln5-
deficient mice also display progressive thamalocortical accumulation of
autofluorescence, as well as ultrastructural detection fingerprint and curvilinear
profiles (Kopra et al., 2004; Mole et al., 2010). Although the lifespan of Cln5-
deficient mice is yet to be established, the phenotype of these mice has been observed
even at 12 months of age (von Schantz et al., 2009). In general, brain pathology of
Cln5-deficient mice is milder than other mouse models of NCL mutations and mimics
the mild severity of the Finnish population harboring CLN5 mutations (Kopra et al.,
2004). Cln5 mutant mice exhibit a late-onset, brain-region specific atrophy that is
characterized by early (4 months) and progressive cortical neuron loss and synaptic
pathology, which precedes neuron loss of thalamic nuclei at 12 months (von Schantz
et al., 2009). Loss of GABAergic interneurons has also been documented throughout
the Cln5-mutant mouse brain in addition to a progressive inflammatory component
(astrocytosis and microglial activation at 4 and 12 months, respectively) (Kopra et al.,
2004; von Schantz et al., 2009).

2.4.4.4 Cln3 knockout and knockin mouse models of juvenile NCL

To date, four distinct Cln3 mouse models of juvenile NCL (JNCL) have been
generated: two knockout (Greene et al., 1999; Katz et al., 1999; Mitchison et al.,
1999) and knockin mice (Cotman et al., 2002; Eliason et al., 2007). Cln3 knockout
mice resulted from replacement of either exons 1 6 (Greene et al., 1999; Katz et al.,
1999; Mitchison et al., 1999) or exons 7 8 (Katz et al., 1999) of Cln3 with  a
neomycin cassette, thereby disrupting the gene. The first Cln3 knockin mouse was
generated by a Cre/lox approach (Cotman et al., 2002) that closely mimics the 1kb
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deletion in human JNCL. Exons 7 and 8 ( 1kb) of the Cln3 gene were replaced by
- PGKneo cassette via homologous recombination (Cotman

et al., 2002). In the Cln3 knockin reporter mouse, the -galactosidase ( -gal) gene
- 8 (Ding et al., 2011; Eliason

et al., 2007).
Each of these mice exhibits abundant autofluorescent storage material and the

ultrastructural appearance of fingerprint profiles. The major storage product of JNCL,
SCMAS, has also been documented in Cln3 mouse models (Cao et al., 2011; Fossale
et al., 2004; Mitchison et al., 1999). Cln3 mutant mice display a delayed but
progressive onset of neurological deficits ( 3 months; visual; learning & memory;
motor dysfunction) that correlate with noticeable neuron loss in several brain regions
including the retina, thalamus, cortex, cerebellum, substantia nigra and striatum
(Cotman et al., 2002; Pontikis et al., 2005; Weimer et al., 2007).

2.4.4.5 Other NCL mouse models

Two mouse models of Tripeptidyl peptidase 1 (Tpp1) deficiency are available.
A Tpp1 neoins-Arg446His knockout was created by inserting a neo cassette into intron
11 of Tpp1, combined with a missense Arg446His mutation in exon 11 (Sleat et al.,
2004). The second mouse model of Tpp1 (Tpp1 Arg446His hypomorphs) involves
Cre-mediated excision of the neo cassette, which allows for transcription of full
length TPP1 mRNA with the missense mutation (Sleat et al., 2008). In the first mouse
model (neoins-Arg446His), TPP1 activity is undetectable (Sleat et al., 2004; Sondhi et
al., 2007), whereas the second one has varying amounts of residual enzymatic activity
that correlate with progression of the classic late-Infantile NCL (cLINCL) phenotype
in  these  mice. Tpp1-deficient mouse brains accumulate SCMAS storage product
(Sleat et al., 2008), as is also observed in human classic LINCL (Ezaki et al., 2000;
Goebel et al., 1979).

The Cln6nclf spontaneous mutant model of vLINCL was mapped to the same
chromosome as Cln6, the gene linked to vLINCL in families of Indian ancestry and
Costa Ricans descended from Spain (Gao et al., 2002). The NCL-like phenotype

ceroid li (Bronson et al., 1998). The Cln6nclf mutation was confirmed as
a single bp insertion in exon 4, resulting in a frame shift mutation and a novel 36 kDa
gene product, similar to that of human vLINCL (Gao et al., 2002). Cln6nclf

homozygotes exhibit progressive retinal atrophy and paralysis by 9 months, a
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phenotype similar to that of the Cln8mnd mouse, which also harbors a spontaneous
mutation (Bronson et al., 1998). Brains of Cln6nclf mice accumulate luxol fast blue
stain for lipoprotein in the cytoplasm of cortical cells, and also exhibit ultrastructural
appearance of inclusions with curvilinear, fingerprint profiles and laminar structures
(Bronson et al., 1998), all of which are neuropathological features of vLINCL (Mole
et al., 2010).

The Cln8mnd spontaneous mutant mouse model of variant vLINCL is characterized
by progressive loss of motor activity in homozygotes. It was originally thought to

(Bronson et al., 1993). A single bp insertion in the Cln8 gene that results in a
frame shift mutation and a severely truncated protein was confirmed to be the gene
mutation in Cln8mnd mice. Severity of the mouse model phenotype resembles the one
for a subset of Turkish EPMR / CLN8 patients (Ranta et al., 1999). Cln8mnd mice
have similar pathology to the human NCL, including ultrastructural detection of
curvilinear profiles and storage of autofluorescent cytoplasmic inclusions, which are
especially pronounced in the hippocampus, cortex and thalamus (Cooper et al., 1999;
Pardo et al., 1994; Rodman et al., 1998). GABAergic neuron and interneuron
populations have been shown to accumulate storage material prior to neuron loss
(Cooper et al., 1999).

2.5 Therapeutics of NCL

Therapies for treatment of NCL should include small molecules able to cross the
blood brain barrier (BBB) and hinder neurodegeneration or repair its effects, thereby
restoring  proper function of the CNS (Hobert and Dawson, 2006; Pierret et al.,
2008). Enzyme replacement therapy, gene therapy and pharmacological intervention
are profiled below.

2.5.1 Enzyme Replacement therapy

A strategy to produce and deliver enzymes in the brain was devised by Chen et al.,
who utilised epitope-modified adeno-associated viral vectors (AAVs) to express
enzymes deficient in lysosomal storage disorder (LSD) mice.  Enzyme activity was
reconstituted throughout the brain and disease phenotyp -glucuronidase and
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Tpp1-deficient mouse models were improved (Chen et al., 2009). Enzyme
replacement therapy (ERT) approaches are well suited for the delivery of soluble
NCL proteins (CLN1, CLN2 and CLN10) and require global reconstitution of
deficient enzyme activity throughout the brain.

Recombinant CLN2 or TPP1 was successfully overexpressed in CHO cells and
correctly targeted to lysosomes (Lin and Lobel, 2001). Following enzymatic
treatment, Tpp1-deficient mice showed dramatically reduced SCMAS, improved
neuropathological profile i.e. decreased: resting tremor, gliosis in the motor cortex,
autofluorescence and finally, a partial rescue of deep cerebellar nuclei (Sleat et al.,
2008). Recombinant human CLN1 or PPT1 was also similarly processed and tested,
as in the CLN2 study (above). Intravenous injection of the human CLN1 to PPT1-
deficient mice resulted in widespread distribution of the enzyme to peripheral organs
and only minimal delivery to the brain. ERT is a potentially worthy treatment for
NCL, provided that improvements in its effectiveness may be achieved by
intraventricular infusions, chemical modifications or chronic high-dose therapies.

This therapy is hindered by the risk of developing antibodies against the
intravenously delivered enzymes, an occurrence that would inactivate their activity
(Wang et al., 2008). Moreover, the delivery of enzymes to the brain is an inefficient
strategy for treatment of CNS pathologies, because of the blood brain barrier
(Haskins, 2009). Another drawback of ERT is that it cannot mimic the function of
transmembrane proteins which account for most NCL proteins (Pierret et al., 2008).

2.5.2 Gene Therapy

Delivery of functional genes to the brain involves intracranial injection of viral
vectors that express deficient gene products. This approach was successfully
demonstrated in CLN1 and CLN2 patients, where storage material could be removed
thereby rescuing the cells. Preclinical studies were conducted in Cln2  mice, in
which AAV2 and AAV5 vectors carrying CLN2 were introduced and shown to
locally express high levels of TPP1 for at least 18 months. Consequently, storage
granules in the CNS of these mice were cleared but no improvement in performance
or mortality was observed (Passini et al., 2006; Sondhi et al., 2007).

Following the preclinical experiments, a Phase I trial to test the safety of gene
transfer vectors in CLN2 disease patients was initiated by R. Crystal and
collaborators  (Worgall et al., 2008). Recently, neonatal Cln3 ex7/8 mice administered
with a serotype rh.10 adeno-associated virus vector expressing the human CLN3
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(AAVrh.10hCLN3), were partially rescued for neurological lysosomal storage
pathology and astrocytosis (Evans et al., 2013). Neurotropic gene delivery with
expression of the proteins at therapeutic levels over a long duration, may offer the
best chance for successful gene therapy in combating NCL and other LSD that affect
the CNS (Haskell et al., 2003; Sondhi et al., 2007).

2.5.3 Pharmacological Intervention

The glutamatergic system which plays a prominent role in synaptic plasticity,
learning, and memory, is also a potent neuronal excitotoxin during pathology (Zarate
and Manji, 2008). Excitatory neurotransmission that mediates the fast desensitizing
excitation of many synapses is partly dependent on functioning of -Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors.
Consequently, AMPA receptor inhibitors e.g. -7-acetyl-5-[4-aminophenyl]-7, 8-
dihydro-8-cyano-8-methyl-9H-1, 3-dioxolo-[4,5-h]-2, 3-benzodiazepine (EGIS-8332)
may potentially provide therapeutic relief to CLN3 disease patients (Kovacs and
Pearce, 2008; Kovacs et al., 2006). Cln3-deficient mice were observed to have
elevated levels of glutamate within the CNS, and exhibited selective sensitivity of
their cerebellar granule cells to AMPA glutamate receptor overactivation (Kovacs et
al., 2006). The latter observation suggested that CLN3 deficiency may lead to
cerebellar dysfunction via its effects on the function of AMPA receptors (Kovacs et
al., 2006). Attenuation of AMPA receptor function with low doses of EGIS-8332
resulted in inhibition of AMPA receptor activity and substantial improvement in
motor skills.

A combination of Cystagon and N-acetylcysteine (Mucomyst) was tested in a
clinical trial as a treatment for children inflicted with classic infantile CLN1 disease,
reviewed in (Kohan et al., 2011). Results from Phase II showed favorable anti-
apoptotic properties, reduced ceroid lipofuscin aggregates and diminished progression
of neurological symptoms. Administration of an alpha adrenoceptor beta2-agonist
(Clenbuterol racemate), boosted axon regeneration lesions of motor neurons in the
mnd mouse. The mice were also observed to have improved survival and maintenance
of functional motor neurons (Zeman et al., 2004).
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3 Aims of the study

NCL are genetically heterogeneous yet share a uniform neuropathological profile. We
therefore aimed to apply systematic approaches including: functional proteomics,
bioinformatics, and mouse disease models, towards analysis of disease pathways
associated with NCL in the brain. Despite extensive studies over the past two
decades, the physiological functions and interactions of most NCL proteins remain
unresolved.

The goal of this thesis work was to contribute towards addressing both
shortcomings. In order to have a representative spectrum of NCL, we focused on four
disease genes with different ages of onset: CLN10 (congenital), CLN1 (infantile
classic, late infantile, juvenile, adult), CLN3 (juvenile, classic) and CLN5 (late
infantile variant, juvenile, adult).

The following specific aims were addressed:

(i) Systematic characterization of the Ctsd  / Cln10  mice synaptic
proteome, to unravel mechanisms underlying cathepsin D ientiency by
quantitative proteomics.

(ii) Mapping the CLN3-CLN5 protein interactome in SH-SY5Y human
neuroblastoma cells by label-free quantitative proteomics.

(iii) Characterization of the human CLN1 (PPT1) interactome in SH-SY5Y
human neuroblastoma cells by label-free quantitative proteomics.
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4 Materials and Methods

Materials and methods used in this study are summarised in Table 3 below. They are
referred to by roman numerals indicating the original publication in which they were
used. Detailed descriptions of the methods are presented in the following text and in
the original publications
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4.1 DNA expression constructs (II, III)

Full length human entry clones were shuttled in TAP-tagged vectors and utilised for
TAP-MS, AP-MS, co-immunoprecipitation, as well as immunofluorescence confocal
microscopy experiments. CLN3 (IOH3475) and CLN5 (OCABo5050F1210) entry
clones purchased from Source BioScience UK Limited (Nottingham, UK), were
shuttled in pCeMM-NTAP(GS)-Gw (NTAP) (Burckstummer et al., 2006) and pES-
CTAP-Puro (CTAP-Puro) (Scifo et al., 2013), respectively, prior to use in TAP-MS
experiments. The PPT1 (CCSB 5732) entry clone that was also shuttled in pES-
CTAP-Puro and used in AP-MS experiments, was a kind gift from Prof. Erich
Wanker (MDC, Berlin). Recombination of DNA fragments was performed using the
LR clonase reaction (Life Technologies Europe BV, Espoo, Finland) and analysed
with BsrGI restriction enzyme. Entry clones used for co-immunoprecipitation and
immunofluorescence confocal microscopy experiments, included: CLN3 (IOH3475),
DBH (OCAAo5051B0535D), DPM1 (IOH7445) and SEC61A1
(OCABo5050C1119D), purchased from Source BioScience UK Limited; SLC25A10
(RZPDo839F08152), SLC25A11 (RZPDo839G0296) and SLC25A22
(RZPDo839E0876), which were kind gifts from Prof. Erich Wanker (MDC, Berlin).
They were shuttled into pcDNA3.1/nV5-Dest (Life Technologies Europe BV),
pcDNA3.1-ProtA-D57 (E. Wanker) Gateway vectors and similarly processed as
indicated above.

4.2 Retroviral production, transduction and Stable cells (II, III)

Retroviral particles were generated from HEK 293T cells into which retroviral vector
DNA was simultaneously introduced (DuBridge et al., 1987; Pear et al., 1993) with
two packaging plasmids: pCMV-Gag-Pol vector (Sharma et al., 1997) and pVSV-G
(Naldini et al., 1996). The three plasmids were introduced into the cells via the
calcium phosphate method as suggested by the manufacturer (Life Technologies
Europe BV), at ratios of 7.5:5:1, respectively. Low passage (P5-10) SH-SY5Y cells
were infected with cell-free virus, that was processed by harvesting at two days post
transfection and filtration thr s (Millex-HV Filter Unit,

Penicillin (100 µg/ml), Streptomycin (100 µg/ml), Glutamine, non-essential amino
acids (1x) and 10% FBS (Life Technologies Europe BV), was used to grow the cells
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at 37°C under humidified atmosphere of 95% air and 5% CO2. We selected stable
cells by either sorting for GFP positive cells (NTAP-tagged) or expanding surviving
cells after puromycin selection (CTAP-Puro tagged). Further validation of the stable
cells was performed by immunocytochemistry and Western blot analysis. We finally
maintained the stable cells in an undifferentiated state (  80% confluence) and
periodiocally checked their growth rates and morphological features.

4.3 Cell culturing and Co-immunoprecipitation (I, II)

DMEM, supplemented with Penicillin (100 µg/ml), Streptomycin (100 µg/ml),
Glutamine and 10% FBS was utilised to grow fibroblasts (I) or HEK 293 cells (II) at
37°C, under humidified atmosphere of 95% air and 5% CO2. Pairs of V5-tagged IP
and PA- tagged bait constructs (or vice versa) were transiently co-transfected in
HEK-293 cells in 24 well plate format, using Fugene HD transfection reagent (Roche

Transiently transfected cells were harvested after 48 h, with lysis buffer (50 mM
HEPES, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40, 1 mM DTT and
10% glycerol) supplemented with benzonase (E1014, 250U) and protease inhibitors:
1 mM PMSF (P7626; Sigma-Aldrich Finland Oy, Helsinki, Finland) and 1 x protease
inhibitor cocktail (Cat. No. 04693116001, Roche Diagnostics Oy). Cell lysis was
performed for 30 min. All handling and processing of samples was done at 4°C.
Cytoplasmic extracts were subjected to SDS-PAGE and checked for uniform gene
expression profiles. Isolation of protein complexes was achieved by incubating 100 µl
of the cytoplasmic extractswith 10 µl Dynabeads M-280 Sheep anti-Rabbit IgG
(11204D; Life Technologies Europe BV) and shaking for 1 h. Bound The beads were
washed three times with 100 µl minimum lysis buffer, in order to minimise unspecific
interactions followed by resuspension equal volumes (25 µl) of PBS and 2X sample
loading buffer. Co-immunoprecipitation with CLN3 (II) was probed with mouse
monoclonal anti-V5 (R960-25; 1:5,000, Life Technologies Europe BV).
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4.4 Western blotting and Antibodies (I, II, III)

The following primary antibodies were utilised: mouse monoclonal anti-Myelin PLP
[plpc 1] (ab9311, 1:2000), rabbit polyclonal anti-MAP2 (ab24640-50, 1:2000), rabbit
polyclonal anti-CLN3 (ab75959, 1:700), mouse monoclonal anti-Myc [9E10] (ab32,
1:1000) and mouse monoclonal anti-LAMP 1 [H4A3] (ab25630, 1:300) (Abcam plc,
Cambridge, UK); rabbit polyclonal anti-MBP (1:1000) (Dako, Cambridge, UK);
rabbit polyclonal anti-CNPase (2986, 1:2000) and rabbit monoclonal anti-Gapdh
(14C10, 1:2000) (Cell Signalling); rabbit polyclonal anti-human-PPT1 (1:500)
(Hellsten et al., 1996); rabbit polyclonal anti-CLN5 [C/32]  (1:500) (Schmiedt et al.,
2010); mouse monoclonal anti-V5 (R960-25, 1:5,000) and mouse monoclonal anti-
ATP5B [clone 3D5AB1] (A21351, 1:1000) (Life Technologies Europe BV); rabbit
polyclonal anti-PA (5500-100; 1:10,000, Biovision, Germany); mouse monoclonal
anti-VCP [#612182] (1:1000) (BD Transduction LaboratoriesTM); rabbit polyclonal
anti-DBH (NBP1-31386, 1:1000) (Novus Biologicals, Cambridge, UK); mouse
monoclonal anti acetylated tubulin (T6793, clone 6-11B-1, 1:5000) and mouse
monoclonal anti- -actin [AC15] (A1978, 1:1000) (Sigma-Aldrich Finland Oy); anti-

-actin [AC15] (sc-69879; 1:1000) (Santa Cruz, US); mouse monoclonal anti-FAK
(clone 2A7, 2 4 g/ml) and mouse monoclonal anti-PY20 (2 4 g/ml) (Upstate-
Millipore); mouse monoclonal anti-VII F9 (clone F9B11B4, 2 4 g/ml) (Glukhova et
al., 1990);  mouse monoclonal anti- 1-integrin subunit (102DF5, 2 4 g/ml) (Ylanne
and Virtanen, 1989); mouse monoclonal anti-talin (clone TA205, 2 4 g/ml)
(Serotec, Oxford UK); and  rat monoclonal anti- 5-integrin subunit (BIE5, 1:5)
(Werb et al., 1989). Each antibody was used according to the manufacturer's
protocols.

4.5 Tandem Affinity Purification (II, III)

SH-SY5Y cells stably expressing human NCL proteins (NTAP-CLN3, CLN5-CTAP-
Puro or PPT1-CTAP-Puro) were grown as monolayer cells to 80% confluency and
harvested for affinity purification experiments. Five 150 mm plates (1 × 108 cells) of
the cells were utilised for each experiment. After washing cells three times with ice
cold 1x PBS, they were flash frozen prior to lysis. Cells were lysed in 5 ml Lysis
buffer (50 mm HEPES, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40, and
10% glycerol) supplemented with benzonase nuclease (250 U, E1014) and protease
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inhibitors (1 mM PMSF and 1x protease inhibitor cocktail), for 30 min at 4°C.
Cytoplasmic extracts were obtained from the cell lysates by centrifugation at
maximum speed (18,000 rpm) for 10 min. Batch purification of the cytoplasmic
extracts were performed by incubation on -Sepharose 6 Fast
Flow resin (Amersham Biosciences) for 3 h at 4°C. The bound resin was washed
three times with -MNGZ (50 mM Tris-HCl pH 7.4, 150 mM NaCl,
2.5 mM MgCl2, 0.1% NP-40, 10% glycerol) and TEV cleavage buffer (10 mM Tris-
HCl pH 7.4, 150 mM NaCl, 0.1% NP-40, 0.5 mM EDTA, 1 mM DTT). Cleavage of
tagged proteins from the beads was achieved with 200 or 100 units of TEV protease

 performed for 16 h or 4 h, at 4 °C
or 37 °C, respectively. Elution of TEV protease cleaved protein complexes was
donewith -MNGZ. TEV eluates were subsequently incubated with

-Aldrich Finland Oy) for 4 h at 4 °C.
Streptavidin resin bound with TEV eluate was washed three times with
TBS-MNGZ and competitively eluted with 2.5 mM Biotin diluted in TBS-MNGZ.

4.6 Sample preparation (II)

 Purified protein complexes (streptavidin or TEV eluates) were reduced in 20 mM
ammonium bicarbonate (Sigma) using 10 mM DTT (Sigma) and 2 mM TCEP (Life
Technologies Europe BV) at 56°C, for 45 min. Afterwhich, they were alkylated with
55 mM iodoacetamide (Sigma) at room temperature, for 30 min. Reduced and
alkylated protein complexes were further processed by overnight TCA / Acetone
precipitation at -20 °C. Resulting pellets were dried by speedvac and solubilised in
0.05% RapiGest SF (186002122; Waters AB, Sweden) at 60 °C for 30-45 minutes.
Sequencing Grade Modified Trypsin (0.25 - 0.5 µg, V5111, Promega AB) was
utilised for overnight digestion of the samples at 37 °C.
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4.7 Filter-aided sample preparation (FASP) (III)

The Filter-aided sample preparation protocol is modified from a previously described
method (Wisniewski et al., 2009). Briefly, 10 kDa filters (Amicon Ultra 0.5) were
washed twice with 300 µL of ultrapure Milli-Q water and centrifuged for 15 minutes
at 18,000 rpm. Similar wash and centrifugation steps were performed three times with
0.1M NaOH and Milli-Q water. Before loading the sample, filters were washed once
with 300 µL of urea buffer (UB) and centrifuged for 20 minutes. Reduced / alkylated
crude lysates (10 g) were loaded onto a filter with 300 µL of urea buffer (UB) and
centrifuged as above. The filter was subjected to several washes (at least 5 times)
with 300 µL of urea buffer (UB), followed by centrifugation. Overnight digestions
were performed by directly applying Lys-C or Trypsin solutions to the filters, at room
temperature, with shaking. Filters were first subjected to Lys-C digestion using 10 µL
UB, 30 µL Milli-Q water and 20 µL Lys-C solution (0.05 µg / µL). The filter was
centrifuged as above to collect Lys-C digested peptides (flow through) and store them
in the cold room. The following day, filters were also digested with trypsin with 70
µL of 100 mM Ammonium bicarbonate, 50 µL Milli-Q water and 20 µL Trypsin
solution (0.05 µg / µL Tryptic peptides (flow through) were collected by
centrifugation, followed by further elution using 50 µL of 0.5M NaCl. Tryptic
peptides from all elution steps were pooled and processed on Zip-Tip C18 reversed
phase resin (Millipore, www.millipore.com/ziptip), for purposes of desalting,
concentration and purification, as suggested by the manufacturers.

4.8 nano-LC / ESI / MS/MS analysis (II, III)

Tryptic peptides in water with 0.1% TFA were applied to an RP-18 precolumn
(nanoACQUITY Symmetry® C18, 186003514; Waters AB) and separated on a nano-
HPLC RP-18 column (nanoACQUITY BEH C18, 186003545; Waters AB) using an
acetonitrile gradient (0 % - 60 % ACN in 120 min.), in the presence of 0.05% formic
acid at a flow rate of 150 nl/min. The column outlet was directly coupled to the ion
source of the spectrometer working in the regime of data dependent MS to MS/MS
switch. A blank run ensuring lack of cross contamination from previous samples
preceded each analysis.
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4.9 Bioinformatic analyses (I, II, III)

The database for annotation, visualization and integrated discovery (DAVID;
http://david.abcc.ncifcrf.gov/) (Huang da et al., 2009) and ClueGO (Bindea et al.,
2009) were utilised to perform functional annotations analyses of NCL proteins.
Putative palmitoylation sites on PPT1 IP were predicted using the clustering and
scoring strategy algorithm (CSSPalm 4.0; http://csspalm.biocuckoo.org/index.php).
Assignment of disease phenotypes associated with proteins of interest was based on
information from the online mendelian inheritance in man (OMIM;
http://www.omim.org/) database.  We also utilised the mouse genome informatics
database (MGI; http://www.informatics.jax.org/) database to search for unique mouse
gene (GeneID) identifiers associated with Ctsd-/- differentially regulated proteins.
In order to assign the mouse genes with their human orthologs, the NCBI
homologene (http://www.ncbi.nlm.nih.gov/sites/homologene/) database was
employed. Human orthologs of the mouse differentially expressed genes were further
connected using the UniHI database (www.unihi.org) (Chaurasia et al., 2007) and
GeneMANIA (www.genemania.org) (Mostafavi et al., 2008; Warde-Farley et al.,
2010).  Data from the Human Gene Atlas (http://biogps.gnf.org/) was utilised to
analyse brain specific gene expression with analysis UniHi Express. Human orthologs
of the mouse differentially expressed proteins were also linked to known pathways by
the pathway interaction database (PID; http://pid.nci.nih.gov/PID/index.shtml).
Mammalian protein complexes associated with the CLN3 / CLN5 interactomes were
assessed using the comprehensive resource of mammalian protein complexes
(CORUM; http://mips.gsf.de/genre/proj/corum/index.html) database. Global gene /
protein networks associated with NCL proteins were functionally coupled by
FunCoup database (http://FunCoup.sbc.su.se). CLN3 / CLN5 bridging proteins were
connected and filtered for high expression in the brain, using the human integrated
protein-protein interaction reference (HIPPIE) database (http://cbdm.mdc-
berlin.de/tools/hippie/information.php).
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5 Results and discussion

5.1 The Synaptic proteome of cathepsin D knockout mice (I)

The cathepsin D (CTSD) gene encodes a lysosomal aspartyl protease, that is mutated
to cause congenital NCL in human (CLN10, OMIM: 610127) (Fritchie et al., 2009;
Siintola et al., 2006). Moreover, CTSD is also involved in age-related
neurodegenerative (Nakanishi, 2003; Schuur et al.,
2011) (Sevlever et al., 2008) and Creutzfeldt-Jakob diseases (Bishop et
al., 2008). Based on previous experiments that showed deficits in synaptic trafficking
or recycling in Ctsd-/- mice (Koch et al., 2011), we examined their synaptic proteome
by quantitative mass spectrometry.

Our method of choice was isobaric tags for relative and absolute quantitation
(iTRAQ) coupled with mass spectrometery, which is one of most powerful
methodologies for simultaneous identification and quantitation of hundreds of
proteins (Zieske, 2006). The iTRAQ reagent labels primary amines on peptides,
hence theoretically facilitating the tagging of most tryptic peptides without loss of
information from samples involving posttranslational modifications. Moreover, the
multiplexing capacity of the technology affords increased throughput of the MS runs,
thereby providing additional statistical validation within a given experiment.

5.1.1 Protein profiling of synaptosomal fractions from Ctsd-/- mouse
brains

Synaptic alterations are a characteristic feature of most NCL mouse models, including
the Ctsd  mice (Kielar et al., 2009; Kim et al., 2008; Virmani et al., 2005; Wishart et
al., 2006). The synaptic pathology of Ctsd  mice has been demonstrated to
particularly occur in the somatosensory cortex and thalamic ventral posterior medial /
lateral nucleus (VPM/VPL); where the synaptic density is reduced during the late-
symptomatic stages of disease (Partanen et al., 2008). Finally, loss of synapses is
accompanied by aggregation of pre-synaptic proteins, including -synuclein and
SNARE proteins (Cullen et al., 2009; Partanen et al., 2008).

In an effort to probe the molecular mechanisms underlying cathepsin D
deficiency, we isolated synaptosomal fractions from Ctsd+/+ and Ctsd-/- mouse brains
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at postnatal day 24 (P24) and analysed their protein profiles by iTRAQ. Over 600
proteins were identified in this study, including: synaptosomal proteins, as well as
proteins involved in demyelination, accumulation of storage material and various
signalling cascades in the brain. 43 of the identified proteins were differentially
expressed between Ctsd-/- and wild type mice (Publication I: Supplementary Table 1).
The differentially expressed proteins included some known brain specific markers,
such as the myelin proteins, proteolipid 1 (Plp1/PLP1) and myelin basic protein
(Mbp/MBP), which are less prominent in Ctsd-/- brains in comparison to the wild-type
(Mutka et al., 2010).

A combination of protein profiling and brain gene expression data from iTRAQ
experiments and the human gene atlas, respectively, was utilised to generate a
dynamic map of cathepsin D related processes in the brain. Several functional
modules associated with differentially expressed proteins in Ctsd-/- mouse brains,
including: mitochondrial energy metabolism, vesicular transport, intergrin mediated
signalling, myelin sheath, G-protein and microtubule assemblies (Publication I:
Figure 3), were revealed in this work. Interestingly, 25% of the differentially
expressed proteins were implicated in various brain disorders i.e. seizures and ataxia
(Publication I: Figures 2B and 3); and depression (Publication I:
Figure 3); and schizophrenia (Martins-de-Souza et al., 2009). Quantitative proteomics
profiling of brain regions has been successfully applied to studies of
neurodegenerative disorders (Martin et al., 2008; Martins-de-Souza et al., 2009;
Rhein et al., 2009).

5.1.2 iTRAQ data links CTSD deficiency to cytoskeletal alterations in the
brain

The 43 differentially expressed proteins in Ctsd-/- mice were subjected to functional
clustering analysis using the database for annotation, visualization and integrated
discovery (DAVID) (Huang da et al., 2009). This analysis indicated associations to
cell projection organization (GO:0030030), microtubule-based process
(GO:0007017), and cytoskeleton organization (GO:0007010), within the most
enriched cluster (Publication I: Figure 2A). Most differentially expressed proteins
were significantly down-regulated in the Ctsd-/- mouse brain in comparison to wild
type control (Publication I: Figure 2A). Data from iTRAQ experiments showed
down-regulation of Microtubule associated protein 2 (MAP2), a protein involved in
microtubule assembly and stability. Differential expression of the protein in Ctsd-/-
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mouse brains was validated by Western blot analysis and immunohistochemistry
(Publication I: Figure 4B), in which diminished MAP2 staining in the hippocampus
was demonstrated. Intriguingly, a similar decrease in MAP2 staining was observed in
a (McKee et al., 1989).

5.1.3 Role of acetylation on microtubular interactions in neurons

-tubulin acetylation was previously mapped to lysine 40 (LeDizet and Piperno,
1987) inside the microtubule polymer (Nogales et al., 1998), contrary to where most
known interactions between microtubules and their associated proteins occur on the
outer surface. Given the spatial separation of the modification and interaction sites, a
potential role of acetylation in encoding microtubule functions seemed implausible.
However, recent identification of several novel acetylation sites on tubulin
(Choudhary et al., 2009) including some on the outer surface of the polymer,
refocused attention on the role of acetylation in interactions between microtubules
and microtubule associated proteins.

We observed up-regulation of acetylated TUBA1A in Ctsd-deficient mouse brains
(Publication I: Figure 4A), from our iTRAQ experiments. Posttranslational
modifications, including acetylation were suggested to mediate interactions between
microtubules and their associated proteins (Fukushima et al., 2009). Modified
microtubules are postulated to have roles in maintenance of neuronal morphology, as
well as neurite outgrowth and maturation. Additionally, acetylation of alpha-tubulin
at lysine 40 is critical for radial migration and branching of cortical projection
neurons (Creppe et al., 2009). Histone acetyltransferase composed of ADP-
ribosylation factor domain protein 1 (ARD1) in complex with N-terminal
acetyltransferase 1 (NAT1) (Park and Szostak, 1992) could acetylate -tubulin, and
was determined to be critical for dendrite extensions and arborization (Creppe et al.,
2009). Acetylation of microtubules or other substrates of ARD1-NAT1 is important
for the early stages of neuronal development and maybe an essential signal for
neuronal migration and differentiation, as well as synaptic targeting. Alterations in

diseases (Dompierre et al., 2007; Outeiro et al., 2007; Suzuki and Koike, 2007).
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5.1.4 Aberrant Focal adhesion sites and cell migration deficits in Ctsd-/-

cells

Deficits in spatial orientation and alterations in cell migration of Ctsd-/- cells may be
directly attributed to aberrant cell adhesion points. In order to clarify this possibility,
we probed the cellular localization of focal adhesion kinase (FAK), a key protein of
the focal adhesion sites. Focal contacts provide a structural link between the actin
cytoskeleton, extracellular matrix and signalling proteins during cell adhesion,
spreading and migration (Bershadsky et al., 2003; Ridley et al., 2003). FAK exhibits
both scaffolding and signalling functions. Autophosphorylation of Tyrosine 397
provides a docking site for SH2-containing proteins, whereas regulation of its
catalytic activity requires activation of Tyrosines 576 and 577 (Calalb et al., 1995;
Schaller, 2001).

Based on immunofluorescence analyses of Ctsd-deficient mouse and human
fibroblasts (Publication I: Figures 7 and 8), FAK, vinculin, phosphorylated Tyr and

1-integrin, 5-integrin, talin, respectively, were weakly immunostained in
comparison to the wild type cells. These findings indicated defects in formation of
focal adhesion sites in Ctsd-deficient cells that probably affect their movement. FAK
is involved in regulation of axonal branching and synapse formation (Rico et al.,
2004), shaping migrating growth cones and assembly of axo-dendritic contacts (Stagi
et al., 2010). Failure to form focal adhesion sites is therefore a potential hindrance to
neuronal development and synaptogenesis in mature neurons.

Bioinformatic analyses revealed integrin signalling as one of the pathways
affected in Ctsd-/- mouse brains (Publication I: Figure 3). Activation of FAK is known
to regulate integrin signalling, hence our motivation to stain human fibroblasts for 1-
integrin (ITGB1), 5-integrin (ITGA5), and talin (TLN), an adaptor protein in the
integrin complex (Publication I: Figure 8). Human fibroblasts were grown on
fibronectin in order to induce integrin-clustering and focal adhesion site formation.
Previous experiments with mice fibroblasts were validated by findings in control
human fibroblasts, which also showed integrin clustering and presence of focal
adhesion sites at the plasma membrane. Immunostaining of 1-integrin was however
globally distributed within the Ctsd-deficient human fibroblasts. Staining for

5-integrin and talin was weak throughout the cells. Focal adhesion sites therefore
appear aberrantly localised in the Ctsd-deficient cells.
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5.2 Mapping the CLN3-CLN5 Interactome in the brain (II)

Mutations in Cln3 and Cln5 cause CLN3 disease / Juvenile NCL (JNCL, OMIM:
204200) (Consortium, 1995) and CLN5 disease / Finnish variant LINCL (vLINCLFin,

OMIM: 256731), respectively. CLN3 disease is the most common childhood
neurodegenerative disorder (Consortium, 1995), whereas CLN5 disease is especially
enriched in the Finnish population (Savukoski et al., 1998). NCL share similar
pathological and clinical phenotypes, which suggests that they are probably
connected at a molecular level. Previous work also supports this hypothesis (Vesa et
al., 2002; von Schantz et al., 2008). Immunofluorescence microscopy, co-
immunoprecipitation and in vitro binding assays in transiently transfected COS-1
cells, showed CLN5 interactions with CLN2, CLN3 (Vesa et al., 2002). Moreover,
quantitative gene expression profiles and immunofluorescence stainings of 1 / 4
month old cln1-/- / cln5-/- mice cortex, showed aberrations in neuronal growth cone
assembly (von Schantz et al., 2008). We therefore examined the CLN3 and CLN5
interactomes in SH-SY5Y human neuroblastoma cells by TAP-MS, in an effort to
determine the extent of cross-talk among the two NCL proteins.

In order to map the CLN3-CLN5 interactome in the brain, we initiated a
proteomic analysis of the tandem affinity purification (TAP)-tagged disease proteins
and their associated complexes. The unbiased five step approach involved:
construction of mammalian retroviral based expression vectors, generation of stably
expressing cell lines, Tandem Affinity Purification (TAP), shot-gun sequencing of
isolated protein complexes and functional annotation / interactome analysis
(Publication II: Figure 1). Cellular models are particularly beneficial for TAP
experiments because they are relatively inexpensive, faster to culture and easier to
manipulate, in comparison to animal models (e.g. mice). However, isolation of
protein complexes from the latter (TAP-tagged mice), for instance, would ensure that
the bait and associated proteins are maintained at physiological levels and within their
right stoichiometric amounts.
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5.2.1 Identification of novel CLN3 and CLN5 IP

Proteins typically function as constituents of molecular complexes that perform
various tasks within cells (Alberts, 1998). Consequently, understanding unknown
functions of proteins requires examination of their complexes under native
conditions. In this study, we utilised tandem affinity purification coupled to mass
spectrometry (TAP-MS), for purposes of isolating and identifying CLN3 / CLN5
protein complexes along with their associated interacting partners. Tandem Affinity
Purification is a dual-step method for purifying protein complexes from cell lysates or
animal tissues that express TAP-tagged fusion proteins of interest (Puig et al., 2001;
Rigaut et al., 1999).

We generated SH-SY5Y cells stably expressing CLN3 and CLN5 baits using N-
terminal or C-terminal TAP-tagged vectors respectively, for use in TAP-MS
experiments. Following TAP-MS, bioinformatics analyses with Significance Analysis
of Interactome (SAINT) yielded 58 and 31 CLN3 or CLN5 IP, respectively
(Publication II: Tables 1 and 2). As a proof of principle, 37% of CLN3 high
confidence IP previously determined by another study were also recovered in our
study (Behrends et al., 2010). Moreover, a subset of CLN3 IP (DBH, DPM1,
SEC61A1 and SLC25A10) was validated in co-immunoprecipitation assays
(Publication II: Figure 3) and dual Immunofluorescence confocal microscopy
(Publication II: Supplementary Figure 2).

CDP-diacylglycerol synthase (CDS2), an enzyme that catalyses the conversion of
phosphatidic acid to CDP-diacylglycerol and subsequently regulates available
phosphatidylinositol for signalling, was one of the novel CLN3 IP that we identified.
The enzyme is implicated in downstream G-protein signalling events because it
provides the precursor for synthesis of phosphatidylglycerol, cardiolipin (inner
mitochondrial membrane) and phosphatidylinositol (ER) (Inglis-Broadgate et al.,
2005). Interestingly, treatment of autophagy defective Cln3-deficient mouse
cerebellar cells with lithium (inositol monophosphatase inhibitor), partially recovered
autophagy in these cells and diminished their vulnerability to cell death (Cao et al.,
2006; Chang et al., 2011). Studies in myo-inositol monophosphatase (IMPase)
mutants of C. elegans indicated that a reduction in phosphatidylinositol 4, 5-
bisphosphate (PIP2) caused abnormal synaptic polarity (Kimata et al., 2012), thereby
mechanistically linking phosphatidyl signalling to defects in autophagy, synaptic
polarity and apoptosis.
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5.2.2 Neurodegenerative disease phenotype of the CLN3-CLN5
Interactome

Mental retardation (MR) and epilepsy often occur concurrently because they have
similar etiology. MR affects 1 3% of the human population and is characterized by
deficits in intellectual function and adaptive behavior with onset in childhood. Family
studies have highlighted the relatively large number of X-linked mental retardation
(XLMR) cases, which probably explains the higher MR incidence in males (Tarpey et
al., 2009). Several of the identified XLMR genes are involved in synaptic function
(Humeau et al., 2009). Epilepsy is one of the most common neurological disorders,
characterized by abnormal electrical activity in the central nervous system (CNS).
It affects nearly 3% of the world's population, and its pathogenesis is attributed to
several factors, including: trauma, virus infection, altered metabolic states, or inborn
brain malformations (Tian and Macdonald, 2012). Most common genetic epilepsies,
such as juvenile myoclonic epilepsy (JME) or childhood and juvenile absence are
complex diseases (Michelucci et al., 2012; Steinlein, 2004).

Analysis of the CLN3-CLN5 interactome against the OMIM database, yielded 8
disease associated IP (Publication II: Supplementary Table 2), 6 of which were
categorised with a neurodegenerative phenotype. The neurodegenerative disease
associated proteins included those involved in mental retardation or epileptic seizures
(CLN3, CLN5, STRA6, TECR, PHGDH and SLC25A22), schizophrenia (DBH) and
dystonia parkinsonism (ATP1A3) (Publication II: Figure 5A). Mental retardation and
epileptic seizures are both known clinical symptoms of NCL patients. Furthermore, a

4 CLN3 IP (SLC25A6, SLC25A5, SLC25A4 and UQCRC2) (Publication II: Figure
4C). Synuclein (SNCA) was shown to directly bind to CLN3 (Koenn, 2012) and also
interacts with several CLN3 / CLN5 IP (Publication II: Supplementary Figure 5).

5.2.3 Molecular link between NCL proteins

Bioinformatic analyses and literature searches revealed potential interactions between
several NCL proteins, reviewed by (Getty and Pearce, 2011; Kollmann et al., 2013).
In accordance with other multifactor gene disorders, NCL proteins may be involved
in cross-talk between many cellular pathways and result in similar mechanisms of
neurotoxicity. Our recent studies on CLN3-CLN5 and CTSD interactomes (Koch et
al., 2013; Scifo et al., 2013) pinpointed their inter-connections with proteins involved
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in neurodegeneration, mental retardation and epileptic seizures, as well functional
modules, which could be targeted pharmaceutically.

Given the novelty of most identified CLN3 and CLN5 IP, we employed FunCoup
database in an effort to uncover their functional associations by network approaches.
The statistical platform permits data integration from various model organisms, for
purposes of establishing functional coupling between proteins in medium or high-
throughput data sets (Alexeyenko et al., 2012). A total of 72 input genes were present
in FunCoup, from which 67 were utilised to identify 649 high confidence functionally
coupled pairs. For instance, 22% of CLN3 IP, including two novel ones (SCAMP3
and TECR) were predicted with high confidence to be functionally coupled with
CLN3. Moreover, CLN5 was also predicted with high confidence to be functionally
coupled to CLN3 and SEL1L. A high number of links amongst the functionally
coupled proteins suggests a dense network of associations within the input genes and
further implicates them in similar biological processes.

We finally subjected the CLN3-CLN5 bridging proteins (Publication I: Figure 5)
to functional clustering by querying HIPPIE for their direct IP, followed by filtration
for high expression in the brain (Schaefer et al., 2012). Most of the mitochondrial
carriers were associated with proteins involved in autophagy, a pathway that regulates
mitochondrial turnover and is known to be disrupted in CLN3 disease. Disruption of
GABAergic neuronal populations in hippocampal CA2-CA4 regions of CLN3 and
CLN5 patients, suggests a potential role of the autophagic pathway including GABA-
receptor associated proteins in enhancing the neuropathology (Tyynela et al., 2004).

5.3 The human CLN1 (PPT1) Interactome in the brain (III)

The CLN1 gene encodes CLN1 or Palmitoyl Protein Thiosterase 1 (PPT1), a soluble
protein that when mutated is known to cause Infantile NCL (INCL, MIM#256730) or
CLN1 disease (Hofmann et al., 2001). 45 different mutations are implicated in CLN1
disease (http://www.ucl.ac.uk/ncl/), including [R122W] and [T75P] that account for
98% of INCL cases in Finland and 13% of disease alleles in the USA, respectively
(Das et al., 1998; Vesa et al., 1995). Based on literature review,  12 PPT1 IP have
been determined by various experimental methods, i.e affinity capture-MS (Danielsen
et al., 2011; Emanuele et al., 2011; Kim et al., 2011; Koch et al., 2007; Liu et al.,
2012; Wagner et al., 2011), co-fractionation (Havugimana et al., 2012) and yeast two-
hybrid assays (Wang et al., 2011).  However, these studies utilised non-neuronal cells
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to identify the PPT1 IP and their findings probably do not represent in vivo substrates
of the enzyme in the brain. We therefore aimed to mimic the physiological neuronal
cellular environment of PPT1 in the brain by isolating protein complexes from human
SH-SY5Y neuroblastoma cells at near to endogenous levels.

5.3.1 Neurodegenerative disease causative proteins interact with PPT1

Proteomic analysis of PPT1 IP by single step affinity purification coupled to mass
spectrometry (AP-MS) yielded nine neurodegenerative disease causative proteins
(VCP, VAPB, CRMP1, DBH, VDAC2, CTSD, PDHA1, PDHB and DLAT)
(Publication III: Figure 5). Two of the PPT1 IP in this category (VCP and DBH) were
validated by co-imunoprecipitation (Publication III: Figure 3). Valosin-containing
protein (VCP or p97) is a 97 kDa member of the type II AAA (ATPases associated
with a variety of activities) ATPases, which are distinguished by their two conserved
ATPase (AAA) domains (Neuwald et al., 1999). VCP is highly conserved across
various species (e.g. known as VAT in archaebacteria, CDC48 in yeast, TER94 in
Drosophila, p97 in Xenopus, and VCP in plants and mammals) (Frohlich et al., 1991;
Koller and Brownstein, 1987; Pamnani et al., 1997; Peters et al., 1990).
It is ubiquitously expressed in cells and has been suggested to function in various
cellular processes, including: ubiquitin-dependent protein degradation, membrane
fusion, ER-associated degradation, transcription activation, cell cycle control,
apoptosis and molecular chaperone (Wang et al., 2004). Mutations in the valosin-
containing protein (VCP) cause an autosomal dominant inclusion body myopathy
associated with Paget's disease of the bone and frontotemporal dementia (OMIM:
605382) (Schroder et al., 2005; Watts et al., 2004). VCP is particularly of great
interest to researchers across various disciplines because of its unusually diverse
functions.

Human dopamine -hydroxylase (DBH) is a 617 amino acid (78 kDa) single-pass
type II transmembrane glycoprotein (SwissProt # P09172) related to the copper type
II, ascorbate-dependent monooxygenase family. The protein comprises of N-terminal
cytoplasmic (aa 1-16), transmembrane (aa 17-37) and luminal (aa 38-617) regions. A
DOMON (dopamine -monooxygenase N-terminal) domain (aa 51-169) and two
consecutive monooxygenase motifs (aa 214-523) are part of the luminal region.
Unlike other members of the family (e.g tyrosine hydroxylase, TH and
phenylethanolamine N-methyltransferase, PNMT) which are cytosolic, DBH is
localised in membranes of secretory vesicles (Chen et al., 2003; Gearhart et al.,
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2002).  It is expressed in noradrenergic nerve terminals and adrenal medullary
chromaffin cells, and serves as a catalyst for the conversion of dopamine to
norepinephrine (Man in 't Veld et al., 1987; Robertson et al., 1986) . Dopamine beta-
hydroxylase deficiency (OMIM: 223360) is caused by a mutation in the DBH gene
encoding DBH (Kim et al., 2002).

5.3.2 PPT1 interacts with PDHC and ATP synthase complexes

Amongst the novel PPT1 IP identified in this study was PDHA1, PDHB, DLAT and
DLD (Pyruvate dehydrogenase complex) and ATP5B, ATP5A1 (ATP synthase
complex) (Publication III: Figure 5, Table 1 and Supplementary Table 1). The
pyruvate dehydrogenase complex (PDHC) catalyzes irreversible oxidative
decarboxylation of pyruvate to acetyl CoA, thereby linking glycolysis to the citric
acid cycle. Multiple copies of 3 separate enzymes: pyruvate dehydrogenase (PDH,
E1: 20-30 copies), dihydrolipoamide S-acetyltransferase (DLAT, E2: 60 copies) and
dihydrolipoamide dehydrogenase (DLD, E3: 6 copies), constitute the pyruvate
dehydrogenase complex. The complex also requires 5 different coenzymes: CoA,
NAD+, FAD+, lipoic acid and thiamine pyrophosphate. A deficiency of PDHc
deficiency is suggested result in lactic acidaemia and insufficient energy production,
probably due to the presence of residual pyruvate and lactate that are insufficiently
removed from cells. The neurological disease spectrum associated with PDHc ranges
from fatal lactic acidosis in newborns, intermittent ataxia in milder forms, to chronic
neurological dysfunction with mental retardation (Imbard et al., 2011).

5.3.3 Putative roles of PPT1 in neuronal migration and axonal guidance

PPT1 also interacts with microtubule associated protein 1B (MAP1B) (Publication
III: Figure 5, Table 1 and Supplementary Table 1), a protein that is highly expressed
in axons of developing neurons (Black et al., 1994) and is suggested to regulate
neuronal migration and axonal guidance (Gonzalez-Billault et al., 2004). A role of
MAP1B in axonal guidance was showed by histological examination of homozygous
Map1b-deficient (Map1b ) mice brains (Meixner et al., 2000). Most of the Map1b
gene was removed in these deletion mutants that could not express Map1b from either
regular or alternative transcripts. Expression of Map1b: heavy / light chains and N-
terminal fragments was determined to be completely abolished in these mutants.
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Histological staining of brain tissues from these mice revealed agenesis of the corpus
callosum and formation of Probst bundles (Meixner et al., 2000). These features were
present in all homozygous Map1b-deficient mice brains, but absent in either
heterozygotes or wild-type controls thus suggesting an important role of MAP1B in
corpus callosum genesis.

During development, expression of MAP1B occurs in the axons, dendrites, and
growth cones of the CNS (Black et al., 1994). However, the observed defect in axonal
guidance is restricted to the corpus callosum and the hippocampal commissure. It is
probable that a single mechanism involving MAP1B is indespensable for axonal
guidance in the corpus callosum, whereas other back-up mechanisms maybe
employed for the guidance of most axons throughout the CNS. MAP1B may
participate in signal transduction aided by laminin expressed on the cell surface of
midline glia cells (Liesi and Silver, 1988). A role of MAP1B in laminin-enhanced
axonal growth has been demonstrated in vitro assays (DiTella et al., 1996). Moreover,
mice deficient in p35 (suggested to participate in regulation of laminin-induced
MAP1B phosphorylation ((Paglini et al., 1998)), also exhibit axonal guidance defects
in the corpus callosum (Kwon et al., 1999). MAP1B may regulate corpus callosum
formation via the laminin / integrin-mediated cell adhesion signalling pathways.

The interaction of PPT1 with MAP1B probably facilitates depalmitoylation of the
latter thereby releasing the protein to participate in laminin induced axonal guidance
critical for corpus callosum genesis.

5.3.4 PPT1 is linked to the dopamine receptor mediated signalling
pathway

Dopamine -hydroxylase (DBH) is a PPT1 IP (Publication III: Figure 5, Table 1 and
Supplementary Table 1) involved in the dopamine receptor mediated signalling
pathway. The enzyme is an oxidoreductase that catalyses the conversion of dopamine
to norepinephrine and therefore regulates norephinephrine / dopamine ratio in
noradrenergic neurons. Regulation of firing patterns and subsequent dopamine release
are directed by noradrenergic neurons (in the locus coeruleus), which project to
dopamine neurons in the ventral tegmental area (VTA) (Grenhoff et al., 1993; Jones
and Moore, 1977; Jones and Yang, 1985; Phillipson, 1979).  Based on radioligand
binding assays, Dbh-deficient mice were shown to have an increased density of
striatal high affinity state (D1 and D2) dopamine receptors and were hypersensitive to
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amphetamine or cocaine induced locomotion (Schank et al., 2006; Weinshenker et al.,
2002).

Nigrostriatal dopaminergic projections originate from dopamine-synthesising A9
neurons of the midbrain substantia nigra (pars compacta) and innervate the dorsal
striatum (caudate-putamen). They constitute one of the four major dopaminergic
pathways and are an important regulator of motor control circuitry (Smith and
Villalba, 2008). Progressive loss of the A9 neuron  (PD)
patients, accounts for their characteristic symptoms of bradykinesia and rigidity.
Depletion of dopamine results in degeneration of the nigrostriatal pathway which is
apparent in PD patients.

Dopaminergic synaptic transmission in the brain involves binding to five known
dopamine receptor subtypes (D1-5) (Dearry et al., 1990; Sokoloff et al., 1990;
Sunahara et al., 1991; Van Tol et al., 1991; Zhou et al., 1990). Dopamine receptors
are classified according to their molecular structure and pharmacological properties
(Jackson and Westlind-Danielsson, 1994). D1-like dopamine receptors (D1 and D5)

activate adenylyl cyclase and cyclic adenosine monophosphate (cAMP) production
via Gs/olf proteins (Dearry et al., 1990; Sunahara et al., 1991; Tiberi et al., 1991;
Zhou et al., 1990) when stimulated, whereas the D2-like receptors (D2, D3 and D4)
inhibit adenylyl cyclase via Gi/o proteins (McAllister et al., 1995; Onali et al., 1985;
Potenza et al., 1994; Tang et al., 1994)
(Hernandez-Lopez et al., 2000). Both D1 and D2 -like dopamine receptors regulate
calcium signalling (Missale et al., 1989) and stimulate mitogen-activated protein
kinase pathways (Cai et al., 2000; Zhen et al., 1998).

Interestingly, DBH was also identified as common interactor of both CLN3 and
CLN5 (Publication II: Figure 5, Tables 1 and 2). It is plausible that the common
phenotype amongst NCL disease genes is partly modulated by involvement in the
dopamine receptor mediated signalling.
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6 Conclusions and future prospects

The first goal of this thesis work was to systematically characterize the Ctsd  mice
synaptic proteome, in an effort to unravel mechanisms underlying cathepsin D
deficiency. Using a quantitative proteomics approach, we observed that several
functional modules,  such as: mitochondrial energy metabolism, vesicular transport,
intergrin mediated signalling, myelin sheath, G-protein and microtubule assemblies
were linked to cathepsin D deficiency in these knockout mice. We specifically
observed alterations in microtubule associated cytoskeleton and cell projection
organization which might constitute a preliminary phase in the synaptic aberrations
and neurodegeneration characterized by cathepsin D deficiency. It would be
worthwhile to intracranially inject Ctsd  mice with adeno-associated viral vectors
expressing MAP2, ITGB1 and ITGA5, to determine if they can partially rescue the
microtubule and integrin associated altered cytoskeleton phenotype observed in these
mice.

We further applied tandem affinity purification- MS techonology towards the
isolation and identification of CLN3 and CLN5 protein complexes in human
neuroblastoma cells. We subjected our dataset to stringent Significance Analysis of
Interactome in order to minimise false positives associated with various high
throughput strategies. Functional annotation of the combined CLN3-CLN5
interactome showed enrichment in proteins associated with neurodegenerative
diseases, vesicular trafficking and the lipofuscin interactome. Besides confirming
known roles of CLN3 in transmembrane transport, lipid homeostasis and neuronal
excitability, this work also identified putative involvement of the protein in G-protein
signalling, as well as protein folding / sorting in the ER. Moreover, we also identified
several proteins (mostly mitochondrial solute carriers) that interact with both CLN3
and CLN5, which is suggestive of common underlying molecular mechanisms
associated with disease pathogenesis in the two NCL proteins.

Another aim of this work was to characterise the in vivo substrates of human
PPT1 in the brain by a single step affinity purification coupled to mass spectrometry
(AP-MS) approach. PPT1 protein complexes were processed by filter assisted sample
preparation (FASP) and analysed on two MS instruments. This work yielded several
PPT1 IP including: neurodegenerative disease causative proteins, as well as pyruvate
dehydrogenase and mitochondrial ATP synthase complexes. A subset of the PPT1 IP
was validated in co-immunoprecipitation assays. However, the proteomic data not
only confirms previously suggested roles of PPT1 in axon guidance and lipid
metabolism, but also implicates the enzyme in putative new roles, such as:
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involvement in neuronal migration and dopamine receptor mediated signalling
pathway.

Synaptic alterations are well documented in most NCL mouse models and so the
finding that DBH (enzyme implicated in dopamine receptor mediated signalling) is a
common interacting partner to PPT1, CLN3 and CLN5, may be of therapeutic
importance. As such, future experiments might involve overexpression of DBH in
Cln1 , Cln3 and Cln5  mice brains, for purposes of modulating dopaminergic
synaptic transmission.
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