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Discretization of Electric Current Volume
Integral Equation with Piecewise Linear Basis
Functions

Johannes Markkanen, and Pasi Y14-Oijala

Abstract—The electric current volume integral equation for-
mulation is discretized with piecewise linear basis and testing
functions. The resulting weak formulation is more complicated,
and contains additional terms compared with the previous dis-
cretization utilizing piecewise constant approximations. However,
the use of fully linear functions provides superior solution accu-
racy while keeping good convergence properties of the original
integral equation.

Index Terms—Electromagnetic scattering, method of moments,
volume integral equation

I. INTRODUCTION

Electromagnetic wave scattering by arbitrarily shaped three-
dimensional inhomogeneous dielectric objects located in free
space can be described by the volume integral equations.
A numerical solution for the volume integral equation is
most often found through the method of moments in which
the scatterer is divided into simple elements, and the basis
functions associated with these elements are used for expand-
ing the unknown function. Then, the testing procedure, such
as the Galerkin, Petrov-Galerkin, collocation, etc, is applied
to convert the continuous equation into a system of linear
equations which can be solved numerically. The accuracy
of this technique is highly dependent on the choice of the
basis and testing functions as well as the integral equation
formulation applied.

Several different types of basis and testing functions have
been proposed in the past. The most commonly used basis
functions are known as the SWG (Schaubert-Wilton-Glisson)
basis functions [1]. These functions are divergence conform-
ing, i.e., they force the normal continuity, and therefore, are
used to expand the electric flux density. The SWG functions,
however, do not generally satisfy the divergence free condition
that may spoil the convergence of the solution [2]. Remedy for
this, the purely solenoidal basis functions were proposed [3]-
[5], but the use of these functions deteriorates the convergence
of the iterative solution. It is also possible to write the
integral equation for the electric field with the curl conforming
functions [6]-[9], as well as for the polarization current
with discontinuous or L2-conforming [10]-[11] functions.
Moreover, the potential formulations with continuous basis
functions were proposed in [12], [13]. However, the accuracies
of these potential formulations are not satisfactory due to the
point-matching testing scheme applied.
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The choice of the testing functions is more complicated
than the choice of the basis functions, especially, if the L2-
inner product is applied. In which case, the testing functions
should span the L2-dual space of the range of the operator, and
constructing a proper set of functions can be untrivial. Hence,
working fully in L? should give rise to a simple properly
discretized system as proposed in [14].

In [11], the electric and magnetic current volume integral
equation formulation, which maps from L? to itself, was dis-
cretized with piecewise constant functions. However, it is clear
that the piecewise constant approximations require very small
elements to be able to provide an accurate representation for
the unknown function. Here, in order to improve the accuracy
of the electric current (J-VIE), the equation is discretized with
linear basis and testing functions.

II. J-VIE FORMULATION

Consider electromagnetic wave scattering by a linear inho-
mogeneous three-dimensional object bounded by a domain €2
in homogeneous background medium with constants ¢y and
0. The total time-harmonic (e~**) electric field E due to
the equivalent volume polarization current is given by [15]
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where E"™° is the incident electric field, and ko = w./eofio is
the wavenumber in the background medium. The equivalent
electric polarization current is defined as

J(r) = —iweo(&-(r) — 1) - E(r), 2)

in which &.(r) is the relative permittivity dyad. The volume
integral operator in (1) can be expressed as

V(F)(r) = / Go(r,#) F(+') V", 3)
Q

where Gy is the Green’s function of the background.

From representation (1) and the definition of the equivalent
current (2), the volume integral equation formulation for the
electric current (J-VIE) can be derived:

Jne = J — (& —I)- (VV + K1) - V(J). (4)
The incident current is defined as J° = —iweo (¢, —1)-E™.
The above integral equation can be solved in L2(2)3 [14],
[16].

III. DISCRETIZATION

Let us next consider the discretization of the volume integral
equation (4). Since the unknown current J is discontinuous
across material interfaces, basis functions should span L?((2).
We divide the volume of the object €2 with linear tetrahedral
elements k, and define piecewise linear basis b}'g and testing ¢},
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functions on the tetrahedral mesh. The superindex 7 denotes
the x-, y- or z- component. The current is approximated as
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where é,,é,,é. are the unit vectors in the Cartesian co-
ordinate, N, are the standard linear nodal shape functions,
and V} is the volume of tetrahedron k. Therefore, each
tetrahedron contains 12 basis functions (four functions for
each component). In addition, to obtain well-behaving discrete
identity operator, which is independent on the mesh density,
the basis and testing functions are scaled by 1//V .

The method of moments is applied to convert the continuous
equation into a discrete set of equations with the L2-inner
product defined as

<F,G>Q:/F-Gdr. (©6)
Q

It is worth noting that Galerkin’s scheme in L? forces the
interface conditions to be valid in a weak sense since from
Helmholtz decomposition F = Vp+V x w, € L? we can see
that

<Vp+Vxw,J>=-<p,V-I>+<w,VxJ>

+<pn-J>+<wnxd>,

)
hence the function, its divergence, curl, and boundary values
are properly tested. The functions in the decomposition are
defined as w € H,(Q)3 and p € H1(Q2)3.

Taking the inner product with the testing functions, using
integration by parts, the elements of the discretized system
matrix are
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where T = (€, — I ), Vi and OV, are the volume and the
surface of tetrahedron m, respectively. The elements of the
force vector read as

bl = / ti - Jmedv. 9)

All the integrals in (8) are weakly singular, and are computed
with the singularity extraction technique [18].
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Fig. 1. Backscattered radar cross section as a function of permittivity of a
homogeneous sphere with ka = 1 computed by the J-VIE with the piecewise
constant and linear basis functions.
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Fig. 2. Relative error of the far field scattering with respect to the permittivity
of a homogeneous sphere with ka = 1.

IV. NUMERICAL EXAMPLES

In this section, we consider numerical examples and study
accuracy of the J-VIE discretized with Galerkin’s procedure
with linear and constant functions. In the accuracy study, we
use a far-field error quantity defined as follows:

J,(c —5)2dS
[ 5%ds

Error(c) = (10)

where vy is the surface of unit sphere. The bistatic scattering
cross section o/c (calculated/exact) is given by

2 [E*(r,0,0)?
|Ein0|2

To study the convergence of the actual solution J, we need to

define another error norm as follows

o(0,¢) = lim 4mr

r—00

(1)

J-J*—J-J )2V
Error(J) = Jo — ) ’
Jo(J - T )2dV

12)
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Fig. 3. Number of GMRES(200) iterations vs. relative permittivity of a
sphere with ka = 1.

where J is the numerical solution and J is the exact solution,
and J™ stands for the complex conjugate of J.

Let us first consider scattering by a dielectric sphere of size
ka = 1. Fig. 1 shows the radar cross section of the sphere
in the backscattering direction as a function of permittivity,
and the relative error of the scattered fields is plotted in
Fig. 2. In this example, the sphere is discretized with 1624
tetrahedral elements giving 19488 unknowns when the linear
basis functions are applied, and with piecewise constant func-
tions, the number of elements is 6357 giving 19071 unknowns.
Moreover, results computed by the commonly used DVIE for-
mulation [1] with 6357 tetrahedra and 13152 SWG functions
are included. Clearly, the discretization with piecewise linear
basis functions gives much better accuracy with respect to the
number of unknowns compared with the piecewise constant
discretization.

To solve large problems, one needs to rely on iterative
solvers and fast algorithms, e.g., the multilevel fast multipole
algorithm MLFMA or the FFT-based acceleration techniques
[19]-[22]. Hence, it is important to investigate the convergence
of the iterative solution. The number of iterations required
to solve the system as a function of permittivity of a sphere
with ka = 1 is plotted in Fig. 3. The GMRES(200) solver is
used with the tolerance tol = 10~°. The iteration count with
the linear basis functions is almost the same as the iteration
count with the constant functions. Peaks in Fig. 3 are due to
Mie resonances, however, the lowest order functions cannot
catch all of them properly since the element size is too large
at high permittivities. In addition, we have observed that the
iteration counts are independent of the mesh density assuming
that the elements are small enough. Although, the iteration
count depends on the permittivity since the spectrum of the
integral operator is also permittivity dependent [16].

The discretization with the piecewise constant approxima-
tions provides a convergence rate of O(h) for the internal field,
and O(h?) for the far-field where h is the average edgelength.
As demonstrated in Fig. 4, with fully linear approximations
the convergence rate in the near field is of order O(h?). Fig.
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Fig. 4. Relative error of the solutions (12) as functions of averaged edge

lengths for dielectric spheres (e = 5) of different sizes. Only the results with
the linear basis function are plotted.
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Fig. 5. Convergence of the scattering cross sections (10) computed by using
piecewise linear functions in the same case as in Fig. 4.

5 shows that in the far field, the convergence rate with the
linear functions approximately follows the trend O(h*). With
both approximations, linear and constant, the convergence
rate in the far field is faster than in the near field since the
operator used for computing the far-fields from the solution is
a smoothing operator.

Finally, we will take a look at the internal electric field of
an inhomogeneous cube with edgelength [ = 1m whose center
is at the origin. The permittivity €, =4 if x < 0 and ¢, = 8
if x > 0. The incident wave is linearly polarized along x-axis
and it is propagating along z-axis. Each component of the
real part of the electric field along x-axis is plotted in Figs. 6
and 7 computed by the J-VIE with the piecewise linear and
constant expansion functions, respectively. The reference result
is computed by the surface integral equation method [23].

The cube is discretized with 7238/1034 elements giving
21714/12408 DoFs when the constant/linear functions are
applied. The internal fields are directly retrieved from the
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Piecewise linear approximation
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Fig. 6. The real part of the internal electric field (x-,y-, and z-components)
of the inhomogeneous cube plotted along x-axis. The permittivity is €, = 4
when x < 0 and €, = 8 when & > 0. The reference (solid lines) is computed
by the surface integral equation method.

Piecewise constant approximation
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Fig. 7. As in Fig.6 computed with piecewise constant functions.

solution (E = wLeo (€.—I)~1-J), hence it is not suprising that
the higher order expansion gives more accurate representation
for the internal fields.

V. CONCLUSIONS

The volume integral equation for the electric current has
been discretized in L? by using tetrahedral elements and piece-
wise linear approximations. The numerical examples show that
the discretization with the piecewise linear basis and testing
functions provides much better accuracy compared to the
discetization utilizing the piecewise constant approximations.
The convergence rate of the solution follows the trend O(h?)
for the equivalent current and O(h*) for the far fields assuming
that the geometric error is insignificant.
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