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Discretization of Electric Current Volume

Integral Equation with Piecewise Linear Basis

Functions

Johannes Markkanen, and Pasi Ylä-Oijala

Abstract—The electric current volume integral equation for-
mulation is discretized with piecewise linear basis and testing
functions. The resulting weak formulation is more complicated,
and contains additional terms compared with the previous dis-
cretization utilizing piecewise constant approximations. However,
the use of fully linear functions provides superior solution accu-
racy while keeping good convergence properties of the original
integral equation.

Index Terms—Electromagnetic scattering, method of moments,
volume integral equation

I. INTRODUCTION

Electromagnetic wave scattering by arbitrarily shaped three-

dimensional inhomogeneous dielectric objects located in free

space can be described by the volume integral equations.

A numerical solution for the volume integral equation is

most often found through the method of moments in which

the scatterer is divided into simple elements, and the basis

functions associated with these elements are used for expand-

ing the unknown function. Then, the testing procedure, such

as the Galerkin, Petrov-Galerkin, collocation, etc, is applied

to convert the continuous equation into a system of linear

equations which can be solved numerically. The accuracy

of this technique is highly dependent on the choice of the

basis and testing functions as well as the integral equation

formulation applied.

Several different types of basis and testing functions have

been proposed in the past. The most commonly used basis

functions are known as the SWG (Schaubert-Wilton-Glisson)

basis functions [1]. These functions are divergence conform-

ing, i.e., they force the normal continuity, and therefore, are

used to expand the electric flux density. The SWG functions,

however, do not generally satisfy the divergence free condition

that may spoil the convergence of the solution [2]. Remedy for

this, the purely solenoidal basis functions were proposed [3]–

[5], but the use of these functions deteriorates the convergence

of the iterative solution. It is also possible to write the

integral equation for the electric field with the curl conforming

functions [6]–[9], as well as for the polarization current

with discontinuous or L2-conforming [10]–[11] functions.

Moreover, the potential formulations with continuous basis

functions were proposed in [12], [13]. However, the accuracies

of these potential formulations are not satisfactory due to the

point-matching testing scheme applied.
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The choice of the testing functions is more complicated

than the choice of the basis functions, especially, if the L2-

inner product is applied. In which case, the testing functions

should span the L2-dual space of the range of the operator, and

constructing a proper set of functions can be untrivial. Hence,

working fully in L2 should give rise to a simple properly

discretized system as proposed in [14].

In [11], the electric and magnetic current volume integral

equation formulation, which maps from L2 to itself, was dis-

cretized with piecewise constant functions. However, it is clear

that the piecewise constant approximations require very small

elements to be able to provide an accurate representation for

the unknown function. Here, in order to improve the accuracy

of the electric current (J-VIE), the equation is discretized with

linear basis and testing functions.

II. J-VIE FORMULATION

Consider electromagnetic wave scattering by a linear inho-

mogeneous three-dimensional object bounded by a domain Ω
in homogeneous background medium with constants ǫ0 and

µ0. The total time-harmonic (e−iωt) electric field E due to

the equivalent volume polarization current is given by [15]

E = E
inc +

−1

iωǫ0

(

∇∇+ k20
¯̄I
)

·V(J), (1)

where E
inc is the incident electric field, and k0 = ω

√
ǫ0µ0 is

the wavenumber in the background medium. The equivalent

electric polarization current is defined as

J(r) = −iωε0(¯̄ǫr(r)− ¯̄I) ·E(r), (2)

in which ¯̄ǫr(r) is the relative permittivity dyad. The volume

integral operator in (1) can be expressed as

V(F )(r) =

∫

Ω

G0(r, r
′)F (r′) dV ′, (3)

where G0 is the Green’s function of the background.

From representation (1) and the definition of the equivalent

current (2), the volume integral equation formulation for the

electric current (J-VIE) can be derived:

J
inc = J − (¯̄ǫr − ¯̄I) · (∇∇+ k20

¯̄I) · V(J). (4)

The incident current is defined as J inc = −iωǫ0(¯̄ǫr− ¯̄I)·Einc.

The above integral equation can be solved in L2(Ω)3 [14],

[16].

III. DISCRETIZATION

Let us next consider the discretization of the volume integral

equation (4). Since the unknown current J is discontinuous

across material interfaces, basis functions should span L2(Ω).
We divide the volume of the object Ω with linear tetrahedral

elements k, and define piecewise linear basis bik and testing t
i
k
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functions on the tetrahedral mesh. The superindex i denotes

the x-, y- or z- component. The current is approximated as

J ≈
∑

k,i

cikb
i
k =

Ntet
∑

k=1

4
∑

p=1

(cx,pk Npêx + cy,pk Npêy + cz,pk Npêz) /
√

Vk,
(5)

where êx, êy, êz are the unit vectors in the Cartesian co-

ordinate, Np are the standard linear nodal shape functions,

and Vk is the volume of tetrahedron k. Therefore, each

tetrahedron contains 12 basis functions (four functions for

each component). In addition, to obtain well-behaving discrete

identity operator, which is independent on the mesh density,

the basis and testing functions are scaled by 1/
√
Vk .

The method of moments is applied to convert the continuous

equation into a discrete set of equations with the L2-inner

product defined as

〈F ,G〉
Ω
=

∫

Ω

F ·G dr. (6)

It is worth noting that Galerkin’s scheme in L2 forces the

interface conditions to be valid in a weak sense since from

Helmholtz decomposition F = ∇p+∇×w,∈ L2 we can see

that

< ∇p+∇×w,J >= − < p,∇ · J > + < w,∇× J >

+ < p,n · J > + < w,n× J >,
(7)

hence the function, its divergence, curl, and boundary values

are properly tested. The functions in the decomposition are

defined as w ∈ Hcurl(Ω)
3 and p ∈ H1(Ω)3.

Taking the inner product with the testing functions, using

integration by parts, the elements of the discretized system

matrix are

Aij
mn =

∫

Vm

t
i
m · bjm dV

+

∫

∂Vm

n · (¯̄τT · tim) ·
∫

∂Vn

Gn
′ · bjn dS′ dS

+

∫

Vm

(∇ · (¯̄τT · tim))

∫

Vn

G∇′ · bjn dV ′ dV

−
∫

Vm

(∇ · (¯̄τT · tim))

∫

∂Vn

Gn
′ · bjn dS′ dV

−
∫

∂Vm

n · (¯̄τT · tim)

∫

Vn

G∇′ · bjn dV ′ dS

−
∫

Vm

t
i
m · ¯̄τ · k20 ¯̄I ·

∫

Vn

Gb
j
n dV ′dV,

(8)

where ¯̄τ = (¯̄ǫr − ¯̄I), Vm and ∂Vm are the volume and the

surface of tetrahedron m, respectively. The elements of the

force vector read as

bim =

∫

Vm

t
i
m · J inc dV. (9)

All the integrals in (8) are weakly singular, and are computed

with the singularity extraction technique [18].
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Fig. 1. Backscattered radar cross section as a function of permittivity of a
homogeneous sphere with ka = 1 computed by the J-VIE with the piecewise
constant and linear basis functions.
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Fig. 2. Relative error of the far field scattering with respect to the permittivity
of a homogeneous sphere with ka = 1.

IV. NUMERICAL EXAMPLES

In this section, we consider numerical examples and study

accuracy of the J-VIE discretized with Galerkin’s procedure

with linear and constant functions. In the accuracy study, we

use a far-field error quantity defined as follows:

Error(σ) =

√

√

√

√

∫

γ
(σ − σ̃)2 dS
∫

γ
σ̃2 dS

, (10)

where γ is the surface of unit sphere. The bistatic scattering

cross section σ/σ̃ (calculated/exact) is given by

σ(θ, φ) = lim
r→∞

4πr2
|Esca(r, θ, φ)|2

|Einc|2
. (11)

To study the convergence of the actual solution J , we need to

define another error norm as follows

Error(J ) =

√

√

√

√

∫

Ω
(J · J∗ − J̃ · J̃∗

)2dV
∫

Ω
(J̃ · J̃∗

)2dV
, (12)
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Fig. 3. Number of GMRES(200) iterations vs. relative permittivity of a
sphere with ka = 1.

where J is the numerical solution and J̃ is the exact solution,

and J
∗ stands for the complex conjugate of J .

Let us first consider scattering by a dielectric sphere of size

ka = 1. Fig. 1 shows the radar cross section of the sphere

in the backscattering direction as a function of permittivity,

and the relative error of the scattered fields is plotted in

Fig. 2. In this example, the sphere is discretized with 1624

tetrahedral elements giving 19488 unknowns when the linear

basis functions are applied, and with piecewise constant func-

tions, the number of elements is 6357 giving 19071 unknowns.

Moreover, results computed by the commonly used DVIE for-

mulation [1] with 6357 tetrahedra and 13152 SWG functions

are included. Clearly, the discretization with piecewise linear

basis functions gives much better accuracy with respect to the

number of unknowns compared with the piecewise constant

discretization.

To solve large problems, one needs to rely on iterative

solvers and fast algorithms, e.g., the multilevel fast multipole

algorithm MLFMA or the FFT-based acceleration techniques

[19]–[22]. Hence, it is important to investigate the convergence

of the iterative solution. The number of iterations required

to solve the system as a function of permittivity of a sphere

with ka = 1 is plotted in Fig. 3. The GMRES(200) solver is

used with the tolerance tol = 10−5. The iteration count with

the linear basis functions is almost the same as the iteration

count with the constant functions. Peaks in Fig. 3 are due to

Mie resonances, however, the lowest order functions cannot

catch all of them properly since the element size is too large

at high permittivities. In addition, we have observed that the

iteration counts are independent of the mesh density assuming

that the elements are small enough. Although, the iteration

count depends on the permittivity since the spectrum of the

integral operator is also permittivity dependent [16].

The discretization with the piecewise constant approxima-

tions provides a convergence rate of O(h) for the internal field,

and O(h2) for the far-field where h is the average edgelength.

As demonstrated in Fig. 4, with fully linear approximations

the convergence rate in the near field is of order O(h2). Fig.
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Fig. 4. Relative error of the solutions (12) as functions of averaged edge
lengths for dielectric spheres (ǫr = 5) of different sizes. Only the results with
the linear basis function are plotted.
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Fig. 5. Convergence of the scattering cross sections (10) computed by using
piecewise linear functions in the same case as in Fig. 4.

5 shows that in the far field, the convergence rate with the

linear functions approximately follows the trend O(h4). With

both approximations, linear and constant, the convergence

rate in the far field is faster than in the near field since the

operator used for computing the far-fields from the solution is

a smoothing operator.

Finally, we will take a look at the internal electric field of

an inhomogeneous cube with edgelength l = 1m whose center

is at the origin. The permittivity ǫr = 4 if x < 0 and ǫr = 8
if x > 0. The incident wave is linearly polarized along x-axis

and it is propagating along z-axis. Each component of the

real part of the electric field along x-axis is plotted in Figs. 6

and 7 computed by the J-VIE with the piecewise linear and

constant expansion functions, respectively. The reference result

is computed by the surface integral equation method [23].

The cube is discretized with 7238/1034 elements giving

21714/12408 DoFs when the constant/linear functions are

applied. The internal fields are directly retrieved from the
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Fig. 6. The real part of the internal electric field (x-,y-, and z-components)
of the inhomogeneous cube plotted along x-axis. The permittivity is ǫr = 4

when x < 0 and ǫr = 8 when x > 0. The reference (solid lines) is computed
by the surface integral equation method.
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Fig. 7. As in Fig.6 computed with piecewise constant functions.

solution (E = i
ωǫ0

(¯̄ǫr− ¯̄I)−1 ·J ), hence it is not suprising that

the higher order expansion gives more accurate representation

for the internal fields.

V. CONCLUSIONS

The volume integral equation for the electric current has

been discretized in L2 by using tetrahedral elements and piece-

wise linear approximations. The numerical examples show that

the discretization with the piecewise linear basis and testing

functions provides much better accuracy compared to the

discetization utilizing the piecewise constant approximations.

The convergence rate of the solution follows the trend O(h2)
for the equivalent current and O(h4) for the far fields assuming

that the geometric error is insignificant.
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