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Abstract

The following claims can bemade about finite-statemethods for spell-checking:
1) Finite-state language models provide support for morphologically complex lan-
guages that word lists, affix stripping and similar approaches do not provide; 2)
Weighted finite-state models have expressive power equal to other, state-of-the-art
string algorithms used by contemporary spell-checkers; and 3) Finite-state models
are at least as fast as other string algorithms for lookup and error correction. In this
article, we use some contemporary non-finite-state spell-checking methods as a
baseline and perform tests in light of the claims, to evaluate state-of-the-art finite-
state spell-checking methods. We verify that finite-state spell-checking systems
outperform the traditional approaches for English. We also show that the mod-
els for morphologically complex languages can be made to perform on par with
English systems.
Keywords: spell-checking, weighted finite-state technology, error models

1 Introduction
1 Spell-checking and correction is a traditional and well-researched part of compu-
tational linguistics. Finite-state methods for language models are widely recognized
as a good way to handle languages which are morphologically more complex [1]. In
this article, we evaluate weighted, fully finite-state spell-checking systems for mor-
phologically complex languages. We use existing finite-state models and algorithms
and describe some necessary additions to bridge the gaps and surpass state-of-the-art in
non-finite-state spell-checking. For the set of languages, we have chosen to study North
Sámi and Finnish from the complex, agglutinative group of languages, Green- landic
from the complex poly-agglutinative group, and English to confirm that our finite-state
formulations of traditional spelling correction applications are working as described in
the literature.

As contemporary spell-checkers are increasingly using statistical approaches for the
task, weighted finite-state models provide the equivalent expressive power, even for the

1 This version is Tommi A Pirinen’s post-print draft. The official publication may differ. This version
uses my own documentclass instead of official publication’s, if any. This version is optimised for screen
reading. This version is fully reformatted from original which was made during serious time constraints due
to my graduation.
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2 1 INTRODUCTION

morphologically more complex languages, by encoding the probabilities as weights in
the automata. As the programmatic noisy channel models [2] can encode the error
probabilities when making the corrections, so can the weighted finite-state automata
encode these probabilities.

The task of spell-checking is split into two parts, error detection and error correc-
tion. Error detection by language model lookup is referred to as non-word or isolated
error detection. The task of detecting isolated errors is often considered trivial or solved
in many research papers dealing with spelling correction, e.g. [3]. More complex error
detection systems may be used to detect words that are correctly spelled, but are unsuit-
able in the syntactic or semantic context. This is referred to as real-word error detection
in context [4].

The task of error-correction is to generate themost likely correct word-forms given a
misspelled word-form. This can also be split in two different tasks: generating sug- ges-
tions and ranking them. Generating corrections is often referred to as error modeling.
The main point of error modeling is to correct spelling errors accurately by ob- serving
the causes of errors and making predictive models of them [5]. This effectively splits
the error models into numerous sub-categories, each applicable to correcting specific
types of spelling errors. The most used model accounts for typos, i.e. the slip of a finger
on a keyboard. This model is nearly language agnostic, although it can be tuned to each
local keyboard layout. The other set of errors is more language and user-specific—it
stems from the lack of knowledge or language competence, e.g., in non-phonemic or-
thographies, such as English, learners and unskilled writers commonly make mistakes
such as writing their instead of there, as they are pronounced alike; similarly compe-
tence errors will give rise to common confusable words in other languages, such as
missing an accent, writing a digraph instead of its unigraph variant, or confusing one
morph with another.

A common source of the probabilities for ranking suggestions related to competence
errors are the neighboring words and word-forms captured in a language model. For
morphologically complex languages, part-of-speech information is needed [3, 6], which
can be compared with the studies on isolating languages [4, 7]. Context-based models
like these are, however, considered to be out of scope for spell-checking, rather being
part of grammar-checking.

Advanced language model training schemes, such as the use of morphological anal-
yses as error detection evidence [4], require large manually verified morphologically
analyzed and disambiguated corpora, which do not exist as open, freely usable re-
sources, if at all. In addition, for polysynthetic languages like Greenlandic, even a
gigaword corpus is usually not nearly as complete as an English corpus with a million
word-forms.

Aswe compare existing finite-state technologieswith contemporary non-finite-state
string algorithm solutions, we use Hunspell2 as setting the current de facto standard in
open-source spell-checking and the baseline for the quality to achieve. Taken together
this paper demonstrates for the first time that using weighted finite-state technology,
spell-checking for morphologically complex languages can be made to perform on par
with English systems and surpass the current de facto standard.

This article is structured as follows: In Subsection 1.1, we briefly describe the his-
tory of spell-checking up to the finite-state formulation of the problem. In Subsection
1.2, we revisit the notations behind the statistics we apply to our language and error
models. In Section 2, we present existing methods for creating finite-state language

2http://hunspell.sf.net
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3 1 INTRODUCTION

and error models for spell-checkers. In Section 3, we present the actual data, the lan-
guagemodels, the error models and the corpora we have used, and in Section 4, we show
how different languages and error models affect the accuracy, precision, and speed of
finite-state spell-checking. In Section 5, we discuss the results, and finally, in Section
6, we conclude our findings.

1.1 A Brief History of Automatic Spell-Checking and Correction
Automatic spelling correction by computer is in itself, an old invention, with the ini-
tial work done as early as in the 1960’s. Beginning with the invention of the generic
error model for typing mistakes, the Levenshtein-Damerau distance [8, 9] and the first
applications of the noisy channel model [10] to spell-checking [11], the early solutions
treated the dictionaries as simple word lists, or later, word-lists with up to a few affixes
with simple stem mutations and finally some basic compounding process- es. The most
recent and widely spread implementation with a word-list, stemmuta- tions, affixes and
some compounding is Hunspell, which is in common use in the open-source world of
spell-checking and correction and must be regarded as the ref- erence implementation.
The word-list approach, even with some affix stripping and stem mutations, has some-
times been found insufficient for morphologically complex languages. E.g. a recent
attempt to utilize Hunspell for Finnish was unsuccessful [12]. In part, the popularity of
the finite-state methods in computational linguistics seen in the 1980’s was driven by a
need for the morphologically more complex languages to get language models andmor-
phological analyzers with recurring derivation and compounding processes [13]. They
also provide an opportunity to use arbitrary finite-state automata as language models
without modifying the runtime code, e.g. [14].

Given the finite-state representation of the dictionaries and the expressive power of
the finite-state systems, the concept of a finite-state based implementation for spelling
correction was an obvious development. The earliest approaches presented an algorith-
mic way to implement the finite-state network traversal with error-tolerance [15] in a
fast and effective manner [16, 17]. Schulz and Mihov [18] presented the Levenshtein-
Damerau distance in a finite-state form such that the finite-state spelling correction
could be performed using standard finite-state algebraic operations with any existing
finite-state library. Furthermore, e.g., Pirinen and Lindén [19] have shown that the
weighted finite-state methods can be used to gain the same expressive power as the
existing statistical spellchecking software algorithms.

1.2 Notations and some Statistics for Language and Error Models
In this article, where the formulas of finite-state algebra are concerned, we assume
the standard notations from Aho et al. [20]: a finite-state automaton M is a system
(Q,Σ, δ,Qs, Qf ,W ), where Q is the set of states, Σ the alphabet, δ the transition
mapping of form Q × Σ → Q, and Qs and Qf the initial and final states of the au-
tomaton, respectively. For weighted automata, we extend the definition in the same
way as Mohri [21] such that δ is extended to the transition mapping Q×Σ×W → Q,
where W is the weight, and the system additionally includes a final weight mapping
ρ : Qf → W . The structure we use for weights is systematically the tropical semiring
(R+ ∪ ∞,min,+∞, 0), i.e. weights are positive real numbers that are collected by
addition. The tropical semiring models penalty weighting.

For the finite-state spell-checking, we use the following common notations: MD
is a single tape weighted finite-state automaton used for detecting the spelling errors,
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4 1 INTRODUCTION

MS is a single tape weighted finite-state automaton used as a language model when
suggesting correct words, where the weight is used for ranking the suggestions. On
many occasions, we consider the possibility that MD = MS. The error models are
weighted two-tape automata commonlymarked asME . Aword automaton is generally
marked as Mword . A misspelling is detected by composing the word automaton with
the detection automaton:

Mword ◦MD, (1)

which results in an empty automaton on a misspelling and a non-empty automa-
ton on a correct spelling. The weight of the result may represent the likelihood or the
correctness of the word-form. Corrections for misspelled words can be obtained by
composing a misspelled word, an error model and a model of correct words:

Mword ◦ME ◦MS, (2)

which results in a two-tape automaton consisting of the misspelled word-form mapped
to the spelling corrections described by the error modelME and approved by the sug-
gestion language modelMS . Both models may be weighted and the weight is collected
by standard operations as defined by the effective semiring.

Where probabilities are used, the basic formula to estimate probabilities from dis-
crete frequencies of events (word-forms, mistyping events, etc.) is as follows: P (x) =

c(x)
corpussize , xwhere is the event, c(x) is the count or frequency of the event, and corpussize
is the sum of all event counts in the training corpus. The en coding of probability
as tropical weights in a finite-state automaton is done by setting is the end weight
of path Qπx = − logP (x), though in practice the − logP (x) weight may be dis-
tributed along the path depending on the specific implementation. As events not ap-
pearing in corpora should have a larger probability than zero, we use additive smooth-
ing P (x̂) = c(x)+α

corpussize+dictionarysize×α , so for an unknown event , the probability will be
counted as if it had α appearances. Another approach would be to set P (x̂) < 1

corpussize ,
whichmakes the probability distribution leak butmaywork under some conditions [22].

1.3 Morphologically Complex Resource-Poor Languages
One of the main reasons for going fully finite-state instead of relying on word-form lists
and affix stripping is the claim that morphologically complex languages simply cannot
be handled with sufficient coverage and quality using traditional methods. While Hun-
spell has virtually 100 % domination of the open-source spell-checking field, authors
of language models for morphologically complex languages such asTurkish (cf. Zem-
berek3 ) and Finnish (cf. Voikko4 ) have still opted to write separate software, even
though it makes the usage of their spell-checkers troublesome and the coverage of sup-
ported applications much smaller.

Another aspect of the problems with morphologically complex languages is that
the amount of training data in terms of running word-forms is greater, as the amount of
unique word-forms in an average text is much higher compared with morphologi- cally
less complex languages. In addition, the majority of morphologically complex lan-
guages tend to have fewer resources to train the models. For training spelling checkers,
the data needed is merely correctly written unannotated text, but even that is scarce

3http://code.google.com/p/zemberek
4http://voikko.sf.net
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5 2 WEIGHTING FINITE-STATE LANGUAGE AND ERROR MODELS

when it comes to languages like Greenlandic or North Sámi. Even a very simple prob-
abilistic weighting using a small corpus of unverified texts will improve the quality of
suggestions [19], so having a weighted language model is more effective.

2 Weighting Finite-State Language and Error Models
The task of spell-checking is divided into locating spelling errors, and suggesting the
corrections for the spelling errors. In finite-state spell-checking, the former task re-
quires a language model that can tell whether or not a given string is correct. The error
correction requires two components: a language model and an error model.

The error model is a two-tape finite-state automaton that can encode the relation be-
tween misspellings and the correctly typed words. This relation can also be weighted
with the probabilities of making a specific typo or error, or arbitrary hand-made penal-
ties as with many of the traditional non-finite-state approaches, e.g. [23].

The rest of this section is organized as follows. In Subsection 2.1, we describe how
finite-state language models are made. In Subsection 2.2, we describe how finite-state
error models are made. In Subsection 2.3, we describe some methods for combining
the weights in language models with the weights in error models.

2.1 Compiling Finite-State Language Models
The baseline for any language model as realized by numerous spell-checking systems
and the literature is a word-list (or a word-form list). One of the most popular exam-
ples of this approach is given by Norvig [24], describing a toy spelling corrector be-
ing made during an intercontinental flight. The finite-state formulation of this idea is
equally simple; given a list of word-forms, we compile each string as a path in an au-
tomaton [25]. In fact, even the classical optimized data structures used for efficient-
ly encoding word lists, like tries and acyclic deterministic finite-state automata, are us-
able as finite-state automata for our purposes, without modifications. We have: MS =
MD =

∪
wf∈corpuswf, where wf is a word-form and corpus is a set of word-forms in a

corpus. These are already valid language models for Formula 1 and 2, but in practice
any finite-state lexicon [1] will suffice.

2.2 Compiling Finite-State Versions of Error Models
The baseline error model for spell-checking is the Damerau-Levenshtein distance mea-
sure. As the finite-state formulations of error models are the most recent devel- opment
in finite-state spell-checking, the earliest reference to a finite-state error mod- el in an
actual spell-checking system is by Schulz and Mihov [18]. It also contains a very thor-
ough description of building finite-state models for different edit distances. As error
models, they can be applied in Formula 2.The edit distance type error models used in
this article are all simple edit distance models.

One of the most popular modifications to speed up the edit distance algorithm is to
disallow modifications of the first character of the word [26]. This modification pro-
vides a measurable speed-up at a low cost to recall. The finite-state implementation of
it is simple; we concatenate one unmodifiable character in front of the error model.

Hunspell’s implementation of the correction algorithm uses configurable alpha-
bets for the error types in the edit distance model. The errors that do not come from
regular typing mistakes are nearly always covered by specific string transformations,

Author’s post-print draft.



6 3 THE LANGUAGE AND ERROR MODEL DATA USED FOR EVALUATION

i.e. confusion sets. Encoding a simple string transformation as a finite-state automa-
ton can be done as follows: for any given transformation S : U , we have a path
πs:u = S1 : U1S2 : U2 . . . Sn : Un , where n = max(|S|, |U |) and the missing char-
acters of the shorter word substituted with epsilons. The path can be extended with
arbitrary contexts L,R, by concatenating those contexts on the left and right, respec-
tively. To apply these confusion sets on a word using a language model, we use the
following formula: Mconfusion =

∪
S:U∈CP S : U , where CP is a set of confused string

pairs. The error model can be applied in a standard manner in Formula 2. For a more
detailed descrip- tion of a finite-state implementation of Hunspell error models, see
Pirinen and Linden [19].

2.3 CombiningWeights fromDifferent Sources andDifferentMod-
els

As both our language and error models are weighted automata, the weights need to
be combined when applying the error and the language models to a misspelled string.
Since the application performs what is basically a finite-state composition as defined
in Formula 2, the default outcome is a weight semiring multiplication of the values;
i.e., a real number addition in the tropical semiring. This is a reasonable way to com-
bine the models, which can be used as a good baseline. In many cases, however, it
is preferable to treat the probabilities or the weights drawn from different sources as
unequal in strength. For example, in many of the existing spelling-checker systems,
it is preferable to first suggest all the corrections that assume only one spelling error
before the ones with two errors, regardless of the likelihood of the word forms in the
language model. To accomplish this, we scale the weights in the error model to ensure
that any weight in the error model is greater than or equal to any weight in the language
model: ŵe = we+maxw(MS), where ŵe is the scaled weight of error model weights,
we the original error model weight andmaxw(MS) the maximum weight found in the
language model used for error corrections.

3 The Language and Error Model Data Used For Eval-
uation

To evaluate the weighting schemes and the language and the error models, we have
selected two of the morphologically more complex languages with little to virtually no
corpus resources available: North Sámi and Greenlandic. Furthermore, as a morpho-
logically complex language with moderate resources, we have used Finnish. As a com-
parative baseline for a morphologically simple language with huge corpus resources,
we use English. English is also used here to reproduce the results of the existing models
to verify functionality of our selected approach.

This section briefly introduces the data and methods to compile the models; for the
exact implementation, for any reproduction of results or for attempts to implement the
same approaches for another language, the reader is advised to utilize the scripts, the
programs and the makefiles available at our source code repository. 5

In Table 1, we show the statistics of the data we have drawn from Wikipedia for
training and testing purposes. In case of English and Finnish, the data is selected from

5https://github.com/flammie/purplemonkeydishwasher/tree/master/2014-cicling
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7 3 THE LANGUAGE AND ERROR MODEL DATA USED FOR EVALUATION

Table 1: The extent of Wikipedia data per language
Data: Train tokens Train types Test tokens Test types
Language
English 276,730,786 3,216,142 111,882,292 1,945,878
Finnish 9,779,826 1,065,631 4,116,896 538,407
North Sámi 183,643 38,893 33,722 8,239
Greenlandic 136,241 28,268 7,233 1,973

a subset of Wikipedia test tokens. With North Sámi and Greenlandic, we had no other
choice but to use all Wikipedia test tokens.

For the English language model, we use the data from Norvig [24] and Pirinen
and Hardwick [25], which is a basic language model based on a frequency weighted
wordlist extracted from freely available Internet corpora such as Wikipedia and project
Gutenberg. The language models for North Sámi, Finnish and Greenlandic are drawn
from the free/libre open-source repository of finite-state language models managed by
the University of Tromsø.6 The language models are all based on the morphological
analyzers built in the finite-state morphology [1] fashion. The repository also includes
the basic versions of finite-state spell-checking under the same framework that we use
in this article for testing. To compile our dictionaries, we have used the makefiles
available in the repository. The exact methods for this are also detailed in the source
code of the repository.

The error models for English are combined from a basic edit distance with En-
glish alphabet a-z and the confusion set from Hunspell’s English dictionary containing
96 confusion pairs7. The error models for North Sámi, Finnish and Greenlandic are the
edit distances of English with addition of åäöšžđ and ŧ and for North Sámi and åäöšž for
Finnish. For North Sámi we also use the actual Hunspell parts from the divvun speller8;
for Greenlandic, we have no confusion sets or character likelihoods for Hunspell-style
data, so only the ordering of the Hunspell correction mechanisms is retained. For En-
glish, the Hunspell phonemic folding scheme was not used. This makes the English
results easier to compare with those of other languages, which do not even have any
phonemic error sources.

The keyboard adjacency weighting and optimization for the English error models
is based on a basic qwerty keyboard. The keyboard adjacency values are taken from
the CLDR Version 229, modified to the standard 101—104 key PC keyboard layout.

The training corpora for each of the languages are based on Wikipedia. To estimate
the weights in the models, we have used the correct word-forms of the first 90 % of
Wikipedia for the language model and the non-words for the error model. We used
the remaining 10 % for extracting non-words for testing. The error corpus was ex-
tracted with a script very similar to the one described by Max and Wisniewski [27].
The script that performs fetching and cleaning can be found in our repository. 10 We
have selected the spelling corrections found in Wikipedia by only taking those, where
the incorrect version does not belong to the language model (i.e. is a non-word error),
and the corrected word-form does.

6http://giellatekno.uit.no
7as found in en-US.aff from Ubuntu Linux LTS 12.04
8http://divvun.no
9http://cldr.unicode.org
10https://github.com/flammie/purplemonkeydishwasher/tree/master/2014-cicling
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Table 2: The word-form coverage of the language models on test data (in %).
English aspell 22.7
English full automaton 80.1
Finnish full automaton 64.8
North Sámi Hunspell 34.4
North Sámi full automaton 48.5
Greenlandic full automaton 25.3

3.1 The Models Used For Evaluation
The finite-state language and error models described in this article have a number of
adjustable settings. For weighting our language models, we have picked a subset of
corpus strings for estimating word form probabilities. As both North Sámi and Green-
landic Wikipedia were quite limited in size, we used all strings except those that appear
only once (hapax legomena) whereas for Finnish, we set the frequency threshold to 5,
and for English, we set it to 20. For English, we also used all word-forms in the mate-
rial from Norvig’s corpora, as we believe that they are already hand-selected to some
extent.

As error models, we have selected the following combinations of basic models: the
basic edit distance consisting of homogeneously weighted errors of the Levenshtein-
Damerau type, the same model limited to the non-first positions of the word, and the
Hunspell version of the edit distance errors (i.e. swaps only apply to adjacent keys, and
deletions and additions are only tried for a selected alphabet).

4 The Speed andQuality of Different Finite-StateMod-
els and Weighting Schemes

To evaluate the systems, we have used a modified version of the HFST spell-checking
tool hfst-ospell-survey 0.2.4 otherwise using the default options, but for the speed
measurements we have used the --profile argument. The evaluation of speed and
memory usage has been performed by averaging over five test runs on a dedicated test
server: an Intel Xeon E5450 at 3 GHz, with 64 GB of RAM memory. The rest of the
section is organized as follows: in Subsection 4.1, we show naïve coverage baselines.
In Subsection 4.2, we measure the quality of spell-checking with real-world spelling
corrections found in Wikipedia logs. Finally in Subsections 4.3 and 4.4, we provide the
speed and memory efficiency figures for these experiments, respectively.

4.1 Coverage Evaluation
To show the starting point for spell-checking, wemeasure the coverage of the lan- guage
models. That is, we measure howmuch of the test data can be recognized using only the
language models, and howmany of the word-forms are beyond the reach of the models.
The measurements in Table 2 are measured over word-forms in running text that can
be measured in reasonable time, i.e. no more than the first 1,000,000 word-forms of
each test corpus. As can be seen in Table 2, the task is very different for languages like
English compared with morphologically more complex languages.

Author’s post-print draft.
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Table 3: The effect of different language and error models on correction quality (pre-
cision in % at a given suggestion position)
Rank: 1st 2nd 3rd 4th 5th rest
Language and error models
English aspell 55.7 5.7 8.0 2.2 0.0 0.0
English Hunspell 59.3 5.8 3.5 2.3 0.0 0.0
English w/ 1 error 66.7 7.0 5.2 1.8 1.8 1.8
English w/ 1 non-first error 66.7 8.8 7.0 0.0 0.0 1.8
Finnish aspell 21.1 5.8 3.8 1.9 0.0 0.0
Finnish w/ 1 error 54.8 19.0 7.1 0.0 0.0 0.0
Finnish w/ 1 non-first error 54.8 21.4 4.8 0.0 0.0 0.0
North Sámi Hunspell 9.4 3.1 0.0 3.1 0.0 0.0
North Sámi w/ 1 error 3.5 3.5 0.0 6.9 0.0 0.0
North Sámi w/ 1 non-first error 3.5 3.5 0.0 6.9 0.0 0.0
Greenlandic w/ 1 error 13.3 2.2 6.7 2.2 0.0 8.9
Greenlandic w/ 1 non-first error 13.3 2.2 6.7 2.2 0.0 8.9

4.2 Quality Evaluation
To measure the quality of spell-checking, we have run the list of misspelled words
through the language and error models of our spelling correctors, extracting all the sug-
gestions. The quality, in Table 3, is measured by the proportion of correct sugges- tions
appearing at a given position 1-5 and finally the proportion appearing in any remaining
positions.

On the rows indicated with error, in Table 3, we present the baselines for using
language and error models allowing one edit in any position of the word. The rows with
“non-first error” show the same error models with the restriction that the first letter of
the word may not be changed.

Finally, in Table 3, we also compare the results of our spell-checkers with the ac-
tual systems in everyday use, i.e. the Hunspell and aspell in practice. When looking
at this comparison, we can see that for English data, we actually provide an overall
im- provement already by allowing only one edit per word. This is mainly due to the
weighted language model which works very nicely for languages like English. The data
on North Sámi on the other hand shows no meaningful improvement neither with the
change from Hunspell to our weighted language models nor with the restriction of the
error models.

Some of the trade-offs are efficiency versus quality. In Table 3, we measure among
other things the quality effect of limiting the search space in the error model. It is
important to contrast these results with the speed or memory gains shown in the corre-
sponding Tables 4 and 5. As we can see, the optimizations that limit the search space
will generally not have a big effect on the results. Only the results that get cut out of
the search space are moved. A few of the results disappear or move to worse positions.

4.3 Speed Evaluation
For practical spell-checking systems, there are multiple levels of speed requirements,
so we measure the effects of our different models on speed to see if the optimal mod-
els can actually be used in interactive systems, off-line corrections, or just batch pro-
cessing. In Table 4, we show the speed of different model combinations for spell-
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10 5 DISCUSSION

Table 4: The effect of different language and error models on speed of spelling correc-
tion (startup time in seconds, correction rate in words per second)
Input: 1st word all words non-words
Language and error models
English Hunspell 0.5 174 40
English w/ 1 error 0.06 5,721 6,559
English w/ 1 non-first error 0.20 16,474 17,911
Finnish aspell <0.1 781 686
Finnish w/ 1 error 1.0 166 357
Finnish w/ 1 non-first error 1.0 303 1,886
North Sámi Hunspell 4.51 3 2
North Sámi w/ 1 error 0.28 2,304 2,839
North Sámi w/ 1 non-first error 0.27 5,025 7,898
Greenlandic w/ 1 error 1.27 49 142
Greenlandic w/ 1 non-first error 1.25 85 416

checking—for a more thorough evaluation of the speed of the finite-state language and
the error models we refer to Pirinen et al. [25]. We perform three different test sets:
startup time tests to see how much time is spent on startup alone; a running cor- pus
processing test to see how well the system fares when processing running text;and a
non-word correcting test, to see how fast the system is when producing correc- tions
for words. For each test, the results are averaged over at least 5 runs.

In Table 4, we already notice an important aspect of finite-state spelling correction:
the speed is very predictable, and in the same ballpark regardless of input data. Further-
more, we can readily see that the speed of a finite-state system in general outperforms
Hunspell with both of the language models we compare. Furthermore, we show the
speed gains achieved by cutting the search space to disallow errors in the first character
of a word. This is the speed-equivalent of Table 3 of the previous section, which clearly
shows the trade-off between speed and quality.

4.4 Memory Usage Evaluation
Depending on the use case of the spell-checker, memory usage may also be a limiting
factor. To give an idea of the memory-speed trade-offs that different finite-state models
entail, in Table 5, we provide the memory usage values when performing the evaluation
tasks above. The measurements are performed with the Valgrind utility and represent
the peak memory usage. It needs to be emphasized that this method, like all of the
methods of measuring memory usage of a program, has its flaws, and the figures can
at best be considered rough estimates.

11

5 Discussion
The improvement of quality by using simple probabilistic features for spell-checking
is well-studied, e.g. by Church and Gale [29]. In our work, we describe introducing

11Drobac & al. [28] report on how to hyper-minimize finite-state lexicons keeping the Greenlandic lexicon
at less than 20 MB at runtime which gives a considerable speed-up of loading with only a small reduction of
runtime speed.
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Table 5: The peak memory usage of processes checking and correcting word-forms
with various language and error model combinations.
Measurement: Peak memory usage
Language and error models
English Hunspell 7.5 MB
English w/ 1 error 7.0 MB
English w/ 1 non-first error 7.0 MB
Finnish aspell 186 kB
Finnish w/ 1 error 79.3 MB
Finnish w/ 1 non-first error 79.3 MB
North Sámi Hunspell 151.0 MB
North Sámi w/ 1 error 31.4 MB
North Sámi w/ 1 non-first error 31.4 MB
Greenlandic w/ 1 error 300.0 MB
Greenlandic w/ 1 non-first error 300.7 MB

probabilistic features into a finite-state spell-checking system giving a similar increase
in the quality of the spell-checking suggestions as seen in previous approaches. The
methods are usable for a morphologically varied set of languages.

The speed to quality trade-off is a well-known feature in spell-checking systems,
and several aspects of it have been investigated in previous research. The concept
of cutting away string initial modifications from the search space has often been sug-
gested [26, 30], but only rarely quantified extensively. In this paper we have investi-
gated its effects on finite-state systems and complex languages. We noted that it gives
speed improvements in line with previous solutions, andwe also verified that the quality
deterioration on real-world data is minimal.

In this paper, we have reviewed basic finite-state language and error models for
spelling correction. The obvious future improvements that need to be researched are
extensions, e.g. to errors at edit distance 2 or more, as well as more elaborate models for
both model types. The combination of adaptive technologies based on user feed-back
at runtime and finite-state models has not been researched in spelling correction, but it
has shown good results in practical spelling correction applications.

6 Conclusion
We have demonstrated that finite-state spell-checking is a feasible alternative to tradi-
tional string algorithm-driven versions by verifying three claims. The language support
has been demonstrated by the fact that there is a working implementation of Green-
landic that could not have been successfully implemented without finite-state models,
and by giving finite-state versions of the North Sámi and English language models that
cover moreWikipedia word forms than the non-finite-state equivalents. In addition, the
suggestion mechanism using a weighted finite-state implementation isable to provide
better quality suggestions for English and Finnish than corresponding non-finite-state
implementations. The efficiency of the finite-state approach is verified by showing a
reasonable or greater speed when compared with Hunspell.

Author’s post-print draft.
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