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Abstract. In [4] Benjamini and Schramm introduced the notion of dis-
tributional limit of a sequence of graphs with uniformly bounded valence
and studied such limits in the case that the involved graphs are planar.
We investigate distributional limits of sequences of Riemannian manifolds
with bounded curvature which satisfy certain condition of quasi-conformal
nature. We then apply our results to somewhat improve Benjamini’s and
Schramm’s original result on the recurrence of the simple random walk on
limits of planar graphs. For instance, as an application give a proof of
the fact that for graphs in an expander family, the genus of each graph is
bounded from below by a linear function of the number of vertices.

1. Introduction

For K ≥ 1 and a closed Riemannian manifold M , let Q(M,K) be the set of
all Riemannian manifolds M ′ with pinched sectional curvature |κM ′ | ≤ 1 such
that there is a K-quasi-conformal homeomorphism

f : M ′ →M.

Suppose that (Mi) is a sequence in Q(M,K) and let H be the space of all
isometry classes of pointed metric spaces endowed with the pointed Gromov-
Hausdorf topology. For each i consider the Lebesgue measure volMi on Mi

induced by the Riemannian metric, and let λMi be the push-forward of the
probability measure 1

volMi (Mi)
volMi by the continuous map

ιMi : Mi → H, ιMi(p) = (Mi, p).

It follows from our curvature assumption that, up to passing to a subsequence,
the sequence of measures λMi converges in the weak-*-topology to a probability
measure on H. If the sequence (λMi) actually converges, then the limiting
measure λ is the distributional limit of the sequence (Mi).

Theorem 1.1. Given K ≥ 1 and a closed Riemannian manifold M of dimen-
sion d ≥ 3, let (Mi) ⊂ Q(M,K) be a sequence with distributional limit λ. If
vol(Mi) → ∞, then the set of those (X,x) ∈ H such that X is a Riemannian
manifold K-quasi-conformally equivalent to Rd or Rd \ {0} has full λ-measure.

We can reformulate the content of Theorem 1.1 by saying that for a sequence
(Mi) ⊂ Q(M,K) with vol(Mi) → ∞, and for randomly chosen base points
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pi ∈ Mi, the possible Gromov-Hausdorff limits of subsequences of (Mi, pi) are
quasi-conformally equivalent to Rd and Rd \ {0}. To appreciate this statement,
notice that for each d ≥ 2 there are sequences (Mi) ⊂ Q(Sd, 1), and (pi) with
pi ∈Mi such that (Mi, pi) converges to (X,x) where X has infinite topology (see
section 2.2). The statement of Theorem 1.1 is that the choice of this sequence
of base points has been extremely biassed.

Notice also that the condition that the manifolds (Mi) in the sequence are
uniformly K-quasi-conformal to a fixed manifold is necessary for the theorem
to hold. It is easy to use the Whitehead manifold to construct a sequence (Mi)
of manifolds diffeomorphic to S3, with sectional curvature bounded in absolute
value by one, injectivity radius bounded from below, volume growing without
bounds, and with distributional limit supported by the set of manifolds with
infinite topology (see section 2.2).

As always, knowing something about the Gromov-Hausdorff limit of a se-
quence of Riemannian manifold translates into knowledge about the members
of the sequence. For instance, we derive from Theorem 1.1:

Theorem 1.2. Fix K ≥ 1 and a closed Riemannian manifold M of dimension
d ≥ 3. If (Mi) ⊂ Q(M,K) is a sequence such that vol(Mi)→∞, then

lim
i→∞

h(Mi) = 0

where h(Mi) is the Cheeger constant of Mi.

Recall that the Cheeger constant of a possibly non-compact Riemannian
manifold N is

h(N) = inf
Area(∂A)

min{vol(A), vol(B)}
where the infimum is taken over all decompositions M = A ∪ B where A and
B have disjoint interior and vol(A) <∞. It follows from Theorem 1.2 and the
work of Buser [5] that for sequences (Mi) ⊂ Q(M,K) with vol(Mi) → ∞ we
also have λ1(Mi)→ 0 where λ1(·) is the first eigenvalue of the Laplacian.

Returning to the setting of Theorem 1.1, recall the assumption that the
involved manifolds have at least dimension 3. In fact, Theorem 1.1 fails in
dimension 2. For instance, there are sequences (Mi) of Riemannian surfaces
conformally equivalent to S2 whose distributional limit λ satisfies

λ ({(X,x) ∈ H| X has infinite topological type}) > 0.

We discuss this example in section 8.
The main difference between the 2-dimensional and the higher dimensional

case is that in the latter local collapse cannot occur. More concretely, we use
the Gromov-Zorich global homeomorphism theorem [10, 24] to prove:

Theorem 1.3. Let M be a closed Riemannian manifold of dimension d ≥ 3.
For every K ≥ 1 there is ε positive such that every M ′ ∈ Q(M,K) with diameter
diam(M ′) ≥ 1 has injectivity radius inj(M ′) ≥ ε.

Basically, the diam(M ′) ≥ 1 assumption in Theorem 1.3 rules out that M and
M ′ are homothetic flat tori with volM ′(M

′) very small. In fact, the condition
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diam(M ′) ≥ 1 is superfluous if there is no flat manifold which is K-quasi-
conformally equivalent to M . Notice also that Theorem 1.3 implies that the
subset of Q(M,K) consisting of manifolds with volume at most V is compact.
This justifies the assumption in Theorem 1.1 and Theorem 1.2 that the volume
of the involved manifolds grows without bounds.

As we mentioned above, the failure of Theorem 1.1 for surfaces is related
to the lack of uniform bounds for the injectivity radius. In fact, Theorem 1.1
holds in the 2-dimensional situation as long as we assume such a uniform bound.
Moreover, in that situation we can use the uniformization theorem to prove a
version of Theorem 1.1 for sequences of surfaces with slow genus growth:

Theorem 1.4. Suppose that (Mi) is a sequence of closed Riemannian surfaces
with

|κMi | ≤ 1 and inj(Mi) > ε > 0

for all i. Suppose also that (Mi) has distributional limit λ and that

lim
i→∞

g(Mi) + 1

volMi(Mi)
= 0

where g(Mi) is the genus of Mi. Then λ is supported by the set of Riemannian
surfaces conformally equivalent to C or C∗.

Armed with Theorem 1.4 we can study sequences of graphs of uniformly
bounded valence. The connection between graphs and metrics is the observation
that to each triangulation of a surface we can associate a Riemannian metric in
a more or less canonical way (see Lemma 9.2 for details); a related construction
has been exploited by Gill-Rohde in [8] to study weak limits of certain disk
triangulations.

The genus g(G) of a graph G is the minimal genus of an orientable surface
into which G can be embedded. We say that a sequence (Gi) has sublinear
genus growth if

lim
i→∞

g(Gi)

|Gi|
= 0

where |Gi| is the number of vertices of Gi.

Theorem 1.5. Let (Gi) be a sequence of graphs with uniformly bounded va-
lence, with |Gi| → ∞, and with sublinear genus growth. If (Gi) converges in
distribution to λ, then λ is supported by the set of rooted graphs (G, p) satisfying:

• G is 2-parabolic,
• G has vanishing Cheeger constant h(G) = 0, and
• the simple random walk on G is recurrent.

As is the case for manifolds, knowing something about the possible limits of
the sequence (Gi) allows us to derive information about the members of the
sequence. For example, recall that an expander is a sequence (Gi) of graphs
with uniformly bounded valence such that

|Gi| → ∞ but lim inf
i→∞

h(Gi) > 0.

It follows from [7, Theorem 4] that every expander has linear genus growth.
From Theorem 1.5 we obtain a new proof of this fact:
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Corollary 1.6. For every expander (Gi) there is a positive constant c > 0 with
g(Gi) ≥ c|Gi| for all i.

We describe briefly the strategy of the proof of our main result, Theorem
1.1. By Theorem 1.3 we may assume without loss of generality that all the
manifolds (Mi) have injectivity radius at least 10. Fix a K-quasi-conformal
map fi : Mi → M for all i and choose a maximal 1-net Ni ⊂ Mi. We observe
that for all R > 0 and for most pi ∈ Ni the image fi(B(pi, R,Mi)) of the
ball around pi ∈Mi of radius R has very small diameter. This implies that the
scaled manifolds ( 1

diamM (fi(B(pi,1,Mi)))
M,f(pi)) converge in the pointed Gromov-

Hausdorff topology to (Rd, 0). Compactness of quasi-conformal maps implies
now that the maps

fi : (Mi, pi)→
(

1

diamM (fi(B(pi, 1,Mi)))
M,f(pi)

)
converge to a quasi-conformal map

F : (X,x)→ (Rd, 0)

where (X,x) is the Gromov-Hausdorff limit of the sequence (Mi, pi). Denoting
by N ⊂ X the limit of the nets Ni ⊂ Mi we observe that either Rd \ F (X)
consists of at most a single point or F (N ) has at least 2 accumulation points.
A variant of a lemma due to Benjamini and Schramm [4] implies that this last
situation does not happen if we take the points pi ∈ Ni by random.

This paper is organized as follows: In sections 2 and 3 we discuss mostly
well-known facts on Gromov-Hausdorff limits, distributional limits and quasi-
conformal maps. In section 4 we prove Theorem 1.3. In section 5 we obtain two
rather simpleminded manifold versions of the key lemma in [4]. Once this is
done, we prove Theorem 1.1 in section 6 and obtain as a consequence Theorem
1.2 in section 7. Theorem 1.4 is proved in section 8 and Theorem 1.5 and
Corollary 1.6 in section 9.

Acknowledgements. Hossein Namazi and Pekka Pankka thank the Mathe-
matics Department of the University of British Columbia and the Pacific Insti-
tute of Mathematics for their hospitality while this paper was being written.
Juan Souto thanks Omer Angel, Asaf Nachmias and Gourab Ray for teaching
him about the paper [4] and to Ania Lenzhen for cheating him into learning it,
promising some cookies that never materialized.

2. Limits

In this section we fix some notation and remind the reader of a few well-
known facts on Gromov-Hausdorff convergence and distributional limits.

Abusing notation, we denote by B(x, r,X) both the open and the closed
metric balls of radius r centered at x in a metric space X = (X, dX). A subset
N of X is r-dense if X =

⋃
x∈N B(x, r,X). An r-net in X is a subset N with

dX(x, y) ≥ r for all pairwise distinct x, y ∈ N . Such an r-net is maximal if it
is not properly contained in any other r-net. Observe that a maximal r-net is
also an r-dense subset of X.
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All Riemannian manifolds under consideration in this paper are connected
and complete.

2.1. Gromov-Hausdorff convergence. Recall that two pointed metric spaces
(X,x) and (Y, y) are close to each other in the pointed Gromov-Hausdorff topol-
ogy if for R > 0 large and ε > 0 small there is L close to one and two discrete
subsets U ⊂ X and V ⊂ Y with x ∈ U , y ∈ V ,

B(x,R,X) ⊂
⋃
u∈U

B(u, ε,X), B(y,R, Y ) ⊂
⋃
v∈V

B(v, ε, Y )

and an L-bi-Lipschitz map (U, dX) → (V, dY ) mapping x to y. We denote by
H the space of all isometry classes of pointed metric spaces endowed with the
pointed Hausdorff topology.

The Bishop-Gromov theorem [10] implies that if M is a Riemannian d-
manifold with bounded sectional curvature |κM | ≤ 1 then for all x ∈M and all
r ≤ R we have

volM (B(p,R,M))

volM (B(p, r,M))
≤ volHd(B(p,R,Hd))

volHd(B(p, r,Hd))
.

This implies that for every ε and R there is a bound depending only on dimen-
sion on the number of points in an ε-net which are contained in a given ball of
radius R. We will use this fact very often later on, but at this point we just
want to observe the it implies following well-known fact. Recall that H is the
space of isometry classes of pointed metric spaces with the Gromov topology.

Fact. The subset of H consisting of pointed Riemannian manifolds (M,p) of
dimension d and pinched curvature |κM | ≤ 1 is precompact in H and its closure
is separable.

The limits in H of sequences (Mi, pi) of pointed Riemannian d-dimensional
manifolds with pinched curvature satisfy strong regularity properties. In this
paper we will be only interested in the limits of sequences for which the injec-
tivity radius inj(Mi, pi) at the base point is uniformly bounded from below. In
this setting we have the following amazing result due to Gromov:

C1,1-compactness theorem (Gromov). Fix d and ε and suppose that (Mi, pi)
is a sequence of pointed Riemannian d-manifolds satisfying

|κMi | ≤ 1 and inj(Mi, pi) ≥ ε
and converging in H to a pointed metric space (X,x). Then X is a smooth
manifold endowed with a C1,1-Riemannian metric and (Mi, pi) converges to
(X,x) in the C1,α-topology for all α < 1.

Recall that a sequence (Mi, pi) of pointed Riemannian manifolds converges
in the C1,α-topology to a pointed Riemannian manifold (N, p) if for all R > 0
there is a domain Ω ⊂ N containing BM (p,R) and a sequence of maps

fi : (Ω, p)→ (Mi, pi)

so that the pulled-back metrics converge in the C1,α-topology on tensors on Ω
to the restriction to Ω of the metric of N .
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Recall also that a C1,1-Riemannian metric on a manifold is one whose first
derivatives are Lipschitz continuous. In particular, the second derivatives, and
hence the curvature, exist almost everywhere. In any case, the limit X of any
sequence (Mi) as in the C1,1-compactness theorem has curvature pinched by
±1 in the sense of Alexandroff. Recall that X is in fact a smooth Riemannian
manifold of constant curvature κ if the approximating manifolds satisfy ‖κMi−
κ‖∞ → 0 [9, 19]. We will need this result in the following form:

Fact. Suppose that (Mi, pi) is a sequence of pointed Riemannian manifolds
with inj(Mi, pi) uniformly bounded from below and such that |κMi | ≤ εi → 0. If
(Mi, pi) converges in H to (X,x) then X is a flat Riemannian manifold.

Before moving on we remind the reader that by Cartan’s classical theorem,
every complete flat manifold is isometric to the quotient of Rd by a discrete
group of isometries.

We refer to [6] for classical results in Riemannian geometry, to [10] for facts
and definitions on the Gromov-Hausdorff topology and much more else, and to
[19, 18] for proofs of the C1,1-compactness theorem.

2.2. Distributional limits. Suppose now that (Mi) is a sequence of closed
Riemannian d-manifolds with pinched curvature |κMi | ≤ 1. For each i we
consider the continuous map

ιMi : Mi → H, ιMi(p) = (Mi, p).

Being a Riemannian manifold, Mi is endowed with a natural measure volMi .
Pushing forward by ιMi the associated probability measure 1

volMi (Mi)
volMi we

obtain a sequence of probability measures on H. As we mentioned earlier, all
these measures are simultaneously supported by a compact separable subspace

of H. Hence, the sequence of probability measures (ιMi)∗

(
1

volMi (Mi)
volMi

)
has a subsequence which converges in the weak-*-topology to some probability
measure λ. If the sequence actually converges, then

λ = lim
i→∞

(ιMi)∗

(
1

volMi(Mi)
volMi

)
is the distributional limit of the sequence of manifolds (Mi).

Clearly, when trying to prove something about distributional limits of se-
quences of manifolds one wants to argue in the manifolds themselves. The
following lemma whose proof is left to the reader provides this.

Lemma 2.1. Suppose that (Mi) is a sequence of Riemannian d-manifolds with
|κMi | ≤ 1 and with distributional limit λ. Given b ∈ [0, 1] suppose that (Ui) is
a sequence of subsets of Mi, with volMi(Ui) ≥ b volMi(Mi) for all sufficiently
large i. The set of those (X,x) ∈ H for which there is a sequence (pi) of points
with pi ∈ Ui such that a subsequence of (Mi, pi) converges to (X,x) has at least
measure b. �

Example: Biassed versus unbiassed choice of base points. We discuss now an
example showing that Theorem 1.1 utterly fails if we do not assume that the
sequences of base points is chosen by random.
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Denote by S2 and S3 the round spheres of dimension 2 and 3 and choose 4
open small metric balls B1, B2, B3, B4 ⊂ S3 with disjoint closures. There is a
metric ρ on S3 \

⋃
Bi conformal to the restriction of the standard metric of

S3 and such that each boundary component has a neighborhood isometric to
S2 × [0, 1]; set

Y = (S3 \
⋃
Bi, ρ).

Let now B be any metric ball in S3 and notice again that there is a metric ρ′

on S3 \ B conformal to the restriction of the standard metric of S3 and such
that the boundary has a neighborhood isometric to S2 × [0, 1]; set

E = (S3 \B, ρ′).
Consider now the infinite 4-valent tree T and fix a root t ∈ T . For i ≥ 1
consider Ti the ball in T of radius i centered at t. We associate to each i a
manifold Mi obtained as follows: For each interior vertex of Ti take a copy of
Y and for every terminal vertex a copy of E. Then glue all this pieces, via local
isometries, according to the combinatorics determined by Ti. The manifold Mi

is conformally equivalent to S3 for all i. This can be either seen by constructing
directly a conformal diffeomorphism Mi → S3 or can be deduced from the facts
that (1) Mi is homeomorphic to S3 and hence simply connected and (2) Mi is
conformally flat [16].

If we choose now base points pi ∈ Mi in the Y -piece corresponding to the
root t ∈ Ti, then any geometric limit (X,x) of the sequence (Mi, pi) is going to
be isometric to a manifold constructed from infinitely many Y -pieces glued ac-
cordingly to the combinatorics of T . The manifold X is conformally equivalent
to the complement of a (tame) Cantor set in S3.

Figure 1.

The example we just discussed shows that all the results of this paper just
apply for unbiassed choices of base points and not for arbitrary base points. In
this example, the reason why the base points pi are very particular is that in
the finite trees Ti, the probability of choosing a point within 100 miles of some
terminal vertex is overwhelming.

Example: Sequences whose distributional limits have infinite topology. Let
T ′ ⊂ T ⊂ R3 ⊂ S3 be a smooth Whitehead pair of solid tori in S3, that is,
T ′ and S3 \ T are tubular neighborhoods of smooth circles S1 and S2 forming
a Whitehead link in S3, respectively. Let ψ : T → T ′ be a diffeomorphism
which extends smoothly to a neighborhood of T , and denote Tk = ψk(T ) for
k ≥ 0. It is now easy to find an embedding φ : T → R4 which is identity
near ∂T and satisfies φ ◦ ψ(x) = x + e4 on T1. Similarly, for every m ≥ 0,
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there exists an embedding φm : T → R4 which is identity near ∂T and satisfies
φm ◦ ψk(x) = φm(x) + ke4 for all x ∈ T1 \ T0 and all k ∈ {0, . . . ,m− 1}.

We fix now Riemannian metrics gm on S3 induced by these partial embed-
dings, that is, (T, gm) is isometric to φm(T ) and (S3 \ T, gm) to S3 \ T . The
manifolds Sm = (S3, gm) have injectivity radius uniformly bounded from below
and uniformly pinched sectional curvature.

Since vol(φm(T0 \ Tm)) = m vol(φ(T0 \ T1)) → ∞ as m → ∞, we easily
conclude that, for every distributional limit λ of the sequence (Sm), the limit
space (X, p) is λ-almost surely the infinite Whitehead tower

W =
⋃
k∈Z

(
φ(T \ T ′) + ke4

)
having infinite topology.

Remark. It seems that the notion of distributional limit of a sequence of metric
spaces was introduced by Benjamini and Schramm in the context of graphs [4].
After their seminal result this notion has played an important rôle in probability
theory. However, in the context of Riemannian manifolds it remains, to our
knowledge, almost unexplored (see however [1]).

3. Quasi-conformal maps

We recall now some basic facts on quasi-conformal mappings and their com-
pactness properties. All the results in this section are classical for quasi-
conformal maps Rd → Rd and also exist in some form in the literature for
quasi-conformal maps between rather general metric spaces. It is however hard
to give concrete references for the statements in the Riemannian setting and
this is why we give rather complete proofs. The discussion here parallels Eu-
clidean results in [21] and [20] although we base some of the arguments on the
notion of a Loewner space introduced by Heinonen and Koskela in [12]; see also
[11].

Let M and N be Riemannian manifolds. A homeomorphism f : M → N is
quasi-conformal if there exists H ≥ 1 so that for all x ∈M

(3.1) lim sup
r→0

maxd(x,y)=r d(f(x), f(y))

mind(x,y)=r d(f(x), f(y))
≤ H <∞.

Equivalently, f is in the local Sobolev space W 1,n
loc (M,N) of mappings M → N

and there exists K ≥ 1 so that

(3.2) ‖dfx‖n ≤ K det(dfx) for almost every x ∈M.

In particular, we say that f is K-quasi-conformal if it satisfies (3.2) with con-
stant K ≥ 1. Both of the given definitions extend naturally to local homeomor-
phisms from M to N .

Before moving on we recall the following consequence of Rauch’s comparison
theorem [6]:

Fact. For all κ ≥ 0 and L > 1 there is R > 0 such that for every Riemannian
d-manifold M with |κM | ≤ κ and every x ∈M the restriction

expx : B(0, R, TxM)→ B(x,R,M)
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of the exponential map at x to the ball of radius R is locally L-bilipschitz and
hence an L2d-quasi-conformal local homeomorphism.

3.1. Modulus. The conformal modulus of a path family of a family of paths Γ
in a d-dimensional Riemannian manifold M is

Modd(Γ) = inf
ρ

∫
M
ρd volM

where the infimum is taken over all non-negative Borel functions ρ on M satis-
fying ∫

γ
ρ ds ≥ 1

for all locally rectifiable paths γ ∈ Γ; see [21, Chapter 1] or [11]. Based es-
sentially on change of variables, it is now easy to see that a K-quasi-conformal
homeomorphism f : M → N satisfies for every path family Γ in M the inequal-
ity

(3.3)
1

Kd−1
Modd(Γ) ≤ Modd(f(Γ)) ≤ Kd−1 Modd(Γ),

where f(Γ) = {f ◦ γ : γ ∈ Γ}.

Remark. It is known that if f : M → N is a homeomorphism satisfying (3.3)
then f is actually quasi-conformal, see [21, Chapter 4].

If M is a Riemannian manifold, Ω ⊂M is open and E,F ⊂ Ω are continua,
we denote by Γ(E,F ; Ω) the family of all paths γ connecting E and F in Ω,
that is, paths γ : [a, b] → M so that γ(a) ∈ E, γ(b) ∈ F and γ(a, b) ⊂ Ω; note
that Γ(E,F,Ω) may be empty. When Ω = M and there is no need to specify
the ambient manifold we write Γ(E,F ) = Γ(E,F,M).

Modulus estimates are the basic tool to obtain qualitative information on
quasi-conformal embeddings. The two basic estimates in Rd are the capacity of
an annulus [21, 7.5]

(3.4) Modd(Γ(∂B(0, s,Rd), ∂B(0, t,Rd))) = vol(Sd−1)

(
log

t

s

)1−d

and the Löwner type estimate [21, 10.12]

(3.5) Modd(Γ(E,F ;B(0, t,Rd) \B(0, s,Rd))) ≥ C(d) log
t

s

for 0 < s < t < ∞, where in (3.5) the sets E and F are continua in Rd
connecting boundary components of the annulus B(0, t,Rd) \B(0, s,Rd).

The spaces satisfying an inequality of the type (3.5) are called Loewner
spaces. More precisely, we say that M is a d-Loewner space if there exists
a function

φM : (0,∞)→ (0,∞) with lim
t→0

φM (t) =∞

so that

(3.6) Modd(Γ(E,F ;M)) ≥ φM (∆(E,F ))



10 HOSSEIN NAMAZI, PEKKA PANKKA AND JUAN SOUTO

for all continua E and F in M ; where

∆(E,F ) =
minx∈E,y∈F d(x, y)

min{diamM E,diamM F}

is the relative distance of E and F . A fundamental observation is that Rd and
all closed Riemannian d-manifolds are Loewner spaces that are also Ahlfors
d-regular, meaning that there exists a constant C ≥ 1 so that

C−1rd ≤ vol(B(x, r,M)) ≤ Crd

for all balls B(x, r,M) with r positive and smaller then the diameter of M .
Due to the Ahlfors regularity, we may take the function φM to be a decreasing
homeomorphism.

We refer to the seminal paper of Heinonen and Koskela [12] for fundamental
results on Loewner spaces.

3.2. Nets and quasi-conformal maps. Many of the arguments in this paper
will rely on discretizing manifolds and using the fact that quasi-conformal maps
behave well with respect to discretizations. The following observation will not
surprise any expert:

Lemma 3.1. Suppose X is a complete Riemannian d-manifold with |κX | ≤ 1
and inj(X) ≥ π. Let N ⊂ X be a maximal 1-net on X and f : X → Rd a K-

quasi-conformal embedding so that f(X) 6= Rn. Then every point in f(X)\f(X)
is also an accumulation point of f(N ).

Notice that under the assumptions of Lemma 3.1 Rauch’s comparison theo-
rem implies that there is K ′ such that for all x ∈ X the map

expx : B(0, 3, TxX)→ B(0, 3, X)

is K ′-quasi-conformal and maps B(0, 1, TxX) is B(0, 1, X).

Proof. Given y ∈ f(X)\f(X) let (xi) be a sequence inX such that limi→∞ f(xi) =
y and choose for each i a point pi ∈ N so that dX(xi, pi) ∈ [0, 1] and let
p′i ∈ B(0, 2, TxiX) be such that expxi(p

′
i) = pi. Consider the KK ′-quasi-

conformal map

hi = f ◦ expxi : B(0, 3, TxiX)→ Rd

A modulus argument (see [21, 18.1]) shows that there is an increasing function
θ : (0, 1)→ (0,∞) depending only on d and KK ′ so that

|hi(0)− hi(p′i)|
d(hi(0), ∂hi(B(0, 3, TxiX)))

≤ θ
(

|p′i|
d(0, ∂B(0, 3, TxiX)))

)
≤ θ

(
2

3

)
.

Because y /∈ f(X), we must have

d(f(xi), y) ≥ d(f(xi), ∂hi(B(0, 3, TxiX)));

hence

|f(xi)− f(pi)| = |hi(0)− hi(p′i)| ≤ C(n,K)d(f(xi), y)→ 0

as i → 0, and the points f(pi) in the image of the net accumulate to y as we
needed to prove. �
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3.3. Contraction property. Throughout this paper we will be considering
quasi-conformal maps which on the large scale decrease volume by a large factor.
The following proposition asserts that in such a situation the image of most balls
of given radius has very small diameter:

Proposition 3.2. For all d, K and κ there are C(d,K, κ) and ε0(d,K, κ) such
that the following holds: If f : M ′ →M is a K-quasi-conformal homeomorphism
between two Riemannian d-manifolds satisfying

|κM ′ | ≤ 1, inj(M ′) ≥ 10 and |κM | ≤ κ,

then for every 1-net N ⊂M ′,

|{p ∈ N| diamM (f(B(p,R,M ′))) > ε}| ≤ C(d,K, κ) volM (M)Rdε−de(d−1)R

for every R ≥ 1 and every ε ∈ (0, ε0(d,K, κ)).

For the remaining of this section we fix d, K and κ.

The proof of Proposition 3.2 has its roots in the classical local quasisymmetry
property of quasi-conformal maps. Let f : B(0, r,Rd) → B(0, R,Rd) be a K-
quasi-conformal embedding. Then, suppressing from our notation the reference
to Rd, there exists a constant C1 = C1(d,K) ≥ 1 so that

(3.7) B

(
f(0),

diamRd(f(B(0, r)))

C

)
⊂ f

(
B
(

0,
r

2

))
.

Indeed, with δ1 = diamRd(f(B(0, r))) and δ > 0 maximal with Bd(f(0), δ) ⊂
f(B(0, r2)) we have

Modd(Γ(∂B(0, δ), ∂B(0, δ1))) ≤ Modd(Γ(∂f(B(0, r2)), ∂f(Bd(0, r))))

≤ Kd−1 Modd(Γ(∂B(0, r/2), ∂B(0, r))).

The estimate (3.7) follows now from (3.4).

Lemma 3.3. There exist constants ε0 = ε0(d,K, κ) > 0 and C2 = C2(d,K)
such that if M is a Riemannian d-manifold with |κM | < κ, if f : B(0, r,Rd)→
M is a K-quasi-conformal embedding and if volM (f(B(0, r,Rd))) < ε0 then

diamM (f(B(0, r,Rd))) ≤ C(vol f(B(0, r/2,Rd)))1/d.

Proof. ChooseR = R(κ) > 0 so that the exponential map expx : B(0, R, TxM)→
B(x,R,M) is locally 2-bilipschitz for all x ∈M .

For some ε0 > 0 to be determined consider a K-quasi-conformal map

f : B(0, r,Rd)→M

with volM (f(B(0, r,Rd))) < ε0 and set p = f(0). Choose also δ ∈ (0, r] maximal
satisfying

diamM (f(B(0, δ,Rd))) ≤ R
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and notice that there is f̃ : B(0, δ,Rd) → B(0, R, TpM) so that the following
diagram commutes:

(B(0, R, TpM), 0)

expp

��
(B(0, δ,Rd), 0)

f
//

f̃
55

(B(p,R,M), p)

Note that the exponential map expp is an embedding from f̃(B(0, δ,Rd)) to

f(B(0, δ,Rd)) and therefore is 2-bilipschitz. We hence have that

ε0 > volM (f(B(0, δ/2,Rd))) ≥ 2−d volM (f̃(B(0, δ/2,Rd)))

≥ 2−dC diamM (f̃(B(0, δ,Rd)))d

≥ 2−d−1C diamM (f(B(0, δ,Rd)))d

where the first (interesting) and third inequalities hold because expx is 2-

bilischitz on f̃(B(0, δ,Rd)); the second inequality follows from (3.7) and the

fact that f̃ is 4dK-quasi-conformal and C is a constant depending on d and K.
The claim follows now, from the observation that δ = r as long as ε0 ≤

2−d−1CRd. �

Lemma 3.4. There exist positive constants ε0(d,K, κ) and C3 = C3(d,K, κ)
so that the following holds: If M and M ′ are Riemannian d-manifolds with
|κM ′ | ≤ 1, injM ′ ≥ 10 and |κM | ≤ κ, if N is a δ-net for δ < 3 in M ′, and if
f : M ′ →M is a K-quasi-conformal homeomorphism then

|{x ∈ N| diamM (f(B(x, 2δ,M ′))) > ε}| ≤ C3(d,K, κ)
volM (M)

εd

for all ε < ε0(d,K, κ).

Proof. Let ε0(d,K, κ) be as in Lemma 3.3, choose ε < ε0(d,K, κ) and set

Nε = {x ∈ N| diamM (f(B(x, 2δ,M ′))) > ε}.

By Lemma 3.3 and the fact that the exponential map expx : B(0, 2δ, TxM
′)→

B(x, 2δ,M ′) is L-bilipschitz for some L depending only on the constants in the
statement of Lemma 3.4, there is a constant C depending on d,K and κ so that
for every x ∈ Nε

C volM (f(B(x, δ,M ′))) ≥ diamM (f(B(x, 2δ,M ′)))d > εd,

or

volM (f(B(x, 2δ,M ′)) ≥ ε0 > εd0 ≥ εd;
in any case for every x ∈ Nε,

C ′ volM (f(B(x, 2δ,M ′)) > εd

with C ′ depending on d,K and κ. Since the balls of radius δ
2 centered at

points of N are pairwise disjoint, it follows from the Bishop-Gromov theorem
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that every point of M is contained in at most C ′′ balls B(x, 2δ,M ′) with C ′′

depending only on κ and d. Therefore

εd|Nε| ≤
∑
x∈Nε

C ′ volM (f(B(x, δ/2,M ′)))

≤ C ′′C ′ volM (M).

This proves the claim. �

We are now ready to prove Proposition 3.2:

Proof of Proposition 3.2. Let ε0(d,K, κ) be as provided by Lemma 3.4 and for
ε < ε0(d,K, κ) consider the following subsets

N ′ = {p ∈ N| diamM (f(B(p,R,M ′))) > ε} and

N ′′ = {p ∈ N| diamM (f(B(p, 2,M ′))) > ε/(2R)}

of the netN . Notice that Lemma 3.4 now yields |N ′′| ≤ C3(d,K, κ)2dRd volM (M)
εd

.

Suppose that we have p ∈ N ′, fix x ∈ ∂B(p,R,M) so that

dM (f(p), f(x)) ≥ diamM (f(B(p,R,M ′)))

2

and let γ be the geodesic from p to x. Since N is an 1-net we find points
p1, . . . , pk ∈ N ∩ B(p,R,M ′) with k ≤ R with dM ′(pi, γ) ≤ 1 such that the
balls B(pi, 2,M

′) cover γ. Since diamM (f(γ)) > ε
2 , it follows that for some i

we have diamM (f(B(pi, 2,M
′))) > ε/(2R). This proves that for each p ∈ N ′

there is q ∈ N ′′ ∩B(p,R,M ′). Since, by the Bishop-Gromov theorem, any ball

in M ′ of radius 1 is contained in at most C(d)e(d−1)R balls of radius R centered
at points of N ′ we deduce that

|N ′| ≤ C(d)C3(d,K, κ)e(d−1)R2dRd
volM (M)

εd

which is, after renaming constants, what we needed to prove. �

3.4. Compactness properties of quasi-conformal maps. We discuss now
the compactness properties of quasi-conformal maps needed in this paper. See
[21, Section 21] for the corresponding results for maps between domains of
euclidean space.

Lemma 3.5. Suppose that X is a complete Riemannian d-manifold with |κX | ≤
1 and inj(X) > 0, Ω ⊂ X is a domain, and let M be a closed Riemannian d-
manifold.

Suppose F is a family of K-quasi-conformal embeddings Ω→M so that for
some uniform δ > 0 and for every f ∈ F there are points pf , qf ∈ M \ f(X)
with d(pf , qf ) ≥ δ > 0. Then F is equicontinuous.

Before proving Lemma 3.5 we remind the reader that the Loewner function
φM : (0,∞)→ (0,∞) is a monotonously decreasing homeomorphism.

Proof. We need to show that for every x0 ∈ Ω there are s0 > 0 and a function
ψ : (0, s0] → (0,∞) with lims→0 ψ(s) = 0 such that diamM (f(B(x0, s,X))) <
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ψ(s) for all f ∈ F and s ≤ s0. To begin with let t > 0 be so that the exponential
mapping

expx0 : B(0, t, Tx0X)→ B(0, t,X) ⊂ Ω

is a 2-quasi-conformal embedding. For s < t, let Γst be the family of paths
connecting ∂B(x0, s,X) to ∂B(x0, t,X) in X and notice that (3.3) and (3.4)
imply that there is C(d) > 0 so that

Modd(Γst) ≤ C(d)

(
log

t

s

)1−d
.

Let φM be a Loewner function for M and notice that we can fix s0 < t with

C(d)K

(
log

t

s

)1−d
≤ φM

(
2 diamM

δ

)
for all s < s0.

Given f ∈ F consider the two continua

E = f(B(x0, s,X)) and F = M \ f(B(x0, t,X)),

and notice that F is connected with diamF ≥ d(p, q) ≥ δ. From (3.6) we obtain
that

Modd(Γ(E,F ;M)) ≥ φM

(
d(E,F )

min{diamE,diamF}

)
≥ φM

(
diamM

min{diamE, δ}

)
.

because φM (·) is decreasing.
Since f is a K-quasi-conformal embedding and every path in Γ(E,F ;M) has

a subpath in f(Γst), we have

φM

(
diamM

min{diamE, δ}

)
≤ Mod(f(Γst)) ≤ C(d)K

(
log

t

s

)1−d

≤ φM

(
2 diamM

δ

)
.

Again using that φM (·) is decreasing we deduce that diamM (E) < δ/2. Thus

diamM (M)

diamM (E)
≥ φ−1

M

(
C(d)K

(
log

t

s

)1−d
)

for all s ≤ s0. This implies that

diamM (f(B(x0, s,X))) = diamE ≤ diamM

φ−1
M

(
C(d)K

(
log t

s

)1−d) =: ψ(s).

Since ψ(s) tends to 0 when s→ 0, this proves the equicontinuity of the family
F . �

We state now some useful consequences of Lemma 3.5.
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Corollary 3.6. Let X and M be as in Lemma 3.5 and suppose F is a family
of K-quasi-conformal embeddings X → M so that there are x1, x2 ∈ X and
δ > 0 such that for every f ∈ F there exists a point pf ∈ M \ f(X) with
dM (pf , f(xi)) ≥ δ > 0 for i = 1, 2. Then F is equicontinuous.

Proof. Let Xi = X \ {xi} for i = 1, 2. Then f |Xi omits points pf and f(xi)
for every f ∈ F . Thus the family {f |Xi : f ∈ F} is equicontinuous for i = 1, 2.
Hence F is equicontinuous on X = X1 ∪X2. �

Corollary 3.7. Let X be a complete Riemannian manifold and Ω1 ⊂ Ω1 ⊂
Ω2 ⊂ · · · an exhaustion of X by bounded domains. Then a sequence fi : Ωi → Rd
of K-quasi-conformal embeddings has a subsequence converging to a K-quasi-
conformal embedding f : X → Rd if there exists x, y ∈ X so that sequences
(fi(x)) and (fi(y)) converge in Rd to different points.

Proof. Indeed, since Rd embeds conformally into Sd, we may consider (fi) as a
sequence fi : Ωi → Sd. Since all maps fi omit the point at infinity and sequences
(fi(x)) and (fi(y)) converge, we have that (fi) is equicontinuous by Lemma 3.5
on every Ωi and hence normal by the Arzela-Ascoli theorem. Thus, for every
Ωi we have a subsequence of (fi) converging to continuous map fi,∞ : Ωi → Sd.
By a diagonal argument, we may assume that fi,∞ extends fi−1,∞ for all i > 0

and hence we get f : X → Rd. Notice now that the map f is not constant
because f(x) 6= f(y). It follows hence from [21, 21.1] that in fact f is a K-
quasi-conformal embedding. �

Combining the arguments in the proofs of Corollary 3.6 and Corollary 3.7
we also obtain:

Corollary 3.8. Let X and M be a complete Riemannian manifolds and Ω1 ⊂
Ω1 ⊂ Ω2 ⊂ · · · an exhaustion of X by bounded domains. Then a sequence
fi : Ωi →M of K-quasi-conformal embeddings has a subsequence converging to
a K-quasi-conformal embedding f : X → M if there exists x, y, z ∈ X so that
sequences (fi(x)), (fi(y)) and (fi(z)) converge in M to different points. �

4. Proof of Theorem 1.3

Note that we had defined quasi-conformal maps to be homeomorphisms. In
this section we consider maps that are only locally homemorphisms. Such maps
in dimensions d ≥ 3 have surprising rigidity properties. In Euclidean spaces the
seminal theorem is Zorich’s global homeomorphism theorem [23] (or [20]):

Theorem (Zorich). For d ≥ 3 a quasi-conformal local homeomorphism Rd →
Rd is a homeomorphism.

A geometric version of Zorich’s theorem is due to Gromov and Zorich [10, 24]:

Theorem (Gromov-Zorich). If d ≥ 3 and N is a simply connected Riemannian
d-manifold, then every quasi-conformal local homeomorphism Rd → N is an
embedding.

Remark. The Gromov-Zorich theorem is in fact more general: one can replace
Rd by any d-parabolic manifold.
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The first step of the proof of Theorem 1.3 is the following consequence of the
Gromov-Zorich theorem:

Proposition 4.1. Let M be a Riemannian d-manifold that admits a quasi-
conformal embedding f : X → M from an open flat Riemannian manifold.
Then either f is a quasi-conformal homeomorphism or M is quasi-conformal
to Sd and X = Rd.

Before launching the proof of Proposition 4.1 we establish a fact which is
again surely well-known to experts:

Lemma 4.2. Let M be a Riemannian manifold and f : Rd → M a quasi-
conformal embedding. Then f is a homeomorphism if M is open. If M is
closed, then M is quasi-conformal to Sd and |M \ f(Rd)| = 1.

Proof. Suppose first that M is closed. We show that M is a one point compacti-
fication of f(Rd). Once this has been proved, f extends to a K-quasi-conformal
homeomorphism Sd →M [21, 17.3]. Seeking a contradiction suppose that there

are two distinct points y1, y2 ∈ f(Rd) \ f(Rd) and set r = dM (y1, y2). Then
there are for j = 1, 2 proper paths γj : [0,∞) → Rd with (f ◦ γj)([0,∞)) ⊂
B(yj , r/4,M) and with limt→∞(f ◦ γj)(t) = yj . Then

(4.1) Modd(Γ(f(γ1[0, t]), f(γ2[0, t]));M) ≤
≤ Modd(Γ(∂B(y1, r/4,M), ∂B(y2, r/4,M);M) <∞

for all t. On the other hand,

Modn(Γ(γ1[0, t], γ2[0, t]))→∞

because γj(t) tends to ∞ as t grows (compare with (3.5)). This contradicts the
quasi-conformality of f . We have proved Lemma 4.2 for closed targets.

The proof for open manifolds is similar. Suppose f(Rd) 6= M and let y ∈
f(Rd)\f(Rd) and fix r > 0 small. We fix now a proper path γ1 : [0,∞)→ Rd so
that (f ◦ γ1)[0,∞) ⊂ B(y, r/2,M) and with limt→∞(f ◦ γ1)(t) = y. We fix also
a second path γ2 : [0,∞) → Rd so that f ◦ γ2 is proper and has image disjoint
of B(y, r,M); this is possible because M has at least one end. The claim now
follows using the same modulus argument as in the closed case. �

Proof of Proposition 4.1. Let X be a flat Riemannian n-manifold that admits
a quasi-conformal embedding f : X → M . Since X is flat, there exists a
conformal covering map π : Rd → X. Thus we have the quasi-conformal local
homeomorphism f◦π : Rd →M . Let M̃ be the universal cover ofM and fix a lift

f̃ ◦ π : Rd → M̃ of f ◦π. By the Gromov-Zorich theorem, f̃ ◦ π is an embedding.

Thus, by Lemma 4.2, either f̃ ◦ π is a quasi-conformal homeomorphism or M̃ is

quasi-conformal to Sd and f̃ ◦ π omits one point. In the former case, it follows
that also f is a quasi-conformal homeomorphism. Suppose that M̃ is quasi-
conformal to Sd. Compactness of M̃ implies that the cover M̃ → M is finite.
However, every flat manifold but Rd has infinite fundamental group. Since f
was an embedding to begin with we obtain that actually X = Rd. Now, Lemma
4.2 shows that M is quasi-conformal to Sd, as we needed to prove. �
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After this preparatory work we are ready to prove Theorem 1.3.

Theorem 1.3. Let M be a closed Riemannian manifold of dimension d ≥ 3.
For every K ≥ 1 there is ε positive such that every M ′ ∈ Q(M,K) with diameter
diam(M ′) ≥ 1 has injectivity radius inj(M ′) ≥ ε.

Recall that M ′ belongs to Q(M,K) if it has pinched curvature |κM ′ | ≤ 1 and
if there is a K-quasi-conformal homeomorphism f : M ′ →M .

Proof. Seeking a contradiction, suppose there exists a sequence (Mi) ⊂ Q(M,K)
with diam(Mi) ≥ 1 and ri = inj(Mi) → 0 as i → ∞. Fix for every i a point
pi ∈ Mi with inj(Mi, pi) = inj(Mi) and a K-quasi-conformal homeomorphism
fi : Mi →M .

We consider now pointed manifolds (Ni, pi) = (10
ri
Mi, pi) for all i. We have

inj(Ni) = 10 for all i while |κNi | → 0 and diamNi → ∞ as i → ∞. By the
Gromov-Hausdorff compactness, we may hence assume, after possibly passing
to a subsequence, that (Ni, pi) converges in the C1,α-topology to a (X, p), where
X is a non-compact flat manifold. Furthermore, as in the proof of Cheeger’s
Lemma (see e.g. [18]), X is not simply connected.

Claim. There is a quasi-conformal embedding of X either into M or into Rd.
Assuming the claim we conclude the proof: in both cases, Proposition 4.1 im-

plies that X is homeomorphic to Rd and hence that π1(X) = 1; a contradiction.
It remains to prove the claim.

Consider a nested exhaustion Ω1 ⊂ Ω̄1 ⊂ Ω2 ⊂ . . . of X =
⋃
i Ωi by bounded

domains such that Ω1 contains the ball B(p, 1, X). By passing to a subsequence,
we may assume that for all i there is a 2-bilipschitz embedding ψi : (Ωi, p) →
(Ni, pi). Consider the K2d-quasi-conformal maps hi = fi ◦ ψi : Ωi →M .

Suppose for the time being that the family {hi : Ωi →M} is equicontinuous.
Since M is closed we may assume by the Arzela-Ascoli theorem, and possibly
passing to a subsequence, that the the maps hi converge to a continuous map
h : X → M . If h is a quasi-conformal embedding we are done, so we may
assume by Corollary 3.8 that h is constant; say h(Ωk) = q. Notice that this
implies that limi→∞ diamM (hi(Ωk)) = 0 for all k. Passing to a subsequence
we can hence assume that in fact limi→∞ diamM (hi(Ωk)) = 0. Consider now
R > 0 small enough so that

expq : B(0, R, TqM)→ B(0, R,M)

is a 2-quasi-conformal embedding and consider the maps

exp−1
q ◦hi : Ωk → TqM = Rd.

Corollary 3.7 implies that we can post-compose each one of these maps with a
conformal automorphism φi of Rd so that the maps

φi ◦ exp−1
q ◦hi : Ωk → Rd

after taking diagonal subsequence converge to an embedding X → Rd. Thus
we are done for h constant.

It remains to prove the claim in the case that the family {hi : Ωi → M} is
not equicontinuous. Under this assumption Lemma 3.5 and Corollary 3.8 imply
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that limi→∞ diamM (M \ hi(B(p, 1, X))) = 0. Passing to another subsequence
we may hence assume that the sets M \hi(B(p, 1, X)) converge in the Hausdorff
topology to some q ∈ M . In particular we may assume, up to composing the
map hi : Ωi → M with an isotopy which is arbitrarily C∞-close to IdM , and
hence up to replacing hi by a say 2K2d-quasi-conformal map, that

q /∈ hi(Ωi)

for all i. Then, for all i there is k with hi(Ωi) ⊂ hk(B(p, 1, X)). Passing yet
again to a subsequence we may thus assume that hi(Ωi) ⊂ hi+1(B(p, 1, X)) for
all i.

Now observe that since X is flat and since inj(X) = 10 we have that the
ball B(p, 1, X) is isometric to the standard ball B(0, 1,Rd). We have hence the
sequence of maps

h−1
i+1 ◦ hi : Ωi → Rd.

Corollary 3.7 implies again that we can post-compose each one of these maps
with a conformal automorphism φi of Rd so that the maps

φi ◦ h−1
i+1 ◦ hi : Ωi → Rd

converge, after passing for a last time to a subsequence, to an embedding X →
Rd. This concludes the proof of the claim and hence of Theorem 1.3. �

5. The Benjamini-Schramm lemma

In this section we discuss briefly a lemma due to Benjamini and Schramm
[4, Lemma 2.3] and derive two rather simpleminded manifold versions.

Let M be a Riemannian manifold and C ⊂ M a finite set of points. The
isolation radius ρM,C(w) of w ∈ C is the minimal distance to a different point
in C:

ρM,C(w) = min
z∈C, z 6=w

dM (w, z).

Given δ ∈ (0, 1) and s > 0, we say that w ∈ C is (δ, s)-supported if

min
p∈M

∣∣C ∩ (B(w, δ−1ρM,C(w),M) \B(p, δρM,C(w),M)
)∣∣ ≥ s.

The paradigmatic example of a (δ, s)-supported point w is one for which the ball
B(w, δ−1ρM,C(w),M) contains two disjoint balls B1 and B2 of radius δρM,C(w),
each one of which contains at least s points in C.

Figure 2. A (1
3 , 4)-supported point.
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Notice that if δ′ < δ and if a point is (δ, s)-supported, then it is also (δ′, s)-
supported. Similarly, if s > s′ and if a point is (δ, s)-supported, then it is also
(δ, s′)-supported.

Lemma (Benjamini-Schramm). For every d > 0 and every δ ∈ (0, 1) there is
a constant c(d, δ) such that for every finite subset C of Rd and every s ≥ 2 the

set of (δ, s)-supported points in C has cardinality at most c(d, δ) |C|s .

In [4], Benjamini and Schramm proved this lemma only for d = 2, but the
proof applies word-by-word to sets in Rd for arbitrary d [3]. In this section
we derive two rather simpleminded versions of the Benjamini-Schramm lemma
for manifolds. We first use the Whitney embedding theorem to reduce to the
euclidean situation:

Lemma 5.1. Let M be a compact Riemannian manifold. For every δ ∈ (0, 1)
there is a constant c(M, δ) such that for every finite subset C of M and every

s ≥ 2 the set of (δ, s)-supported points in C has cardinality at most c(M, δ) |C|s .

Proof. Consider a smooth embedding M ↪→ Rd for some suitable d and let
L ≥ 1 be such that for all x, y ∈M we have

L−1dM (x, y) ≤ dRd(x, y) ≤ LdM (x, y)

Suppose now that C ⊂M is a finite set and notice that for all w ∈ C we have
the following relation between the separation radius of w when we consider C
as a subset of M and as a subset of Rd:

L−1ρM,C(w) ≤ ρRd,C(w) ≤ LρM,C(w).

In particular, we have for all δ ∈ (0, 1) that

(5.1) B(w, (2δL2)−1ρM,C(w),M) ⊂ B(w, δ−1ρRd,C(w),Rd).

Similarly, for all p ∈ Rd and x, y ∈ C ∩B(p, δρRd,C(w),Rd) we also have

dM (x, y) ≤ LdRd(x, y) ≤ 2LδρRd,C(w) ≤ 2L2δρM,C(w)

and hence that

(5.2) C ∩B(p, δρRd,C(w),Rd) ⊂ C ∩B(x, 2δL2ρM,C(w),M).

Taken together, (5.1) and (5.2) imply that for all p ∈ Rd and all x ∈ C ∩
B(p, δρRd,C(w),Rd) we have

(5.3)
∣∣∣C ∩ (B(w, δ−1ρRd,C(w),Rd) \B(p, δρRd,C(w),Rd)

)∣∣∣
≥
∣∣C ∩ (B(w, (2δL2)−1ρM,C(w),M) \B(x, 2δL2ρM,C(w),M)

)∣∣ .
In particular, it follows that if w ∈ C is (δ, s)-supported in M , then is also
( δ

2L2 , s)-supported in Rd. The claim follows now from the Benjamini-Schramm
lemma. �

Lemma 5.1 is the form of the Benjamini-Schramm lemma that we will use to
prove Theorem 1.1. Unfortunately, we do not see how to make use of Lemma
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5.1 to prove Theorem 1.4 because we need to apply a version of the Benjamini-
Schramm lemma to a sequence of pairwise distinct surfaces. What will come
to our help is that for surfaces one can explicitly construct nice atlases.

Lemma 5.2. Let M be a compact d-manifold, U1, . . . , Ur a collection of open
sets covering M =

⋃
Ui, φi : Ui → Rd an embedding for each i and let k be the

multiplicity of the covering.
For every δ ∈ (0, 1) and every finite subset C of M and every s ≥ 2 the set

of those x ∈ C for which there is i with x ∈ Ui and such that φi(x) is (δ, s)-

supported points in φi(C ∩ Ui) has cardinality at most c(d, δ)k|C|s where c(d, δ)
is the constant in the Benjamini-Schramm lemma.

Recall that the multiplicity at x ∈ M of an open covering M =
⋃
Ui is the

number of members of the covering with x ∈ Ui. The multiplicity of the covering
is the maximum of the multiplicities over all points in M .

Proof. Let Ai be the set of (δ, s) separated points in φi(C ∩ Ui). From the

Benjamini-Schramm lemma we get that |Ai| ≤ c(d, δ) |C∩Ui|s . It follows that the
set of those x ∈ C for which there is i with x ∈ Ui and such that φi(x) is a
(δ, s)-supported point in φi(C ∩ Ui) has cardinality

|
r⋃
i=1

φ−1
i (Ai)| ≤

r∑
i=1

|Ai| ≤ c(d, δ)
∑

i |C ∩ Ui|
s

≤ c(d, δ)k|C|
s

as we needed to prove. �

Lemma 5.2 is only of any use if one can construct coverings in a controlled
way. That is the case if M is a surface of constant curvature. We denote by
g(M) the genus of M .

Lemma 5.3. There are k and δ such that every orientable Riemannian surface
M with constant curvature κM ≡ −1, 0, 1 (and vol(M) = 1 if M is a torus) has
an open covering M = U1 ∪ · · · ∪ Ur with the following properties:

• The cover has at most multiplicity k.
• For every x ∈M there is i such that B(x, δ,M) ⊂ Ui.
• Each Ui admits a conformal embedding into C.

Proof. If κM ≡ 1 then M is the round sphere S2 and we can consider the
covering S2 = U1∪U2 where U1, U2 are the complements of the north and south
poles respectively. The statement then holds for k = 2 and for any δ < π

2 .
If κM ≡ 0 then M is a flat torus with volume 1. In particular there is a

geodesic γ ⊂ M of at most length 2. The complement U1 = M \ γ is a flat
annulus. Notice that the central curve γ′ of A is also a geodesic parallel to γ
in M and that γ and γ′ are at least at distance 1

4 . Set U2 = M \ γ′ and notice

that the covering M = U1 ∪ U2 satisfies the claim for k = 2 and for all δ < 1
8 .

It remains to consider the case that M is a hyperbolic surface. At this point
we observe that there are two positive constants µ > µ′ such that the following
holds:

• The µ-thin part M<µ = {x ∈M | inj(M,x) < µ} has at most 3g(M)−3
components and each one of them is homeomorphic to an annulus.
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• Every point x ∈ M≥µ = M \M<µ in the µ-thick part of M is at least

at distance µ′ of M<µ′ .

Remark. Concrete values for the constants µ and µ′ can be computed using
standard hyperbolic trigonometry but the reader who is only interested in their
existence - as we are ourselves - can take µ to be the 2-dimensional Margulis
constant [2] and take µ′ = 1

3µ.

The cover of M will consist of the components of M<µ and of a finite col-

lection of balls. To choose the centers of the balls take a maximal µ
′

8 -separated

set of points x1, . . . , xs with inj(M,xi) ≥ µ′

2 for each i. The balls of radius µ′

4

around these points are embedded and cover an open set containing M≥µ
′
. In

particular, the collection of annuli in M<µ and of the balls B(xi,
µ′

4 ,M) are a
covering and obviously each component is biholomorphic to a subset of C.

Moreover, since the balls of radius µ′

16 centered at x1, . . . , xs are disjoint and

each one of them has volume vol(B(0, µ
′

16 ,H
2)), it follows that each point in

M belongs to at most
vol(B(0,µ

′
4
,H2)

vol(B(0,µ
′

16
,H2)

balls. Since on the other hand each point

is contained in at most one component of M<µ it follows that the cover has
multiplicity bounded by some universal constant k.

Finally, if x is a point in M<µ with d(x,M≥µ) > µ′

2 then B(x, µ
′

8 ,M) is
contained in a connected component of M<µ. On the other hand, if x is a

point in M≥µ
′

with d(x,M<µ′) > µ′

2 then there is xi with dM (x, xi) <
µ′

8 and

hence with B(x, µ
′

8 ,M) ⊂ B(xi,
µ′

4 ,M). This shows that the covering has at

least Lebesgue number µ′

8 , as we needed to prove. This concludes the proof of
Lemma 5.3. �

6. Proof of Theorem 1.1

As the reader surely suspects, we prove now Theorem 1.1.

Theorem 1.1. Given K ≥ 1 and a closed Riemannian manifold M of dimen-
sion d ≥ 3, let (Mi) ⊂ Q(M,K) be a sequence with distributional limit λ. If
vol(Mi) → ∞, then the set of those (X,x) ∈ H such that X is a Riemannian
manifold K-quasi-conformally equivalent to Rd or Rd \ {0} has full λ-measure.

For the convenience of the reader we recall the properties of the manifolds Mi

hidden by the notation. For each i, Mi is a Riemannian manifold with pinched
sectional curvature |κMi | ≤ 1 and there is a K-quasi-conformal homeomorphism

fi : Mi →M

which we consider fixed from now on. Recall that the injectivity radius of the
manifolds Mi is uniformly bounded from below by Theorem 1.3. Since our
results are invariant under scaling each one of the manifolds Mi by a bounded
amount greater than one we can assume without loss of generality that

inj(Mi) ≥ 10

for all i.



22 HOSSEIN NAMAZI, PEKKA PANKKA AND JUAN SOUTO

Before going any further, fix for each i a maximal 1-net Ni ⊂M and notice
that the curvature and injectivity radius bounds imply that there is a constant
C ≥ 1 such that

(6.1)
1

C
≤ volMi(B(x, 1/2,Mi)) < volMi(B(x, 1,Mi)) ≤ C

for all i and all x ∈ Mi. Since the balls of radius 1/2 centered at points of Ni
are pairwise disjoint and Ni is a maximal 1-net, we have

(6.2)
1

C
volMi(Mi) ≤ |Ni| ≤ C volMi(Mi)

In particular, the cardinality of the nets Ni tends to ∞ when i grows.

Lemma 6.1. In the situation of Theorem 1.1, λ-almost every point (X,x) ∈ H
is such that X is isometric to the Gromov-Hausdorff limit of a subsequence of
a sequence (Mi, xi) with xi ∈ Ni satisfying:

(1) For every R > 0 we have limi→∞ diamM (fi(B(xi, R,Mi))) = 0.
(2) For every δ ∈ (0, 1) there are s and is such that fi(xi) is not (δ, s)-

supported in fi(Ni) ⊂M for all i ≥ is.
Proof. Choose sequences εi → 0, ri →∞ and sn →∞ satisfying

e(d−1)rirdi
εdi |Ni|

→ 0 and
c(M,n−1)

sn
→ 0

where c(M,n−1) is the constant provided by Lemma 5.1. Denote by Ai(n) the
subset of Ni consisting of those points p ∈ Ni for which one of the following is
satisfied:

• diam(fi(B(p, ri,Mi))) ≥ εi.
• fi(p) is ( 1

n , sn)-supported in fi(Ni).
Consider also the set

Ui(n) = Mi \
⋃

p∈Ai(n)

B(p, 1,Mi)

and observe that Lemma 6.1 follows once we prove that for λ-almost every
(X,x) ∈ H there is n and a sequence (Mi, pi) converging to (X,x) with pi ∈
Ui(n) for all sufficiently large i.

To prove that this is the case we bound first the cardinality of Ai(n). To
begin with, Proposition 3.2 and the choice of ri and εi imply that

lim
i→∞

|{p ∈ Ni|diamM (fi(B(p, ri,Mi))) ≥ εi}|
|Ni|

= 0.

In particular for every n, we can choose in so that for every i ≥ in,

|{p ∈ Ni| diamM (fi(B(p, ri,Mi))) ≥ εi}| ≤
c(M,n−1)

sn
|Ni|.

On the other hand, Lemma 5.1 asserts that the set of all those p ∈ Ni such that

fi(p) is (n−1, sn)-supported in fi(Ni) ⊂ M has at most c(M,n−1)
sn

|Ni| elements.
It follows that for all i ≥ in

|Ai(n)| ≤ 2
c(M,n−1)

sn
|Ni| for all i ≥ in.
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Now (6.1) and (6.2) imply that for any such i

volMi(Ui(n)) ≥
(

1− 2C2 c(M,n−1)

sn

)
volMi(Mi).

It follows hence from Lemma 2.1 that the set Un of those (X,x) ∈ H which are
limits of subsequences of (Mi, xi) with xi ∈ Ui(n) satisfies

λ(Un) ≥ 1− 2C2 c(M,n−1)

sn

By the choice of sn we deduce that λ(
⋃
n Un) = 1, as we needed to prove. �

After these preliminary considerations we can launch the proof of our main
theorem:

Proof of Theorem 1.1. By Lemma 6.1 it suffices to prove thatX is quasi-conformal
to Rd or Rd \ {0} if (X,x) is a limit of a subsequence, say the whole sequence,
of (Mi, pi) where pi ∈ Ni and satisfies:

(1) For every R > 0 we have diamM (fi(B(xi, R,Mi)))→ 0.
(2) For every δ ∈ (0, 1) there are s and is such that fi(xi) is not (δ, s)-

supported in fi(Ni) ⊂M for i ≥ is.
By Gromov’s C1,1-compactness theorem, the limit X is a Riemannian manifold
and the convergence takes place in the pointed C1,α-topology for all α. In
particular, there is an exhaustion of X by nested open bounded connected
subsets

Ω1 ⊂ Ω̄1 ⊂ Ω2 ⊂ · · · ⊂ X =
∞⋃
i=1

Ωi

and a sequence of Li-bi-lipschitz embeddings

φi : (Ωi, x) ↪→ (Mi, pi)

with Li → 1.
For each fixed j and all sufficiently large i we consider the map

fi ◦ φi : (Ωj , x)→ (M,fi(pi)).

Fix a point xi ∈ ∂B(x, 1, X) so that

dM ((fi ◦ φi)(x), (fi ◦ φi)(xi)) = max
z∈B(x,1,X)

dM ((fi ◦ φi)(pi), (fi ◦ φi)(z)) =: ri

and notice that ri → 0 by (1). Consider the scaled manifold ( 1
ri
M, (fi ◦ φi)(x))

pointed at the image of the base point x ∈ X.
Since ri tends to 0 we have that the maximum of the absolute value of the

sectional curvature of the manifold 1
ri
M tends to 0 and that its injectivity

radius tends to ∞. It follows that ( 1
ri
M, (fi ◦ φi)(x)) converges in the Gromov-

Hausdorff topology to (Rd, 0). In other words, there are sequences (L′i) and (Ri)
tending to 1 and to∞ respectively such that for all i there exists a L′i-bilipschitz
embedding

ϕi : B((fi ◦ φi)(x), Ri,
1

ri
M)→ (Rn, 0).
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Notice that by (1) we may assume, passing to a subsequence if necessary, that

(fi ◦ φi)(Ωj) ⊂ B((fi ◦ φi)(x), Ri,
1

ri
M)

for all i. Notice also that

dRn(0, (ϕi ◦ fi ◦ φi)(xi)) = dRn((ϕi ◦ fi ◦ φi)(x), (ϕi ◦ fi ◦ φi)(xi))→ 1

as i → ∞. We can summarize the situation, for every fixed j and all i large
enough, in the following diagram

(Mi, pi)
fi // (M,fi(pi))

Id // ( 1
ri
Mi, fi(pi))

(φi(Ωj), pi)
?�

OO

fi// ((fi ◦ φi)(Ωj), fi(pi))
?�

OO

� � // (B(fi(pi), Ri,
1
ri
M), fi(pi))

ϕi
��

?�

OO

(Ωj , x)

φi

OO

� _

��

ϕi◦fi◦φi // (Rd, 0)

(X,x)

The map ϕi ◦ fi ◦ φi is the composition of a K-quasi-conformal map and two
Li- and L′i-bilipschitz maps. Since Li, L

′
i → 1 by construction, we have that

φi ◦ fi ◦ ψi is (K + ε)-quasi-conformal for all ε > 0 and all sufficiently large i.
Moreover, we have that φi ◦ fi ◦ ψi maps the two points x, xi ∈ Ω1 ⊂ Ωj with
dX(x, xi) = 1 to two points whose distance tends to 1. It follows hence from
Corollary 3.7 that, up to passing to a subsequence and possibly reducing the
sets Ωi, the maps

ϕi ◦ fi ◦ φi : Ωj → Rd

converge to a K-quasi-conformal embedding

F : X =
⋃
j

Ωj → Rd

To conclude the proof of Theorem 1.1, it remains to be shown that Rd \ F (X)
consists of at most a single point. Before launching the proof of this fact notice
that, passing to a further subsequence, we obtain a maximal 1-net N ⊂ X with
N ∩ U equal to the Hausdorff limit of the sets U ∩ φ−1

i (Ni) for every U ⊂ X
open and bounded whose adherence does not meet N .

Claim. F (N ) has at most one accumulation point in Rd.

Proof of the claim. So far we have only used the fact that the base points pi
satisfy condition (1) above. Now it comes the time to use that for every δ ∈ (0, 1)
there are s and is such that fi(pi) is not (δ, s)-supported in fi(Ni) ⊂ M for
all i ≥ is. Observe that being (δ, s)-supported is invariant under scaling. In
particular, we have that again for every δ ∈ (0, 1) there are s and is such that
fi(pi) is not (δ, s)-supported in fi(Ni) ⊂ 1

ri
M for all i ≥ is. Since the bilipschitz
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constant of the maps ϕi tends to 1, this also implies that for every δ ∈ (0, 1)
there are s and is such that

(*) 0 = fi(pi) is not (δ, s)-supported in (ϕi ◦ fi)(Ni) ⊂ Rd for i ≥ is.
We claim that this implies that F (N ) has at most one accumulation point but
first we observe that the convergence of the maps ϕi ◦ fi ◦ φi to the open map
F implies that there is some uniform ε with

(6.3) ρRd,(ϕi◦fi)(Ni)(0) ≥ ε for all i.

Arguing by contradiction suppose that there are at least two accumulation
points z, z′ ∈ Rd of F (N ) and choose δ ∈ (0, 1) so that

(6.4) dRn(0, z), dRn(0, z′) <
1

4
δ−1ε, dRn(z, z′) > 4δε

where ε satisfies (6.3). Since z, z′ are accumulation points of F (N ) and since
every point in F (N ) is a limit of points in (ϕi ◦ fi)(Ni) we can find for all s
some is such that for all i ≥ is we have:

|(ϕi ◦ fi)(Ni) ∩B(z, δε,Rd)| > s and(6.5)

|(ϕi ◦ fi)(Ni) ∩B(z′, δε,Rd)| > s(6.6)

Now, (6.3), (6.4), (6.5) and (6.6) show that 0 is (δ, s)-supported in (ϕi◦fi)(Ni) ⊂
Rd for all i large enough; compare with figure 2. This contradiction to (*) shows
that F (N ) has at most a single accumulation point, as we needed to prove. �

Having ruled out the possibility that the image F (N ) of the maximal 1-net
N under the quasi-conformal map F has two accumulation points in Rd, we
deduce from Lemma 3.1 that F (X) misses at most a point in Rd, as we needed
to prove. This concludes the proof of Theorem 1.1. �

7. Riemannian parabolicity and the proof of Theorem 1.2

A Riemannian manifold X is p-parabolic for some 1 < p < ∞ if for all
compact sets E ⊂ X

capp(E,X) := inf
u

∫
X
|∇u|p vol = 0

where the infimum is taken over all compactly supported functions u ∈ C∞0 (X)
with u(x) = 1 for x ∈ E. Equivalently

Modp(Γ∞(X)) = 0

where Γ∞(X) is the family of paths in X leaving every compact set; see for
example [14, Theorem 5.4]. Having this characterization at our disposal it is
easy to observe that we may equivalently say that X is p-parabolic if there
exists a continuum E ⊂ X so that capp(E,X) = 0. Indeed, let E and E′ be
continua in X and suppose that capp(E,X) > 0. Let Γ∞(X;E) and Γ∞(X;E′)
be subfamilies of Γ∞(X) consisting of paths meeting E and E′, respectively.
Since Modp(Γ∞(X;E)) = capp(E,X), by the argument of [17, Lemma 3.2] we
have Modp(Γ∞(X;E′)) > 0. Thus also capp(E

′;X) > 0.
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Using either definition it is also easy to see directly that d-parabolicity is
invariant under quasi-conformal homeomorphisms. Furthermore, the modulus
inequality (3.4) readily yields that Rd and Rd \ {0} are d-parabolic.

In the light of all this, Theorem 1.1 immediately implies:

Corollary 7.1. Let (Mi) be a sequence of Riemannian d-manifolds as in Theo-
rem 1.1. The set of those (X,x) ∈ H that are d-parabolic has λ-full measure. �

Before deducing Theorem 1.2 from Corollary 7.1 we discuss briefly the fol-
lowing fact well-known to experts:

Proposition 7.2. Suppose that X is a Riemannian manifold with |κX | ≤ 1
and with inj(X) > 0. If X is parabolic then X has vanishing Cheeger constant
h(X) = 0.

Proof. Suppose that

h(X) = inf
Ω

AreaX(∂Ω)

volX(Ω)
> 0

where the infimum is taken over all bounded domains Ω ⊂ X. Noting that
m
m−1 > 1 it follows that

h(X) volX(Ω) ≤ AreaX(Ω)
m
m−1

for all m > 1 and all domains Ω ⊂ X of volume at least 1
h(X) . Since inj(X) > 0,

this implies that capd(B,X) > 0 for every closed ball B ⊂ X (see for example
[13, Lemma 2.7]) implying that X is not d-parabolic. This contradiction yields
that h(X) = 0. �

We are now ready to prove Theorem 1.2:

Theorem 1.2. Fix K ≥ 1 and a closed Riemannian manifold M of dimension
d ≥ 3. If (Mi) ⊂ Q(M,K) is a sequence such that vol(Mi)→∞, then

lim
i→∞

h(Mi) = 0

where h(Mi) is the Cheeger constant of Mi.

Proof. Seeking a contradiction, assume that there is a sequence (Mi) ⊂ Q(M,K)
with vol(Mi) → ∞ and h(Mi) ≥ ε > 0 for all i. Passing to a subsequence we
may assume that the sequence (Mi) converges in distribution to some measure
λ on H. By Corollary 7.1 we know hence that there are base points pi ∈ Mi

such that (Mi, pi) converges in the pointed Gromov-Hausdorff topology to some
(X,x) with X d-parabolic. Notice that inj(X) > 0 by Theorem 1.3 and hence
that h(X) = 0 by Proposition 7.2.

Since h(X) = 0 there exists a bounded domain Ω ⊂ X so that

AreaX(∂Ω) ≤ ε

2
volX(Ω).

Let Ω′ ⊂ X be a further bounded domain with Ω ⊂ Ω′. Since, by Gromov’s
C1,1-compactness theorem, (Mi, pi) converges to (X,x) in the C1,α-topology,
we have for all but finitely many i an Li-bilipschitz embedding

ψi : Ω′ →Mi
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with Li → 1. We have hence

h(Mi) ≤
AreaMi(φi(∂Ω))

volMi(φi(Ω))
≤
Ld−1
i AreaX(∂Ω))

L−di volX(Ω)
≤ L2d−1

i

ε

2

This shows that h(Mi) < ε for all large i contradicting our assumption. This
proves Theorem 1.2. �

8. The 2-dimensional case

In this section we consider the 2-dimensional case.

Theorem 1.4. Suppose that (Mi) is a sequence of closed Riemannian surfaces
with

|κMi | ≤ 1 and inj(Mi) > ε > 0

for all i. Suppose also that (Mi) has distributional limit λ and that

lim
i→∞

g(Mi) + 1

vol(Mi)
= 0

where g(Mi) is the genus of Mi. Then λ is supported by the set of Riemannian
surfaces conformally equivalent to C or C∗.

Proof. By assumption the surfacesMi have injectivity radius uniformly bounded
from below. In particular we can, as in the proof of Theorem 1.1, scale them by
a uniform amount and assume that inj(Mi) ≥ 10 for all i. Again as in the proof
of Theorem 1.1 we choose a maximal 1-net Ni ⊂ Mi for all i. We also choose
for each i a uniformization fi : Mi → Σi by what we mean that fi is conformal
and Σi is a Riemannian surface with sectional curvature κΣi ≡ −1, 0, 1.

As so often, the cases of κΣi ≡ 0 and κΣi ≡ 1, i.e. Mi a torus and a sphere
respectively are slightly particular but easier. We leave them to the reader and,
for the sake of concreteness, assume from now on that Σi is a hyperbolic surface
for all i.

For each i we fix a uniform atlas of Σi as provided by Lemma 5.3, i.e. an
open covering

Σi = U1
i ∪ · · · ∪ U

ri
i

with multiplicity≤ k, such that for every x ∈ Σi there is j such thatB(x, δ0,Σi) ⊂
U ji , and such that for all i and j there is a conformal embedding

ϕji : U ji ↪→ C
We stress the fact that k and δ0 are independent of i. For example, the uniform
bound on the multiplicity and Lemma 5.2 imply that

(*) for every δ ∈ (0, 1), every s and every i the set of those x ∈ fi(Ni) for

which there is j with x ∈ U ji and such that φji (x) is (δ, s)-supported in

φji (fi(Ni) ∩ U
j
i ) has cardinality at most c(d, δ)k|Ni|s .

On the other hand, the closed hyperbolic surface Σi has genus g(Mi) and
hence volume 4π(g(Mi) − 1). In particular, the assumption in Theorem 1.4
implies that

lim
i→∞

vol(Σi)

vol(Mi)
= 0
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Hence, Proposition 3.2 implies that there are C and ε0 such that

(**) for all i, R and ε < ε0 we have

|{p ∈ Ni| diamΣi(fi(B(p,R,Mi))) ≥ ε}| ≤ C|Ni|
(
R

ε

)
eR

where we are also using the fact that vol(Σi) ≤ vol(Mi) ≤ C ′|Ni| for some
uniform constant C ′ and i large. Armed with (*) and (**) we can repeat word-
by-word the proof of Lemma 6.1 and show that λ-almost every point (X,x) ∈ H
is such that X is isometric to the Gromov-Hausdorff limit of subsequence of a
sequence (Mi, xi) with xi ∈ Ni satisfying:

(1) For every R > 0 we have limi→∞ diamΣi(fi(B(xi, R,Mi))) = 0.
(2) For every δ ∈ (0, 1) there are s and is such that for all i ≥ is the

following holds: if fi(xi) ∈ U ji then φji (fi(xi)) is not (δ, s)-supported in

φji (fi(Ni) ∩ U
j
i ) ⊂ C.

We proceed now as in the proof of Theorem 1.1. To begin with, Gromov’s
C1,1-compactness theorem implies that the limit X is a Riemannian manifold
and that the convergence takes place in the pointed C1,α-topology. As when
proving Theorem 1.1 we obtain, up to passing to subsequences, an exhaustion

Ω1 ⊂ Ω̄1 ⊂ Ω2 ⊂ · · · ⊂ X =
∞⋃
i=1

Ωi

of X by bounded open connected sets and for all j a sequence of Li-bi-lipschitz
embeddings

φi : (Ωj , x) ↪→ (Mi, pi)

with Li → 1. Since the diameter of φi(Ωj) remains bounded we deduce from
(1) that

lim
i→∞

diamΣi((fi ◦ φi)(Ωj)) = 0.

Since the sequence of coverings Σi =
⋃
j U

j
i have uniform Lebesgue number δ0,

it follows that for all sufficiently large i there is some member of the covering,
say U1

i , with (fi ◦ φi)(Ωj) ⊂ U1
i . The composition

(ϕ1
i ◦ fi ◦ φi) : Ωj → C

of fi ◦ φi with the conformal embedding ϕ1
i : U1

i → C is the composition of an
Li-bilipschitz map with two conformal maps and hence is L2

i -quasi-conformal.
Composing ϕ1

i with a translation and a homothety we can assume that ϕ1
i ◦fi◦φi

maps always x to 0 and a fixed point y ∈ ∂B(x, 1, X) to 1. As in the proof
of Theorem 1.1, Corollary 3.7 implies that up to passing to a subsequence the
maps ϕi ◦ fi ◦ φi converge to a 1-quasi-conformal, i.e. conformal, embedding

F : X → C

Again as in the proof of Theorem 1.1, we may assume that the nets Ni ⊂ Mi

converge to a 1-net N of X and again it suffices to prove that F (N ) has at
most an accumulation point in C. The same argument, in fact a bit easier,
as in the proof of Theorem 1.1 shows that if that were not the case, then
there would exist δ ∈ (0, 1) such that for all s there is is such that the point
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(ϕ1
i ◦ fi ◦ φi)(x) = (ϕ1

i ◦ fi)(pi) is (δ, s)-supported in (ϕ1
i ◦ fi)(Ni) for all i ≥ is.

This would contradict (2). We have proved Theorem 1.4. �

Remark. For later use we observe that in the course of the proof of Theorem
1.5 we in fact obtained that if Ni is a maximal 1-net of Mi then there is a

sequence (Ui) with Ui ⊂ Ni, with limi→∞
|Ui|
|Ni| = 1 and such that any Gromov-

Hausdorff limit (X,x) of a subsequence of (Mi, xi) with xi ∈ Ui is such that X
is conformally equivalent to either C or C∗.

An example showing that Theorem 1.4 fails in the absence of injec-
tivity radius bounds. We claim that for all δ < 1 there is a sequence Mi

of Riemannian surfaces with curvature |κMi | ≤ 1, homeomorphic to S2, with
vol(Mi)→∞, and with distributional limit satisfying

λ ({(X,x) ∈ H| π1(X) is not finitely generated}) > δ

To construct the desired sequence we proceed as in the example in section
2.2. Let T be a trivalent tree, t ∈ T be a vertex and denote by Ti the ball
in T centered at t and with radius i. For all i there is a hyperbolic surface
Ni with totally geodesic boundary which has a pants decomposition with dual
graph Ti and such that all the involved interior curves corresponding to edges
of Ti have length 1 and such that every boundary component has length 1

i .
To get the surface Mi, we cap off each one of the boundary components by a
suitable bubble with curvature in [−1, 1] and of volume less than 100. Here,
the word suitable means that for example there is a function f : [0, 1] → [0, 1]
with f(0) = 0 such that for each i we have

vol({x ∈Mi| injMi
(x) < ε}) < f(ε) vol(Mi).

It follows that for any weak limit λ of any subsequence of (Mi) we have

λ ({(X,x) ∈ H| X is a manifold of dimension 2}) = 1.

On the other hand, for any sequence of points xi ∈ Ni ⊂Mi such that (Mi, xi)
converges to a surface (X,x) we have that π1(X) is not finitely generated. Since
there is some δ0 > 0 such that vol(Ni) > δ0 vol(Mi), it follows that

λ ({(X,x) ∈ H| π1(X) is not finitely generated}) > δ0.

In order to construct such sequences for arbitrary δ we endow the surface Ni

with a metric of constant curvature −ε where ε is a sufficiently small positive
number. We leave the details to the reader.

9. Parabolicity on graphs and sequences with sublinear genus
growth

In this section we prove Theorem 1.5 and Corollary 1.6, but first we have
to clarify what we mean by distributional limits of graphs: so far we have
only considered such limits for Riemannian manifolds. We refer to [22] for
background results and definitions concerning random walks on graphs.

Suppose that (Gi) is a sequence of finite graphs with uniformly bounded
valence. Denote by V (Gi) the set of vertices of Gi. We endow Gi with the
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interior distance with respect to which each edge has length 1. For each i we
consider the map

V (Gi)→ H, v 7→ (Gi, v)

where, as all along, H is the space of all pointed metric spaces with respect to
the Gromov-Hausdorff topology. On V (Gi) we have the probability measure
which gives equal weight to each vertex. Pushing forward these measures we get
a sequence (λi) of measures on H. We say that a measure λ is the distributional
limit of (Gi) if the sequence (λi) converges to λ in the weak-*-topology. See [4]
for details.

9.1. Parabolicity. Suppose now that G is an infinite graph and let E(G) be
the set of its edges. We say that G is p-parabolic if for every non-empty finite
set S ⊂ V (G)

(9.1) capp(S,G) := inf
u

∑
q∈E(G)

|∇u(q)|p = 0,

where the infimum is taken over all finitely supported function u : G → R so
that u ≥ 1 on S and

|∇u(q)| =

 ∑
(q,q′)∈E(G)

(u(q′)− u(q))2

1/2

;

we refer to [13, Section 5] for the definition and terminology.
As in the case of Riemannian manifolds, we may introduce the p-modulus

Modp(Γ) of a family Γ of self-avoiding paths on G:

Modp(Γ) = inf
ρ

∑
v∈G

ρ(v)p

where ρ is a non-negative function on G so that∑
v∈γ

ρ(v) ≥ 1

for every γ ∈ Γ.
It is now easy to prove [22] that capp(S,G) = Modp(Γ(S)), where Γ(S) is

the set of self avoiding infinite paths in G meeting S. Since d − VEL(Γ(v)) =
Modp(Γ(v))−1, where p − VEL(Γ(v)) is the p-vertex extremal length of Γ(v)
in [3], we have that the definition of p-parabolicity in [3] coincides with the
definition above.

The following fact is immediate from the modulus definition.

Fact. Every subgraph of a p-parabolic graph is p-parabolic.

Notice at this point that the same argument as we used in the proof of
Theorem 1.2 shows that p-parabolicity for some p of an infinite graph G of
bounded valence implies that the Cheeger constant h(G) vanishes (compare also
with the argument in [3, Corollary 4.2]). Recall that the Cheeger constant of an

infinite graph G is the infimum of |∂A||A| over of finite sets of vertices A ⊂ V (G)

where ∂A ⊂ E(G) is the set of edges separating A from its complement V (G)\A.
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It also well-known that 2-parabolicity of a graph G of bounded valence is
equivalent to the recurrence of the simple random walk on G [22]. We record
these facts for later use:

Fact. Let G be an infinite graph of bounded length. If G is p-parabolic for
some p then h(G) = 0. If G is 2-parabolic then the simple random walk on G
is recurrent.

We are now ready to record the invariance of p-parabolicity under quasi-
isometries. Recall that a map f : Y → Z between metric spaces is a quasi-
isometry if there exists c > 0 so that

c−1dY (x, y)− c ≤ dZ(f(x), f(y)) ≤ cdY (x, y) + c

for all x, y ∈ Y . Two metric space are said to be quasi-isometric if there is a
quasi-isometry whose image is r-dense for some r <∞.

Theorem (Kanai-Holopainen). Let G be a graph of uniformly bounded valence
which is quasi-isometric to a Riemannian manifold M with bounded sectional
curvature and positive injectivity radius. Then G is p-parabolic if and only if
M is p-parabolic.

Kanai proved this theorem in [15] for p = 2; the extension to p 6= 2 is due
to Holopainen [13, Lemma 5.9]. It should be noticed that these authors prove
a more general form of the above theorem: instead of a bound on the sectional
curvature, they merely assume that M has Ricci curvature bounded from below.

9.2. From graphs to metrics. In this section we adapt an argument due to
Benjamini and Schramm allowing to extend graphs in surface to triangulations
in a controlled way (compare with the proof of [4, Theorem 1.1]). Then, we
describe how to associate a Riemannian metric to every triangulation.

Lemma 9.1. Let G be a graph of valence d embedded in a closed surface M
and assume that g(G) = g(M). There is a triangulation T of M containing G
and satisfying:

• Every vertex of T is already a vertex of G.
• T has at most valence 6d.

Proof. Every component of M \G is either a disk or an annulus because g(G) =
g(M). For every annulus in M \G take an arc with endpoints in vertices of G
and add it to G. Let G′ be the so obtained graph and notice that because every
vertex of G is in the closure of at most d components of M \G the graph G′ has
at most valence 2d. Now, every component of M \G′ is a disk. Every polygon
can be triangulated with at most valence 4 and without adding vertices. When
doing this for every component of M \G′ we obtain a triangulation T of M with
no new vertices, containing G′ and hence G, and with at most valence 6d. �

Suppose now that T is a triangulation of at most valence d of a surface M .
Identifying every face of T , i.e. every component of M \ T , with an euclidean
equilateral triangle of side-length 1 we obtain a piecewise euclidean metric on
M which is in fact Riemannian outside of the vertices of T . Notice that the
balls of radius 1

3 around any two vertices of T are disjoint and that since T has
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valence ≤ d there are at most d isometry classes of such balls. Choose once
and for ever a procedure to smooth out the singularity for each one of those d
models and apply the corresponding procedure to every ball of radius 1

3 around
a vertex of T . When doing so one obtains a smooth Riemannian metric on M
which has curvature pinched by κ(d), injectivity radius bounded from below by
ε(d), and which is c(d) quasi-isometric to T . Scaling by a bounded amount we
have:

Lemma 9.2. For every d there is L such that for every triangulations T with
valence ≤ d of a surface M there is a Riemannian metric on M such that:

• |κM | ≤ 1 and inj(M) ≥ 1.
• There is an L-bilipschitz embedding T ↪→M with L-dense image. �

A similar construction of a metric associated to a triangulation was used by
Gill-Rohde in [8].

9.3. Sequences of graphs with sublinear genus growth. We are now
ready to prove Theorem 1.5 and Corollary 1.6:

Theorem 1.5. Let (Gi) be a sequence of graphs with uniformly bounded va-
lence, with |Gi| → ∞, and with sublinear genus growth. If (Gi) converges in
distribution to λ, then λ is supported by the set of rooted graphs (G, p) satisfying:

• G is 2-parabolic,
• G has vanishing Cheeger constant h(G) = 0, and
• the simple random walk on G is recurrent.

Proof. For each i consider a surface Mi with genus g(Mi) = g(Gi) and fix an
embedding Gi ↪→Mi. Let also Ti be the triangulations provided by Lemma 9.1
and notice that since the graphs Gi have uniformly bounded valence, the same
is true for the triangulations Ti. Recall also the Ti and Gi have the same set of
vertices V (Gi) = V (Ti). For each i let ρi be the Riemannian metric provided
by Lemma 9.2 and write from now on Mi = (Mi, ρi).

Claim. There are subsets Vi ⊂ V (Gi) with limi→∞
|Vi|
|Gi| = 1 and such every

Gromov-Hausdorff limit (X,x) of a subsequence of a sequence (Mi, pi) with
pi ∈ Vi is such that X is conformally equivalent to C or to C∗.

Proof of the Claim. Let L be the constant in Lemma 9.2 and observe that the
subset V (Gi) = V (Ti) of Mi is 1

L -separated and 2L-dense. In particular, there
is some c > 0 independent of i with

c|Gi| ≥ volMi(Mi) ≥ c−1|Gi|
implying that the sequence (Mi) satisfies the conditions in Theorem 1.5. Choose
for all i a 1-net Ni and recall that there is c′ > 0 with

c′|Ni| ≥ volMi(Mi) ≥ (c′)−1|Ni|.
As remarked after the proof of Theorem 1.4 there is a sequence (Ui) of subsets

Ui ⊂ Ni, with limi→∞
|Ui|
|Ni| = 1 and such that any Gromov-Hausdorff limit

(X,x) of a subsequence of (Mi, xi) with xi ∈ Ui is such that X is conformally
equivalent to either C or C∗. This implies that if (pi) is any sequence with
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pi ∈ V (Gi) such that dMi(pi, Ui) ≤ 1, then again any Gromov-Hausdorff limit
(X,x) of a subsequence of (Mi, pi) is conformally equivalent to either C or C∗;
set

Vi = {p ∈ V (Gi)|dMi(p, Ui) ≤ 1}.
Notice now that there is some c′′ > 0 depending only on L and the fact that
|κMi | ≤ 1 asserting that every ball B(x, 1,Mi) contains at most c′′ elements of
the 1

L -separated set V (Gi). It follows that

|V (Gi) \ Vi| ≤ c′′|Ni \ Ui|
This show that

|V (Gi) \ Vi|
|Gi|

≤ cc′c′′ |Ni \ Ui|
|Ni|

→ 0

as i→∞. This concludes the proof of the claim. �

Notice now that the claim proves that the distributional limit λ of the se-
quence (Gi) is supported by graphs (G, p) which arise as Gromov-Hausdorff
limits of sequences (Gi, pi) with pi ∈ Vi. We show that any such G satisfies
the claims of Theorem 1.5. To begin with observe that up to passing to a sub-
sequence we may assume that both the pointed triangulations (Ti, pi) and the
pointed surfaces (Mi, pi) converge in the Gromov-Hausdorff topology to (T, q)
and (X,x) respectively; by the claim X is conformally equivalent to either C or
C∗. We can then pass again to a subsequence an assume that the embeddings
(Gi, pi) ↪→ (Ti, pi) converge to an embedding (G, p) ↪→ (T, q). Similarly, we can
assume that the L-bilipschitz embeddings (Ti, pi) ↪→ (Mi, pi) converge to an
L-bilipschitz embedding (T, q) ↪→ (X,x). Moreover, since each one of the Ti is
L-dense in Mi we obtain that T is also L-dense in X. It follows that T and X
are quasi-isometric.

Since X is conformally equivalent to either C or to C∗, it is 2-parabolic. In
particular, the Kanai-Holopainen theorem implies that T is also 2-parabolic.
This implies that G is also 2-parabolic because as we remarked above every
subgraph of a 2-parabolic graph is 2-parabolic. Once we know that G is 2-
parabolic, it follows that h(G) = 0 and that the simple random walk on G is
recurrent. We have proved Theorem 1.5. �

All that remains to be done is to prove Corollary 1.6. This is done in very
same way as to prove Theorem 1.2.

Corollary 1.6. For every expander (Gi) there is a positive constant c > 0 with
g(Gi) ≥ c|Gi| for all i.

Proof. Recall that an expander is a sequence (Gi) of graphs with uniformly
bounded valence such that |Gi| → ∞ but such that there is ε positive with
h(Gi) > ε for all i. Seeking a contradiction suppose that the sequence (Gi)
has sublinear genus growth. Up to passing to a subsequence we may assume
that (Gi) has some distributional limit λ. It follows hence from Theorem 1.5
that there are base points pi ∈ Gi such that (Gi, pi) converges in the Gromov-
Hausdorff topology to a graph (G, p) with h(G) = 0. This implies that there is
A ⊂ V (G) finite with

|∂A| ≤ ε

2
|A|
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The Gromov-Hausdorff convergence of (Gi, pi) → (G, p) implies that for all
large i there is an embedding A ↪→ Gi such that the sets of those points in G
and Gi which are at distance 1 from A are isomorphic as graphs. In particular
we obtain that h(Gi) ≤ ε

2 for all i large enough. This contradiction concludes
the proof of Corollary 1.6. �
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