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Abstract 
Embodied task dynamics is a modeling platform combining task dynamical implementation of 
articulatory phonology with an optimization approach based on adjustable trade-offs between 
production efficiency and perception efficacy. Within this platform we model a consonantal 
quantity contrast in bilabial stops as emerging from local adjustment of demands on relative 
prominence of the consonantal gesture conceptualized in terms of closure duration. The contrast 
is manifested in the form of two distinct, stable inter-gestural coordination patterns 
characterized by quantitative differences in relative phasing between the consonant and the 
coproduced vocalic gesture. Furthermore, the model generates a set of qualitative predictions 
regarding dependence of kinematic characteristics and inter-gestural coordination on consonant 
quantity and gestural context. To evaluate these predictions, we collected articulatory data for 
Finnish speakers uttering singletons and geminates in the same context as explored by the 
model. Statistical analysis of the data shows strong agreement with model predictions. This 
result provides support for the hypothesis that speech articulation is guided by efficiency 
principles that underlie many other types of embodied skilled action. 
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Emergent consonantal quantity contrast and context-dependence of gestural phasing 
 

 
1.0 Introduction 
The phonological contrast between singleton and geminate stop consonants is phonetically 
realized primarily through a difference in the duration of oral closure. In this paper we 
investigate temporal and kinematic articulatory characteristics of lip movement during the 
production of short and long voiceless bilabial stops in Finnish. We focus on the coordination 
patterns of the labial movement with tongue gestures associated with the flanking vowels. In 
particular, we explore the lawful variation of these temporal and kinematic patterns in relation 
to articulatory properties of gestures in the vicinity of the bilabial stop. We present the results in 
the context of predictions of an optimization based dynamical modeling paradigm which 
interprets articulatory patterns underlying the consonantal quantity contrast as distinct stable 
solutions of an optimization task, representing distinct modes of coordination. Our modeling 
and experimental results suggest that a phonological contrast can emerge through discretization 
of the continuous space of inter-articulator coordination, arising from complementary 
requirements of efficient and effective communication. 
 
The obvious characteristic distinguishing short and long consonants is the difference in 
constriction duration. The reported ratio between duration of long and short non-stop consonant 
is highly language, speaker and consonant dependent. It ranges from about 1:1.1–1:1.4 for 
Norwegian non-stop consonants (Fintoft, 1961), through 1:1.65–2.35 for Italian (Kingston et al., 
2009) and 1:2–1:3 for Finnish (Lehtonen, 1970) to as much as 1:4 for Japanese voiced alveolar 
stops (Homma, 1981). 
 
Relative robustness of the durational difference may be related to additional cues signaling 
quantity contrast. In some languages, e.g., Swedish or Italian, where the duration of the 
consonant itself may not be sufficient for marking the contrast, the constriction lengthening in 
long consonants is accompanied by shortening of the vowel immediately preceding the 
consonant (Elert, 1964; Esposito & Di Benedetto, 1999). This shortening phenomenon is, 
however, not universal (cf. Ridouane, 2010). Finnish and Japanese speakers, for example, 
actually often lengthen the vowels before geminates (Lehtonen, 1970; Port et al., 1987).  
 
A modeling approach aimed at explaining the differences between languages has been 
implemented by Smith (1995) within the powerful framework of Articulatory Phonology 
(Browman & Goldstein, 1992). Her model accounted for the observed differences between 
languages through qualitatively different organization of inter-gestural coupling relations. 
Another hypothetical explanation of similarities and differences among languages is based on 
principles of the theory of “adaptive dispersion” proposed by Lindblom (1987), where 
production is guided by a principle of sufficient contrast presented by the speaker to a listener 
(Engstrand & Krull, 1994). 
 
Our approach to modeling quantity, although not focused on differences between languages, 
combines elements of the two approaches outlined in the previous paragraph. As our modeling 
platform is purely articulatory, we now turn our attention to a body of research investigating 
articulatory aspects of quantity contrast. 
 
As expected, articulatory measurements mirror acoustic analysis and show significantly longer 
durations of articulatory closure for geminates compared to singletons (Bouarourou et al., 2011, 
for Tarifit Berber; Zeroual et al., 2008, for Moroccan Arabic; Löfqvist, 2005, 2006, 2007, for 
Japenese, O’Dell et al., 2011b, for Finnish). Consequently, movements of relevant articulators 
for geminates have longer durations than for singletons. Zeroual et al. (2008), for example, 
found that for voiceless and voiced alveolar stops in Moroccan Arabic the duration of the entire 
tongue tip gesture (from the onset of the movement towards articulatory constriction to the end 
of the constriction release movement) is significantly greater for geminates than for singletons. 
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Their measurements also show significantly greater durations for geminates of the movement 
towards the maximal constriction and of the release movement from maximal constriction to the 
end of the movement. Interestingly, the sub-intervals from the movement onset to the target 
achievement as well as from the release from the constriction target to the end of the movement 
were not significantly influenced by consonantal quantity (Zeroual et al., 2008); the durational 
differences mentioned above presumably arise during the constriction interval. 
 
There are also some spatial differences between singleton and geminate articulation, in the 
expected direction. Löfqvist (2005) reports that the lower lip reached a significantly higher 
position for geminates than for singleton bilabials in Japanese. A similar effect of quantity has 
been found for Finnish (O’Dell et al., 2011b). Amplitude of the opening movement of the lower 
lip was found to be greater for geminates than singletons in Italian bilabial consonants (Gili 
Fivela & Zmarich, 2005). 
 
The difference in velocity of relevant articulators during closing movement towards constriction 
does not show a universal pattern distinguishing geminates form singletons. Smith (1995) 
reports lower articulatory velocity in geminate gestures compared to singletons for Japanese as 
well as for two out for three Italian speakers she investigated. Japanese speakers analyzed by 
Löfqvist (2005) also tended to realize geminates with lower peak velocity of the upper lip, but a 
Swedish speakers in the same study used significantly higher upper lip peak velocity in 
geminates. No significant effect of quantity on the peak velocity was found for the tongue tip 
closing gesture in the Morrocan Arabic study of Zeroual et al. (2008). Measurements in 
Bouarourou et al. (2008) for Tarifit Berber suggest a higher articulator velocity for geminates at 
the instant of oral closure (velocity at closure can be expected to correlate strongly with peak 
velocity value, cf. Löfqvist & Gracco, 1997), but Gili Fivela et al. (2007) found no evidence of 
a similar quantity-related effect in their Italian data. 
 
Singleton and geminate consonants are, in general, co-produced with an articulatory transition 
between the flanking vowels. The duration of this transition, measured as tongue body 
movement between the attainment of the articulatory targets for the vowel preceding and 
following the consonant, tends to be longer when the consonant is geminate rather than 
singleton. A reliable difference in this direction has been identified for Japanese (Smith, 1995; 
Löfqvist, 2006, with several exceptions in words /kema/ and /kemma/) and for vowel related lip 
rounding transition for Finnish (Lehtonen, 1979). Gili Fivela et al. (2007) reported similar 
lengthening of vowel-to-vowel interval duration for Italian. Smith (1995), however, reported no 
effect of the consonant quantity on the intervocalic transition for one Italian speaker, and a 
significant shortening of the interval for another two Italian speakers. 
 
Löfqvist (2006, 2007) found no significant influence of consonantal quantity on the spatial 
extent of the lingual movement between the flanking vowels when the consonant was bilabial, 
but the movement was generally larger for lingual geminates. Consequently, the average speed 
of tongue body during the transition was significantly smaller in the geminate context 
irrespective of place and manner of consonant articulation. 
 
The main focus of the present work is on the coordination between the two coproduced 
articulatory movements, a bilabial gesture and a (fully or partially) coproduced lingual gesture 
realizing the transition between the flanking vowels. To date, only a handful of studies have 
investigated the influence of consonantal quantity on temporal aspects of this coordination. A 
majority of articulatory studies have confirmed the classic observation of Öhman (1966) that the 
inter-vocalic transition usually starts around (usually after) the onset of the consonantal gesture 
but, as a rule, before the attainment of consonantal target (e.g., a bilabial constriction) for the 
medial consonant. Looking at the temporal magnitude of this phenomenon, Gili Fivela et al. 
(2007) report that for Italian the vowel transition from /i/ to /a/ starts later relative to the 
(acoustic) onset of bilabial constriction for geminates compared to. Also, in their data the 
interval from the onset of the bilabial gesture to the onset of vowel transition (called V2LAG in 



Page 4 of 35 

the present work, see also Figure 10) is longer1 for geminates than for singletons (significantly 
so only for the normal rate).  
 
The same phenomena were investigated by Löfqvist (2006) in his work on Japanese short and 
long nasal bilabials in /kV(m)mV/ sequences including five speakers and three vocalic contexts 
(/a-i/, /a-e/ and /e-a/).  His measurements reveal a pattern which is not as clear. The duration of 
the interval from the onset of the tongue body movement towards the second vowel to the 
beginning of the acoustically determined oral closure does not show a straightforward 
dependence on consonant quantity; the trends are highly speaker dependent. Only slightly more 
consistent picture emerges in the case of the temporal coordination between the onsets of 
bilabial and vocalic gestures, our V2LAG measure. The inter-vocalic transition starts 
significantly later (greater V2LAG) for geminates in 7 out of 15 cases (3 vocalic contexts times 5 
speakers) and significantly earlier in 2 cases. In 5 out of the remaining 6 non-significant cases, 
the mean V2LAG is greater for geminates. Finally, in a pilot study to this work (O’Dell et al., 
2011a,b) we analyzed articulatory recordings of a single Finnish speaker (not included in the 
present study) uttering repetitions of sequences /ta(p)pi/ and /ti(p)pa/ and found significantly 
greater values of V2LAG for geminates compared to singletons. 
 
In this paper we primarily investigate the dependence of inter-gestural temporal coordination on 
consonantal quantity in V(C)CV sequences, but, crucially, also on articulatory properties of the 
flanking vowels as well as on the consonant preceding the sequence. The articulatory recording 
and subsequent data analysis presented in Section 3 of this paper is motivated by the results of 
the dynamical modeling of gemination described in Section 2. 
 
The modeling results come from the optimization based Embodied Task Dynamics (ETD) 
platform of Šimko & Cummins (2009, 2010), which combines the task dynamical 
implementation of Articulatory Phonology (Browman & Goldstein, 1992; Saltzman & Munhall, 
1989) with principles of Lindblom’s H&H theory and his concept of emergent phonology 
(Lindblom, 1990, 1999). In the ETD model, the temporal patterns of inter-gestural coordination 
emerge as solutions of an optimization task combining joint requirements to minimize 
articulatory effort and duration while maximizing clarity of the speech output. Rather than 
imposed in the form of, for example, phonologically motivated rules, inter-gestural phasing 
relations emerge from the interplay between functional requirements of communication and 
physical and physiological properties of the embodied vocal tract. The optimization task is 
implemented in the form of a cost function capturing the trade-offs between the production and 
perception oriented cost components in a flexible, adjustable manner. The model successfully 
accounts for several inter-gestural timing phenomena such as the dependency of phasing 
patterns in VCV sequences on the articulatory nature of the vocalic gestures and on lip-jaw-
tongue synergies arising from anatomical links between the embodied articulators (Šimko & 
Cummins, 2009, 2010). In optimal gestural VCV sequences identified by the model, the relative 
lag of the onset of movement towards the second vowel with respect to the onset of consonantal 
gesture, i.e. the coordination measure V2LAG above, depends on the vocalic context: the tongue 
movement starts relatively later in /aCi/ sequences compared to /iCa/. This context-dependency 
faithfully captures corresponding patterns identified in articulatory recordings (Löfqvist & 
Gracco, 1999; O’Dell et al., 2011a,b) suggesting that articulatory efficiency and perceptual 
efficacy play an important role in shaping coordination patterns in speech. 
 
In the present work, we further investigate the ability of the ETD platform to account for 
context-dependency of inter-gestural timing, namely for phonological quantity contrast realized 
in a varied context in terms of articulatory nature of surrounding consonants. We explore (and, 

                                                
1 Note that the “duration” of this interval, V2LAG, as conceptualized here can be negative if the vocalic 
gesture starts before the consonantal one. The concept of “longer” is thus here extended to such negative 
“durations” in a natural way. 
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to a certain extent, explain) the emergent variations in gestural kinematics and phasing relations 
arising from articulatory synergies among gestures performed by an embodied vocal tract. 
 
Consonantal quantity is modeled within the ETD platform through local adjustments of a 
parameter quantifying the trade-offs between the production and perception oriented cost 
components. Namely, increasing the premium placed on relative perceptual clarity of the 
consonant (lessening the chance of listener’s skipping the segment when parsing the sequence) 
results in predictable lengthening of the consonantal closure in optimal sequences. Surprisingly, 
a continuous increase of the local premium leads to an abrupt change of the optimal 
coordination pattern. This discontinuity is manifested by a sudden increase of the closure 
duration for the consonant accompanied by a reorganization of inter-gestural phasing 
represented by the measure V2LAG. The qualitative difference between the two emerging 
patterns corresponds to the discrete phonological contrast between singletons and geminates. 
Moreover, the inter-gestural phasing relations in the optimal CVCV sequences are highly 
context-dependent. They show a strong dependency on the articulatory features of the vowels as 
well as of the sequence-initial consonant. 
 
Our modeling results contribute to the ongoing debate on the so-called “phonetics-phonology 
problem” about the relationship between phonological (qualitative, discrete) and phonetic 
(variable, continuous) aspects of speech (Beckman & Kingston, 1990). We will show that under 
an explicitly formulated constraint of efficiency a discrete phonological contrast can emerge 
from continuous adjustments of an intentional parameter depicting local prominence. The 
contrast is instantiated as two distinct minima of the composite cost function, i.e., an affordance 
of the speech production and perception system to realize the vowel-consonant coarticulation in 
two discretely different ways.  
 
In the following section we introduce a description of relevant aspects of the ETD model and 
present its predictions regarding the singleton/geminate contrast. Subsequently, we provide 
results of statistical analysis of articulatory recordings of Finnish CV(C)CV sequences and 
evaluate them in the light of the model predictions.  
 
2.0 Model description and predictions 
2.1 Embodied Task Dynamics model 
The Embodied Task Dynamic model identifies articulatory patterns that are optimal with 
respect to competing demands of articulatory efficiency, perceptual clarity and overall 
durational requirements. The ETD platform is not conceptualized as a model of online speech 
production as, for example, the task dynamical implementation of Articulatory Phonology 
(Saltzman & Munhall, 1989; Nam et al., 2004) or the neural model of speech production DIVA 
(Guenther, 2001). Rather, it is intended to provide a computational platform for investigating 
qualitative aspects of inter- gestural coordination that result from perception and production 
constraints imposed by the embodied nature of the communicative system. 
 
The optimal patterns are presented in terms of gestural scores: constellations of primitive 
articulatory movements, gestures, assembled in order to produce a given utterance. Each 
gestural score fully characterizes a given realization of an utterance. Formally, it consists of 
onset and offset activation times of constituent gestures and a relevant set of gestural dynamical 
parameters such as stiffness of the tract variable mass-spring system and corresponding gestural 
targets.  
 
In the modeling platform discussed here, the gestural score is realized using a highly simplified 
model of the vocal tract schematically depicted in Figure 1. The model contains several 
articulators represented by masses: the upper and lower lips, the jaw, and two tongue 
components referred to as the tongue body and the tongue tip. The model captures only vertical 
movement of the model articulators; however, the sensitivity of various components to the 
movement of other articulators realistically reflects the horizontal arrangement of the vocal 
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tract. For example, the more frontal articulators, the tongue tip and the lower lip, are rendered 
more responsive to the vertical component of the jaw opening movement than the tongue body 
placed closer to the joint. 
 

Note to Publisher: Insert Figure 1 about here 
 
The model articulators are joined by critically damped springs representing muscles of the vocal 
tract (springs in Figure 1). These “muscle” connections reflect the anatomical linkages between 
the corresponding articulators of the human vocal tract: the lower lip and the tongue body are 
linked with the jaw, the tongue body in addition to the jaw also with the tongue tip. The upper 
lip is independently attached to the same frame of reference (the “skull”) as the jaw. This 
arrangement captures basic degrees of freedom of the vocal tract. In fact, there are more degrees 
of freedom than necessarily required for any of the modeled speech gestures; the articulatory 
system is redundant. This redundancy allows coproduction of several speech gestures: the lip 
closure movement, for example, can be performed alongside the vocalic lingual articulation. 
 
The gestural dynamics is implemented in a manner closely related to task dynamical 
implementation of Articulatory Phonology (Browman & Goldstein, 1992). Gestural targets are 
expressed as values of tract variables that capture linguistically meaningful spatial constellations 
of speech articulators. The lip aperture tract variable, for example, captures the distance 
between the lips, regardless of the positions of other vocal tract components. Bilabial closure is 
achieved when the value of this variable approaches zero. A bilabial gesture, i.e., the vocal tract 
transition towards the gestural target, is modeled by imposing critically damped mass-spring 
dynamics on the lip aperture tract variable with the target parameter set to a value less than 0 (-2 
in this case). Trajectories of the individual vocal tract articulators are computed using a 
customized version of pseudo-inversion of the redundant mapping projecting articulatory 
position to the values of the tract variables (Šimko & Cummins, 2010). 
 
The dynamics of the presented model differs from the traditional task dynamical 
implementation in several important ways (Šimko & Cummins, 2010). First, the individual 
articulators have assigned masses, approximately matching the masses of corresponding 
components of the human vocal tract. The dynamics of their movement thus reflects the 
physiological properties of the embodied speech system. Heavier articulators, like the jaw, 
move more slowly and with greater momentum than the lighter ones like the lips. The force 
required to move them is also greater than for the lighter articulators. Importantly, the force 
associated with the movement of all components can be evaluated by the system.  
 
Second, the collisions between the articulators, and between them and the oral cavity boundaries 
are modeled through mutually repulsive forces, dynamically implemented in terms of a damping 
component inversely proportional to distance. Consequently, the articulators behave like elastic 
objects. When the model lips approach each other, the repulsion gradually slows down their 
movement until it balances the force induced by the bilabial closure. The complete closure is 
achieved when the repulsive force reaches a relatively small threshold, i.e., starts exerting a 
measurable influence on the lip dynamics. Any subsequent closing movement of the lips, 
significantly hampered by the repulsion force, is ascribed to elasticity of the lips (Löfqvist, 
1996). 
 
Third, each articulator is pulled towards its “speech-ready” position all the time. The articulator-
specific speech-ready positions correspond to an average constellation with regard to the entire 
set of mastered gestures rather than a resting configuration of the vocal tract (attained for 
instance during quiet breathing). The pull towards the speech-ready state is modeled by 
critically damped mass-spring dynamics with targets set to appropriate positions for each 
individual articulator and a stiffness parameter considerably lower that that of any active 
gesture. As this dynamics is always on, the active gestures must overcome this weak re-setting 
force typically acting in the opposite direction. Consequently, the equilibrium points for an 
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articulator under the influence of a speech gesture are slightly offset compared to their 
dynamical targets. When no gesture acts on an articulator it slowly returns to the speech-ready 
position. 
 
[READ TO HERE] 
 
To guarantee that the active gestures exert an intended influence, an overall stiffness parameter 
is an “adjustable” parameter of the system (and subject to subsequent optimization, see below). 
For parsimony’s sake, both the gestural and speech-ready stiffness parameters are fixed relative 
to the value of this single parameter. The speech-ready dynamics stiffness coefficients as well as 
the stiffness parameters for active gestural dynamics are thus defined as multiples of the overall 
stiffness value. The value of the multiplication (relative stiffness) coefficients has been decided 
in advance and is not adjusted during the optimization process. As a consequence, the ratios 
between dynamical stiffness of each pair of gestures in the sequence remains fixed; we shall 
return to possible consequences of this modeling decisions in Discussion. 
 
The simplified anatomy of the model vocal tract realistically allows for implementing only a 
limited set of gestures representing linguistic contrasts. Each gesture is associated with an 
appropriate tract variable, its dynamical target, and the coefficients defining the relation of its 
dynamical stiffness to the overall stiffness parameter. Alongside the relative stiffness 
coefficients discussed above, the gestural targets are also treated as fixed (e.g., learned during 
speech acquisition) and not as part of gestural scores that are subject to optimization. In addition 
to gestural activation onset and offset times, the overall stiffness is thus a single optimized 
parameter. 
 
The model in the presented form distinguishes three tract variables: lip aperture, tongue tip 
position (relative to the alveolar ridge) and vertical position of the tongue body. Using these 
tract variables, the model depicts four linguistically meaningful gestures: a bilabial closure (a 
convergence of lip aperture towards the gestural target 0, i.e., collision of the lips), alveolar 
closure (the tongue tip tract variable converging towards its target associated with the oral 
cavity boundary) and two vocalic gestures associated with high and low targets of the tongue 
body tract variable, respectively. These four articulatory gestures are labeled in this work as /p/, 
/t/, /i/, and /a/, respectively. Voicing and nasalization are not implemented in the model. 
 
Each active gesture imposes critically damped mass-spring dynamics on the associated tract 
variable. Unlike the traditional task dynamic implementation of articulatory phonology 
(Browman & Goldstein, 1992), the behavior of model articulators is not determined solely by 
gestural dynamical parameters, i.e., gestural target and stiffness coefficient. The behavior is 
affected by always-active speech ready dynamics and, importantly, it also reflects masses 
associated with each model articulator. The masses act as additional parameters of critically 
damped mass-spring dynamics of individual articulators linked to the tract variable dynamics 
through a pseudo-inversion of the articulator-to-tract-variable mapping (cf. Saltzman & 
Munhall, 1989). In the embodied task dynamical system it is thus possible to evaluate forces 
acting on individual model articulators during realization of a given gestural score (as a product 
of mass and acceleration dynamically imposed on the articulators). For the full details of the 
model vocal tract anatomy and definition of its dynamics, see Šimko (2009) and Šimko & 
Cummins (2010). 
 

Figure 2 shows a gestural score for a sequence /tapi/ and corresponding actions of model 
articulators as evaluated by the embodied task dynamics. While realizing the given sequence, 
the score and the corresponding articulator trajectories have not been optimized; it is suboptimal 
with respect to the criteria defined below. Comparison with an optimal score for the same 
sequence shown in Figure 8 reveals the effects of the optimization process described in the 
following section. 
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Note to Publisher: Insert Figure 2 about here 
 
 
2.2 Composite cost function and optimization  
A gestural score captures onset and offsets of all gestures participating in production of the 
given utterance and the overall stiffness parameter. Alongside the remaining parameters of the 
model, which remain fixed, it fully determines the kinematics of the model vocal tract 
articulators. The objective of the optimization process is to find the optimal gestural score that 
simultaneously minimizes articulatory effort, effort associated with parsing of the resulting 
utterance and the overall duration of the utterance. 
 
Each gestural score is assigned a cost combining measures of articulatory and parsing effort and 
duration. The compound cost C associated with the gestural score is a linear combination of 
three cost components 

C = αE E + αP P + αD D,     (1) 
where E is the production articulatory cost of realizing the gestural score, P is the parsing cost, 
and D is the overall duration of the utterance represented by the gestural score.  
 
The production cost E associated with articulatory effort is evaluated as overall force 
expenditure during the realization of the given gestural score. As described above, the embodied 
character of the task dynamical model used here facilitates evaluating realistic forces acting on 
each articulator represented by a mass. The time-integral of the magnitude of this force over the 
duration of the utterance captures the overall force exerted on this articulator. The cost E is 
defined as a sum of these overall force measures for all model articulators. 
 
As it has been repeatedly pointed out by speech researchers, establishing the role of articulatory 
effort and its conservation – as assumed here – is far from straightforward (see, e.g., Pouplier 
(2012) for a lucid discussion of this issue). There are at least two aspects to this. First, it is not 
clear that production efficiency has any influence of shaping speech production patterns. After 
all, unlike more robust types of physiological action like running or lifting objects, speech 
articulation is effected by comparatively small forces exerted by musculature specialized for 
fatigue resistance. Attempts to directly evaluate metabolic cost associated with speech have up 
to date lead to inconclusive results at best (Moon & Lindblom, 2003). An accessible way to 
evaluate the influence of efficiency constraints posed by embodied articulation is a modeling 
approach such as presented in this work. Although an agreement of details of inter-gestural 
sequencing in human subjects and predictions of the model incorporating such constraints does 
not constitute a proof, it contributes to a growing body of evidence interpreting speech as a task 
oriented adaptive action subject to a combination of efficiency requirements, including 
conservation of articulatory effort. 
 
The second issue directly impacts modeling decisions. Some intuitive measures of articulatory 
effort, like a distance traveled by an end effector in order to achieve sufficient contrast, do not 
take into account complex biomechanical properties of the vocal tract. For example, Perrier et 
al. (2003) have shown that a looping motion of the tongue body during the production of an 
[ugu] sequence is efficient with respect to biomechanical factors although it clearly does not 
constitute the shortest possible trajectory realizing the sequence. Our definition of the cost 
component E reflects this insight: the effort is evaluated in terms of forces exerted on embodied 
model articulators rather than in terms of kinematic properties of end effector trajectory. 
 
Finally, it is important to note that the requirement of articulation parsimony in counterbalanced 
in a context dependent way by the effects of two additional cost components. 
 
The duration cost D is defined simply as the overall duration of the realization of the gestural 
score in seconds. The parsing cost component P is a measure of clarity and is designed to reflect 
the effort exerted by the listener in order to recognize the intended sequence. Its precise 
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definition is closely connected with modeling the singleton/geminate contrast, therefore we 
describe it in more detail below. To preview, the cost increases with very short and imprecise 
articulation of gestures. 
 
Equation (1) is a quantitative expression of the basic idea of the Lindblom’s (1990) H&H 
Theory. Phonetic variation is a consequence of tradeoffs between conflicting requirements of 
production efficiency (captured by E) and perceptual clarity (P). In addition, the durational 
component D incorporates demands on a shared resource – time – and acts as a partly 
independent means of eliciting variation in speaking rate dimension (for more thorough analysis 
of influence of each component, see Šimko & Cummins, 2011). The coefficients αE, αP, and αD 
assign weights to individual aspects and express intentional control of variation along hypo- and 
hyper-articulation scale as well as speaking rate. For example, increasing the parsing cost 
weight αP puts greater weight on clarity: the utterance should be easier for the listener to parse. 
Consequently, the optimal gestural score will prescribe longer, more precisely articulated 
speech segments. Similarly, increasing αD will favor gestural scores with shorter realizations 
resulting in faster speech. Importantly, the variations can be elicited not only by global but also 
by local weight adjustments. Beňuš & Šimko (this issue) used local lowering of αD to elicit 
articulatory patterns reproducing those accompanying prosodic breaks. In this work we explore 
how the local adjustments of αp can account for phenomena associated with quantity contrast. 
 
The optimization procedure for finding the optimal gestural score uses an adapted simulated-
annealing process with the overall cost C as its objective function. Starting with an arbitrary 
gestural score, sub-optimally realizing the required sequence of gestures, the procedure searches 
in a gestural score’s vicinity for a solution carrying smaller cost than the previous candidate. 
This process continues iteratively until no further progress can be made. At each step, the 
candidate gestural score (i.e., the gestures’ onset and offset times plus the overall stiffness) is 
randomly perturbed. This helps the process avoid “getting stuck” in locally optimal solutions. 
The gestural score that cannot be further improved provides the globally optimal solution 
minimizing the overall cost function. 
 
2.3 Parsing cost component and consonantal quantity contrast 
The parsing cost component is an estimate of an effort required by a listener to successfully 
parse the intended utterance. As the model discussed here is purely articulatory, this effort is 
estimated through positional and durational characteristics of realized gestures. This approach 
abstracts away from the well-known nonlinearities in articulation-to-acoustics mapping and in 
auditory processing (Stevens, 1989). We assume that the parsing effort is inversely proportional 
to the duration of each individual speech segment and, for vowels, also (linearly) proportional 
to the extent of undershoot, i.e. the minimal distance of the relevant articulator from the given 
vocalic articulatory target during the gesture’s realization interval. 
 
The realization interval of a gesture is a stretch of time during which the intended consequences 
of the gesture are achieved (realized). The realization interval thus typically lags in time behind 
the gesture’s activation interval prescribed in gestural score (see Figure 2). Conceptually, 
realization interval is related to a phone segment as traditionally delimited in speech signal by 
phoneticians.  
 
In the formal definition of realization interval, the purely articulatory character of the model 
enforces several simplifying departures from the traditional conceptualization of phonetic 
segment. For stop consonants, the realization interval is defined as a period during which the 
vocal tract closure is achieved (taking the closure itself as the intended realization of the bilabial 
or alveolar gesture and ignoring the significance of the following burst). Technically, this period 
is delimited using the repulsive force implemented as a damping component of gestural 
dynamics and acting on model articulators when they approach each other or the oral cavity 
boundaries. The closure is attained when the repulsive force exceeds a small threshold beyond 
which the tissue elasticity impacts the articulator behavior. Vocalic gestures, on the other hand, 
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are considered as realized while not occluded by a consonantal realization interval and when the 
relevant end effector (tongue body) is more than two-thirds of the way between its speech-ready 
position and the associated gestural target. 
 
In the model, duration of the realization interval directly impacts the value of the parsing cost 
component. Extremely short realization interval dramatically increases the likelihood that the 
listener misinterprets the intended consequences of the underlying gesture, and is thus 
associated with a very high cost. As the realization interval gets longer, the impact of duration 
on perceiving the given gesture gradually decreases. The model accounts for this effect through 
a function P(g) capturing the impact of the perceived duration of gesture g on the parsing cost 
defined as  

P(g) = 0.001/Tg, 
where Tg is the duration of realization interval of the gesture (see Figure 3)2.  
 
For a stop gesture g, P(g) fully encapsulates its contribution to the effort of parsing the 
utterance. In effect, we assume that longer closures make stops relatively more prominent (in a 
non-linear fashion) and thus facilitate identification of their presence in the sequence. As the 
model does not account for differences in manner and the two modeled consonantal gestures are 
produced with different end effectors – bringing along appropriate spectral cues in the form of 
formant transitions – closure duration is seen as sufficient cue for distinguishing between 
“poorly” and “well” articulated consonants. This simplifying assumption is supported by the 
well-established finding that the likelihood of listeners recognizing a stop consonant in a 
sequence increases non-linearly with the duration of silence. For example, Best et al. (1981) 
reported that even with the appropriate spectral cues the probability of interpreting the sequence 
/s/ + silence + /ei/ as /stei/ by listeners increases non-linearly with the silence interval duration 
increasing from 0 to approximately 70 ms. In other words, very short durations of the closure 
make the task of correctly parsing the sequence progressively difficult. 
 
For vowels, produced by the same model end effector (tongue body), the listener’s task to 
successfully parse the segment is not limited to detecting its presence; they also have to 
correctly judge the vowel quality. Consequently, the parsing cost component is for the vowels 
complemented by a measure of articulatory precision achieved during the realization interval 
(the details can be found in, e.g., Šimko & Cummins, 2010).  
 
 

Note to Publisher: Insert Figure 3 about here 
 
 
The parsing cost associated with the utterance depicted by a gestural score is defined as a linear 
combination of the contributions of all the individual gestures g: 

P = Σg βgP(g). 
 

The coefficients βg depict local premiums on the parsing cost and they weight relative 
contributions of gestures. First, they are used to compensate for an influence of precision 
estimate for vowels (as a consequence of its presence, the vocalic contributions P(g) are 
considerably smaller than consonantal ones) and to adjust relative durations of vowels and 
consonants in an optimal realization of an utterance.  
 

                                                
2 This definition of the durational component of parsing cost component differs from the models 
presented in our previous work (e.g., Šimko, 2009; Šimko & Cummins, 2010, 2011; O’Dell etal., 
2011a,b) where we used a different function (arc tangent) with similar mathematical properties to the 
reciprocal introduced here. While the choice of the particular function has consequences for interpretation 
of emergence of singleton-geminate contrast in terms of local prominence, the predictions and kinematic 
characteristics presented in this section are qualitatively the same also for the older version of the model. 



Page 11 of 35 

More importantly, the weights influence relative prominence of gestures. Increasing the local 
premium means placing extra incentive on parseability of the associated gesture and results in 
rendering the gesture relatively more prominent in the optimal realization of the given utterance. 
This feature of the model plays a crucial role in the context of the presented study. 
 
Recall that for stop consonants the parsing cost contribution rests solely with the duration of the 
consonantal closure. Increasing the local premium βg for a selected consonantal gesture will – in 
the optimal gestural score – inevitably bring about longer closure duration. Increasing the local 
premium is equivalent to decreasing the slope of the non-linear relationship between duration of 
a gesture’s realization interval and the associated cost. Figure 3 illustrates this fact. When the 
value of βg is increased for the consonant (e.g., from 2 to 15 as suggested in the figure), the 
parsing cost for the previously optimal consonant duration (marked as “singleton”) becomes 
prohibitively high relative to the parsing cost of surrounding gestures for which no change in 
local premium has been effected. To achieve an optimal equilibrium, the duration of the 
consonantal gesture must increase. In fact, as the increase is inevitably associated with an extra 
effort and duration cost, the optimization process finds an optimal longer duration – and, as we 
shall see, also adjusts the phasing relations with the surrounding gestures – for the consonantal 
gesture.  
 
The lengthening of the closure straightforwardly corresponds to the primary durational 
characteristic of contrast between singletons and geminates. We have deployed this insight as 
the central tool for modeling the phonological contrast. In the following section we present the 
modeling results and summarize emergent phonetic characteristics of the singleton-geminate 
contrast as captured by the model.  
 
2.4 Emergent bimodality: Results of modeling the contrast between singletons and geminates 
Figure 4 shows the optimal gestural scores and corresponding articulatory trajectories for a 
V1CV2 sequence /api/. The difference between the gestural scores result from the differences 
between the local premiums placed on parsing cost for the bilabial gesture /p/. For the left hand 
side score its value was set to 2 (“singleton” value), for the right hand “geminate” score side to 
15 (the weight for vocalic gestures is set to 15 in both cases). All remaining parameters of the 
gestural dynamics and optimization process (αE = αP =1, αD =3) are identical for both cases. 
 

Note to Publisher: Insert Figure 4 about here 
 
As expected, the resultant optimal duration of closure – marked by vertical lines, onset by the 
full and offset by the dashed one, respectively – is greater for the “geminate” setting (118 ms) 
than for the “singleton” one (54 ms). This is achieved by a later offset of the “geminate” bilabial 
gesture /p/ after the closure achievement compared to the “singleton” one. This phenomenon is 
a straightforward and intended consequence of our modeling approach.  
 
More interestingly, the optimal scores also differ in another characteristic of temporal 
sequencing: the lag of V2-gesture (/i/) activation onset with respect to the onset of the 
consonantal /p/-gesture is considerably greater in the “geminate” case compared to the 
“singleton” case. As we refer to this temporal coordination measure throughout the remaining 
text, we shall introduce here a convenient abbreviation applied both to gestural scores produced 
by the model and to measurements of articulatory recordings: 
 
V2LAG is the duration of the interval from activation onset of the bilabial gesture under 
consideration to the onset of activation of the vocalic gesture immediately following the 
bilabial; in formal terms, time of vocalic gesture onset minus time of bilabial gesture onset. 
 
Please note that the V2LAG measure is (somewhat counter-intuitively) negative in cases where 
the onset of the vocalic gesture precedes that of the bilabial one. 
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In the optimal scores depicted in Virhe. Viitteen lähdettä ei löytynyt., V2LAG equals 34 ms for 
the “singleton” and 67 ms for the “geminate”. Similarly, for the /ipa/ sequences in Figure 5, 
V2LAG is greater for the “geminate” case (right pane) (38 ms) than for the “singleton” one 
(14 ms). The closure durations in the optimal constellations in Virhe. Viitteen lähdettä ei 
löytynyt. are 46 ms for the “singleton” and 100 ms for the “geminate”. 
 
Please note, that for both pairs of “singleton” and “geminate” optimal sequences, V2LAG is 
greater for /api/ than for /ipa/. This dependency of inter-gestural timing on vocalic articulatory 
context accounted for by the model and matching articulatory measurements (Löfqvist & 
Gracco, 1999; O’Dell et al., 2011a,b), has been described by Šimko & Cummins (2010, 2011). 
We shall investigate this context sensitivity along with sensitivity of coordination patterns to 
even wider segmental context (preceding consonant) in the following section.  
 

Note to Publisher: Insert Figure 5 about here 
 
Returning to the dependency of V2LAG on consonantal quantity, this property of inter-gestural 
timing in optimal gestural scores is open to a straightforward, common-sense interpretation: a 
sequence medial geminate means longer bilabial closure, therefore the intervocalic transition 
has time to start relatively later than when the consonant is a shorter singleton. This analysis 
assumes a direct relationship between duration of closure (or bilabial gesture) and our measure 
of inter-gestural coordination V2LAG. 
 
The model determines the duration of the closure by the local premium placed on perceptual 
prominence of the bilabial consonant. As mentioned above, the optimal scores depicting the 
singleton-geminate contrast use values of 2 and 15 for this parameter. Unlike articulatory 
recordings (human speakers as a rule cannot produce an exact, finely grained continuous scale 
of singleton-geminate consonants), the modeling paradigm allows us to visualize the 
relationship between the closure duration and inter-gestural coordination even for intermediate 
and extreme situations. 
 
Solid circles in Virhe. Viitteen lähdettä ei löytynyt.A show the values of V2LAG in optimal 
gestural sequences /api/ computed for the local premium ranging from 1 to 16 (step 0.5). For 
each value of the premium, we identified the optimal gestural score using the procedure 
described above, and extracted the value V2LAG (as the lag of the onset of /i/-gesture after the 
onset of /p/-gesture in the optimal score). As seen from the plot, V2LAG increases with the local 
premium – the more prominence placed on the bilabial, the relatively later the intervocalic 
transition starts. The relationship, however, is far from linear. Up to premium value of 3.5 the 
lag slowly increases from about 32 to 47 ms. Then, a small increase of the premium is 
accompanied by a sudden “jump” of the optimal V2LAG value to approximately 64 ms, 
afterwards the V2LAG value remains in the area around 65 ms despite the increasing premium. 
An area with no optimal values of V2LAG is marked in the figure as a “gap”. 
 
In fact, for the local premium values between 2.5 and 4 the optimal gestural score is not the only 
stable solution of the cost minimization task. Empty gray circles mark additional constellations 
that are locally optimal. (These solutions were calculated for the premium values between 2.5 
and 4 by limiting the range of the optimization procedure.) The premium values of 2.5 and 4 
thus delimit a bistable region of control variable depicted in Figure 6A. Within this region, the 
overall cost function has two minima: a global minimum depicted by the full circle and an 
additional (local) minimum shown by the empty gray circle. In other words, as the prominence 
of the bilabial gesture increases, the single solution of the optimization task bifurcates to two 
stable, locally optimal constellations. Subsequently, one of these stable patterns disappears, 
once again leaving a single solution, qualitatively different from the original one.3 
                                                
3 This phenomenon is reminiscent of the concept of reorganization of ‘attractor landscape’ discussed for 
example in Gafos’ (2006) treatment of phonological and phonetic characteristics of final devoicing 
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Note to Publisher: Insert Figure 6 about here 

 
The difference between these two constellations is shown in Virhe. Viitteen lähdettä ei 
löytynyt.B depicting the relationship between V2LAG and the duration of bilabial closure 
CLDUR extracted from the same (locally) optimal scores used in Virhe. Viitteen lähdettä ei 
löytynyt.A (the corresponding premium values used to find the sequences are shown next to the 
data points). The “jump” in V2LAG is accompanied by a similar shift in the closure durations 
that abruptly increase by approximately 20 ms. This is qualitatively analogous to the distinction 
between singleton and geminate stops. Therefore, we designate as “singletons” the patterns 
arising from a premium value less than 4 (enclosed by a dashed ellipse in Figure 6B) and as 
“geminates” those determined by greater values (solid ellipse). The gestural scores plotted in 
Virhe. Viitteen lähdettä ei löytynyt. are the optimal constellations from which the V2LAG and 
CLDUR values marked as 2 and 15, respectively, were extracted. 
 

Note to Publisher: Insert Figure 7 about here 
 
The /ipa/ sequences display qualitatively similar behavior, albeit slightly differing in details. As 
shown in Virhe. Viitteen lähdettä ei löytynyt., the qualitative jump or bifurcation, occurs for 
slightly greater values of the local premium (bistable region lies between 5.5 and 6.5), and is 
much less prominent. Nevertheless, the values of the inter-gestural coordination measure, 
V2LAG, are relatively constant for small (2—5.5) and large (over 8) values of the premium. 
Varying the local premium for the bilabial gesture once again leads to two stable inter-gestural 
coordination patterns. The situation is analogous to the postulated quantal nature of articulatory-
to-acoustic mapping (Stevens, 1989). 
 
Virhe. Viitteen lähdettä ei löytynyt.B reveals that the surface characteristics of these two 
stable regions again correspond to the difference marking the consonantal quantity contrast: the 
closure durations in the optimal gestural scores obtained using small premium values are 
considerably shorter than in those enforcing higher prominence of the bilabial gesture. 
 
The simple requirement of increased perceptual prominence of geminates compared to 
singletons leads to more than a mere quantitative difference in closure duration between these 
two phonological categories. The optimization modeling results suggest a qualitative difference, 
a genuine bimodality, in inter-gestural coordination patterns. The distinction is marked by a 
greater lag of intervocalic transition relative to the onset of bilabial gesture in geminates than 
singletons (V2LAG). This hallmark of quantity emerging in our modeling results serves as one of 
the principal predictions to be verified using human articulatory data. 
 
2.5 Consonantal context: Dependence of sequencing on preceding consonant 
The results outlined above suggest dependence of inter-gestural timing in VCV sequences with 
bilabial stop on the vocalic context (/a-i/ vs. /i-a/) and on the prominence level ascribed to the 
stop consonant. In this section we explore sensitivity of the sequencing pattern to a wider 
gestural context, namely to the consonant immediately preceding the VCV sequence. 
 
This inquiry is motivated by the results of articulatory analysis of a Slovak corpus reported by 
Šimko et al. (2011) suggesting an influence of gesture-initial lip opening on temporal 
sequencing details. Presence of another bilabial stop just before a VCV sequence containing a 
bilabial consonant could lead to a decrease of the lip opening during the first vowel of the 
                                                                                                                                          
interpreted in terms of non-linear dynamics. Plotting overall cost C as a function of duration of bilabial 
gesture in the bistable region would give a potential well with two local minima, qualitatively equivalent 
to Gafos's potential well model for voiced vs. voiceless stops. The discovery of bistability in the 
physically realistic model provides a grounding for the dynamic systems account proposed by Gafos and 
others. 
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sequence and subsequently impact the inter-gestural timing. Moreover, a sequence of multiple 
bilabial closures could lead to a phenomenon of “crowding” discussed (along with its 
consequences for inter-gestural phasing) by Beňuš & Šimko (this issue). 
 

Note to Publisher: Insert Figure 8 about here 
 

Note to Publisher: Insert Figure 9 about here 
 
Figures 8 and 9 show the optimal scores for sequences using /api/ and /ipa/ with the same 
“singleton” and “geminate” settings used in Figures 4 and 5 each preceded by a /t/ or /p/ 
gesture. Table 1 offers kinematic characteristics of the lip closing gesture for C2 (/p/ or /pp/) and 
for vocalic transition V2 as well as durations of the “acoustic” interval for V1 (from the offset of 
C1-closure to the beginning of C2-closure) and duration of the C2-closure. The kinematic 
characteristics were computed in a way fully compatible with the measurement of empirical 
articulatory data analyzed in the following section (see Section 3.2 for details). The durational 
measures based on onsets and offsets of relevant movements reported in Table 1 are thus 
slightly different than the gestural onsets and offsets suggested by the gestural score. Due to 
inertia of articulators, the lip closure movement, for example, starts as a rule slightly later than 
the dynamic influence driving the lips together. For visual analysis, however, the optimal 
gestural scores are sufficient. 
 
Table 1. Kinematic and “acoustic” characteristics of the simulated sequences shown in Figures 
8 and 9. 
 “acoustic 

measures” 
consonant gesture V2 gesture  

 closure 
duration 

V1 
duration 

duration displ. p. vel. duration displ. p.vel. V2LAG 

pipa 55 69 45 3.0 97 168 13.7 149 -6 
pippa 107 72 84 4.1 86 182 13.6 135 -7 
papi 66 92 74 3.8 72 177 13.5 135 -2 
pappi 128 68 103 3.5 57 191 13.5 126 13 
tipa 53 75 67 6.7 167 169 13.7 148 12 
tippa 107 73 110 8.0 147 183 13.6 137 20 
tapi 69 97 109 9.4 170 181 13.7 135 34 
tappi 129 75 147 10.2 158 194 13.6 125 58 
 
The figures and measures in Table 1 offer several observations. Most characteristics show a 
strong dependence on the three influences under investigation here: vocalic and consonantal 
articulatory context, and gemination. In our discussion of the qualitative nature of these 
influences below, we compare all sequences differing solely in the given aspect. To evaluate the 
effect of vocalic context, for example, we thus compare the relevant measures for pairs /tapi/-
/tipa/, /tappi/-/tippa/, /papi/-/pipa/ and /pappi/-/pippa/. 
 
The following evaluation of the modeling results can be seen as a list of predictions of our 
model. We will therefore number the following paragraphs so that we can refer to particular 
predictions in the following section dedicated to data analysis. 
 
(1) The first column in Table 1 shows that closure duration is considerably influenced by 
gemination as introduced in the model. The ratios between geminate / singleton constriction 
duration vary between 1.86 for /tapi/-/tappi/ pair to 2.0 for /tipa/-/tippa/. (The particular values 
of the local premium parameter, 2 for singletons and 15 for geminates, were in fact selected to 
achieve the ratios of approximately this magnitude. Therefore, the ratio values cannot be 
interpreted as emergent results in the same sense as most of the observations below.). There is 
no clear context dependent pattern, although the ratios are somewhat larger in the /i-a/ context. 
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The constrictions themselves are longer for /a-i/ than for /i-a/, and to a very small extent in 
sequences beginning with /t/ compared to /p/-sequences. 
 
(2) In the /i-a/ context, the durations of V1 are only minimally influenced by gemination 
(somewhat longer /i/ in /pippa/ than in /pipa/ and tiny bit shorter in /tippa/ than in /tipa/). In the 
opposite /a-i/ context, however, gemination shortens the preceding vowel considerably. With 
the exception of the /pippa/-/pappi/ pair, /a/ is longer than /i/ in sequences differing solely in 
vocalic context. V1 duration is also influenced by consonantal context, in comparable sentences 
V1 is longer when it is preceded by /t/ than by /p/. 
 
(3) Turning our attention to properties of the consonantal articulatory gesture, the model 
predicts a consistent lengthening of its duration for long consonants. The lip closing movement 
is also, in fact to a larger degree, influenced by the sequence-initial consonant, being longer in 
the /t/-context than in the /p/-context. The vocalic context also plays a role, lip closing takes 
longer in /a-i/ than in /i-a/ sequences. 
 
(4) The lip displacement during the closing gesture – the difference between maximal and 
minimal lip aperture at the onset and offset of the movement – is greater for geminates than for 
singletons (with the exception of /papi/-/pappi/), greater for /a-i/ than for /i-a/ (with the 
exception of /pippa/-/pappi/) and considerably greater for /t/ than for /p/. 
 
(5) In the simulated sequences, the closing gesture reaches a higher peak velocity for singletons 
than geminates, and to even greater extent for the /t/ sequences than for the /p/ sequences. The 
effect of vocalic context shows an interesting pattern of interaction with the sequence initial 
consonant: in sequences staring with /p/, the peak velocity is greater for /i-a/ than for /a-i/, in /t/-
sequences it is higher for /a-i/ than for /i-a/. 
 
The next three paragraphs concern the kinematic measurements of the V2 gesture, i.e., of the 
articulatory transition between the vowels flanking the consonant undergoing gemination. 
 
(6) Compared to the kinematic measures of the consonant movement, the consonantal context 
(leading /p/ vs. /t/) has very little influence on the vowel transition. Duration of the V2 gesture is 
influenced by gemination (longer for geminates than singletons) and the articulatory nature of 
the flanking vowels themselves (longer for /a-i/ than for /i-a/). 
 
(7) The model does not predict any influence of gemination and surrounding articulatory 
context on the overall displacement of tongue body during the intervocalic transition (the 
distance between its most extreme positions during realization intervals of the flanking vowels). 
The small numerical differences are within the error margins of our stochastic optimization 
procedure. 
 
(8) While consonantal context does not show any influence on the peak velocity of the 
transition, both gemination and vocalic context do. For all relevant pairs, the peak velocity is 
higher for singleton sequences than for geminate ones. Also, the tongue body reaches a higher 
peak velocity in the optimal sequences when moving from /i/ to /a/ than during the opposite 
movement. 
 
(9) Finally, we look at predictions regarding context and gemination effects on the inter-gestural 
coordination measure V2LAG, central in the context of modeling the singleton-gemination 
contrast in this work. The relationship between the consonant-vowel coordination and 
gemination described in detail in Section 2.4 (V2LAG greater for geminates than singletons) 
holds also for VCV sequences preceded by a consonant, with the exception of /pipa/-/pippa/. 
For this pair, V2LAG is actually marginally smaller in the geminate context. Vowel context also 
continues to exert an effect, with V2LAG smaller for /i-a/ than for /a-i/. Consonantal context has, 
numerically, the greatest effect of all. While the sequences starting with /t/ show inter-gestural 
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phasing relations comparable to the VCV sequences presented earlier (see Figures 1, 2 and 5, 6), 
sequence-initial bilabial /p/ strongly affects the coordination. The second /p/ in these sequences 
is “pushed to the right” resulting in smaller V2LAG (i.e., smaller lead of lip closing before vowel 
movement). 
 
The dependency of the relative phasing between the consonantal and vocalic gestures on 
quantity and articulatory nature of surrounding gestures (point 9 above) is the key prediction of 
the model. The first reason is that the model is explicitly conceived to account for temporal 
details of inter-gestural sequencing: the variables of the objective function are primarily the 
onsets and offsets of gestures’ activations. The ability of the model to faithfully reproduce 
kinematic properties of individual gestures is compromised by decisions regarding gestural 
dynamics and its parameters: the model employs a simple critically damped mass-spring 
dynamics and optimization process cannot independently fine-tune the stiffness parameters of 
individual gestures (see Section 2.1). Secondly, as explained in Section 2.4 the two distinct 
organizational patterns for singletons and geminates are identified by the sudden “jump” in the 
value of V2LAG. Therefore, this measure serves as a benchmark for evaluating the possible 
plausibility of this finding. 
 
Nevertheless, the agreement or disagreement of the remaining predictions (1-8) above with the 
empirical data will contribute to overall evaluation of the modeling decisions and might reveal 
shortcomings to be addressed in the future. For an overview of the correspondence between the 
predictions and data analysis, see Table 2.  
 
3.0 Articulatory measurements 
3.1 Linguistic material and recording procedure 
The analyzed linguistic material consists of two-syllable words /C1V1.C2V2/, were the vowels V1 
and V2 are /a/ and /i/, or /i/ and /a/, respectively, consonant C1 is /p/ or /t/, and consonant C2 is 
singleton or geminate voiceless bilabial /p/ or /pp/. All possible combinations thus yield 8 
tokens – /tapi/, /tappi/, /tipa/, /tippa/, /papi/, /pappi/, /pipa/, /pippa/. Although all tokens are 
phonologically well formed in Finnish, only three are actually occurring word (tappi means ‘a 
pin’, tippa means ‘a drop’ and pappi means ‘a priest’; pipa means ‘wool cap’ in some dialects, 
but not in the variety spoken by our speakers). 
 
These tokens were recorded in two conditions:  
 
1. as simple repetitions – speakers were simply instructed to repeat each two-syllable target 
word 10 times, and  
2. embedded in a Finnish carrier sentence (two tokens in each sentence) Hän sanoi ___ sekä 
___. ‘S/he said ____ as well as ____.’ In every sentence, a test word thus appears in sentence 
medial and sentence final position. To facilitate articulatory analysis, each test word in the 
carrier phrase was preceded by the (meaningless) word /kekV/, where V stands for /a/ or /i/, 
depending on the first vowel V1 in the test word; the vowel V was always different from V1. An 
example of the full sentence is “Hän sanoi keka tipa sekä keka tippa.” To make the task 
somewhat easier, the two test words in the sentence differed only in consonant C1 (/p/ and /t/) or 
consonant C2 (singleton and geminate). To avoid a possible effect of read speech subjects were 
shown two target phrases (e.g., keka tipa – keka tippa) for 2 seconds and were instructed to wait 
until the phrases disappeared from the screen before uttering the given sentence. (We allowed 
subjects to start the sentence while the phrases were still on the screen, when the repetitive 
nature of the task posed too large a demand on their attention at later stages of the recording 
session.) Finally, the sentences were uttered at normal and self-imposed fast speaking rates. 
 
Four subjects were recorded, two females (S1 and S3) and two males (S2 and S4. All are native 
speakers of Finnish from Helsinki or surrounding area (Uusimaa, Finland). None of them 
reported any speech or hearing disorders. Subject S2 is the third author. 
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The movement of the lips, the tongue and the jaw were recorded using electromagnetic 
articulography (EMA, Carstens AG500) at the University of Helsinki, Finland. The relevant 
receivers were placed on the midsagittal plane of the vocal tract; the lip sensors were placed 
above and below the vermilion border of the upper and lower lip, the jaw sensor below the 
lower incisors, and three tongue sensors at the tip of the tongue, at the rear portion of the tongue 
(as far back as confortable for the subject) and half way between these two points. In this 
analysis, we use the middle tongue sensor (referred to as tongue body, TB) and the upper and 
lower lip sensors (UL and LL, respectively). The articulatory movement signals, recorded at a 
sampling rate of 200 Hz, were converted to position values using Carstens’ Calcpos program. 
Subsequently, the position signals were corrected using the Amplitude Adjustment algorithm of 
Hoole & Zierdt (2010); their program was also used for adjustment to head movement using 
additional sensors attached to the bridge of the subject’s nose and behind each ear. The resulting 
postion signals were smoothed using an 8-point Bartlett window and subsequently up-sampled 
to 1000 Hz using cubic spline interpolation. 
 
Due to technical difficulties during the recording sessions, we didn’t manage to record and 
postprocess succesfully the same number of tokens for each subject. The numbers of tokens 
analyzed in this work for each subject and each condition range between 3 and 7 for each 
individual condition (such as rate—position combination) in sentence tokens and 6 to 21 tokens 
in repetitions. 
  
3.2 Labeling 
A single annotator identified the onset and offset of the bilabial closure for C2 (/p/ or /pp/) and 
the closure (bilabial /p/ or alveolar /t/) for C1 in all tokens, using the acoustic signal recorded 
synchronously with the articulatory data. The acoustic closure onsets and offsets were used as 
anchors for automatic articulatory labeling implemented in Matlab. 
 
A lip aperture measure was calculated as the Euclidean distance between the positions of the 
lower lip and upper lip sensors. The onset of the lip closure movement for the bilabial stop /p/ or 
/pp/ was found as the velocity zero-crossing of the lip aperture signal, occurring before the 
acoustic closure. Offset of the closing movement was identified with the instant of maximal 
compression, i.e., minimal value of lip aperture during the acoustic closure. Duration of the 
closing movement was calculated as the duration of the interval from movement onset to 
movement offset. Displacement of lip aperture is the absolute value of the difference between 
lip aperture at the onset and the offset of the closing movement. 
 
Analysis of tongue body movement was complicated by the presence of plateaux – intervals of 
minimal movement – of the TB sensor during the production of vowels preceding and following 
the stop C2, mostly in the geminate context. Therefore, the onsets and offsets of the lingual 
movement were identified using tangential velocity of the sensor (cf. Löfqvist & Gracco, 1999). 
The onset of the movement was taken to be the last local minimum of tangential velocity (not 
necessarily zero) preceding a substantial movement of the articulator; the offset was marked in 
the corresponding fashion. The displacement of the tongue body during the movement is the 
Euclidean distance between TB sensor positions at the onset and offset of the transition 
movement. 
 
Just as in the modeling context, the inter-gestural coordination measure V2LAG was computed as 
the onset time of the vowel transition movement minus the onset time of the bilabial closing 
movement. 
 
Peak velocity of the lip closing gesture for C2 was identified as the maximum velocity 
magnitude of the lip aperture signal between the onset and offset of the closing movement. 
Similarly, for the TB movement between the flanking vowels, the peak velocity was found as 
the maximum tangential velocity during this movement. 
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Note to Publisher: Insert Figure 10 about here 
 
Virhe. Viitteen lähdettä ei löytynyt. illustrates the procedure using one of the articulatory 
recordings analyzed in this work.  
 
3.3 Results 
The main focus of our data analysis is on the acoustic and articulatory measures that are relevant 
for the predictions of our modeling effort. A more thorough analysis of the data with the aim to 
further contribute to our knowledge of Finnish geminate articulation will be presented in the 
near future. 
 
We used analysis of variance (ANOVA) to assess the influence of three independent variables 
on the measures of interest: gemination, vocalic context (VV-context, /a-i/ vs. /i-a/) and 
consonantal context (C1-context, that is the place of articulation of the initial consonant in 
CV(C)CV sequences, i.e., /p/ vs. /t/). Reflecting the relatively low number of subjects and 
differences between elicitation methods, ANOVA was performed separately for sentences and 
for repetitions, and separately for each speaker. In order to help reader keep track of the rather 
large number of results, we limit the presentation to main effects, reporting significant 
interactions only when necessary. The analysis results are shown in more detail in Appendix. 
 
For the tokens embedded in sentences we also included in the ANOVA model the influence of 
tempo (normal vs. fast speaking rate) and position of the sequence within the sentence (medial 
vs. final); for repetitions we included the token’s place in the series (1—10). In order to make 
the following text less cumbersome, we do not report the effects of tempo, position and place in 
the series on the dependent variables of interest except for some interactions. In any case, the 
main effects of these predictors were in general as expected: increasing tempo made gestures 
temporally shorter, faster and smaller; gestures within sentence final position were of longer 
durations, smaller spatially and slower than their mid-sentence counterparts. Place in the series 
had no effect relevant to this study. 
 
In some cases (C2 duration, V1 duration; duration of bilabial closing gesture, peak velocity of 
bilabial closing gesture; duration of vowel transition, peak velocity of vowel transition), the 
variable was transformed to a logarithmic scale to better approximate the homogeneity of 
variances required for ANOVA. 
 
After first presenting the general results using ANOVA, a Bayesian analysis of the central 
hypothesis (9) regarding dependency of V2LAG on gemination and context will be provided. 
 
Throughout, the results are compared with model predictions 1—9 listed at the end of Section 2. 
In Section 3.3.6 we provide a summary of the match (or lack thereof) between the predictions 
and behavior of our subjects. 
 
3.3.1 Acoustic measurements (predictions 1,2) 
Our acoustic measurements show a high degree of consistency with previous studies on Finnish 
summarized in the introduction. 
 
Gemination had a significant effect on the acoustic duration of the bilabial constriction for all 
speakers, both in sentences and repetitions. On average, the geminates were approximately 
twice as long as the singletons. Vocalic and consonantal context did not have the same main 
effects for all speakers. There was a significant effect of C1-context for speaker S2 in the 
sentences (p < 0.001) with constriction longer for the preceding consonant /t/, and S1 in the 
repetitions in the same direction (p < 0.05). For speaker S3 there was a significant influence of 
VV-context for both sentences and repetitions (p < 0.05); in both cases, the constriction was 
longer for /a-i/ than /i-a/. No other main effects were significant. Although these tendencies are 
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speaker dependent, all significant effects and their directions are compatible with our modeling 
data (see prediction (1) in section 2.5). 
 
As expected for Finnish, gemination had a significant lengthening effect on the duration of the 
preceding vowel, for all speakers in both conditions (p < 0.001) with the exception of S3 and S4 
in repetitions for which the effect was not significant. With the exception of S1 in sentences, the 
VV-context main effect was significant with /a/ longer than /i/ (p < 0.01 for S3 in repetitions, p < 
0.001 for the rest). The vowel was longer when preceded by /t/ than after /p/ and this effect was 
generally significant. 
 
Comparing these results with the model predictions (2), the optimal sequences differ 
considerably from Finnish speakers in predicting shortening of the vowel /a/ by gemination in 
/a-i/ context. Other observation regarding VV-context and C1-context effects match speakers’ 
behavior. 
 
3.3.2 Articulatory measurements: bilabial closing gesture (predictions 3—5) 
The duration of the bilabial closing gesture is defined here as the duration of the interval 
between the onset of lip closing movement and the instant of maximal constriction. As predicted 
by the model (3), gemination had a significant effect on this measure, lengthening the gesture’s 
duration in both sentences and repetitions (p < 0.001). The effect of C1-context on the duration 
of lip closing was also (with one exception, S2 in repetitions) significant, with shorter gestures 
in /p/-sequences (p < 0.05 for S4 in sentences, p < 0.001 for the rest). These two effects were 
predicted by our model (3).  
 
Contrary to the model’s predictions (3), however, our analysis found no consistent influence of 
VV-context on the duration of the closing movement. For two speakers with a significant vowel 
effect in the repetition task (S3 and S4) the duration was – at variance with the model – greater 
for /i-a/ than for /a-i/. 
 
The spatial displacement of the lips during the closing gesture is measured as the difference 
between the maximal lip aperture at the onset of the gesture and its value at the maximal 
constriction. The spatial extent of the gesture was significantly influenced by gemination for all 
speakers in both conditions and was greater for geminates than for singletons (p < 0.001). VV-
context also had a significant effect: with one exception (S1 in sentences) the extent of 
movement was greater for /a-i/ than for /i-a/ context  (p < 0.001). The effect of C1-context is 
mostly significant for three out of four speakers (with an exception of S2 for sentences) but not 
significant for speaker S4 in either condition. In all significant cases, the extent of movement 
was greater when the preceding consonant was /t/. 
 
The model predictions (4) generally match the main effects and the directions of gemination and 
context influence. Simulations, however, somewhat overestimate the influence of C1-context at 
the expense of gemination and VV-context.  
 
We also analyzed the effects on the peak velocity of the closing movement. VV-context had a 
highly significant effect on the peak velocity for all speakers in both conditions (p < 0.01 for S1 
in sentences, p < 0.001 for the rest). The peak closing velocity was higher for /a-i/ context. This 
is not surprising in the light of the observations reported above that in this context the lip 
closing movement spanned a greater distance within an equal or shorter duration than for the /i-
a/ context.  
 
Results are less clear for the effects of C1-context and gemination as the movements were both 
greater and longer for the /t/-context and for geminates (see above). The effect of C1-context is 
nevertheless significant in most cases (sentences: p < 0.001 for S1, p < 0.05 for S2, S3, S4; 
repetitions: p < 0.001 for S1 and S3), the velocity was greater for the /t/-context for all speakers 
except S2 and S4 in sentences, who exhibited significantly higher peak velocity in words 
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starting with /p/. The influence of gemination showed even greater speaker dependence. Except 
in one case (repetitions for S3) the effect was significant. Gemination, however, seems to act in 
different directions for different speakers: for S4, the peak velocity was greater for singletons 
than for geminates in both conditions, while for S2 it was always greater for geminates. For S1 
and S3, it was greater for geminates in sentences, but greater for singletons in repetitions (not 
significantly so for S3). 
 
Comparing this behavior with model predictions (5) reveals considerable differences. While our 
simulations predicted a strong and consistent effect of C1-context, the effect is less dominant in 
the data, although with one exception (S2, only significant in sentences) the effect was as 
expected: greater velocity for /t/- than for /p/-sequences. The VV-context effect is correctly 
predicted only within the /t/ consonantal context. Moreover, the data do not generally bear out 
the prediction of greater velocity for singletons than geminates.  
 
Our simulations predicted a strong interaction between C1-context and VV-context, the former 
actually reversing the influence of the latter in different contexts. Indeed, the data analysis did 
find a mostly significant interaction between C1-context and VV-context is (sentences: p < 0.001 
for S1, p < 0.05 for S2, S3, n.s. for S4; repetitions: p < 0.001 for S1, S3, p < 0.01 for S4, n.s. for 
S2). This interaction is, however, not strong enough to reverse the influence of VV-context in 
words starting with /p/. This observation further highlights the already mentioned exaggeration 
of the C1-context effect on the predicted kinematic characteristics of C2. This is in fact solely 
due to the influence of the word initial /p/; our simulated /t/-sequences, on the other hand, agree 
with the analysis results in most qualitative aspects.  
 
3.3.3 Articulatory measurements: transition between the flanking vowels (predictions 6—8) 
Due to the difficulties of assessing the articulatory offset of the transition to the second vowel of 
our sequences in sentences (in particular for sentence final position), we performed the analysis 
only for the repetition tokens. 
 
The duration of the transition between articulatory targets of the vowels preceding and 
following the bilabial showed a consistent dependence on C1-context. C1-context influence was 
significant for all speakers (p < 0.001), the transition taking longer in the /p/ context than in the 
/t/ context. VV-context was also significant (p < 0.001 for S1, S2, S4, p < 0.01 for S3), but while 
for speakers S1, S3 and S4 the duration was greater in the /a-i/ context as predicted by the 
model (prediction 6), for speaker S2 the opposite movement from /i/ to /a/ took longer.  
 
The effect of gemination was also significant for all speakers (p < 0.001 for S1, S2, S3, p < 0.05 
for S4). In accordance with the model prediction the vowel transition was longer in the 
geminate case for three speakers (S1, S2, S3), but shorter for the fourth speaker (S4). 
 
While the model fails to account for the transition duration dependency on C1-context, the 
simulations (6) agree with the effects of gemination and VV-context prevalent among speakers. 
 
Although the model does not account for any effects on displacement of tongue body during the 
inter-vocalic transition (7), we list here effects found in the data. 
 
The distance between the extreme positions of the flanking vowels during the transition is, as 
expected, strongly dependent on the articulatory properties of the vowels themselves, captured 
here by the VV-context effect. The distance is greater for the /i/ to /a/ transition (p < 0.001). 
Perhaps more surprisingly, it also depends significantly on C1-context (p < 0.001 for S1, S4, p < 
0.01 for S3), the transition being spatially greater in the /p/-context than in the /t/-context. 
Gemination also had a mostly significant influence (p < 0.001 for S1, S2, S4). For all speakers 
the distance was greater for singletons than for geminates. 
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The peak velocity of the transition movement seems to be the vowel transition measure most 
robustly influenced by gemination. This is not surprising, as the transition was shorter 
temporally (with the exception of S3) and covered a greater distance for singletons than for 
geminates. Indeed, the effect in the expected direction (transition faster for singletons than for 
geminates as predicted by the model, prediction 8) was significant for all speakers (p < 0.001). 
For speakers S1, S3 and S4 there was a significant effect of VV-context (p < 0.001) with /i-a/ 
transition the faster one. Again, this is to be expected, as this transition had on average a 
significantly greater displacement and shorter duration (speaker S2 had a significantly longer 
duration for /i-a/ than for /a-i/). 
 
The durational and temporal measurements make no clear prediction for the effect of C1-context 
as the transition was mostly longer both spatially and temporally for the /p/-context. The 
analysis showed that the peak velocity was also significantly greater in this context for two 
speakers, S1 and S4 (p < 0.001). There were no robust interaction patterns. 
 
Our simulations account for the peak velocity dependencies rather well (8). While failing to 
account for the weak influence of C1-context, they correctly predict the influences of vocalic 
context and gemination. 
 
3.3.4 Articulatory measurements: coordination between consonant and vowel transition 
(prediction 9) 
The measure we use to assess the coordination between the bilabial closing gesture and the 
vowel transition is V2LAG, defined as the time from the onset of movement towards bilabial 
closure up to the onset of transition between the flanking vowels. The more positive this 
measure is, the greater the lag of the vowel transition onset relative to the onset of the closure 
movement (or, equivalently, the earlier the lead of the latter relative to the former). 
 
Our analysis showed a significant and robust influence of all three predictors of interest on the 
inter-gestural coordination: gemination (p < 0.001), C1-context (p < 0.001) and VV-context (p < 
0.05 for S1, S3 in repetitions, p < 0.001 for the rest). The main effect were all in expected 
directions: V2LAG is greater (more positive) for geminates than for singletons, greater for the /t/ 
context than for the /p/ context, and greater for the /a-i/ transition than for the /i-a/ transition. 
 
There was also an almost universally significant interaction between C1-context and VV-context 
(p < 0.001, except p < 0.01 for S2 in sentences and n.s. for S2 in repetitions). This interaction is 
due to the fact that while V2LAG is much greater for /a-i/ compared to /i-a/ in the /t/ context, the 
difference is not nearly so great – or is even opposite in sign – in the /p/ context (see Figure 11 
in the following section). 
 
All three strong main effects correspond to the effects of gemination and articulatory context 
predicted by the model (see Table 2). Although the context effects acted uniformly, there was 
one exception to the assumed direction of the gemination effect: in the model there was no 
difference in V2LAG for the pair /pipa/-/pippa/. This suggests a strong interaction between 
articulatory context and gemination for this measure. Also our data analysis found speaker 
dependent instances of such interactions, no general pattern emerged. We will investigate this 
issue more closely in the following section using Bayesian analysis and visualization. 
 
3.3.5 Bayesian analysis of consonant-vowel coordination 
As an additional check on the ANOVA results, we also assessed the various effects in our data 
with Bayesian inference using a hierarchical (or ANOVA-type) model (cf. e.g. Gelman & Hill, 
2007). In this model effects corresponding to rows of a traditional ANOVA table are modeled 
as sets of coefficients which are normally distributed with mean and variance parameters having 
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non-informative prior distributions4. All empirical measures were included in the model 
simultaneously, with any logical (i.e. non-empirical) restrictions holding between them (e.g. the 
fact that velocity of lip movement at movement onset and movement offset is zero and less than 
or equal to maximum velocity everywhere in between) imposed on the prior distributions. 
 
There are numerous advantages to using Bayesian inference: for instance there is no particular 
requirement of homogeneous variances, unbalanced tables present no difficulties, and above all 
it is relatively easy to incorporate all the relevant data into a single analysis so that there is no 
danger of multiple tests (Gelman et al., 2012). Any inferences to be made are based on the joint 
posterior distribution of all parameters (i.e., unknowns, including missing data such as several 
independent variables which could only be measured for the repetition data). We simply 
calculate the posterior probability that the state of affairs in question holds true. 
Alternatively, to obtain a number that more closely resembles the traditional significance of null 
hypothesis tests, we can calculate the posterior probability that the condition is false. 
For dichotomous variables (such as singleton vs. geminate) we will use the posterior probability 
that the effect is opposite in direction to the median value for the coefficient in question 
as a measure of “significance.” Thus a smaller value indicates a more significant result as usual, 
but unlike traditional null hypothesis testing, one minus this “significance” is also meaningful as 
the probability that the effect does indeed go in the specified direction. 
 
In general the Bayesian results (shown in Table 2 for main effects) were in agreement with the 
ANOVA results. Here we present in more detail the results dealing with V2LAG. 
 

Note to Publisher: Insert Figure 11 about here 
 
To aid assessment of the overall situation features of the posterior distribution itself can be 
shown visually in many ways. Here we use a two dimensional representation (Figure 11) 
restricted to two variables at a time and show the two marginal median values for a particular 
group as a point, with each point accompanied by a cross-hair indicating the marginal 95 % 
credible intervals (95 % CI, including 95 % of the marginal posterior distribution). Many robust 
effects of the data can be seen fairly directly in Figure 11 (showing lip aperture at the onset of 
the lip closing gesture as well as the time of onset relative to V2 onset), by comparing the points 
and noting whether their 95 % CI overlap and to what extent. To facilitate comparison of 
features of the data with the simulated optimal values obtained for the model, Figure 12 shows 
the model results in a parallel fashion. 
 

Note to Publisher: Insert Figure 12 about here 
 
For instance it is evident in Figure 11 that geminates generally start earlier relative to V2 onset 
(i.e. V2LAG is longer). This is also the result obtained for the model simulations (cf. prediction 
(9) and Table 2), as is clearly visible in Figure 12. In fact, the overall V2LAG difference for 
geminates compared to singletons has a posterior median value of +31.3 ms (p < 0.0001). The 
same relation holds true for all speakers in the /a-i/ words (for pappi-papi +31.1, +74.7, +33.8 
and +54.8 ms, p < 0.0001; for tappi-tapi +27.1, +70.2, +30.4 and +50.8 ms, p < 0.0001, 
although is it larger for speakers S2 and S4, and smaller for S1 and S3 (for whom it is actually 
smaller than the effect of /t/ vs. /p/).  
 
The difference is reduced considerably in the /i-a/ words for all speakers, but is still very robust 
for speakers S2 and S4 (pippa-pipa +36.7 and +17.0 ms, p < 0.0001; tippa-tipa +43.8 and +26.5 
ms, p < 0.0001). For speakers S1 and S3 V2LAG differences in the /i-a/ words are much smaller. 
For tippa-tipa the difference is most likely positive (median value), but small and unreliable (S1 
                                                
4 Such a model can be seem as a principled compromise between complete pooling of data sets (ignoring 
some variable, such as speaker) and no pooling at all. This is sometimes referred to as “partial pooling,” 
with the degree of pooling determined by the data. 
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+3.4 ms, p = 0.1866; S3 +7.5ms, p = 0.0376). For pippa-pipa the median difference is actually 
negative, though very small and unreliable (S1 −5.8 ms, p = 0.0372; S3 −3.1 ms, p = 0.1942). In 
the model results the one exception to the rule of longer V2LAG for geminates was the pair 
pippa-pipa (open circles in Figures 10 and 11). In addition the tippa-tipa pair had a relatively 
small difference. The model thus appears very much in agreement with our speakers in terms of 
the effect of geminates on V2LAG, and especially so for speakers S1 and S3. 
 
The model also predicts longer V2LAG for the /t/ stimuli compared to the /p/ stimuli (also clearly 
visible in Figure 12). This relation is also clearly brought out by Figure 11 for the data: all t-p 
pairs (squares vs. circles) for all speakers show this relation (with one exception, tipa-pipa for 
S4), and the difference is very robust in most cases. Interestingly there appears again to be a 
basic difference in the pattern for S1 and S3 as opposed to S2 and S4. For S1 and S3 the 
C1context effect (/t/ vs. /p/) is larger than the gemination effect, whereas for S2 and S4 the 
reverse is the case. Here as well the model results are very much in agreement with our 
speakers, and especially so for S1 and S3. 
 
Lastly the model predicts longer V2LAG for the /a-i/ words compared to the /i-a/ words in all 
cases. Here again the data show the predicted relation for all speakers (very robust in most 
cases), with one notable exception: unlike the model, speakers S1 and S3 reversed the usual 
direction for the pair papi-pipa, and the difference is quite robust (−27.7 and −21.9ms, p < 
0.0001). Actually all speakers exhibited a much smaller difference in V2LAG for the papi-pipa 
pair, but the difference remained positive for S2 and S4, and the same holds true for the model 
results. 
 
3.3.6 Comparison between prediction and empirical data 
Table 2 summarizes the main effects and its directions found by data evaluation, using both 
ANOVA and Bayesian analysis, and the level of agreement between the empirical findings and 
the predictions of the model. For model predictions, symbols < and > mean strong main effect, 
≤ and ≥ mark weaker and ≈ no predicted effect. For ANOVA analysis, < and > show a robust 
effect across (almost) all speakers/conditions, while ≤ and ≥ depict an effect that is significant 
for at least some cases. The results of Bayesian analysis depict main effect for an “average” 
speaker (partial pooling) and the symbols can be interpreted in term of significance of the effect: 
p < 0.01 (< and >), p > 0.01 but p < 0.05 (≤ and ≥), p > 0.05 (≈). 
 
Checkmark in the last column (✔) signifies a reasonably close agreement and cross (✗) marks 
considerable disagreement (effects in opposite directions); dash (–) is used in the cases where 
the model hasn’t predicted an effect or the prediction is only partially supported by data. 
 
Table 2. A summary of model predictions (column 4), the results of data analysis, both ANOVA 
and Bayesian analysis (columns 5 and 6), and an evaluation of the match between the 
predictions and empirical data. See text for details. Notes: *Speaker S4 in fact shows a 
predicted (>) effect; **Opposite effect (>) for S2 and S4 in sentences. 
   model ANOVA Bayes. match 

/p/ – /pp/ < < < ✔ 
/ai/ – /ia/ > ≥ ≥ ✔ C 

 /p/ – /t/ ≤ ≤ < ✔ 

/p/ – /pp/ > (a-i) < < ✗ 
/ai/ – /ia/ ≥ > > ✔ 

Ac
ou

st
ic

 d
ur

. 

V1 
 /p/ – /t/ < < < ✔ 

/p/ – /pp/ < < < ✔ 
/ai/ – /ia/ > ≤  ≤ ✗ 

 
dur. 

 /p/ – /t/ < < < ✔ 

Bi
la

bi
al

 
cl

os
in

g 
ge

st
ur

e 

 /p/ – /pp/ ≤ < < ✔ 
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/ai/ – /ia/ ≥ ≥ > ✔ displ. 
/p/ – /t/ < ≤ < ✔ 
/p/ – /pp/ > < * ≈ ✗ 
/ai/ – /ia/ >(t)  <(p) > > – 

 

 
p.v. 

/p/ – /t/ < ≤ ** < ✔ 

/p/ – /pp/ < ≤ < ✔ 
/ai/ – /ia/ > ≥ > ✔ 

 
dur. 

 /p/ – /t/ ≈ > > – 
/p/ – /pp/ ≈ > > – 
/ai/ – /ia/ ≈ < < – 

 
displ. 

/p/ – /t/ ≈ > > – 
/p/ – /pp/ > > > ✔ 
/ai/ – /ia/ < < < ✔ Vo

w
el

 tr
an

si
tio

n 

 
p.v. 

/p/ – /t/ ≈ ≥ > – 

/p/ – /pp/ ≤ < < ✔ 
/ai/ – /ia/ > > > ✔ 

 
V2LAG 

/p/ – /t/ < < < ✔ 
 
4.0 Discussion 
Overall, the optimal CV(C)CV sequences generated by our model reached a high degree of 
agreement with acoustic and articulatory data obtained from Finnish speakers. This agreement 
was mostly qualitative, it was not our aim to find a set of model parameters (defining the details 
of vocal tract anatomy, for example) to attempt quantitative agreement. The main focus was on 
the effects of consonant quantity and articulatory context on inter-gestural coordination. To 
evaluate the model performance more thoroughly, we also compared the influence of these 
variables on kinematic properties of the bilabial gesture undergoing gemination and the 
coproduced articulatory transition between the flanking vowels. 
 
It is important to note here, that the optimal gestural scores used for predicting context 
dependency and effects of gemination were obtained using the same optimization procedure 
with the same set of parameters except, of course, the local premium used to elicit gemination. 
The segmental differences between sequences come purely from different “naïve” gestural 
scores fed to the optimization procedure (akin to the score shown in Figure 2). These inputs 
determine what segments – realized articulatory gestures – are to be present in the optimal 
sequence and in what order and nothing more. It is a basic property of the optimization process, 
that it arrives at the same solution minimizing the given cost function regardless of the starting 
point. 
 
In this sense, the characteristics of individual gestures in the resulting optimal sequences, inter-
gestural relations and temporal characteristics of constrictions (with the exception of geminates 
being longer than singletons elicited by the local premium) can be seen as emergent from the 
spatial and “physical” characteristics of the model vocal tract and the trade-offs between 
production, perception and high-level temporal constraints as implemented in the cost function 
underlying the model behavior. In short, the model has not received any explicit phonological 
knowledge (apart from the fact that geminates are longer that singletons) or any phonetic 
information derived from data (e.g., that /a/ is generally longer than /i/). 
 
Obviously the question arises how various settings of the model influence the qualitative and 
quantitative aspects of phenomena discussed here. Can the optimization platform presented in 
this work predict patterns that directly contradict the predictions presented here? In short, can 
the model predict anything given the right parameters? Although there is not space here for a 
thorough analysis of this important issue, our ongoing investigation suggests that the short 
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answer is: No5. The parameters can obviously influence quantitative aspects of the optimal 
sequences. Given appropriate settings, the articulators can move infinitely slowly or over vast 
distances (or even extremely fast over vast distances). However, provided that the main 
structural characteristics – basic anatomical links, realistic relationship between masses of the 
articulators, nature of tract variables and gestural targets – of the model remain intact, the 
parameter tuning cannot reverse the reported relationship between, for example, the closure 
duration or consonantal context and inter-gestural timing. 
 
At the same time, the model can be individualized. As we saw, the modeling predictions match 
the behavior of some speakers better than others. This might be due to physiological differences 
between our subjects – incidentally the model accounted better for the interaction patterns 
exhibited by two female speakers (S1 and S3) compared to the males (S2 and S4). Changing the 
settings of the model that correspond to the individual physiological characteristics of the 
speaker, such as dimensions of the vocal tract and the masses of articulators, might lead to a 
slight shift in its behavior towards the interaction patterns exhibited by the male speakers. This 
would help further elucidate the nature of articulatory coordination as embodied efficient action. 
 
Some predictions and corresponding behavior of human speakers, in particular several of the 
effects of gemination, are quite straightforward consequences of the fact that geminate 
consonants are longer than singletons. Among these are the observations that geminate 
consonantal gestures are longer and spatially larger than singleton ones.  
 
Many aspects of the model’s predictions can be accounted for as “common-sense” rational 
solutions of the task at hand in the given circumstances; that is, after all, the underlying nature 
of optimization. An example could be the effect of consonantal context on the kinematics of the 
C2 gesture. When the bilabial C2 is preceded by an alveolar gesture that has only a small 
influence on the lip movement, the lips are generally further apart when starting their movement 
towards each other than when the preceding consonant is another bilabial6. The spatial extent of 
the gesture can thus be expected to be smaller in /p/ than in /t/ context. Similarly, when the 
preceding vowel is /i/ whose rising tongue movement pushes the jaw and the lower lip upwards, 
the lip closure is assisted by the vowel’s articulation and can be temporally shorter than in /a/ 
context (Šimko et al., 2011).  
 
In both consonantal contexts explored here, the upwards push of the jaw for consonants 
contributes to faster movement of the tongue body towards its gestural target; consequently, the 
optimal duration of /i/ in V1 position is shorter than that of /a/. Finally, lower tongue position 
during coproduction of V1 with /t/ than with /p/ (see Figures 8 and 9) results in the correctly 
predicted longer V1 in /t/ than in /p/ context. As these patterns reflect physiology of the tongue-
jaw-lips system, they require the type of embodied modeling used here capable of capturing 
complex synergies among speech articulators. 
 
Another group of phenomena that our model predicted successfully could be a fortuitous 
consequence of the model’s architecture. Vowel-to-vowel transition is longer and slower in the 
geminate context in both predictions and recordings. As the spatial extent of the transition in our 
simulations is (incorrectly) invariant, the differences may be attributable to lower overall 
stiffness of the optimal sequences with geminates compared to those with singletons, see 
Figures 5 and 6. Similarly, the correctly predicted lower peak velocities of the transition for /a-i/ 
compared to /i-a/ context presumably arise from the stiffness differences. As the stiffness of 

                                                
5 In a study currently being prepared for publication we investigate whether the model can be re-
parameterized to exhibit the observed differences between speakers. Testing model’s behavior for 
individual parameters varied by as much as 30 % of the values used in the present work shows that the 
patterns presented here are robust for parameter values within realistic ranges. 
6 It is also much more difficult (for adults) to rapidly repeat a series of syllables all starting with /p/ than 
to repeat syllables which alternate between /p/ and /t/. For Finnish see Lehtonen (1971). 
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individual gestures in our model is always proportional to the overall stiffness parameter being 
optimized, the model cannot account for possible relative changes of stiffness of individual 
gestures in various contexts. Although the predictions are correct, we cannot be sure that they 
are correct for the right reasons. 
 
We assume that the reported oversensitivity of the optimal sequences to consonantal context is 
also a result of limitations of the model’s design. As its gestural repertoire does not include an 
active lip opening gesture the lip opening is driven purely by speech-ready dynamics and is 
comparatively sluggish. Consequently, the lip opening following bilabial consonant /p/ is 
considerably smaller than after alveolar /t/. Although this seems to be also true for our speakers 
(closures larger in the /t/ context than in the /p/ context, significantly so for three speakers), the 
extent of the effect is much smaller. Adding an active lip opening gesture and a lip aperture 
measure as a contributor to vowel quality in our model might correctly mitigate the 
exaggeration of the consonantal context effect (see Beňuš & Šimko (this issue) on incorporating 
an active opening gesture in a simplified version of the ETD model). 
 
Data analysis of articulatory kinematics of the bilabial and the coproduced vocalic gestures 
revealed that each of the model's predictions corresponded quite well with two out of three 
kinematic characteristics under investigation. The characteristics we evaluated were duration, 
displacement and peak velocity of the given gesture. For the bilabial closing gesture, the model 
accounted satisfactorily for the effects on duration (apart from vocalic effect) and displacement 
but its predictions differed quite considerably with regard to velocity. For the vowel transition, 
the effects on peak velocity and duration were to a large extent predicted correctly but effects on 
displacement were not predicted at all. A possible source of this shortcoming may be the type of 
dynamics –critically damped mass-spring – used in the model. The dynamics lawfully binds the 
three kinematic characteristics. If, as suggested by e.g. Fuchs et al. (2011), the critically damped 
second order dynamics does not provide an accurate estimate of gestural action of the human 
speech apparatus, the model might not be able to account for phenomena related to all three 
characteristics simultaneously (see also Birkholz et al. (2011) on the issue of the appropriate 
order of dynamical system for speech).  
 
We hasten to say that the simplifications in the model architecture and dynamics mentioned 
here are not mere omissions. The primary reason for these simplifications of the model is 
technical: optimization requires tens of thousands of gestural score evaluations, and adding 
additional elements or more complex dynamical definitions of gestures slows the process down 
exponentially. Second, the ability to generate valid predictions with as simple a platform as 
possible confers greater explanatory power on our findings as fewer parameters allow for better 
identification of sources of various patterns as outlined above. It is interesting that the model 
produces realistic temporal coordination patterns despite these simplifications. 
 
Interestingly, the simulations predicted no effect on V1 duration for gemination in /i-a/ 
sequences, but a shortening effect in the /a-i/ context. So, in one context the model behaves 
almost like our Finnish speakers and in another like an Italian or a Swede. We offer no 
explanation for this phenomenon. In any case, we imposed no particular known pattern of 
durational sensitivity of the vowel to quantity of the following consonants. The fact that model 
arrived at both of these patterns – albeit with no V1 lengthening and in two separate vocalic 
contexts – may suggest two stable solutions for inter-gestural timing instantiated in two broad 
groups of languages. Provided that the solutions do not differ considerably in their respective 
impact on efficiency requirements as utilized here, speakers of different languages may opt for 
one or the other depending on other factors, for example the rhythmical properties of their 
language. The reason why no languages seem to use the context dependent coordination as 
predicted by our model might be related to another influence considered by Lindblom et al. 
(2011) – the learning cost related to generalizability of acquired patterns. 
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Several of the context dependent patterns mentioned above (e.g. spatial and temporal extent of 
gestures in various vocalic and consonantal contexts) can be seen as passive consequences of 
vocal tract physiology and the articulatory task performed. They arise naturally both in an 
embodied modeling paradigm such as the one presented here and in the embodied and complex 
human vocal tract. The relative phasing of onsets of largely overlapping vocalic and bilabial 
gestures – captured here by the V2LAG measure – may, however, be considered a hallmark of an 
active control behind the communication task at hand. The modeling results as well as the 
analysis of articulatory recordings strongly suggest that the details of inter-gestural coordination 
are influenced by requirements of production efficiency and perception efficacy.  
 
The fact that the bilabial gesture is spatially smaller after /i/ than after /a/ may result from 
physiological linkages between the lips, tongue and the jaw (as instantiated in the model) or 
from different lip aperture targets for the two vowels. It is common sense, that in order to 
achieve an appropriate timing of the effects of the bilabial action determined indirectly by 
perception constraints embedded in the parsing cost component, the lips could start the closing 
movement relatively late in /i-a/ compared to /a-i/ (cf. Šimko et al., 2011). Or, for reasons 
similar to those mentioned above, later when the preceding consonant is /p/ rather than /t/. The 
model simulations do this because they are optimal. Importantly, as our analysis of articulatory 
recordings suggests, human subjects behave, at least statistically, in the same optimal fashion. In 
our opinion, this finding has strong repercussions for our understanding of articulatory control 
in speech and skilled cognitive action in general. 
 
A different type of emergent phenomenon presented in this work is the bifurcation in inter-
gestural coordination that emerges when a cost function parameter inducing longer closure 
durations reaches a certain value. For a short interval of the parameter values there exist two 
solutions, each a local minimum of the cost function, one with the characteristics of a singleton 
and the other geminate-like. Beyond this interval, on both sides, the optimal inter-gestural 
patterns quickly reach relatively stable constellations. Coordination patterns in these stable areas 
retain the singleton and geminate attributes, respectively. 
 
The relatively stable areas with a sharp non-linear transition between them is reminiscent of the 
non-linearities in the articulation-to-auditory mapping claimed by Stevens’ (1989) quantal 
theory to influence the partitioning of various phonetic continua, such as the vowel space and 
consonant place of articulation, into phonological categories. In the present account, the 
patterning is a result of similar non-linear relations between timing and embodied articulation. 
A smooth change in perceptually motivated requirements – prominence expressed in terms of 
duration – results in an abrupt change in inter-gestural coordination. Just as vowels belonging to 
the same plateau in Stevens’ account sound different from vowels from another plateau across 
the non-linearity in the articulation-to-acoustic mapping, the production of consonants 
belonging to our two plateaux “feels” different. That is, the seemingly continuous space is 
experienced as discretized in an embodied fashion. 
 
We stop short of claiming that precisely this modeling phenomenon realistically reflects the way 
in which the phonological quantity contrast has diachronically risen in various languages. What 
our modeling suggests is that that optimization based dynamical modeling, although continuous 
in its nature, can at least in principle lead to identifying discrete categories in the space of 
possible articulatory patterns. These qualitatively different patterns can subsequently serve as an 
affordance for encoding phonological contrasts that can be utilized for communication. 
 
The affordance is presented in the form of distinct local minima of the cost functions depicting 
trade-offs between productions and perception aspects of speech. These local minima can be 
interpreted in terms of competing dynamical attractors that arise and disappear with continuous 
variation of the intentional parameter of local premium. Our approach can thus be 
straightforwardly recast in terms of non-linear dynamics that has been successfully used to 
model coexistence of the continuous and the discrete in terms of attractors determining 
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qualitative behavior of complex continuous systems (Haken et al., 1985; Gafos, 2006). In 
addition, the optimization paradigm provides a link between the attractor landscape – 
determined by the shape of the composite cost function – and the properties of the underlying 
embodied production and perception apparatuses. 
 
5.0 Conclusions 
Analysis of articulatory recordings of two-syllable C1V1C2V2 sequences spoken by Finnish 
speakers revealed a substantial degree of dependency of kinematic characteristics of articulator 
movement and inter-gestural coordination on (1) consonantal quantity (singleton vs. geminate) 
of the bilabial consonant C2, (3) the articulatory nature of the transition between the vowels and 
(3) the extent to which C1 interferes with articulation of the following consonant. These 
influences, moreover, show rather complex interaction patterns. Articulatory kinematics reflects 
spatial and temporal attributes of sequenced and coproduced gestures and synergistic effects 
among the coordinated articulators. 
 
The kinematic properties and coordination patterns revealed by our analysis show a high degree 
of agreement with predictions of the optimization-based embodied task dynamical model. In the 
model, gemination was elicited through local adjustments of a premium placed on perceptual 
properties of a consonant in terms of its relative prominence. The model generates its 
predictions as realizations of a given task that are optimal with respect to trade-offs between 
competing requirements of production efficiency and perceptual clarity.  
 
In the model, phasing relations between gestures are a part of an efficient solution reflecting 
physiological constraints of the embodied speech apparatus as well as the communication task. 
The match between the model’s predictions and the behavior of speakers provides strong 
support for the hypothesis that speech articulation is subject to the same efficiency requirements 
as those guiding many other types of skilled target-oriented action. The agreement between 
predictions and data was particularly high in the case of details and context-dependency of inter-
gestural timing that is usually considered actively controlled and learned as a phonologically 
specified coordination mechanism. 
 
The model also predicts discretely distinct coarticulation patterns distinguishing singleton and 
geminate production, highlighting the ability of a continuous dynamical optimization-based 
approach to account for emergent qualitative contrasts. The predicted differences in inter-
gestural phasing underlying the emergence of contrast were identified by analysis of empirical 
data. To confirm or refute the manner in which the qualitative differences emerges in our model 
will, however, require further experimental research primarily focusing on elicitation of the 
consonantal quantity contrast by continuous means. 
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Appendix 
The following tables complement our report on the results of statistical analysis (ANOVA) of 
the empirical data presented in Sections 3.3.1—3.3.4. F-values for main effects of gemination, 
VV-context and C1-context as well as for interactions between these three variables are listed. In 
the interest of brevity, we omit F-values for other variables (position, tempo, place in series) 
that were also incorporated in ANOVA analyses. 
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Significance of the effect is marked by the asterisks in the usual way: p < 0.05:*, p < 0.01:**, p < 
0.001:***. Significant effects are highlighted in bold. Table captions refer the relevant model 
prediction. 
 
Table A1. Acoustic duration of bilabial constriction (prediction 1). 
 S1 S2 S3 S4 
 sent’s rep’s sent’s rep’s sent’s rep’s sent’s rep’s 
 F(1,94) F(1,156) F(1,135) F(1,72) F(1,145) F(1,7) F(1,156) F(1,80) 
gem 1061*** 1902*** 1835*** 3492*** 1413*** 2118*** 876*** 609*** 
V-cont 2.24 0.23 0.08 0.16 5.89* 8.25* 2.02 3.52 
C1-cont 0.82 6.75* 11.4*** 2.64 0.91 4.22 0.80 0.48 
gem:V 0.01 1.11 0.74 19.3*** 0.04 0.15 2.04 6.16* 
gem:C1 0.09 0.39 2.06 6.19* 1.02 12.1* 2.13 1.01 
V:C1 1.23 0.40 0.20 6.57* 2.64 0.96 0.06 2.32 
gem:V:C1 0.44 0.01 0.05 10.20** 0.18 6.37* 1.93 1.87 
 
Table A2. Acoustic duration of the vowel preceding the bilabial (prediction 2). 
 S1 S2 S3 S4 
 sent’s rep’s sent’s rep’s sent’s rep’s sent’s rep’s 
 F(1,94) F(1,156) F(1,135) F(1,72) F(1,145) F(1,7) F(1,156) F(1,80) 
gem 77.1*** 41.5*** 27.4*** 42.9*** 35.9*** 3.44 171*** 1.32 
V-cont 1.63 68.2*** 75.0*** 230*** 11.6*** 10.8* 11.5*** 29.6*** 
C1-cont 2.62 11.4*** 8.94** 63.5*** 6.93** 12.0* 1.03 22.6*** 
gem:V 0.64 6.79* 0.09 0.49 0.05 28.9** 1.71 3.61 
gem:C1 0.05 0.06 0.03 4.88* 0.25 4.81 0.01 1.30 
V:C1 0.03 0.06 0.30 4.82* 4.83* 2.82 0.10 7.02* 
gem:V:C1 0.35 0.99 0.37 0.65 0.14 0.45 1.48 0.44 
 
Table A3. Duration of the bilabial closing gesture (prediction 3). 
 S1 S2 S3 S4 
 sent’s rep’s sent’s rep’s sent’s rep’s sent’s rep’s 
 F(1,94) F(1,156) F(1,135) F(1,72) F(1,145) F(1,7) F(1,156) F(1,80) 
gem 514*** 551*** 169*** 66.3*** 396*** 737*** 642*** 1161*** 
V-cont 0.59 0.81 3.86 0.90 2.69 15.9** 0.84 11.9*** 
C1-cont 82.1*** 113*** 15.2*** 0.04 16.1*** 301*** 4.10* 88.0*** 
gem:V 6.69* 0.83 5.33* 1.86 0.49 19.1** 0.03 0.55 
gem:C1 0.04 1.80 4.98* 5.95* 0.21 31.1*** 1.11 10.7** 
V:C1 0.06 8.90** 0.07 6.45* 0.10 4.27 1.58 4.77* 
gem:V:C1 0.09 0.00 0.08 16.9*** 0.10 8.68* 0.27 0.25 
 
Table A4. Spatial displacement of the bilabial closing gesture (prediction 4). 
 S1 S2 S3 S4 
 sent’s rep’s sent’s rep’s sent’s rep’s sent’s rep’s 
 F(1,94) F(1,156) F(1,135) F(1,72) F(1,145) F(1,7) F(1,156) F(1,80) 
gem 85.2*** 24.2*** 28.4*** 16.0*** 108*** 161*** 68.6*** 59.8*** 
V-cont 3.55 115*** 102*** 495*** 102*** 135*** 83.1*** 16.6*** 
C1-cont 55.6*** 321*** 1.18 9.42** 7.89** 538*** 0.17 3.38 
gem:V 1.19 5.04* 0.10 0.72 0.00 22.2** 0.24 0.50 
gem:C1 1.82 2.13 1.43 8.10** 2.70 4.44 0.73 0.58 
V:C1 4.28* 20.4*** 2.48 0.66 4.23* 10.8* 3.88 4.16* 
gem:V:C1 0.10 0.87 0.15 1.11 0.26 25.4** 4.29* 0.61 
 
Table A5. Peak velocity of the bilabial closing gesture (prediction 5). 
 S1 S2 S3 S4 
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 sent’s rep’s sent’s rep’s sent’s rep’s sent’s rep’s 
 F(1,94) F(1,156) F(1,135) F(1,72) F(1,145) F(1,7) F(1,156) F(1,80) 
gem 6.99** 41.4*** 6.41* 17.8*** 13.4*** 0.65 7.44** 12.7*** 
V-cont  6.62* 113*** 137*** 224*** 137*** 403*** 76.9*** 22.7*** 
C1-cont 38.4*** 138*** 5.33* 1.68 6.10* 439*** 4.17* 0.51 
gem:V 5.55* 5.53* 0.02 0.19 1.97 14.7** 0.00 0.05 
gem:C1 2.23 1.02 0.12 8.41** 5.91* 1.49 4.20* 0.03 
V:C1 14.8*** 26.9*** 4.47* 0.43 6.17* 65.9*** 0.76 7.24** 
gem:V:C1 0.02 0.88 0.49 1.55 0.86 19.1** 6.67* 4.46* 
 
Table A6. Duration of the intevocalic transition (prediciton 6). 
 S1 rep’s S2 

rep’s 
S3 rep’s S4 rep’s 

 F(1,141) F(1,62) F(1,6) F(1,72) 
gem 369*** 43.4*** 113*** 4.35* 
V-cont 96.3*** 112*** 21.7** 38.8*** 
C1-cont  18.0*** 17.9*** 40.3*** 19.0*** 
gem:V 0.12 54.9*** 0.13 22.9*** 
gem:C1 1.84 10.3** 0.27 28.1*** 
V:C1 0.80 0.15 2.44 2.44 
gem:V:C1 0.01 5.69* 0.48 14.9*** 
 
Table A7. Tongue body displacement during the intevocalic transition (predicition 7). 
 S1 rep’s S2 rep’s S3 rep’s S4 rep’s 
 F(1,141) F(1,62) F(1,6) F(1,72) 
gem 75.5*** 12.8*** 2.35 62.3*** 
V-cont 14.4*** 47.7*** 45.1*** 166*** 
C1-cont 41.0*** 3.25 22.8** 90.7*** 
gem:V 0.77 0.02 0.83 9.42** 
gem:C1  5.23* 24.1*** 15.6** 2.99 
V:C1 13.2*** 1.65 39.6*** 49.9*** 
gem:V:C1 0.92 3.76 8.02* 5.04* 
 
Table A8. Peak velocity of the intevocalic transition (predicition 8). 
 S1 rep’s S2 rep’s S3 rep’s S4 rep’s 
 F(1,141) F(1,62) F(1,6) F(1,72) 
gem 1036*** 66.0*** 107*** 76.9*** 
V-cont 178*** 0.04 98.5*** 481*** 
C1-cont 32.0*** 0.25 3.66 89.4*** 
gem:V 6.37* 0.14 0.14 0.09 
gem:C1 0.00 21.4*** 2.87 1.04 
V:C1 0.02 0.28 0.15 41.8*** 
gem:V:C1 0.00 15.5*** 0.04 0.89 
 
Table A9. Vowel-consonant coordination: V2LAG 
 S1 S2 S3 S4 
 sent’s rep’s sent’s rep’s sent’s rep’s sent’s rep’s 
 F(1,94) F(1,156) F(1,135) F(1,72) F(1,145) F(1,7) F(1,156) F(1,80) 
gem 53.0*** 106*** 140*** 670*** 33.7*** 41.9*** 230*** 193*** 
V-cont 13.0*** 5.75* 93.3*** 816*** 12.9*** 8.41* 271*** 113*** 
C1-cont 294*** 399*** 53.2*** 59.5*** 83.0*** 104*** 11.6*** 55.0*** 
gem:V 0.09 8.55** 68.9*** 464*** 0.29 0.23 60.3*** 0.54 
gem:C1 0.29 3.50 0.57 4.47* 0.94 15.0** 3.45 2.16 
V:C1 20.3*** 33.9*** 8.43**  0.12 31.0*** 21.5** 55.7*** 129*** 
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gem:V:C1 2.49 0.62 1.60 0.05 0.02 1.01 18.9*** 10.7** 
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Figure captions 

 
Figure 1. 
Schematic picture of model anatomy depicting the model articulators and the anatomical links 
among them modeled as critically damped mass-springs. 
 
Figure 2. 
An example of a (non-optimal) gestural score and associated movements of model articulators 
computed by embodied task dynamics. Realization intervals of individual gestures are also 
depicted. 
 
Figure 3. 
Definition of parsing cost for individual consonants as a non-linear function of the duration of 
realization interval. Decreasing the slope elicits longer durations of individual gestures in the 
optimal gestural scores. This technique has been used to model the quantity contrast between 
singletons and geminates. See text for details. 
 
Figure 4. 
Optimal /api/ sequences containing “singleton” (left) and “geminate” (right) bilabial stop. The 
upper panes in both figures show the optimal gestural score and the lower panes the 
corresponding trajectories of model articulators. 
 
Figure 5. 
Optimal /ipa/ sequences containing “singleton” (left) and “geminate” (right) bilabial stop. 
 
Figure 6. 
Relationship between (A) the value of local premium placed on the bilabial stop and the 
synchronization measure V2LAG, and (B) V2LAG and closure duration closure CLDUR  in 
optimal sequences /api/. 
 
Figure 7. 
Relationship between (A) the value of local premium placed on the bilabial stop and the 
synchronization measure V2LAG, and (B) V2LAG and closure duration closure CLDUR  in 
optimal sequences /ipa/. 
 
Figure 8. 
Optimal gestural scores and trajectories for sequences /Cap(p)i/, C is /t/ or /p/. 
 
Figure 9. 
Optimal gestural scores and trajectories for sequences /Cip(p)a/, C is /t/ or /p/. 
 
Figure 10. 
Labeling of articulatory data. See text for description. 
 
Figure 11. 
Lip closing gesture onsets (posterior median values; cross-hairs indicate marginal 95 % 
credible intervals). 
 
Figure 12. 
Lip closing gesture onsets as simulated by the model. 
 
 


