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sound climate mitigation policy. Empirical studies have identified positive and negative local impacts of 15 

different bioenergy types on biodiversity, but ignored indirect impacts caused by displacement of other 16 

human activities. Integrated assessment models (IAMs) provide land-use scenarios based on socioeconomic 17 

and policy storylines. Global scenarios capture both direct and indirect land-use change, and are therefore 18 

an appealing tool for assessing the impacts of bioenergy on biodiversity. However, IAMs have been 19 

originally designed to address questions of a different nature. Here, we illustrate the properties of IAMs 20 

from the biodiversity conservation perspective and discuss the set of questions they could answer. We find 21 

IAMs are a useful starting point for more detailed regional planning and assessment. However, they have 22 

important limitations that should not be overlooked. Global scenarios may not capture all impacts, such as 23 

changes in forest habitat quality or small-scale landscape structure, identified as key factors in empirical 24 

studies. We recommend increasing spatial accuracy of IAMs through region-specific, complementary 25 

modelling, including climate change into predictive assessments, and considering future biodiversity 26 

conservation needs in assessments of impacts and sustainable potentials of bioenergy.    27 
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Conserving biodiversity in times of global change  29 

Biological diversity is declining rapidly all around the world, despite global conventions and increased 30 

conservation efforts (Butchart et al. 2010). The main causes of this decline include habitat loss and 31 

degradation, overharvesting, pollution and invasive species; in addition, climate change is expected to 32 

exacerbate the pressure on biodiversity (Millennium Ecosystem Assessment 2005). The impacts of climate 33 

change are already evident across a wide range of species and habitats (Bellard et al. 2012; Chen et al. 2011; 34 

Parmesan 2006). As even the most ambitious climate policies are only expected to mitigate climate change, 35 

enhanced conservation action is required. Suggested strategies to adapt conservation to the climate 36 

challenge include better connected, more numerous and larger protected areas (Hannah et al. 2007; Heller 37 

and Zavaleta 2009; Hodgson et al. 2009), and management practices that allow for persistence and 38 

dispersal of species in the landscape outside protected areas (Hannah et al. 2002; Noss, 2001).  39 

While climate change mitigation is required to reduce its future impact on biodiversity, (Dawson et al. 2011; 40 

Heller and Zavaleta 2009), mitigation action should be planned with biodiversity in mind: some activities for 41 

reducing greenhouse emissions could themselves be harmful for biodiversity (Paterson et al. 2008). For 42 

example, hydropower dams may potentially help to decarbonize the energy sector, but their impacts on 43 

local biodiversity may be severe (Nilsson and Berggren, 2000). Also afforestation could, depending on the 44 

form, have negative impacts on native flora and fauna: if based on tree plantations, naturally open habitats 45 

could be replaced by low-biodiversity ecosystems with high water uptake (Jackson et al. 2005). Other 46 

activities have been identified as beneficial for both climate change mitigation and biodiversity 47 

conservation. An example of such win-win strategies would be conservation of primary forests along with 48 

their carbon stores and sinks as well as their high biodiversity value (Righelato and Spracklen 2007).  49 

Bioenergy is considered to be an important alternative for fossil fuels. Most models therefore project a 50 

rapid increase in bioenergy use in mitigation scenarios (IPCC 2011; Rose et al. 2012; van Vuuren et al. 2010). 51 

In particular, scenarios aiming to limit the increase in annual mean temperature below 2 degrees compared 52 

to preindustrial times (UNFCCC 2010), are expected to increase bioenergy demand (van Vuuren et al. 2010) 53 

given the key role of negative emissions in the second half of the century using bio-energy-and-carbon-54 

capture-and-storage (BECCS).  55 

Increased use of bioenergy may lead to conflicts with food security, water availability and biodiversity 56 

conservation (Dornburg et al. 2012), which makes the sustainability of bioenergy a subject for heated 57 

debate. Integrated assessment models (IAMs) of climate and land-use change can be used to assess global 58 

bioenergy potentials in different socioeconomic scenarios and under various constraints. However, these 59 
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models do not account for specific local, regional and landscape-scale opportunities and constraints that 60 

are important for assessing the impacts of bioenergy-related land-use change (Davis et al. 2011) and for 61 

mitigating the negative impacts from bioenergy (Gaucherel et al. 2009). Furthermore, the mitigation effect 62 

of bioenergy depends on the source, and may be significantly reduced or even be multifold exceeded by 63 

emissions from associated land-use changes (Fargione et al. 2008). Indeed, Creutzig et al. (2012) identify a 64 

need to integrate knowledge from empirical and inductive life cycle studies into IAMs to better understand 65 

potential, uncertainty and risks of direct and indirect land-use impacts. From the perspective of biodiversity 66 

conservation, the important question is how increased bioenergy supply affects the availability and quality 67 

of habitats for species as well as spatial conservation opportunities. Understanding the impacts of both 68 

climate change and mitigation action is necessary for planning proactive biodiversity conservation and 69 

planning sound energy policy.  70 

In this article, we discuss the level of detail and essential indicators needed ideally for model outcomes to 71 

be relevant for biodiversity impact assessments. A key aspect here are the different types of questions that 72 

are raised regarding the relationship between bioenergy and biodiversity. Some of the questions can be 73 

best answered at the global level (e.g. the overall implications of bioenergy for energy systems); others 74 

involve factors that can best be handled at a less aggregated scale (e.g. detailed biodiversity impacts). We 75 

evaluate whether currently available predictive land-use tools meet those requirements, and discuss the 76 

role of IAMs in assessing the impacts of bioenergy policy on conservation. Our aim is to provide inspiration 77 

for further development and use of IAMs from a conservation scientists’ perspective. Furthermore, we 78 

offer guidance for using global land-use scenarios in bioenergy impact assessment and policy planning. We 79 

start by providing an overview of how land-use scenarios currently assess the impact of bioenergy. We 80 

continue with a discussion on why and how modelling studies could be more strongly linked with empirical 81 

bioenergy impact studies. Finally, we conclude and provide recommendations. 82 

Land-use scenarios: balancing between geographic coverage and level of 83 

detail 84 

Various types of models can predict how socioeconomic or policy scenarios translate into resource demand 85 

and supply, and thereby land-use change (Table 1). Clearly, the focal question and spatial scale should 86 

determine the choice of methodologies used in any given study. On one hand, bioenergy scenarios have 87 

been used in regional biodiversity assessments for croplands (Meehan et al. 2010) and for extraction of fine 88 

woody debris (Dahlberg et al. 2011), but these studies typically pay no attention to the wider context such 89 

as total energy demand or indirect land use. Studies have shown that this wider context and, in particular, 90 

indirect effects may substantially affect the carbon balance (Plevin et al. 2010) and the sustainability of 91 
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bioenergy (Dornburg et al. 2010; Searchinger et al. 2009). Bioenergy scenarios should thus account for such 92 

indirect land-use changes.  93 

On the other hand, there are IAM studies that typically focus on the more aggregated level. IAMs have 94 

been developed for climate and energy policy support since late 1980s (Parson and Fisher-Vanden 1997). At 95 

present, they are the most important tool for quantifying and assessing scenarios for socioeconomic 96 

development and policy in the climate change mitigation and adaptation context. Such IAMs consist of 97 

quantified relationships between human population and activity, climate, land cover and ecosystems (Moss 98 

et al. 2010) and enable scenarios for emission reductions, cost-benefit analyses for mitigation options, and 99 

simulating feedbacks between climate and land use. As IAMs model emissions and land use simultaneously, 100 

they can address also the indirect land-use change arising from bioenergy production. IAMs have been used 101 

at global level (van Vuuren et al., 2010) to explore land-use changes in various sets of socioeconomic 102 

scenarios up to the year 2100 (Rose et al. 2012; Thomson et al. 2011; van Vuuren et al. 2011; van Vuuren et 103 

al. 2010; van Vuuren et al. 2006a; Wise et al. 2009). At a European scale, an IAM has been used in 104 

combination with a biofuel crop allocation model that accounted for logistics between fields and refineries 105 

(Hellmann and Verburg 2011), extending up to year 2030. IAM projections have also been used in 106 

biodiversity assessments, for instance to assess the general pressure of land-use change (Visconti et al. 107 

2011) and even specifically to assess bioenergy impacts (Alkemade et al. 2009; Eggers et al. 2009; Hellmann 108 

& Verburg, 2010; OECD 2012). 109 

One key set of global land-use projections has been based on the storylines of the so-called SRES scenarios 110 

(a set of scenarios developed for the IPCC; IPCC 2000). While these scenarios capture a wide range of 111 

possible developments, a downside of them is that they assume development in the absence of policy that 112 

specifically targets climate change mitigation, and all of them fail meeting the 2 degrees climate target 113 

agreed by the United Nations Framework Convention on Climate Change (UNFCCC 2010). The set of 114 

scenarios developed by the IAM framework IMAGE (MNP 2006) for other environmental assessments, and 115 

in particular the Millennium Ecosystem Assessment (2005), partly filled this gap. Several international 116 

biodiversity assessments have been based on these scenarios (CBD 2010; Pereira et al. 2010; van Vuuren et 117 

al. 2006b). More recently, several models have developed scenarios that account for climate and energy 118 

policy providing a wide set of land-use scenarios relevant for global climate policy goals  (Hurtt et al. 2011; 119 

Moss et al. 2010; van Vuuren et al. 2011).  120 

Linking empirical studies with modelling studies  121 
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Biodiversity impact assessments have been undertaken both with empirical studies and with the use of 122 

models. In general, empirical studies have a more local focus than modelling studies. Because of this 123 

difference in focus, empirical studies use different indicators to quantify impacts than modelling studies.  124 

The main issue covered with empirical studies is the number and abundances of species in bioenergy plots 125 

as compared to a reference habitat (e.g. Brin et al. 2012; Danielsen et al. 2009; Dhondt et al. 2004; Fry and 126 

Slater 2011; Rowe et al. 2011). Findings show that bioenergy impacts depend on the type of bioenergy  127 

(Harrison and Berenbaum 2012; Haughton et al. 2009; Myers et al. 2012; Questad et al. 2011; Robertson et 128 

al. 2011a; Robertson et al. 2012; Werling et al. 2011), management activities (Myers et al. 2012), reference 129 

habitat (Felten and Emmerling 2011; Questad et al. 2011) and landscape structure (Baum et al. 2012; 130 

Robertson et al. 2011b; Robertson et al. 2013; Fig. 1).  131 

Modelling studies, in contrast, mostly focus on the extent and impact of habitat change associated with 132 

bioenergy production, in terms of suitable habitat for specific species (Eggers et al. 2009; Louette et al. 133 

2010), the replacement of pristine habitats (Alkemade et al. 2009) and the loss of high nature value 134 

habitats (Hellmann and Verburg 2010; see Table 1 for summary). Typically, biodiversity indicators in these 135 

studies remain at a superficial level, thereby potentially overlooking important considerations of spatial and 136 

population ecology, which may lead to misleading conclusions. Stronger links between the empirical studies 137 

and future scenarios could be established by quantifying the relationship between habitat quality and 138 

species occurrence or abundance. Appropriate methods for such analysis include correlative species 139 

distribution models (Franklin 2009) as well as patch occupancy models based on population dynamics 140 

(Hanski and Ovaskainen 2003). Key variables for such predictive analyses should be derived from the 141 

empirical evidence base. Ideally, predictions about the distribution of specified bioenergy types, habitat 142 

diversity and heterogeneity, as well as structure and distribution of forest biomass would form the basis of 143 

predictive impact assessment (Fig. 1). 144 

The conclusions of a scenario analysis of policy outcome are by and large determined by the reference 145 

scenario, where assumptions are made about development in the absence of the policy in question. As 146 

regards bioenergy policy, the reference scenario would include land-use trends and climate change trends 147 

in the absence of bioenergy use. For instance, the evaluation of bioenergy impacts are very different 148 

depending on the reference scenario assumptions of whether land would otherwise be reforested or 149 

remain as degraded grassland. Also climate change is expected to have substantial impact on future 150 

biodiversity (Barbet-Massin et al. 2012; Bellard et al. 2012; Garcia et al. 2011; Thuiller 2004). Therefore, 151 

impact assessments which do not account for combined effects of climate change and land use of 152 
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bioenergy policies may under- or overestimate impacts (de Chazal and Rounsevell 2009). Nevertheless, so 153 

far the scenario-based impact assessments of bioenergy have often ignored the simultaneous direct 154 

impacts of climate change on species distributions (but see Alkemade et al. 2009; Table 1). If the aim is to 155 

compare advantages and disadvantages of bioenergy, assessments should compare the impact of climate 156 

change in a business as usual scenario to the increased impact of mitigation action though reduced impact 157 

of climate change. 158 

IAMs include changes in climatic indicators such as temperature. These indicators can be downscaled to the 159 

grid or regional levels using pre-existing climate runs. For biodiversity at the local scale, however, it is also 160 

important to have insight into variation in temperature and moisture (Austin 2002; Barry and Elith 2006). 161 

While there are also techniques to derive those, the uncertainties here are large. On the other hand, more 162 

specific predictions of regional climate change are becoming available from regional climatic circulation 163 

models for the new climate policy scenarios, also including mitigations scenarios. Many studies have 164 

therefore estimated climate impacts separately from those of land-use models. Given the large uncertainty 165 

in regional climate predictions, sophisticated biodiversity assessments might consider exploring a wide 166 

range of climate scenarios – either coming directly from climate models or developed by downscaling IAM 167 

projections. It should also be noted that land-use changes themselves may cause local climate change (e.g. 168 

via albedo). As these are not covered in existing projections in climate models or in downscaling techniques, 169 

it is useful to consider whether, in a specific study, land-use changes may be so large that these local 170 

impacts cannot be ignored.  171 

Changes in land use can result in changes in the extent, spatial configuration and quality of suitable habitat. 172 

From the point of view of biodiversity assessment, land-use scenarios should be able to quantify the 173 

consequences of policy action in terms of habitat availability, quality and structure with those indicators 174 

which have been identified as key for biodiversity impacts in empirical studies. Ideally, the relationship 175 

between integrated climate and land-use scenarios and biodiversity assessments should be twofold. On 176 

one hand, scenarios should output relevant data for biodiversity assessments; on the other hand, 177 

biodiversity assessments should inform scenario planning so that alternative policy scenarios could be 178 

evaluated. 179 

Key limitations of global land-use scenarios from the perspective of 180 

biodiversity assessments 181 

Land-use scenarios produced by IAMs are appealing tools for biodiversity assessments, because they 182 

provide global projections based on relevant policy storylines. However, as the models were originally built 183 



The final publication is available at http://link.springer.com/article/10.1007%2Fs10113-013-0504-9  

7 
Meller L, van Vuuren DP and Cabeza M. 2013. Quantifying biodiversity impacts of climate change and 
bioenergy: the role of integrated global scenarios. Regional Environmental Change (in press). Doi: 
10.1007/s10113-013-0504-9 

to answer a different set of questions, they have limitations to the questions they can address in context of 184 

biodiversity assessment. In this section, the outputs of IAMs are assessed in light of the data requirements 185 

for biodiversity assessments as outlined above (see Fig. 1 for a summary of the empirical evidence and links 186 

to IAM outputs). 187 

IAMs produce future maps of land use often based on rather simplified rules (for food crops and bioenergy 188 

crops). Such rules include the potential and costs for energy crops and availability of suitable land (e.g. in 189 

current output of the IMAGE framework, bioenergy allocation is in standard scenarios allocated to high-190 

yield grid cells that are either abandoned agricultural land, natural grasslands and savannah; Hoogwijk 191 

2004). More detailed scenarios could be built regionally, based on more detailed policy storylines. For 192 

example, the European Union targets for renewable energy and member state strategies for meeting these 193 

targets could inform the regional scenario work on more detailed distribution of bioenergy demand and 194 

inform policy planning about potential sustainability conflicts, based on which policy could be revised. A 195 

challenge is that current obligations exist only up to 2020, and more long-term strategies vary both in 196 

timespan and level of detail among member states of the EU. 197 

Another key problem for informing biodiversity conservation in practice is that the resolution of the spatial 198 

data is incompatible with the level of detail that is needed. Most global models use an aggregation level of 199 

0.5 x 0.5 degree or higher – this resolution is too coarse for making conclusions of many relevant 200 

biodiversity impacts identified in empirical studies. Attempts have been made to develop more detailed 201 

scenarios. An example of this are the 1x1 km2 projections of agricultural land use up to 2030 developed 202 

using a biofuel crop allocation model that accounts for logistics between fields and refineries (Hellmann 203 

and Verburg 2011). However, there is a clear trade-off here between uncertainty (becoming increasingly 204 

important in the future) and the demand for detail in scenario description and variables. Hellmann and 205 

Verburg needed a detailed projection of biofuel production to justify their high spatial resolution. Still, high 206 

spatial resolution may result in a false sense of detail. 207 

The current IMAGE scenarios encounter similar trade-offs. Because downscaling projections with more 208 

detailed land cover can be useful for refining the quantitative assessment of impact, the IMAGE land-use 209 

scenarios have been downscaled from their native 30’ grid cell size to to a 0.6’ resolution with more 210 

detailed land cover data for biodiversity assessments (Visconti et al. 2011). However, it does not necessarily 211 

increase the spatial accuracy, if the allocation rules are general and uncertainty is high. On the other hand, 212 

using detailed allocation rules instead of downscaling can increase the prediction’s sensitivity to 213 

uncertainty in the assumptions, making the spatially detailed predictions highly uncertain. Over-reliance on 214 
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uncertain predictions when making decisions can lead to misallocation of resources (Pilkey-Jarvis and Pilkey 215 

2008).  216 

Increasing the time horizon in land-use projections necessarily means trading off spatial resolution and 217 

increasing uncertainty. Investments in energy infrastructure are far-reaching; biomass-burning power 218 

plants built today are still online in 2050. Nevertheless, future land-use needs for bioenergy depend on 219 

developments in climatic suitability for biomass production and the realized energy portfolio. Uncertainty 220 

accumulates in predictions over time, which implies that scenarios cannot be interpreted as predictions of 221 

the future. Instead, scenarios can help identify potential problems in the developments they describe, and 222 

design policy through which those problems can be avoided. Accounting for the uncertainties is important, 223 

and robust policy would be an ideal objective. Identifying problems in bioenergy sustainability can be 224 

addressed, for example, by applying sustainability criteria that exclude unsustainable sources of biomass.     225 

Empirical studies have identified the implications on landscape structure and management practices as 226 

important factors determining the impact of bioenergy on biodiversity (Londo et al. 2005; Rowe et al. 2011; 227 

Northrup et al. 2012; Fig. 1). Exploring land-use scenarios with varying landscape structure and 228 

management practices would be ideal, yet currently unfeasible over large spatial scales. In addition to high 229 

requirements for the land-use scenarios, such analyses are also demanding from the perspective of 230 

biodiversity data. Simulations in a virtual landscape can help overcome this problem, and allow formulating 231 

policy recommendations (see Engel et al. 2012 for an example). 232 

Another common limitation of land cover models is that forest age classes, deadwood availability and 233 

vertical structure are missing from most of them, even though these are critical determinants of habitat 234 

suitability for many forest species depending on old growth forest. The local negative impacts of energy 235 

harvesting of stumps and other residues have been well documented (Brin et al. 2012; Jonsell and Hansson 236 

2007; 2011; Lassauce et al. 2012; Sullivan et al. 2011; Victorsson and Jonsell 2012; Åström et al. 2005; see 237 

Fig. 1). Management practices in managed forests determine those important structural features. However, 238 

global land-use scenarios often do not explore management practices, and they do not explicitly allocate 239 

residue uptake or traditional bioenergy (van Vuuren et al. 2010). Furthermore, most scenarios do not 240 

account for forest degradation. This is a limitation to assessing changes in habitat suitability for forest 241 

species in bioenergy scenarios which include energy harvesting of logging residues or other forest 242 

resources. More specific modelling approaches are necessary – and available – to address this issue in more 243 

detail (Sacchelli et al. 2013). 244 
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IAMs allocate land use based on predefined sets of criteria, such as climatic suitability, population density 245 

and demand for resources. The projections are based on scenario-specific assumptions on drivers and 246 

constraints such as energy resources, trade, technological development and environmental conditions, but 247 

often disregard biodiversity conservation opportunities and needs (Davis et al. 2011). Biodiversity 248 

considerations can be included in these rules. For example, IMAGE projections allow for estimating future 249 

bioenergy potential under various natural constraints such as existing protected areas (van Vuuren et al. 250 

2009). However, current conservation measures are not sufficient to halt the ongoing loss of biodiversity 251 

(Butchart et al. 2010), and countries of the world have agreed to increase the coverage of terrestrial 252 

protected areas to 17% from the current 13% already by 2020 (UNFCCC 2010). If such necessary near future 253 

protected area expansions are not accounted for when considering restrictions to the allocation of 254 

bioenergy areas, the scenarios remain unrealistic, adding further challenges to the conservation of 255 

biodiversity. Moreover, further increases in the coverage of protected areas will be necessary to meet 256 

biodiversity targets, especially as the ranges of species are predicted to shift as a response to climate 257 

change (Araújo et al. 2011; Hannah et al. 2007; Hannah et al. 2002; Heller and Zavaleta 2009). More 258 

generally, several studies recommend mainstreaming biodiversity conservation throughout land-use 259 

planning so that the landscape managed for economic purposes would remain biodiversity friendly 260 

(Hannah et al. 2002; Noss 2001; Wilson and Piper, 2008). Neither conservation value of sites nor future 261 

conservation needs are currently included in the IAM-based land-use scenarios. 262 

The extent and location of land set aside for conservation purposes affects the global bioenergy potential. 263 

A scenario where 20% of each biome would be protected for biodiversity, adding up to 25% of the 264 

terrestrial land area, implies a 21% lower bioenergy potential than a scenario where only existing protected 265 

areas are excluded from the estimates (van Vuuren et al. 2009). The extent of protected areas needed to 266 

halt biodiversity loss is a central debate in conservation science, and protecting up to 50% of land area has 267 

been suggested in the literature (Noss et al. 2012). However, the question cannot be answered through 268 

science alone, as it entails accepting certain risk levels and levels of loss, and requires therefore value 269 

judgments as well (Wilhere 2008). Identifying priority areas for conservation can take place in a systematic 270 

planning framework (Margules and Pressey 2000) or by other means of prioritizing areas depending on 271 

objectives and target biodiversity features in question (Brooks et al. 2006). Exploring the potential conflict 272 

between conservation needs and bioenergy production, and the effect of enhanced conservation action for 273 

bioenergy potential, would make the necessary trade-offs and compromises more transparent and open 274 

for debate. Moreover, it is not clear how bioenergy potential varies between different management 275 
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regimes. Would environmental considerations reduce the productivity of lands allocated to energy biomass 276 

production? Research could approach these questions from both global and more localized perspectives. 277 

Global scenarios are useful for policy planning at a regional or national level, as they serve as starting points 278 

for further allocating land use based on more detailed information about regional or national policy 279 

objectives and restrictions. However, for predicting the allocation in more detail within a country or region, 280 

different types of scenarios and allocation rules are needed. In the next section, we provide 281 

recommendations for using and developing IAMs from the perspective of biodiversity assessments and 282 

conservation. 283 

Conclusions and recommendations 284 

Based on our synthesis of the existing literature, we derive recommendations for 1) selecting and 285 

developing modelling tools and practice based on the research question at hand, 2) using the existing IAM 286 

projections in biodiversity assessments to achieve meaningful and robust outcomes, 3) using biodiversity 287 

information in land-use planning, and 4) using the available scenarios in regional bioenergy planning. 288 

Overall, we propose tighter integration of conservation values and needs as well as climate change impacts 289 

to land-use allocation and biodiversity impact assessments (Fig. 2). 290 

The choice of appropriate research tool depends on the research question and scale. IAMs have been 291 

designed to address questions at global or large regional scales, and are therefore appropriate tools for 292 

analyzing questions related to aggregated impacts of alternative policy developments, broad impacts of 293 

bioenergy on biodiversity, and issues related to indirect land use. For questions at local scale, however, 294 

local land use models might be more suitable. Tools designed for different scales could be used in 295 

combination. IAMs can, for example, provide information on boundary conditions for regional level models 296 

that have a higher spatial resolution. These regional tools can subsequently account for habitat quality 297 

implications of harvesting logging residues for energy production, and integrating current and future 298 

conservation values and needs in the land-use allocation rules. We argue that land-use scenarios could be 299 

adjusted to better meet the needs of biodiversity impact assessments, if their spatial accuracy would be 300 

increased through considerations of regional processes (Hellmann and Verburg 2011) also in the longer 301 

term projections. However, increasing spatial accuracy of the land-use scenarios would need to happen 302 

through more detailed policy storylines and processes at a relevant scale. This could mean, for example, 303 

that a model with more detailed input information and higher spatial resolution would be applied to the 304 

boundary conditions set by a global, more general model. When spatial accuracy is increased, also the 305 

sensitivity of predictions to errors increase, so the predictions should be accompanied by quantified 306 
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estimations of uncertainty. Careful consideration of the trade-off between spatial resolution of scenarios 307 

and time scale is necessary to ensure that conclusions based on scenarios are robust to, or properly 308 

acknowledge, the associated uncertainty. 309 

Assessment of bioenergy impacts on biodiversity would gain significantly, if it was possible to assess the 310 

impacts of changing forestry practices due to energy harvesting of logging residues. Existing empirical 311 

evidence of the biodiversity impacts could help in formulating the relationship. Current and future 312 

conservation value of sites could be integrated in the set of land-use allocation rules so that the land-use 313 

allocation algorithm would avoid assigning cells to bioenergy feedstock production or other intensive 314 

management when they contain high value for biodiversity conservation. Comparing land-use scenarios 315 

with and without trade-offs could be used to assess how different considerations affect the economic, 316 

ecological and social costs and benefits of different scenarios. 317 

We believe that, even though IAMs were not developed for biodiversity assessments, they provide 318 

meaningful input for such assessments. However, such scenarios should not be used to predict 319 

consequences for biodiversity disregarding the direct impacts of climate change (de Chazal and Rounsevell 320 

2009). Despite uncertainty associated to bioclimatic envelope models (Buisson et al. 2010; Garcia et al. 321 

2011; Pearson and Dawson 2003), climate change impacts on biodiversity have been predicted to be 322 

substantial, and worryingly in line with observed ongoing biodiversity trends even though time lags in 323 

responses are not negligible (Bertrand et al. 2011; Devictor et al. 2012; Dullinger et al. 2012). In addition, 324 

when interpreting the impacts of bioenergy on species, habitats and conservation opportunities, it is 325 

important to bear in mind that not all bioenergy impacts can be explicitly inferred from IAM outputs. The 326 

most important limitation is the impact of energy harvesting of logging residues, or associated impacts for 327 

forestry management practices.   328 

Conservation value and need are currently not considered in the IAM framework. To minimize conflicts 329 

between biodiversity conservation and bioenergy, biodiversity information could be used to inform the 330 

allocation of bioenergy cells. When potential bioenergy feedstock productivity for each site can be 331 

calculated, spatial optimization tools can also be used to allocate bioenergy production so that bioenergy 332 

targets are met with the least possible impact on biodiversity (Stoms et al. 2012). Such approaches are 333 

current practice in modern conservation planning where land-use conflicts are accounted for. Trade-offs 334 

between optimal allocation of bioenergy feedstock production and conservation could also be quantified 335 

with a replacement cost analysis (Cabeza and Moilanen, 2006; Moilanen et al. 2009).  336 
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Global scenarios of environmental change can quantify the magnitude of the impact on land-use change at 337 

a regional level, and thereby inform the debate on how mitigation actions affect adaptation opportunities 338 

and needs. Furthermore, they can help identifying potential conflicts between different goals. This 339 

information is valuable for planning policy to provide the conflict-avoiding guidance and steering. While 340 

those who contribute to developing and implementing complex predictive models are well aware of their 341 

limitations and associated uncertainties, those who use the outputs as policy support may not be that 342 

familiar with the proper interpretations. 343 

Regional policy planning can gain from global land-use scenarios, even if the policy storylines or level of 344 

spatial detail do not account for specific regional policy goals and measures. They provide a starting point 345 

for more detailed assessment: how would different land-use demands distribute further in a regional policy 346 

context? Identifying areas with high risk of conflict between biodiversity value and bioenergy production 347 

can help formulate policy in such a way that it steers bioenergy production away from sites where harm on 348 

biodiversity would be substantial. For example, the European Union legislation excludes bioenergy 349 

production in protected areas, primary forests or highly diverse grasslands (European Parliament 2009), but 350 

does not define what high biodiversity value means (Eickhout et al. 2008). While the existing scenarios 351 

account for current protected areas (van Vuuren et al. 2010; Sacchelli et al. 2013), policy must acknowledge 352 

the insufficiency of current conservation measures to halt the loss of biodiversity and allow adaptation to 353 

climate change. 354 
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Table and figures  593 

Table 1 Examples of scenario studies addressing biodiversity impacts of bioenergy, including their key findings. 594 

Scale of study 
Observed/ 
Predicted (timescale) 

Type of bioenergy Reference scenario 
Climate change 
mitigation 
acknowledged 

Indicator Impact References 

National 
Predicted (not 
specified) 

Woody debris 
No extraction No 

Basidiomycetes Negative Dahlberg et al. 2011 

Subnational 
Predicted (not 
specified) 

LIHD vs. HILD 
  

No Birds 
Negative for HILD, 
positive for LIHD 

Meehan et al. 2010 

Europe Predicted (2020) 
Short-rotation 
coppice 

 
Homogeneous 
agricultural 
landscape 

 
No 

Plants, birds 
Positive in general, 
no benefit for 
endangered species 

Langeveld et al. 2012 

Europe Predicted (2030) Arable crops 
 
Baseline with less or 
no bioenergy 

 
No 

High nature value 
farmland 

Negative Hellmann & Verburg 2010 

Europe Predicted (2030) 
Arable crops; woody 
biomass 

 
 
Baseline with less or 
no bioenergy 

 
 
No 

Mammals, reptiles, 
amphibians, birds, 
vascular plants, 
freshwater fish, 
aquatic 
macrobenthos, 
butterflies 

Negative Eggers et al. 2009 

Global Predicted (2050) 

Woody biomass, 
logging and 
agricultural residues, 
arable crops 

 
Baseline with less or 
no bioenergy 

 
Yes Mean species 

abundance /bioregion 
Negative Alkemade et al. 2009 
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Fig. 1 Examples of recent empirical studies addressing biodiversity in bioenergy feedstock production 596 

sites in comparison to a reference land-use type. Grey boxes represent feedstock types, impacts or 597 

recommendations that cannot be addressed with current global land-use scenarios. 598 
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Fig. 2 Links between biodiversity data, conservation value and needs, land-use change and climate 600 

change. Black arrows represent links in current assessments, thick grey arrows present links that 601 

should be better integrated in the assessment framework. 602 
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