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Abstract 

Ferropicrites and their differentiates make up a geochemically distinctive group of dikes that 

crosscut Jurassic continental flood basalts of the Karoo large igneous province at Vestfjella, western 

Dronning Maud Land, Antarctica. The Vestfjella ferropicrites can be divided into two geochemical 

types: The depleted ferropicrites have (La/Sm)N of 1.2–1.3, (Sm/Yb)N of 4.5, initial εNd from +7 to 

+8, initial εSr from -18 to -19, and show relative depletion of highly incompatible elements, but 

pronounced enrichment of V; The enriched ferropicrites have (La/Sm)N of 1.7, (Sm/Yb)N of 5.1–

5.4, initial εNd from +3 to +4, initial εSr from 0 to +1, and show general enrichment of incompatible 

trace elements. The immobile incompatible element signatures of the ferropicrites have not been 

significantly affected by alteration, fractional crystallization, or contamination. Based on primitive 

olivine phenocrysts (Fo79-88) and high εNd values, the depleted ferropicrites represent near-primary 

melts derived from anomalous hot mantle sources. Overall, geochemical compositions favor a 

pyroxenite source for the ferropicrites. Unusually high (V/Lu)N values of the depleted ferropicrites 

indicate an affinity to oceanic Fe-Ti gabbros and geochemical modeling favors such a recycled 

mantle source component in them. The enriched ferropicrites probably represent near-primary 

melts, but this cannot be confirmed. They may also record an exceptionally Fe-rich source 

component, but their high Fe contents stem at least partly from relatively low-degree melting at 

high pressures, as indicated by the high (La/Sm)N and (Sm/Yb)N ratios. Examination of a global 

ferropicrite dataset reveals that the recycled Fe-Ti gabbro component is detectable in many 

ferropicrites. 
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1. Introduction 

 

 Ferropicrites are mildly alkaline to sub-alkaline primitive magmatic rocks (MgO = 12–18 wt. 

%) characterized by exceptionally high Fe contents (FeOtot > 13 wt. %; Gibson et al., 2000). 

Ferropicrites were first identified in the 1980’s and 1990’s in Precambrian volcanic suites in the 

Fennoscandian (Hanski and Smolkin, 1989, 1995; Hanski, 1992) and Canadian (Stone et al., 1995; 

Francis et al., 1999) shields, and have been more recently recognized also in several Phanerozoic 

continental large igneous provinces (LIPs; e.g., Siberian Traps, Karoo, Paraná-Etendeka, North 

Atlantic Volcanic Province, Madagascar) as relatively low-volume lava flows or dikes (Gibson et 

al., 2000; Gibson, 2002; Riley et al. 2005). They seem to record a common, albeit minor, magma 

type, which is confined to early stages of continental LIP magmatism (Gibson, 2002; Riley et al., 

2005) and which may indicate a fundamental phase in the evolution of hotspots. Various 

petrogenetic models have associated ferropicrites with mantle heterogeneities, i.e., streaks of Fe-

rich peridotite (Hanski and Smolkin, 1995; Francis et al., 1999; Gibson et al., 2000) or recycled 

oceanic crust (Gibson 2002; Ichiyama et al., 2006). Most recently, their generation has been 

ascribed to partial melting of pyroxenite sources during juvenile evolutionary stages of mantle 

plumes beneath thick continental lithosphere (Tuff et al., 2005). A similar pyroxenite-source, 

however, has been suggested also for less Fe-rich (FeOtot ≈ 10-12 wt. %) oceanic island basalts 

mailto:jussi.s.heinonen@helsinki.fi


Heinonen, J.S., Luttinen, A.V., 2008. Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite 

sources. Lithos 105 (3–4), 347–364. http://dx.doi.org/10.1016/j.lithos.2008.05.010 (Author’s postprint) 

2 

 

(OIBs) and picrites (OIPs) (Sobolev et al., 2005; Herzberg, 2006). This raises the question as to 

whether ferropicrites represent distinctive pyroxenite source compositions or melting conditions, or 

both. 

 Here we report a previously unknown Karoo-related ferropicrite suite from Vestfjella, western 

Dronning Maud Land (DML), Antarctica (Fig. 1). The Vestfjella ferropicrites and their magmatic 

differentiates, designated here as the ferropicritic lineage, are found as dikes crosscutting the 

adjacent Jurassic CFB lavas and have been recognized as a result of geochemical mapping of the 

Vestfjella dike swarm. We use high-precision incompatible element and Nd and Sr isotopic data to 

define the geochemical signature of the Vestfjella ferropicrites and the mantle sources involved. We 

also evaluate the global ferropicrite dataset in order to identify key factors that facilitate generation 

of exceptionally Fe-rich melts in some hotspots. Finally, we discuss the implications of ferropicritic 

magmatism within the context of the Karoo LIP. 

 

 
Fig. 1. Distribution of Jurassic continental flood basalts in (a) reconstructed Karoo LIP and (b) western Dronning Maud 

Land. Gondwana reconstruction in (a) and lithospheric boundary in (b) are after Lawver et al. (1992) and Corner 

(1994), respectively. H.U.S.=H. U. Sverdrupfjella. 

 

2. Geological setting and field relations 

 

 The emplacement of the Middle-Jurassic Karoo LIP was related to the early stages of 

Gondwana breakup. The peak of magmatic activity has been associated with a relatively short 

initial period of rifting at 180±4 Ma (Duncan et al., 1997; Jourdan et al., 2007b). The Karoo-related 

CFBs of western DML represent the uppermost part of the preserved rock strata and overlie 

Paleozoic sedimentary rocks or the Precambrian basement. The Precambrian basement complex 

includes two major crustal domains (Fig. 1b): The Archean Grunehogna Craton in the north consists 

of ~ 3.0 Ga granitic basement (Barton et al., 1987) that is overlain by Proterozoic volcano-

sedimentary sequences and intrusive rocks (Wolmarans and Kent, 1982; Moyes et al., 1995). The 

craton is bounded in the south by the Mesoproterozoic Maud Belt that accreted during the 

Grenvillian orogeny at ~1100 Ma (Jacobs et al. 1998, 2003). 

 The CFBs are exposed at Vestfjella, Heimefrontfjella, and Kirwanveggen (Fig. 1b). They 

form thick stratified lava piles exceeding 900 m in the most voluminous parts at Vestfjella and are 

geochemically heterogeneous low-Ti basalts (Harris et al., 1990; Luttinen et al., 1998). Intrusive 

examples of Karoo magmatism are more widespread in western DML. They are highly abundant at 

Vestfjella, but are also found at Mannefallknausane, Heimefrontfjella, Kirwanveggen, 

Ahlmannryggen, and H. U. Sverdrupfjella (Fig. 1b). Geochemically, the intrusive rocks vary from 
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low-Ti types to high-Ti types (Harris et al., 1991; Luttinen et al., 1998; Riley et al., 2005). The 

high-Ti dikes of Group 3 from Ahlmannryggen consists of high-Fe (FeOtot > 12 wt. %) picrites, 

including three ferropicrites, and may reveal a plume-related mantle source component in the Karoo 

LIP (Riley et al., 2005); this component is generally overprinted by lithospheric contamination of 

the mafic magma types (e.g., Ellam and Cox, 1991; Sweeney et al., 1991; Luttinen et al., 1998; 

Jourdan et al., 2007a).  

 Reliable age data for Karoo-related magmatism in DML are sparse. Based on geochemical 

similarity (Luttinen and Furnes, 2000), geochronological constraints (Peters, 1989; Duncan et al., 

1997; Zhang et al., 2003b), and paleomagnetic record (Hargraves et al., 1997; Peters, 1989), the 

lavas are comagmatic with the ~180 Ma CFBs of southern Africa. Unambiguous 
40

Ar/
39

Ar age data 

for the mafic intrusive rocks are limited to a high-Ti Group 4 type sill from Kirwanveggen (Riley et 

al., 2005) and a low-Ti type gabbro from Utpostane (Vuori and Luttinen, 2003), both dated at 

177.0±1.8 Ma using plagioclase (Zhang et al., 2003b), and an ultrapotassic lamproite dike from 

Vestfjella dated at 158.7±1.6 Ma using phlogopite (Luttinen et al., 2002). All other dated mafic 

dikes and sills exhibit complex 
40

Ar/
39

Ar spectra mostly with anomalous >200 Ma low- and high-

temperature fractions suggestive of excess 
40

Ar (Zhang et al., 2003b; Riley et al., 2005). One of the 

Group 3 dikes at Ahlmannryggen records ~190 Ma mid-temperature fractions (whole-rock) that 

have been interpreted to indicate emplacement of high-Fe picrites during the initial stages of Karoo 

magmatism (Riley et al., 2005). Correlation of the intrusive rocks types with the lavas is further 

hampered by the geochemical differences and the lack of crosscutting field relationships outside 

Vestfjella (Harris et al., 1991; Zhang et al., 2003b; Riley et al., 2005). 

 The ferropicritic lineage of Vestfjella mainly comprises ~1–10 m wide dikes that crosscut 

CFB lavas in N-S or NE-SW directions at Basen, Muren, Kjakebeinet, Steinkjeften, and Utpostane 

(Fig. 1b). One of the dikes crosscuts a gabbroic intrusion at Muren. Extrusive equivalents of 

ferropicrites are not known (Luttinen and Furnes, 2000). A subset of samples consists of glacial 

boulders found abundantly on Basen. Some of the boulders contain chilled, crosscutting margins 

against sandstone. The total number of dikes is 11, but, in places, spatial correlation is hampered by 

poor exposure. Recent 
40

Ar/
39

Ar incremental heating dating of plagioclase in one of the ferropicrite 

samples from Basen (AL/B16-98) yielded a discordant integrated age of ~193 Ma and an “error 

plateau” age of ~164 Ma (Zhang et al., 2003b). The older age is attributable to excess 
40

Ar in 

several high- and low-temperature fractions typified by exceptionally low K/Cl values and apparent 

ages of >200 Ma (Zhang et al., 2003b). The younger age represents ~47 % of the total 
39

Ar released 

and does not correspond to any reliably dated phase of Karoo magmatism (cf. Jourdan et al., 

2007b). 

 

3. Analytical methods 

 

 Geochemical whole-rock compositions were analyzed for 28 hand-sized samples that were 

extracted from the bedrock and glacial boulders. Some samples represent different parts of the same 

dike. The samples were ground in a steel jaw crusher and the freshest chips were handpicked for 

analyses to avoid weathered surfaces and contamination with preparation equipment. The XRF and 

ICP-MS analyses were performed at the Geoanalytical Laboratory, Washington State University. 

Technical notes and principles of these methods have been described by Johnson et al. (1999) and 

Knaack et al. (1994), respectively. The geochemical data for the ferropicritic lineage together with 

the result for international standard BCR-1 are listed in Table 1. Repeated analyses of BCR-1 

indicate high precision in general, although coefficients of variation for Cu (16.7 %), Th (9.5 %), 

and U (9.3 %) are relatively high. Comparison of results for BCR-1 standard with recommended 

values demonstrates good accuracy for both analytical methods. The poor accuracy of Cr analysis 

reflects low concentration in the standard sample: The accuracy for reference samples with higher 

Cr contents (> 30 ppm) is good (Johnson et al., 1999). 
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Table 1 

Whole-rock geochemistry of the Vestfjella ferropicritic lineage 
Sample AL/ 14- AL/ AL/ 22- AL/ 117- AL/ AL/ AL/ AL/ AL/ AL/ AL/ AL/ AL/ 
  B20a-98 KHG-90* B17-98 B4-98 KHG-90* B7-98 KHG-91 B13a-98 B13b-98 B14e-98 B16-98 WM1b-98 WM1c-98 WM1e-98 WM3a-03 WM3b-03 

Type E-FP E-FP E-FP E-FP E-FP E-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP 
Dike 1(cm) 1 2(cm) 2(cm) 2 2 3 4(cm) 4 4 4 5(cm) 5 5 5 5 
Width(m) 1.0 1.0 2.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 
Strike (º) 030 030 010 010 010 010 030 010 010 010 010 035 035 035 035 035 
Lat. (S) 73º01’46” 73º01’50” 73º02’09” 73º01’14” 73º01’04” 73º01’18” 73º46’23” 73º01’18” 73º01’18” 73º01’18” 73º01’22” 73º43’49” 73º43’49” 73º43’49” 73º43’49” 73º43’49” 
Long.(W) 13º25’10” 13º25’18” 13º25’06” 13º23’50” 13º23’38” 13º23’56” 14º56’38” 13º21’47” 13º21’47” 13º21’47” 13º21’52” 15º06’10” 15º06’10” 15º06’10” 15º06’10” 15º06’10” 
Locality¤ Basen Basen Basen Basen Basen Basen Stk Basen Basen Basen Basen WM WM WM WM WM 

Major and minor elements (wt. %, normalized to 100% volatile free)            
SiO2 44.94 44.87 49.95 48.31 49.53 49.07 43.74 46.14 45.66 46.75 45.38 44.60 44.07 43.65 43.84 44.18 
TiO2 3.41 3.21 3.04 3.17 3.14 3.16 3.31 2.89 2.58 2.49 2.47 2.43 2.14 2.07 2.08 2.14 
Al2O3 9.27 8.59 10.99 11.47 11.06 11.29 11.63 10.53 8.86 8.58 8.76 10.54 9.13 8.85 8.88 9.18 
FeOtot 15.50 17.03 13.16 14.31 12.97 13.69 16.59 12.88 13.99 15.03 14.62 14.38 14.37 15.10 14.44 14.51 
MnO 0.18 0.31 0.15 0.18 0.17 0.18 0.21 0.17 0.20 0.24 0.20 0.20 0.20 0.20 0.20 0.20 
MgO 12.84 14.27 10.16 10.54 11.08 10.49 11.31 14.81 18.09 15.75 16.71 14.52 18.65 18.88 19.47 18.46 
CaO 11.37 9.53 9.85 8.56 9.51 9.37 10.20 10.88 9.38 9.42 9.74 10.59 9.24 9.02 8.99 9.02 
Na2O 1.48 1.26 1.94 1.96 1.62 1.76 1.60 1.19 0.85 1.31 1.63 1.68 1.50 1.53 1.43 1.40 
K2O 0.59 0.53 0.37 1.07 0.54 0.59 1.00 0.25 0.17 0.21 0.28 0.85 0.51 0.50 0.48 0.72 
P2O5 0.42 0.39 0.39 0.42 0.37 0.39 0.41 0.25 0.22 0.20 0.21 0.23 0.19 0.19 0.19 0.19 

LOI 4.40 5.45 3.68 4.46 4.56 3.86 1.67 4.86 6.45 3.76 1.07 1.93 1.25 1.58 1.30 2.24 
Total*** 99.33 - 99.82 100.06 - 99.30 98.49 98.95

§
 99.67 98.29

§
 99.55 100.10 98.76

§
 99.62 98.34

§
 98.67

§
 

Mg#** 62 62 60 59 63 60 57 69 72 67 69 67 72 71 73 72 

Trace elements 
(ppm)                
Cr(XRF) 529 549 352 361 370 357 410 727 929 1184 931 1052 1101 1022 1099 1087 
Ni 526 696 338 350 367 370 375 569 974 938 732 587 856 880 897 842 
V 311 319 263 263 284 258 487 428 397 387 401 421 375 364 361 373 
Zr 171 159 156 170 153 160 202 150 138 124 131 121 104 104 102 103 
Ba (ICP) 154 176 140 715 186 165 326 42 26 38 51 93 81 91 76 115 
Rb 11.61 14.20 6.92 18.06 8.50 7.85 22.40 4.47 4.33 6.84 6.84 13.09 8.71 8.39 8.37 11.23 
Sr 355 391 455 246 392 404 768 237 180 273 321 292 281 303 270 313 
Ta 1.44 1.38 1.25 1.28 1.24 1.23 1.00 0.66 0.59 0.56 0.62 0.49 0.45 0.43 0.43 0.45 
Nb 21.29 20.40 17.55 18.05 19.70 17.06 17.22 8.97 8.25 7.54 9.10 6.84 6.08 6.05 5.95 5.98 
Sc 26 26 21 22 26 21 36 30 28 29 30 30 23 28 22 24 
Hf 4.44 4.33 4.16 4.45 4.37 4.10 5.18 4.02 3.53 3.39 3.53 3.10 2.90 2.74 2.81 2.79 
Y 28.37 28 28.27 30.06 27 28.22 27.85 22.66 20.62 18.35 20.05 19.00 16.25 16.65 15.55 15.92 
Th 1.90 1.33 1.86 2.01 1.70 1.86 1.83 0.90 0.74 0.66 0.86 0.57 0.52 0.49 0.49 0.49 
U 0.48 0.52 0.47 0.50 0.52 0.46 0.48 0.26 0.22 0.19 0.21 0.18 0.15 0.15 0.14 0.15 
La 21.17 21.10 18.06 18.15 18.35 17.88 23.27 12.62 10.96 10.39 11.38 9.08 8.32 7.75 7.91 8.02 
Ce 46.07 44.60 38.84 40.34 38.99 38.20 52.28 34.30 28.68 28.46 29.12 23.07 22.57 19.78 21.48 21.75 
Pr 6.01 5.90 5.08 5.31 5.16 4.99 7.00 5.15 4.11 4.34 4.15 3.32 3.50 2.88 3.33 3.40 
Nd 28.27 27.09 23.84 25.20 24.34 23.49 32.61 24.08 19.71 20.18 19.91 16.67 16.71 14.51 16.01 16.36 
Sm 7.90 7.62 7.12 7.58 7.27 7.10 8.26 6.11 5.43 5.14 5.43 4.91 4.64 4.32 4.30 4.44 
Eu 2.91 2.51 2.62 2.75 2.64 2.61 2.77 2.32 1.98 1.71 1.89 1.72 1.63 1.52 1.55 1.55 
Gd 8.05 7.40 7.67 8.25 7.63 7.55 7.95 6.13 5.36 5.19 5.42 5.05 4.64 4.46 4.59 4.62 
Tb 1.23 1.17 1.19 1.25 1.22 1.18 1.17 0.94 0.84 0.78 0.82 0.78 0.71 0.68 0.69 0.70 
Dy 6.59 6.35 6.46 6.98 6.46 6.51 6.29 5.30 4.66 4.35 4.53 4.39 3.99 3.79 3.81 3.88 
Ho 1.15 1.09 1.13 1.18 1.14 1.11 1.06 0.95 0.83 0.77 0.82 0.77 0.70 0.68 0.67 0.69 
Er 2.53 2.49 2.50 2.69 2.59 2.52 2.44 2.23 1.98 1.81 1.90 1.74 1.63 1.54 1.56 1.60 
Tm 0.31 0.31 0.31 0.33 0.30 0.30 0.31 0.29 0.25 0.23 0.24 0.23 0.20 0.20 0.20 0.20 
Yb 1.58 1.63 1.59 1.70 1.59 1.59 1.81 1.56 1.35 1.25 1.30 1.19 1.13 1.06 1.06 1.08 
Lu 0.22 0.23 0.22 0.23 0.22 0.22 0.25 0.22 0.20 0.18 0.18 0.17 0.16 0.15 0.14 0.15 
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Table 1 continued 
Sample AL/ AL/ MHR-1 X2- X6- 128- AL/ AL/ AL/ AL/ AL/ AL/ AL/ AL/ BCR-1 † BCR-1 ‡ 
  KB5-98 KB17-98   KHG-90 KHG-90 KHG-91 B1a-03 B1b-03 B3-03 B5-03 B7-03 B8a-03 B8b-03 B9-03     

Type D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP D-FP basalt basalt 
Dike 6 7 8 9 10 11 blder1(cm) blder1 blder2 blder3 blder4 blder5 blder5 blder6 STD STD 
Width(m) 4.0 ? 8.0 1.5 1.0 1.0 - - - - - - - -   

Strike (º) 045 050 050 070 045 050 - - - - - - - -   
Lat. (S) 73º47’02” 73º47’30” 73º43’40” 73º55’03” 73º55’25” 73º43’43” 73º02 30 73º02 30 73º02’30” 73º02’30” 73º02’30” 73º02’30” 73º02’30” 73º02’30”   
Long.(W) 14º52’22” 14º50’30” 15º02’26” 15º33’44” 15º38’09” 15º02’09” 13º24 00 13º24 00 13º24’00” 13º24’00” 13º24’00” 13º24’00” 13º24’00” 13º24’00”   

Locality¤   Kb Kb EM Up Up EM Basen Basen Basen Basen Basen Basen Basen Basen   

Major and minor elements (wt. %, normalized to 100% volatile free)          WSUGeolab  reference  
SiO2 46.53 46.51 47.96 47.56 45.31 46.88 52.70 46.57 48.28 45.46 47.05 45.00 44.07 45.53 55.54 (0.0) 55.22 
TiO2 3.01 3.02 1.53 4.02 2.61 2.66 2.37 1.61 2.62 1.59 1.70 1.57 1.31 1.44 2.29 (0.4) 2.29 
Al2O3 13.81 13.83 11.01 12.67 14.36 13.85 11.91 8.31 10.66 7.09 8.59 6.84 5.77 7.01 13.76 (0.1) 13.92 
FeOtot 15.59 15.92 10.79 16.05 15.69 15.99 15.32 13.14 13.02 13.21 12.87 13.20 13.45 12.74 12.16 (0.2) 12.32 
MnO 0.19 0.23 0.19 0.23 0.19 0.22 0.22 0.20 0.19 0.20 0.20 0.20 0.20 0.19 0.19 (0.4) 0.18 
MgO 6.20 6.16 16.52 5.12 6.80 6.16 10.01 19.21 12.98 23.81 18.57 24.15 27.52 24.39 3.49 (1.4) 3.55 
CaO 11.70 10.78 9.40 10.17 12.09 11.36 5.77 9.09 9.96 7.13 9.24 7.38 6.28 7.14 7.12 (0.2) 7.09 
Na2O 2.34 2.81 1.24 3.03 2.51 2.39 1.34 1.41 1.82 1.11 1.41 1.31 1.06 1.31 3.34 (1.3) 3.34 
K2O 0.39 0.49 1.21 0.70 0.20 0.27 0.20 0.34 0.26 0.26 0.23 0.23 0.23 0.15 1.75 (0.2) 1.72 
P2O5 0.24 0.24 0.17 0.46 0.24 0.22 0.18 0.12 0.22 0.13 0.13 0.13 0.11 0.11 0.37 (0.3) 0.37 

LOI 1.79 1.34 - 0.28 0.70 0.87 7.38 1.55 2.68 1.78 1.23 0.68 1.07 1.04   
Total*** 98.62 98.10

§
 96.94 98.74 98.00 98.47 97.79

§
 99.25

§
 97.96

§
 97.82

§
 98.50

§
 98.38

§
 98.26

§
 98.00

§
   

Mg#** 44 43 75 39 46 43 56 74 66 78 74 78 80 79     

Trace elements (ppm)              WSUGeolab  reference  
Cr(XRF) 85 55 980 89 123 68 965 1211 988 1275 1132 1400 1512 1252 27 (3.6) 16 
Ni 97 95 684 50 117 78 433 848 634 1193 807 1256 1481 1270 0 (0) 13 

V 557 528 300 585 494 516 396 306 448 280 321 283 237 265 405 (1.7) 407 
Zr 131 124 102 246 125 123 104 77 132 81 80 80 66 69 176 (0.6) 190 
Ba (ICP) 128 160 313 268 116 110 83 106 49 66 56 56 37 25 672 (1.9) 681 
Rb 4.63 6.30 26.00 14.20 3.20 2.70 4.91 9.19 5.27 7.26 6.67 4.88 5.69 3.57 48.1 (1.4) 47.2 
Sr 395 437 284 441 479 422 335 251 282 225 242 222 180 188 328 (0.0) 330 
Ta 0.53 0.55 0.41 1.00 0.50 0.40 0.53 0.39 0.49 0.40 0.41 0.41 0.34 0.26 0.85 (2.7) 0.81 
Nb 7.58 7.76 6.40 16.49 8.76 7.35 7.07 5.22 6.68 5.20 5.55 5.54 4.55 3.46 11.88 (2.2) 14.0 
Sc 30 29 29 30 30 31 33 26 28 22 28 25 21 23 X (x) 33 
Hf 3.44 3.53 2.62 6.76 3.45 3.36 2.91 2.10 3.58 2.20 2.19 2.13 1.73 1.85 4.93 (1.5) 4.95 
Y 22.41 20.67 17.78 40.20 22.10 21.53 19.13 14.05 21.17 13.57 15.10 13.29 10.68 12.81 37.78 (0.8) 38 
Th 0.80 0.77 0.42 1.28 0.56 0.63 0.61 0.43 0.60 0.46 0.45 0.48 0.38 0.32 6.26 (9.5) 5.98 
U 0.21 0.20 0.14 0.43 0.17 0.20 0.18 0.13 0.19 0.14 0.14 0.16 0.12 0.10 1.63 (9.3) 1.75 
La 12.13 11.67 7.53 21.45 11.53 10.78 9.78 7.06 10.18 7.11 7.53 7.84 6.28 5.48 25.86 (1.9) 24.9 
Ce 29.54 29.87 16.69 53.02 28.04 26.70 26.09 18.74 28.22 19.04 20.05 20.75 16.63 15.09 53.05 (1.2) 53.7 
Pr 4.20 4.47 2.40 7.59 4.08 3.91 3.86 2.79 4.38 2.83 2.97 3.02 2.43 2.32 7.05 (1.0) 6.8 
Nd 20.91 21.40 12.15 37.16 19.58 19.01 17.94 12.91 20.89 13.06 13.83 13.57 11.07 11.15 28.87 (1.8) 28.8 
Sm 5.88 5.60 3.67 10.25 5.42 5.29 4.67 3.42 5.51 3.43 3.64 3.44 2.76 3.05 6.86 (2.1) 6.59 
Eu 2.17 2.03 1.33 3.34 1.95 1.88 1.22 1.19 1.89 1.19 1.28 1.18 0.95 1.11 2.00 (2.5) 1.95 
Gd 5.85 5.70 3.91 10.21 5.62 5.42 4.77 3.54 5.70 3.47 3.73 3.46 2.72 3.17 6.90 (1.1) 6.68 
Tb 0.91 0.86 0.63 1.58 0.89 0.84 0.76 0.55 0.88 0.55 0.59 0.53 0.44 0.51 1.09 (1.1) 1.05 
Dy 5.05 4.80 3.69 8.78 4.81 4.70 4.41 3.23 4.93 3.14 3.41 3.03 2.49 2.93 6.34 (1.3) 6.34 
Ho 0.91 0.85 0.69 1.59 0.87 0.86 0.82 0.60 0.89 0.58 0.63 0.55 0.45 0.55 1.26 (1.5) 1.26 
Er 2.09 2.08 1.58 3.73 2.09 2.05 1.94 1.46 2.14 1.42 1.56 1.33 1.12 1.30 3.62 (1.4) 3.63 
Tm 0.28 0.27 0.22 0.48 0.28 0.28 0.26 0.20 0.28 0.18 0.20 0.18 0.14 0.17 0.53 (1.2) 0.56 
Yb 1.56 1.49 1.26 2.79 1.52 1.49 1.48 1.08 1.55 1.01 1.15 0.98 0.82 0.95 3.33 (0.9) 3.38 
Lu 0.22 0.22 0.19 0.39 0.21 0.22 0.22 0.16 0.22 0.15 0.16 0.14 0.12 0.14 0.50 (1.9) 0.51 

For trace elements from Cr to Zr XRF-values given; for trace elements from Ba to Lu ICP-MS values given; cm = chilled margin; blder = boulder sample; STD = standard; * Data from Luttinen et al. (1998); ** Mg-

number [atomic Mg/(Mg+Fe2+); Fe2+/Fetot = 0.9]; *** Total prior to normalization; 
§
 LOI included in Total; ¤ Abbreviations of localities: Stk = Steinkjeften, WM = West-Muren, Kb = Kjakebeinet, EM = East-Muren, 

Up = Utpostane; † Washington State University GeoAnalytical Lab standard (BCR-1) analysis (average; coefficient of variation for repeated analyses of corresponding sample BCR-P presented in parentheses); X = no 

given value; ‡ Recommended values for BCR-1 (after Govindaraju, 1994). 
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 The isotopic analyses were performed at the Unit for Isotope Geology, Geological Survey of 

Finland. The rock powders were dissolved in molded Teflon vials in a 1:4 mixture of HNO3 and 

HF. After evaporation, the samples were dissolved in HCl and a solution spiked with a 
149

Sm-
150

Nd 

tracer. Strontium and light rare earth elements (REE) were separated using standard cation 

exchange chromatography, after which Sm and Nd were purified on quartz columns. Isotopic ratios 

of Sr, Sm, and Nd and concentrations of Sm and Nd were measured on a VG Sector 54 mass 

spectrometer. Repeated analyses of NBS987 Sr standard gave 
87

Sr/
86

Sr of 0.710258 ± 0.000026 

(mean and external 2σ error of twelve measurements). The 
87

Sr-
86

Sr ratios are reported relative to 
87

Sr/
86

Sr = 0.71024 of NBS987 and the external error is estimated to be better than 0.002%. 

Repeated analyses of La Jolla Nd standard gave 
143

Nd/
144

Nd of 0.511849 ± 0.000011 (mean and 

external 2s error of eleven measurements); external error in the reported 
143

Nd-
144

Nd ratios is 

estimated to be better than 0.0025%. 

 

4. Whole-rock geochemistry 

 

4.1. General characteristics and grouping 

 

 The geochemical data for the dike samples show a wide range of major element contents (e.g., 

MgO = 5–28 wt. %, SiO2 = 44–53 wt. %, CaO = 6–12 wt. %, Al2O3 = 6–14 wt. %, and Na2O+K2O 

= 1.0–3.7 wt. %; Table 1; Fig. 2). On the basis of CIPW norms, the rocks range from quartz- and 

olivine-tholeiites to mildly alkaline basalts. Following the guidelines of Le Bas (2000), samples 

with MgO < 12 wt. % are referred to as basalts or picrobasalts, samples with MgO = 12–18 wt. % 

are classified as picrites, and samples with MgO > 18 wt. % can be designated as meimechites. The 

high-MgO samples are characterized by exceptionally high FeOtot contents (~11–17 wt. %) that 

distinguish them from MgO-rich Karoo lavas (Fig. 2a). Five picrite samples from three dikes have 

FeOtot > 13 wt. % and are classified as ferropicrites. We emphasize that the meimechitic samples 

are geochemically quite similar to the ferropicrites (cf. Table 1) and notably different from alkaline 

meimechites from the type locality in Siberia (SiO2 ≈ 40 wt. %; Al2O3 ≈ 3 wt. %; Na2O ≈ 0.2 wt. %; 

Fedorenko and Czamanske, 1997). The samples with MgO > 20 wt. % plot outside the area of Fig. 

2; they contain abundant olivine phenocrysts (> 40 vol. %), have high Ni (> 1190 ppm), and are 

probably of accumulative origin. The FeOtot contents of the basaltic samples show overlap with 

those of the CFB lavas of Vestfjella (Fig. 2a), but, similar to the meimechitic samples, they can be 

associated with the ferropicrites on the basis of their characteristic incompatible element signatures 

as discussed below.  

 Major, minor, and trace element contents are plotted against MgO in Fig. 2. We have used 

MgO as the differentiation index, because the relative Fe-enrichment of ferropicrites significantly 

lowers their Mg# [atomic Mg/(Mg+Fe
2+

), assuming Fe
2+

/Fetot = 0.9] relative to those of “common” 

basalts and picrites at a given MgO content (Fig. 2b). Analyses of several samples from individual 

dikes indicate that the chilled margins generally have lower MgO contents than the central parts 

(Table 1). Although the geochemical data show scatter at a given MgO content, some general trends 

can be seen: The concentrations of TiO2, P2O5, V, and Nb generally increase and that of Cr 

decreases with decreasing MgO. Variation of Al2O3 records a possible inflection point at MgO ≈ 7 

wt. %. 

 A subgroup of six samples can be distinguished based on relative enrichment of immobile 

high field strength elements (HFSE), e.g., P2O5 (0.37–0.42 wt. %), Nb (17–21 ppm), and TiO2 (3.0–

3.4 wt. %) (Fig. 2). They are further characterized by relative depletion in Cr (352–549 ppm) and V 

(258–319 ppm). These six samples are hereafter referred to as the enriched type to distinguish them 

from samples belonging to the depleted type; the latter is less enriched in most incompatible 

elements (e.g., TiO2 = 1.5–2.9 wt. %, P2O5 = 0.17–0.25, and Nb = 6–9 ppm at MgO = 10–18 wt. 

%), but has exceptionally high V (300–448 ppm). One picrobasaltic dike (117-KHG-91) with MgO 
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Fig. 2. Variations of FeOtot, Mg#, Al2O3, TiO2, P2O5, Cr, V, and Nb vs. MgO for the Vestfjella ferropicritic lineage. See 

Section 4.1. for the definition of the depleted and enriched type. Compositions of Vestfjella lavas (Luttinen et al.,1998; 

Luttinen and Furnes, 2000),Mwenezi picrites (Cox and Bristow,1984; Ellam and Cox,1989), Ahlmannryggen Group 3 

dikes (Riley et al., 2005), Paraná–Etendeka ferropicritic rocks (Gibson et al., 2000), and Hawaiian lavas (Mauna Kea; 

Rhodes and Vollinger, 2004) are shown for comparison. Modeled liquid lines of descent (see Section 8. for parameters 

and discussion) of a melt corresponding to sample AL/WM1e-98 are shown as gray arrows. Mg#=atomic 

Mg/(Mg+Fe
2+

); Fe
2+

/Fetot=0.9. 
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= 11 wt. % has high incompatible element contents comparable with the enriched type (e.g., P2O5 = 

0.41 wt. % and Nb = 17 ppm), but, based on its high V (487 ppm) and the overall geochemical 

signature (see below), we associate it with the depleted type. 

   

4.2. Incompatible trace elements 

 

 The REE geochemistry of the ferropicritic lineage is characterized by enrichment in the light 

REE (LREE) with chondrite-normalized (La/Yb)N of 4–9 (Fig. 3). Most of the samples have small 

positive Eu-anomalies [(Eu/Eu
*
)N = 1.0–1.2; Eu

*
 = √(Sm*Gd)N]. The (La/Sm)N values of the 

enriched type (1.5–1.8) are higher than those of the depleted type (1.1–1.4). Both types have high 

(Sm/Yb)N and the enriched type has systematically higher values (4.9–5.4) than the depleted type 

(3.2–4.5). The anomalous depleted picrobasalt 117-KHG-91 bears resemblance to the enriched type 

due to high (La/Sm)N = 1.8 and (Sm/Yb)N = 5.0 values. 

 

 
Fig. 3. Chondrite-normalized REE patterns for the Vestfjella ferropicritic lineage. Normalizing values are after 

McDonough and Sun (1995). 

 

 Primitive mantle-normalized incompatible element signatures confirm the division of the 

ferropicritic lineage into two different types (Fig. 4). The enriched type is characterized by a 

relatively smooth signature, whereas the depleted type records marked positive and negative 

anomalies. Generalizing, the enriched type shows enrichment from Th to Ta and depletion from Ta 

to Sc, with a small peak at V [(V/Lu)N = 1.0–1.3] and a trough at Zr and Hf. The smooth 

incompatible element signature with primitive mantle-like (Nb/La)N (0.9-1.0) combined with high 

(Nb/Zr)N (1.7–2.0) and (Zr/Y)N (2.2–2.4) indicates broad geochemical OIB-affinity for the enriched 

type (Fig. 4). The depleted type shows general enrichment from Th to Sr and depletion from Sr to 

Sc, with a trough at P and a pronounced peak at V with (V/Lu)N = 1.4–2.3. The incompatible 

element signature of the depleted ferropicrites shows notably similar general characteristics [e.g., 

(Nb/Zr)N = 0.9–1.1 and (Zr/Y)N = 2.6–2.7] to that of some Hawaiian picrites (Fig. 4). A review of 

published geochemical data using the GEOROC database (http://georoc.mpch-

mainz.gwdg.de/georoc/) indicates, however, that the pronounced positive V anomaly and the 

negative P anomaly are quite uncommon in OIB, MORB and CFB lavas and dikes (cf. Fig 4), but 

common in ferropicrites (e.g., Hanski, 1992). 

 

 

 

 

http://georoc.mpch-mainz.gwdg.de/georoc/
http://georoc.mpch-mainz.gwdg.de/georoc/
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Fig. 4. Primitive mantle-normalized incompatible element patterns for the Vestfjella ferropicritic 

lineage. Average compositions of N-MORB (Sun and McDonough, 1989; V and Sc from Salters 

and Stracke, 2004), OIB (Sun and McDonough, 1989; V and Sc calculated after GEOROC 

(http://georoc.mpch–mainz.gwdg.de/georoc/)), and subset of Hawaiian picrites (Mauna Loa; 

Gaffney, 2002) are shown in gray for comparison. Normalizing values are after Sun and 

McDonough (1989) and, for V and Sc, after McDonough and Frey (1989). 

 

5. Neodymium and strontium isotopes 

 

 Neodymium and strontium isotopic data on eight samples representing the ferropicritic lineage 

are shown in Table 2 and illustrated in Fig. 5. Isotopically, the studied dikes are markedly different 

from the majority of Karoo-related CFBs based on their radiogenic Nd initial isotopic ratios at 180 

Ma. The depleted ferropicrites AL/B16-98 and AL/WM1e-98 show highly radiogenic initial Nd 

isotopic compositions with εNd of +7.2 and +8.0, respectively. The εNd values of the depleted basalts 

are somewhat lower and range from +6.3 to +4.8, and those of the enriched ferropicrites range from 

+3.6 to +1.8. The Sr isotopic compositions are coupled with Nd isotopic compositions and the 

initial εSr values range from highly negative (–18.9 to –11.2) in the depleted ferropicrites and basalts 

to slightly positive (+0.2 to +10.6) in the enriched ferropicrites. Overall, the Nd and Sr isotopic 

compositions of the ferropicritic lineage plot within the depleted mantle array, overlap with the field 

of CT2 dikes of Vestfjella, and are comparable with those of ferropicrites and some other dikes 

belonging to Group 3 of Ahlmannryggen (Fig. 5). The depleted ferropicrites exhibit DM-model 

ages of ~180 Ma (De Paolo, 1981) consistent with derivation of their parental magmas from an old, 

highly LREE-depleted mantle source (Fig. 5).  

 In general, the Vestfjella ferropicrites plot within the isotopic compositional field of other 

Phanerozoic ferropicrites (Fig. 5b). Their isotopic compositions are in fact remarkably variable 

compared to individual ferropicrite suites with the depleted ferropicrites showing affinity to the 

ferropicrites of Japan, Ahlmannryggen, Madagascar, and Siberia and the enriched ferropicrites 

resembling the ferropicrites of Paraná-Etendeka (Fig. 5b). Compared to the depleted ferropicrites, 

the ferropicrites of Ahlmannryggen, Madagascar, and Siberia exhibit relatively high Sr at given Nd, 

however. 
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Table 2 

Isotopic data for the Vestfjella ferropicritic lineage 

Sample Mg#* Rb
†
 Sr

†
 

87
Rb/

86
Sr 

87
Sr/

86
Sr

‡
 

87
Sr/

86
Sr (i)

§
 εSr

§
 Sm Nd 

147
Sm/

144
Nd 

143
Nd/

144
Nd

‡
 

143
Nd/

144
Nd(i)

§
 εNd

§
 

Depleted type  (ppm) (ppm)     (ppm) (ppm)     

AL/WM1e-98 71 8.37 303 0.07992 0.703200 ± 50 0.703036 - 18.4 5.10 18.89 0.1633 0.513008 ± 10 0.512816 + 8.0 

AL/B16-98 69 6.84 321 0.06165 0.703118 ± 20 0.702996 - 18.9 6.11 23.51 0.1572 0.512958 ± 10 0.512773 + 7.2 

X6-KHG-90 46 3.20 479 0.01933 0.703550 ± 50 0.703507 - 11.2 5.27 20.83 0.1529 0.512861 ± 11 0.512681 + 5.4 

AL/KB5-98 44 4.63 395 0.03391 0.703482 ± 50 0.703397 - 12.7 5.68 22.17 0.1575 0.512848 ± 08 0.512662 + 5.0 

128-KHG-91 43 2.70 422 0.01851 0.703480 ± 50 0.703439 - 12.2 5.44 21.22 0.1550 0.512833 ± 14 0.512650 + 4.8 

X2-KHG-90 39 14.20 441 0.09315 0.703390 ± 50 0.703144 - 16.2 9.84 39.43 0.1509 0.512908 ± 11 0.512730 + 6.3 

Enriched type              

AL/B20a-98 62 11.61 355 0.09461 0.704550 ± 50 0.704320 + 0.2 8.12 32.10 0.1531 0.512744 ± 13 0.512564 + 3.1 

AL/B7-98 60 7.85 415 0.05472 0.705180 ± 50 0.705044 + 10.6 7.28 27.27 0.1615 0.512688 ± 12 0.512498 + 1.8 

14-KHG-90** 62 11.05 374.9 0.08523 0.704563 ± 13 0.70434 + 0.7 7.05 28.35 0.1503 0.512768 ± 10 0.512591 + 3.6 
                            * Mg-number [atomic Mg/(Mg+Fe2+); Fe2+/Fetot = 0.9] 

** Data from Luttinen et al. (1998). 
†
 Analyzed with ICP-MS at the Washington State University (cf. Table 1). 

‡
 87Sr/86Sr normalized to 86Sr/84Sr = 0.1194 and 143Nd/144Nd normalized to 146Nd/144Nd = 0.7219. Within-run error expressed as 2σm in the last significant digits. 

§
 Initial 87Sr/86Sr, 143Nd/144Nd, εSr, and εNd, calculated at 180 Ma using 87Sr/86Sr = 0.7045 and 87Rb/86Sr = 0.0816, and 143Nd/144Nd = 0.512638 and 147Sm/144Nd = 0.1966, respectively. 

 
Fig. 5. εNd vs. εSr diagrams of the Vestfjella ferropicritic lineage and (a) other Karoo-related CFB suites and (b) Phanerozoic rocks reported as ferropicrites. The dashed lines indicate the 

oceanic mantle array and its low-εNd–high-εSr continuation (cf. Menzies and Murthy, 1980). Data sources in (a): Hawkesworth et al. (1984), Ellam and Cox (1991), Sweeney et al. 

(1994), Luttinen and Furnes (2000), Riley et al. (2005), and Jourdan et al. (2007a,b), Lightfoot et al. (1993), Fram and Lesher (1997), Storey et al. (1997), Gibson et al. (2000), Riley et al. 

(2005), and Ichiyama et al. (2006). 
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6. Petrography 

 

6.1. Picritic and meimechitic samples  

 

 The picritic and meimechitic samples are olivine porphyritic and some of the picritic samples 

also contain clinopyroxene phenocrysts. The depleted and enriched types show similar petrographic 

characteristics, except that the samples representing the enriched type are more altered than the 

depleted type samples. Euhedral or subhedral olivine is the main phenocryst phase (13–49 vol. %; 

Ø ≤ 5 mm). It is commonly well-preserved in the depleted type samples, but invariably altered to 

mafic layer silicates in the enriched type samples. Representative data on olivine phenocrysts in two 

depleted ferropicrite dikes record relatively high CaO typical of volcanic olivine and Mg-rich 

compositions (Fo79–88; Table 3). In the ferropicritic dike from Muren (sample AL/WM1e-98), some 

phenocrysts have a more magnesian rim relative to the core. Olivine phenocrysts in both 

geochemical types contain large, round inclusions (Ø ≤ 0.8 mm) that consist of clinopyroxene, 

kaersutitic hornblende, spinel, and fine-grained mesostasis. Kaersutite is found only in these 

inclusions. Clinopyroxene is found as phenocrysts and microphenocrysts (5–33 vol. %; Ø ≤ 1.5 

mm) in picrites with MgO < 15 wt. %. It is subhedral, zoned, slightly reddish, often glomerophyric, 

and invariably fresh. Plagioclase has not been observed as a phenocryst phase in the picrites or 

meimechites.  

 The groundmass consists of fine- to medium-grained prismatic clinopyroxene, interstitial 

plagioclase, Fe-Ti oxides, and minor quantities of brownish mica, and secondary sericite, saussurite, 

and oxides. Some of the samples contain sparse amygdales: the vesicles (Ø < 1mm) are filled with 

secondary quartz and mafic layer silicates. 

 
Table 3 

Representative olivine compositions for the depleted ferropicrites of Vestfjella 

Sample 
AL/B16-

98 
AL/B16-

98 
AL/B16-

98 
AL/B16-

98 
AL/B16-

98   
AL/WM1e-

98 
AL/WM1e-

98 
AL/WM1e-

98 
AL/WM1e-

98 
AL/WM1e-

98 

crystal 1 2 2 3 3  1 2 2 3 3 

position core core rim core rim   core core rim core rim 

SiO2 39.92 40.10 39.81 39.76 39.63  40.28 39.20 39.88 38.91 39.43 

TiO2 0.00 0.04 0.02 0.01 0.00  0.06 0.00 0.04 0.01 0.04 

Cr2O3 0.09 0.09 0.11 0.04 0.05  0.11 0.04 0.08 0.02 0.07 

FeO 11.92 12.48 13.31 14.33 16.60  13.28 17.44 14.23 19.42 16.78 

MnO 0.18 0.12 0.14 0.20 0.24  0.16 0.32 0.15 0.28 0.26 

NiO 0.39 0.48 0.43 0.40 0.38  0.40 0.30 0.39 0.26 0.31 

MgO 46.85 46.86 46.07 44.97 43.07  46.02 42.86 44.70 41.09 43.20 

CaO 0.25 0.27 0.31 0.35 0.38  0.44 0.32 0.43 0.45 0.47 

Na2O 0.14 0.21 0.30 0.27 0.15  0.18 0.20 0.20 0.21 0.09 

K2O 0.01 0.01 0.03 0.03 0.00  0.00 0.00 0.00 0.01 0.02 

Sum 99.75 100.67 100.54 100.37 100.51   100.93 100.67 100.08 100.67 100.68 

Fo content 88 87 86 85 82  86 81 85 79 82 
                        

Data obtained by electron microprobe (Cameca SX-100) analysis at Department of Earth Sciences at University of  Cambridge. The 

microprobe was operated at 20 kV accelerating voltage, 1 μm beam width, 3 nA beam current, and using energy dispersive X-ray 

detector. 

 

6.2. Basaltic samples 

 

 The basaltic dikes typically are clinopyroxene or plagioclase porphyritic (9–20 vol. % of 

phenocrysts), but some of them show equigranular subophitic textures in the central parts. 

Clinopyroxene phenocrysts are confined to basaltic dikes with MgO > 7 wt. %, whereas plagioclase 

phenocrysts are only found in dikes with MgO < 7 wt. %. The main minerals in the equigranular 

rocks are plagioclase (38–60 vol. %), clinopyroxene (24–38 vol. %), oxides (5–10 vol. %), and 
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olivine (0–22 vol. %). Olivine phenocrysts are found only in basalts with MgO > 10 wt. % and are 

completely altered to mafic layer silicates in the enriched type samples. Clinopyroxene is invariably 

fresh, whereas plagioclase is commonly slightly altered to sericite and saussurite. Depleted 

picrobasalt 117-KHG-91 is characterized by abundant euhedral ilmenite and zoned clinopyroxene 

that shows purple to brownish pleochroism indicative of a high Ti content.  

 

7. Assessing melt compositions: olivine–melt equilibrium 

 

 Accumulation of relatively Fe-rich olivine (e.g., Fo70) from melts with relatively low Mg and 

Fe contents can generate ferropicritic whole-rock compositions. From a petrogenetic point of view 

it is crucial to evaluate whether the whole-rock data on the Vestfjella ferropicrites represent true Fe-

rich melt compositions. We address this question by using compositional data on olivine in two 

depleted type dikes that show ferropicritic to meimechitic whole-rock compositions (Table 3). 

 The analyzed samples are characterized by primitive olivine (> Fo79; Table 3). The most Mg-

rich olivine compositions (Fo86 in AL/WM1e-98 and Fo88 in AL/B16-98) correspond to olivine that 

would crystallize from primary mantle-derived melts. Assuming a KD(Fe-Mg)
ol-liq

 of 0.35 [mean 

value for magmas equilibrated at elevated pressures (>2.3 GPa); Putirka, 2005], Fo86-88 would have 

been in equilibrium with a melt with Mg# = 68–71, respectively (e.g., if MgO = 16 wt. %, then 

FeOtot = 13–15 wt. %). Importantly, the ferropicritic (MgO = 15–17 wt. %) and also the 

meimechitic (MgO = 18–19 wt. %) parts of these dikes show Mg# within or very close to this range 

(Table 1). Some of the meimechitic samples with Mg# = 71–73 probably record olivine 

accumulation in picritic parental magma, however. Similarly, the highly magnesian (MgO > 23 wt. 

%) and olivine-rich (> 40 vol. %) samples from meimechitic boulders are likely to represent 

cumulates, although we do not have olivine data for them. These calculations and observations 

indicate that the depleted ferropicrites are likely to represent true ferropicritic melts. The similar 

FeOtot contents of the ferropicritic and meimechitic samples underpin the fact that accumulation of 

Mg-rich olivine phenocrysts does not lead to Fe-enrichment in the cumulate. 

 We cannot similarly evaluate whether the more altered enriched type samples represent melt 

compositions. Nonetheless, the chilled margin sample AL/B20a-98 geochemically (MgO = 12.84 

wt. %, FeOtot = 15.50 wt. %) and petrographically resembles the depleted type chilled margins, and 

may well represent a ferropicritic melt composition. The possibility that the exceptionally high Fe 

contents of some of the enriched type samples are caused by accumulation of Fe-rich olivine cannot 

be completely excluded, however. 

 

8. Geochemical effects of alteration and differentiation: tracing primary melt signatures 

 

 Petrogenetic studies on the ferropicritic lineage require evaluation of the effects of magmatic 

differentiation and subsequent secondary alteration processes on the primary geochemical 

signatures inherited from the mantle source. 

 Pseudomorphed olivine, sericitized plagioclase, and amygdales indicate subsolidus alteration 

of the studied samples. Most of the samples, however, are relatively well-preserved compared to the 

CFBs they intrude. HFSEs show systematic behavior in all samples (Fig. 4); they are widely 

regarded as immobile elements and probably have not been affected by subsolidus processes. In 

contrast, the large ion lithophile elements (LILE), such as Rb and Ba, show relatively large 

variations (Table 1). The least-altered samples have uniform LILE/HFSE values that may reflect 

magmatic compositions, but we have excluded LILE from the discussion due to obvious 

uncertainties related to these easily mobilized elements. 

 The wide range of MgO contents (5.1–27.5 wt. %) and the high amount of phenocrysts 

indicate that fractional crystallization had a significant role in the evolution of the ferropicritic 

lineage. We have modeled fractional crystallization of a depleted ferropicrite parental melt at 
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different pressure conditions using the PELE software (Boudreau, 1999). Full listings of the models 

are available from the first author upon request. Fractional crystallization models using a parental 

melt corresponding to sample AL/WM1b-98 yielded best results when cooling was coupled with 

decompression  from 2.5 GPa and 1580 ºC (liquidus T at 2.5 GPa) to 0.1 GPa and 1100 ºC.  The 

simulated liquid line of descent and the composition of the solid fractionate fit fairly well with the 

geochemical data and the phenocrysts assemblages of the ferropicritic lineage (Fig. 2). Specifically, 

crystallization of clinopyroxene before plagioclase at >10 wt. % MgO, as indicated by the 

geochemical and petrographical data, was successfully simulated only at relatively high pressures 

(> 1 GPa). A polybaric crystallization model is further compatible with the reverse zoning observed 

in olivine phenocrysts (Table 3) as pressure correlates positively with the Fe-Mg olivine-liquid Kd 

(Ulmer, 1989). In the best-fit model, the crystallization sequence of fractionating minerals was 

olivine (liquidus phase), Cr-spinel (MgO < 13 wt. %), clinopyroxene (MgO < 11 wt. %), and 

plagioclase (MgO < 7 wt. %). Such a fractionation model will not significantly change the 

incompatible element ratios of magmas, apart from those involving Sr in the most evolved depleted 

type samples (MgO < 7 wt. %), which is accordant with the conformable mantle-normalized 

patterns of depleted type samples in Fig. 4.  

 Most of the Karoo-related lavas and dikes show strong geochemical indications of 

contamination with crust or lithospheric mantle (e.g., Ellam and Cox, 1991; Sweeney et al., 1991; 

Luttinen et al., 1998; Jourdan et al., 2007a) and the ferropicritic magmas most probably have also 

interacted with the lithosphere. We have used contamination-sensitive trace element ratios (Th/Ta, 

La/Sm, Ti/Zr, and La/Nb) and εNd values to evaluate whether the incompatible element and isotopic 

signatures of the ferropicritic lineage have been significantly overprinted by contamination. The 

results of EC-AFC modeling (Bohrson and Spera, 2001) of crustal contamination and AFC 

modeling (DePaolo, 1981) of lithospheric mantle contamination are summarized in Fig. 6 and the 

model parameters are listed in Table 4. In the case of lithospheric mantle contamination, we 

preferred simple AFC modeling (cf. Ellam and Cox, 1991; Luttinen and Furnes, 2000) due to 

uncertainties regarding partial melting and dissolution processes (Foley, 1992) and the composition 

and thermodynamic properties of metasomatized lithospheric mantle. For the lithospheric mantle-

derived and crustal contaminants we used, respectively, a Vestfjella lamproite (Luttinen et al., 

2002) and hypothetical Archean and Proterozoic granitoids in accordance with the proximity of 

Vestfjella to the Archean-Proterozoic lithospheric boundary of DML (Fig. 1b). 

The depleted ferropicrite AL/WM1e-98 has markedly high initial Nd (+8.0) corresponding to 

the depleted mantle of DePaolo (1981), clearly has not been extensively contaminated by 

lithospheric material, and has thus been selected to represent the composition of the parental melt. 

We have evaluated the following scenarios: (1) The depleted basalts represent contaminated 

differentiates of the depleted ferropicrites, (2) the enriched ferropicrites represent contaminated 

differentiates of the depleted ferropicrites, and (3) the ferropicritic lineage represents contaminated 

differentiates of Group 3 magmas from Ahlmannryggen (Riley et al., 2005) that record the highest 

initial εNd values so far measured for Karoo LIP (up to +9.0). Although the compositions of 

lithospheric contaminants are hypothetical, we believe that the results illustrate the potential of 

contamination processes to overprinting primary magmas and can be used for estimating the 

geochemical effects of contamination on the ferropicritic lineage.  

 Qualitatively, our models illustrate the controlling influence of lithospheric contamination on 

the geochemical signatures of many Karoo-related magma types, e.g., Vestfjella CFBs, 

Ahlmannryggen Group 4 dikes, and the Mwenezi picrites (Fig. 6). In the case of the ferropicritic 

lineage, the key results of the models can be summarized as follows: (1) Depleted basalts with 

relatively low εNd values (≤ +6.3) may have been contaminated with small amounts (< 2 %) of 

lithospheric material (Fig. 6), but the overall geochemical effect of lithospheric overprinting is 

undetectable in the mantle-normalized signature (cf. Fig. 4). (2) Based on La/Sm, Th/Ta, and Nd, 

the enriched type samples could record incorporation of ~2% of lithospheric mantle material into 
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depleted ferropicrite parental magma (Fig. 6a, c). The combination of high Ti/Zr and low La/Nb 

values in the enriched type, however, implies that their geochemical signature is not caused by 

contamination of any presently known Karoo magma type (Fig. 6b). The relatively low εNd values 

(+3.6 to +1.8) of the enriched type are comparable to those of Hawaiian tholeiites and compatible 

with derivation of the enriched type from a slightly LREE-enriched mantle source relative to DM 

(Fig. 6c, d). Minor overprinting of the geochemical and isotopic signatures, however, cannot be 

precluded. (3) The Vestfjella ferropicrites and Group 3 dikes (including ferropicrites) from 

Ahlmannryggen are unlikely to represent co-genetic magmas despite the fact that some of their 

geochemical differences could be explained by similar contamination models using a Group 3 

picrite with Nd > +8 as a parent magma (Fig. 6a, c, d): Fractional crystallization and contamination 

processes typically lead to increasing Zr and heavy REE concentrations and decreasing Ti/Zr values 

in the daughter magmas. The systematically higher Zr (>228 ppm) and Lu (>0.36 ppm), and lower 

Ti/Zr (< 110; Fig. 6b) of Group 3 picrites (Riley et al., 2005) make them implausible parental 

magmas of the Vestfjella ferropicrites (cf. Table 1). 

 
Table 4 

Thermal and compositional parameters for the contamination models 

EC-AFC model parameters     

Magma liquidus temperature  1510 ºC 

Magma initial temperature  1510 ºC 

Assimilant liquidus temperature  1000 ºC 

Assimilant initial temperature  600 ºC 

Solidus temperature  900 ºC 

Equilibration temperature  950 ºC 

Isobaric specific heat of magma  1484 J/kg K 

Fusion enthalpy   270000 J/kg 

Isobaric specific heat of assimilant 1370 J/kg K 

Crystallization enthalpy  396000 J/kg 

AFC model parameters     

Rate of assimilation   0.5 

Compositional parameters*:   

 parent: contaminants:   

  ferropicrite Archean Proterozoic lamproite 

Th 0.49 (0.001) 3.0 (0.04) 10.7 (0.04) 26.1 (0.04) 

Ta 0.43 (0.29) 0.6 (0.13) 0.9 (0.14) 14.6 (0.09) 

La 7.75 (0.017) 13.81 (0.17) 30 (0.22) 278 (0.12) 

Nd 14.51 (0.04) 11.42 (0.14) 26 (0.17) 229 (0.078) 

Sm 4.32 (0.11) 1.8 (0.13) 4.5 (0.15) 36.4 (0.088) 

Ti 12420 (0.078) 1320 (0.51) 3000 (0.51) 23880 (1.57) 

Zr 104 (0.094) 131 (0.15) 190 (0.18) 1076 (0.18) 

Nb 6.05 (0.088) 7 (0.5) 25 (0.59) 170 (0.072) 

εNd
†
 +8 -52 -7 -6 

* Element concentrations given in ppm. Numbers in parentheses indicate the bulk KD values used in the model (compiled from 
http://www.earthref.org). Compositions of hypothetical ferropicrite primary magma (AL/WM1e-98; Table 1), Archean crustal contaminant (3.27 Ga 
Anhalt Granitoid Suite trondhjemite; average of eight samples from Hunter et al., 1992; Th and Ta from Rudnick and Fountain, 1995; εNd from 

Luttinen and Furnes, 2000), Proterozoic crustal contaminant (Rudnick and Fountain, 1995; Ta from Rudnick and Gao, 2003; εNd compatible with 

Maud Belt data of Arndt et al., 1991), and lithospheric mantle contaminant (lamproite AL/KB8-98 from Luttinen et al., 2002) shown. 
†
 Calculated at 180 Ma (cf. Table 2) 

 

 In summary, the geochemical signatures (Fig. 4), and particularly the immobile incompatible 

element ratios of the ferropicritic lineage closely correspond to magmatic compositions and have 

not been significantly affected by alteration. Furthermore, fractional crystallization and lithospheric 

mantle contamination have not notably overprinted the geochemical signature of the depleted 

ferropicrites. We suggest that the geochemical signatures of the depleted ferropicrites, and possibly 

http://www.earthref.org/
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also those of the enriched ferropicrites, record characteristic features of primary melts and can be 

regarded as geochemical tracers of mantle source regions. The basaltic and meimechitic 

differentiates of ferropicritic magmas are excluded from the petrogenetic discussion unless 

otherwise mentioned. 

 

 
Fig. 6. Variations of (a) Th/Ta vs. La/Sm, (b) Ti/Zr vs. La/Nb, (c) εNd (180 Ma) vs. La/Sm, and (d) εNd (180 Ma) vs. 

La/Nb for the Vestfjella ferropicritic lineage. Compositions of Vestfjella lavas (Luttinen et al., 1998; Luttinen and 

Furnes, 2000), Group 3 and Group 4 dikes of Ahlmannryggen (Ahl; Riley et al., 2005), Mwenezi picrites (Ellam and 

Cox, 1989, 1991), Hawaiian tholeiites (HT; n≈50–250; data from GEOROC: http://georoc.mpch-

mainz.gwdg.de/georoc/), primitive mantle (PM; Sun and McDonough,1989), and a MORB-like hypothetical parent of 

Vestfjella lavas (M; Luttinen et al., 1998) shown for comparison. Results of EC-AFC [with Archean crust (A) and 

Proterozoic crust (P) as end-members] and AFC [with lithospheric mantle (L) as an end-member] modeling of a 

hypothetical primary ferropicrite melt corresponding to sample AL/WM1e-98 also shown (see Table 4 for model 

parameters). Tick marks indicate the amount of assimilated material relative to the original primary melt. 

 

9. Petrogenesis of the Vestfjella ferropicrites 

 

 The Vestfjella ferropicrites have significant geochemical affinities to rock types derived from 

hotspot-type mantle sources (Fig. 4). Geochemical data from oceanic islands worldwide indicate a 

significant component of subducted oceanic crust (eclogite) in hotspot mantle (e.g., Hofmann and 

White, 1982; Weaver, 1991; Sobolev et al., 2007). According to a popular theory, partial melting of 

relatively fusible eclogite inclusions produces SiO2-rich melts that react with olivine in the host 

garnet peridotite and generate a secondary garnet pyroxenite source in upwelling mantle (Yaxley 

and Green, 1998; Sobolev et al., 2005). Subsequent melting of this “refertilized” source yields 
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parental melts with varying proportions of pyroxenite- and peridotite-derived components (Sobolev 

et al., 2005; 2007). Recent studies have concluded that some of the Hawaiian lavas lack the 

peridotite-derived component and represent partial melts of pyroxenite only (Herzberg, 2006). 

Recognizing the overall geochemical similarity of ferropicrites and OIBs and that the exceptionally 

high Fe and Ti contents of ferropicrites preclude a common peridotitic mantle source (Hanski, 

1992), Gibson (2002) applied the “refertilized” source model to ferropicrite magmatism. Such a 

garnet-pyroxenite source is further supported by melting experiments on ferropicritic starting 

material (Tuff et al., 2005). 

 The Vestfjella ferropicrites include samples that probably represent near-primary melts. In the 

CMAS system of O’Hara  (1968), these samples show affinity to melt compositions derived from 

mixed eclogite-peridotite source and garnet pyroxenite sources, but they also plot close to the field 

of garnet peridotite derived melts (Fig. 7a). Garnet peridotite-derived melts are highly magnesian 

(MgO > 20 wt. %), however, and notably low in FeOtot and TiO2, whereas the partial melts of 

garnet pyroxenites are similar to the Vestfjella ferropicrites (Fig. 7b). Given that both ferropicrites 

and oceanic island magma suites are probably generated from pyroxenite-bearing “refertilized” 

sources and that some OIPs represent melting of pyroxenite only, the systematically lower FeOtot 

level in OIPs (~10–12 wt. %; Fig. 2) raises the question as to whether the generation of ferropicritic 

liquids requires specific melting conditions or exceptionally Fe-rich pyroxenite composition, or 

both.  

 

 
Fig. 7. Vestfjella ferropicrites compared with experimental peridotite- and pyroxenite-derived partial melts in 

equilibrium with garnet in (a) pseudoternary Fo-CaTs-Qz diagram (Di projection after Kogiso et al., 2003; using the 

method of O'Hara,1968) and (b) TiO2 vs. FeOtot diagram. Compositions of Hawaiian picrites (nN40; data from 

GEOROC: http://georoc.mpchmainz.gwdg.de/georoc/) are shown for comparison. Starting materials and data sources: 

grt-pxt1=Garnet-pyroxenite at 5 GPa (Kogiso et al., 2003), grt-pxt2=Garnet-pyroxenite at 2.5 GPa (Hirschmann et al., 

2003), ecl/pdt=Eclogite-peridotite mixture at 3.5GPa (Yaxley andGreen,1998), grt-pdt=Garnet peridotite at 4–7GPa 

(Walter,1998),H2O-pdt=H2O-saturated peridotite at 5–11 GPa (Kawamoto and Holloway, 1997). Degree of melting in 

pyroxenite experiments is indicated in (b). 

 

 The influence of oxygen fugacity and water activity on the geochemical compositions of 

garnet pyroxenite-derived melts has not been experimentally studied. Judging from the OIB-like 

Fe2O3/FeO ratios (~0.1) of the Paraná-Etendeka ferropicrites (Gibson, 2002), however, generation 

of ferropicrites does not require exceptionally high fO2 conditions during magma generation (cf. 

Francis et al., 1999). Also the significance of water for the petrogenesis of ferropicrites is poorly 

understood. Above all, opinions differ as to whether the parental melts have been hydrous (Hanski, 

1992; Stone et al., 1997) or anhydrous (Gibson, 2002). The primary magmatic kaersutite in the 

olivine-hosted inclusions of the Vestfjella ferropicrites provides evidence for hydrous parental 
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magmas with up to ~2 wt. % of H2O (cf. Stone et al., 1997). Nevertheless, based on the tendency of 

hydrous rock types to produce relatively Fe-poorer partial melts than corresponding dry rock types 

(e.g., Hirose and Kawamoto, 1995; Kawamoto and Holloway, 1997), the high Fe of the ferropicrite 

parental melts are not likely to result from high volatile contents in the mantle source (cf. Hanski, 

1992; Gibson, 2002). 

 An increase in pressure and a decrease in the degree of partial melting increase the Fe contents 

of pyroxenite-derived liquids (Fig. 7b; cf. Hirschmann et al., 2003). The REE geochemistry of 

volcanic rocks has been frequently used for monitoring partial melting processes, i.e. the degree of 

melting and the pressure conditions (e.g., Putirka, 1999), although the interpretation is not 

straightforward due to several unknown melting parameters (e.g., source composition, residual 

assemblages, partition coefficients, nature of equilibrium). In general, however, variations of 

LREE/MREE and MREE/HREE are thought to be sensitive, respectively, to the degree and depth of 

melting (e.g., Tegner et al., 1998). The Vestfjella ferropicrites exhibit a strong garnet signature with 

high (Sm/Yb)N values (4.5–5.4) exceeding that of OIPs in general (cf. GEOROC; 

http://georoc.mpch-mainz.gwdg.de/georoc/). This could reflect magma generation at notably high 

pressures, but possible involvement of compositionally unusual sources cannot be excluded; in fact, 

the spiked geochemical signature strongly suggests a distinctive source for the depleted ferropicrites 

(Fig. 4). 

 Ichiyama et al. (2006) have suggested that suitable ferropicrite sources include recycled 

ferrobasalts and Fe-Ti gabbros. The amount of FeOtot in such rock types may exceed 20 wt. % and 

is notably higher than in MOR basalts and gabbros in general (<12 wt. %). The geochemical 

signatures of ferrobasalts and Fe-Ti gabbros are quite different, however: The signatures of 

gabbroic rocks are sensitive to accumulation processes and separation of crystals and interstitial 

liquids in the solidification zones of axial magma chambers (cf. Sinton and Detrick, 1992). The 

effects of cumulus plagioclase (Ba, Sr, Eu), pyroxene (V), and Fe-Ti oxides (Ti, V) are readily 

predicted by mineral-melt KD data (e.g., EarthRef: http://www.earthref.org/) and verified by trace 

element data on oceanic gabbros (e.g., Zimmer et al., 1995; Coogan et al., 2001) that frequently 

exhibit cumulate signatures (Fig. 8). The cumulate signature may be preserved to sub-arc depths 

during subduction (Becker et al., 2000; Spandler et al., 2004) and a cumulate source component 

may be traced by the diagnostic geochemical anomalies in mantle-derived melts (Sobolev et al., 

2000; Yaxley and Sobolev, 2007). 

 

 
Fig. 8. Comparison of Vestfjella ferropicrites, pyroxenite-derived Hawaiian picrite (MLKAH-2 from Mauna Loa; 

Norman and Garcia, 1999; cf. Herzberg, 2006), and oceanic gabbros (averages of Coogan et al., 2001) using primitive 

mantle-normalized immobile incompatible element patterns. Normalizing values as in Fig. 4. 

http://georoc.mpch-mainz.gwdg.de/georoc/
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 The geochemical signature of the enriched ferropicrites of Vestfjella resembles that of OIB 

(Fig. 4), whereas the depleted ferropicrites show marked similarities to oceanic gabbros, and Fe-Ti 

gabbros in particular (Fig. 8). We pay special attention to anomalous high (V/Lu)N values, which 

are extremely rare in intraplate and MOR basalts, but characterize the depleted ferropicrites as well 

as many oceanic gabbros. Theoretically, cumulus pyroxene can account for positive V anomalies in 

gabbroic rocks. Geochemical data on oceanic gabbros, however, show strong coupling of (Ti/Gd)N 

and (V/Lu)N (Fig. 8; cf. Coogan et al., 2001) suggesting that (V/Lu)N can be used as a geochemical 

tracer of cumulus Fe-Ti oxide in the source of pyroxenite-derived melts. 

 We have modeled partial melting of pyroxenite sources at high pressures using basaltic and 

gabbroic compositions for the eclogite component. In general, geochemical modeling cannot 

provide unique solutions due to many alternative melting scenarios and poorly constrained 

parameters. We tested the potential of pyroxenite sources with different eclogite compositions to 

produce partial melts with “common” OIP-type and ferropicrite-type geochemical signatures. The 

details of the model are listed in the caption of Fig. 9. Our models focus on REE characteristics and 

(V/Lu)N values and use modal melting models for eclogite and pyroxenite sources at high pressures 

(cf. Hirschmann et al., 2003; Kogiso et al., 2003; Yaxley and Sobolev, 2007). 

 Our results illustrate the potential of basalt-bearing and Fe-Ti gabbro-bearing sources to 

replicate some of the key geochemical differences between the Vestfjella ferropicrites and OIPs. 

The basalt-bearing source produces melting curves that coincide fairly well with the OIP field with 

respect to (La/Sm)N, (Sm/Yb)N, and (V/Lu)N at both modeled pressures, although the (La/Sm)N and 

(V/Lu)N values tend to be somewhat low at given (Sm/Yb)N (Fig. 9). In contrast, the depleted 

ferropicrites of Vestfjella plot close to the ~30 % partial melts of the Fe-Ti gabbro-bearing source at 

5 GPa. The exceptionally Fe-rich (FeOtot = 16.59 wt. %) depleted picrobasalt 117-KHG with 

anomalously high (Sm/Yb)N and (La/Sm)N compared to depleted ferropicrites and basalts (Fig. 9) 

could represent relatively lower degree of partial melting of the Fe-Ti gabbro-bearing source. We 

emphasize that the model parameters have been adopted directly from experimental studies and the 

compositional data for the different components represent averages or typical values; a better fit 

could be obtained by adjusting these parameters. 

 The enriched ferropicrites lack a strong cumulate signature and show an affinity to OIPs with 

respect to (V/Lu)N. Considering that the Fe-Ti gabbro-bearing and the basalt-bearing sources 

produce rather similar melt compositions at 2.5 GPa due to retention of V by pyroxene-dominated 

residual assemblages (cf. Hirschmann et al., 2003), we consider two alternative interpretations to 

their geochemical characteristics: (1) The enriched ferropicrites record weakening of the Fe-Ti 

gabbro signature at relatively low pressure, or (2) the eclogite source component of the enriched 

ferropicrites was basalt-dominated and the magmas were generated by relatively low-degree 

melting at unusually high pressure (>5 GPa). Several pieces of evidence favor the latter scenario: 

First, the overall geochemical differences between the enriched and depleted ferropicrites point to 

different sources. Second, the higher Fe contents of the enriched ferropicrites are not compatible 

with derivation of these rocks from Fe-Ti gabbro-bearing source at lower pressure due to positive 

correlation of Fe-contents of partial melts and pressure. Third, the REE-characteristics are 

incompatible with relatively lower pressure of melting for the enriched ferropicrites. We speculate 

that the source of the enriched ferropicrites may have included a ferrobasalt component (cf. Byerly 

et al., 1976). Such a fertile eclogitic source component cannot be traced using (V/Lu)N and could 

have facilitated melting at unusually high pressure. 

 In conclusion, the geochemical compositions of the Vestfjella ferropicrites are compatible 

with derivation of these magmas from garnet pyroxenite sources. The geochemical signatures of the 

depleted and enriched ferropicrites probably manifest the combined influence of two key factors 

that facilitated generation of ferropicritic rather than OIP-type melts: (1) an unusually Fe-rich 

eclogite component and (2) low-degree partial melting at high pressures. The eclogite component in 

the depleted ferropicrites probably was Fe-Ti gabbro. Such a recycled cumulate source component, 
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primarily indicated by the anomalous (V/Lu)N values (Fig. 9), is likely to have high (Sm/Nd)N and 

low (P/Nd)N values (cf. Coogan et al., 2001) and would be expected to develop highly radiogenic 

Nd isotopic ratios and could help to explain the combination of high Nd values and negative P 

anomalies typical of the depleted ferropicrites (Figs. 4, 5 and 8). The relatively small positive Ti 

anomaly of the depleted ferropicrites compared to that of Fe-Ti gabbro (Fig. 8) probably indicates 

retention of Ti by residual rutile or Ti-rich garnet during partial melting at great depths (Klemme et 

al., 2005; Zhang et al, 2003a). In the enriched ferropicrites, the eclogite component may have been 

ferrobasalt. An enriched basaltic source component is compatible with the lower Nd values and the 

lack of cumulate signatures in these ferropicrites (Figs. 4, 5, 8 and 9). 

 

 
Fig. 9. Partial melting model of Phanerozoic ferropicrites (cf. Table 5), sample 117-KHG-91, and oceanic island picrites 

(grey spots) in (a) (La/Sm)N vs. (Sm/Yb)N and (b) (V/Lu)N vs. (Sm/Yb)N diagrams. Partial melt compositions of two 

hypothetical mantle pyroxenites are indicated at 2.5 GPa and 5.0 GPa. The peridotite component is pyrolite 

(McDonough and Sun, 1995) and the eclogite components correspond to average MORB (dashed lines; Salters and 

Stracke, 2004) and oceanic Fe–Ti gabbro (solid lines; Coogan et al., 2001). Partial melting of eclogite was modeled 

assuming 50% modal batch melting with cpx/grt=9:1 (cf. Yaxley and Sobolev, 2007) and partition coefficients of 

Halliday et al. (1995), Zack et al. (1997), and van Westrenen et al. (1999). Partial melting of the secondary pyroxenite 

(eclogite/peridotite=1:2; Sobolev et al., 2007) was modeled assuming modal batch melting with source modes 

corresponding to 2.5 GPa (cpx/grt=3:2, Hirschmann et al., 2003) and 5.0=GPa (cpx/grt=2:3, Kogiso et al., 2003) 

conditions using partition coefficient of Johnson (1994), Hauri et al. (1994), and Zack et al. (1997). Stippled lines and 

associated percentages indicate degree of melting. La, Sm, Yb normalized to C1-chondrite (McDonough and Sun, 

1995), V and Lu normalized to primitive mantle (McDonough and Frey, 1989; Sun and McDonough, 1989; 

respectively). Data sources for ferropicrites given in Section 10.1. Oceanic island picrites (nN450) compiled from 

GEOROC: (http://georoc.mpch-mainz.gwdg.de/georoc/). 

  

10. Fundamental ferropicrite factors: evidence from global dataset  

 

 To evaluate the general applicability of our petrogenetic model for the Vestfjella ferropicrites, 

we have compiled geochemical data on other ferropicritic suites. Our analysis is restricted to 

Phanerozoic rocks, which have developed under largely similar mantle conditions in terms of 

dynamics and temperatures. 

 

10.1. Global ferropicrite dataset 

 

 Phanerozoic lavas and dikes of ferropicritic composition have been described from several 

CFB provinces including Paraná-Etendeka (Gibson et al., 2000), East Greenland (Fram and Lesher, 

1997), Siberian Traps (Lightfoot et al., 1993; Wooden et al., 1993), Madagascar (Storey et al., 

1997), and Karoo (Riley et al., 2005). Permian dikes from an accreted oceanic plateau in Japan 

(Mino-Tamba belt; Ichiyama et al., 2006) have also been described as ferropicrites, but these 
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samples are more accurately classified as meimechites (cf. Le Bas, 2000). Petrogenetic discussion 

on ferropicrites is complicated by the inconsistent classification criteria used by different authors: 

specifically, the diagnostic FeOtot content of ferropicrites has varied from > 14 wt. % (Hanski and 

Smolkin, 1989) to > 12 wt. % (Riley et al., 2005). Given that FeOtot of 12–13 wt. % are fairly 

common in intraplate picrites, we have defined ferropicrites as mildly alkaline or subalkaline 

picrites (Le Bas, 2000) with FeOtot > 13 wt. % (cf. Gibson et al., 2000). This classification scheme 

is not regarded to represent a natural petrological division, but it helps us to identify possible key 

characteristics of exceptionally Fe-rich primitive subalkaline magmas. 

 As the next step, we have used compositional data on olivine phenocrysts to recognize whole-

rock data that are most likely to represent “primary” ferropicrites, i.e., high-Fe-Mg melts instead of 

olivine cumulates (Table 5). Assuming a constant Fe
2+

/Fetot of 0.9 and KD(Fe-Mg)
ol-liq

 of 0.35, the 

minimum Fo-content of olivine in equilibrium with ferropicritic liquids is Fo81. Mineral chemical 

data on olivine in ferropicrites are rather scarce, however. The available data indicate that the 

depleted ferropicrites of Vestfjella (cf. section 7) and two of the Paraná-Etendeka samples (97SB63 

and 97SB73) contain significant amounts of primitive olivine and can be considered as primary 

ferropicrites. In contrast, judging from the whole-rock and olivine compositions, the high MgO and 

FeOtot contents of Paraná-Etendeka samples 96SB48, 97SB67, and 97SB68 with relatively Fe-rich 

olivine (Fo67 on average) may stem from olivine accumulation. A more specific olivine dataset for 

the ferropicrites from the Siberian Traps and Ahlmannryggen would be required to reliably evaluate 

their primary nature. In addition, accumulation of olivine in the ferropicrites of Madagascar, 

Greenland, and the enriched ferropicrites of Vestfjella cannot be assessed in this way due to the lack 

of published compositional data on olivine. The meimechites from Japan have high MgO (≥ 22 wt. 

%) and low Al2O3 and CaO (both ≤ 5 wt. %), and contain abundant pseudomorphed olivine 

phenocrysts (40–45 vol. %) indicative of cumulate rock (cf. Ichiyama et al., 2007), but the possible 

effect of olivine accumulation on FeOtot contents cannot be reliably estimated without 

compositional data on olivine. 

 
Table 5 

Key characteristics of Phanerozoic rocks reported as ferropicrites 

Location and samples olivines * LOI  Nb/Y 
 

(V/Lu)N 
 

nature
 †
 

Vestfjella depleted type: AL/B14e-98, AL/B16-98, AL/WM1b-98 Fo79–88 (84) 1.1–3.8  0.4–0.5 1.9–2.2 primary 

Paraná-Etendeka: 97SB63,97SB73 Fo76–85 (82) 0.9–1.6  0.9–1.1 1.2 primary 

Paraná-Etendeka: 96SB48, 97SB67, 97SB68 Fo64–81 (67) 0.2–0.5  0.5–0.7 0.9–1.4 cumulate 

Siberian Traps: SG-322301, SG-322332.7, 1F(18) Fo72–81 (78) 7.4–8.1  0.4–1.0 1.1 cumulate? 

Ahlmannryggen: Z1812.1, Z1813.1, Z1816.2 Fo70–86 (?) 1.7–2.6 0.2–0.3 0.8 uncertain 

Vestfjella enriched type: AL/B20a-98, 14-KHG-90 - 4.4–5.5 0.7–0.8 1.3 uncertain 

Madagascar: MAN90-45, MAN90-47  - 0–0.4 0.9–1.0 2.1–2.2 uncertain 

East Greenland: MF91-57b, MF91-57c - 3.5–3.6 - 1.4–1.7 uncertain, alkaline? 

Japan: 040406-OG1, 040522-OG8, 040605-OG17, 040605-OG19 - - 1.4–1.5 0.6–0.8 cumulate, alkaline? 

            Data sources for whole-rock geochemistry are given in section 10.1. LOI values are given in wt. %.  

* Total range in group/formation/samples, calculated average in parentheses. Olivine data sources: Gibson et al., 2000 

(supplementary data); Ryabov et al., 1977; Zolotukhin and Al’mukhamedov, 1991; Zolotukhin et al., 1991; Riley et al., 2005. 
†
 Primary nature of the suite assessed (cf. section 10.1.; Fig. 10) 

 

 Several ferropicrites exhibit considerably high LOI values suggestive of strong alteration 

(Table 5). Secondary loss or gain of alkalis can have a pronounced effect on the normative 

compositions and complicates identification of subalkaline and alkaline rocks. Geochemical 

comparison suggests that ferropicrites can be distinguished from high-Fe-Mg nephelinites, 

basanites, meimechites and meimechite-related alkaline picrites with reasonable confidence using 

the Zr/Ti vs. Nb/Y classification diagram designed for altered and metamorphosed volcanic rocks 

(Fig. 10a). Ferropicrites typically exhibit low Nb/Y values (0.2–1.1) compared to alkaline high-Fe-
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Mg rocks (1.2–4), whereas the meimechites of Japan show alkaline affinity based on high Nb/Y 

values (1.4–1.5) (Table 5; Fig. 10a). Furthermore, ferropicrites can be generally identified using a 

FeOtot/CaO vs. SiO2/Al2O3 diagram (Fig. 10b): Meimechites and related alkaline picrites exhibit 

notably high SiO2/Al2O3 and highly variable FeOtot/CaO and nephelinites and basanites define a 

relatively tight cluster at low SiO2/Al2O3 and FeOtot/CaO values. Ferropicrites, including the 

strongly altered samples from the Siberian Traps and Vestfjella, comprise a fairly well-defined 

group at intermediate SiO2/Al2O3 and FeOtot/CaO values. Two of the reported ferropicrite suites 

plot apart from the main group. The altered ferropicrites of Greenland plot within the field of 

nephelinites and basanites (Fig. 10b), but this affinity cannot be further evaluated using immobile 

trace elements due to lack of Nb data (Table 5). The strongly altered meimechitic samples of Japan 

define a distinct cluster at high SiO2/Al2O3 and FeOtot/CaO values.     

 In conclusion, although critical evaluation of the dataset of Phanerozoic ferropicrites is 

hampered by inadequate chemical data on olivine and uncertainties related to secondary alteration, 

we are able to identify likely examples of primary ferropicrites and cumulates, as well as several 

uncertain ferropicrite suites (Table 5). Three samples from Paraná-Etendeka are likely to represent 

olivine cumulates and the meimechites from Japan may represent cumulates or alkaline high-Fe-Mg 

melts; these rocks are discarded from our database and the subsequent discussion. 

 

 
Fig. 10. Variations of (a) Zr/Ti vs. Nb/Y and (b) FeOtot/CaO vs. SiO2/Al2O3 for Phanerozoic rocks reported as 

ferropicrites. High-Mg nephelinites and basanites (MgO>10 wt.%; n>300; data compiled from GEOROC: 

http://georoc.mpch-mainz.gwdg.de/georoc/), Siberian meimechites and related alkaline picrites (n>50; Arndt et al., 

1995; Fedorenko and Czamanske, 1997; Kogarko and Ryabchikov, 2000), and alkali basalts of the Koloa Volcanic 

Suite, Kauai, Hawaii (only in (b): n=20; Reiners and Nelson, 1998) are shown for comparison. Rock classification in (a) 

is after Pearce (1996). 

 

10.2. Ferropicrite factors: evidence from global dataset 

 

We have compared the REE and V geochemistry of ferropicrites and OIPs worldwide to 

evaluate the significance of high pressure and Fe-Ti gabbro component for generating ferropicrites 

(Fig. 9).  

Ferropicrites show wide ranges and a broad positive correlation of (La/Sm)N and (Sm/Yb)N 

values (Fig. 9a). Compared to OIPs, most ferropicrites exhibit higher (Sm/Yb)N at given (La/Sm)N. 

Furthermore, most ferropicrites have high primitive mantle-normalized (V/Lu)N values and mainly 

plot on the high (V/Lu)N side of the OIP field in Fig. 9b. Interpretation of incompatible element 

ratios of different magmatic suites is not straightforward due to possible effects of differentiation 

processes, and contamination in particular (Fig. 6). Although considerable lower crustal 

contamination has been associated with the Paraná-Etendeka suite (Gibson et al., 2000), most of the 

ferropicrites are considered to represent nearly uncontaminated magmas (Fram and Lesher, 1997; 
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Storey et al., 1997; Gibson et al., 2000; Riley et al., 2005; this study). Therefore, the prevalence of 

high (Sm/Yb)N in ferropicrites may well indicate generation of these magmas by relatively low-

degree melting of garnet bearing sources at relatively high pressures. Importantly, anomalous high 

V contents are not likely to result from contamination and we regard high (V/Lu)N to indicate 

presence of an Fe-Ti gabbro component in many ferropicrites.  

Two ferropicrite suites show geochemical signatures that are indistinguishable from those of 

OIP and have compositional features that do not readily fit into our model. One of the Siberian 

Traps ferropicrites has relatively high (V/Lu)N value indicative of Fe-Ti gabbro-bearing sources (V 

data for the other two Siberian Traps ferropicrites are not available), but it plots in the OIP field 

with respect to (La/Sm)N and (Sm/Yb)N (Fig. 9a). On the other hand, the Ahlmannryggen 

ferropicrites have low, OIP-like (V/Lu)N combined with low (La/Sm)N at given (Sm/Yb)N. We do 

not interpret these anomalous features further, but they may well record different melting conditions 

and/or REE characteristics of their mantle sources. It should also be remembered that the primary 

nature of these unusual ferropicrites has not been confirmed (cf. Table 5). 

Based on the global ferropicrite dataset, and variations in (La/Sm)N, (Sm/Yb)N, and (V/Lu)N in 

particular, we propose that the principal difference between OIPs and ferropicrites is that the latter 

included an exceptionally Fe-rich eclogite source component and were derived as low-degree melts 

at relatively high pressures. These ferropicrite factors are generally, but not necessarily, coupled due 

to the compositional dependence of solidus temperatures. It is possible that some ferropicrites 

simply represent incipient melts of common pyroxenite sources. However, the characteristic 

positive V anomalies of many ferropicrites (Fig. 9) indicate recycled Fe-Ti gabbro to be a 

significant source component, although in some cases other Fe-enriched components of recycled 

oceanic crust, such as ferrobasalts (e.g. Byerly et al., 1976), could have been involved (cf. Ichiyama 

et al., 2006). Fe-Ti gabbros represent a common, albeit volumetrically minor component of the 

oceanic crust (e.g., Niu et al., 2002; Thy, 2003). Ferrobasalts occur abundantly only in fast-

spreading oceanic ridges (e.g., Thy 1985) and, therefore, are expected to be less frequently 

incorporated into upwelling mantle. 

 

11. Ferropicrites and mantle plumes 

 

The generation of ferropicrites has been commonly, but not unanimously (Hanski, 1992), 

linked to mantle plumes (e.g., Gibson et al., 2000; Gibson 2002; Riley et al., 2005; Ichiyama et al., 

2006). We have estimated the mantle source temperatures of ferropicrites using olivine and whole-

rock data on the depleted ferropicrites of Vestfjella. The simplified composition-independent model 

of Putirka (2005) indicates olivine-liquid equilibration temperatures of 1510–1580 ºC for 

ferropicrites (Fig. 11). This temperature range is marginally lower than that of common Hawaiian 

picrites (1570–1620 ºC; Fig. 11), but it exceeds that of MOR basalts (< 1470 ºC; Putirka, 2005), and 

supports derivation of ferropicrites from anomalous hot mantle material that may correspond to 

thermally driven mantle plumes. We emphasize that the purpose of Fig. 11 is not to provide exact 

mantle potential temperatures for ferropicrite sources, but to compare ferropicrites with common 

plume-derived melts. A more elaborate modeling of mantle potential temperatures, with additional 

factors taking into account the effects of, e.g., H2O contents and decompression, would be expected 

to yield even higher temperatures for ferropicrites and OIPs (e.g., Tp Hawaii ~1690 °C) relative to 

MORBs (Tp ~1450–1480 °C; cf. Putirka, 2005). 

The presence of ferropicrites close to the base of CFB successions has been linked to 

generation and preservation of unusually Fe-rich melts in mantle plume starting-heads due to 

relatively low solidus temperatures of ferropicrite sources and less effective overprinting of 

ferropicritic melts by peridotite melting compared to hotter interiors of plume heads and plume tails 

(Gibson, 2002). Based on the ferropicrite factors presented above, we consider that, theoretically, 

generation and preservation of ferropicritic melts could be also expected to relate to regions of 
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limited melting in the peripheral parts of plume tails. Accordingly, ferropicrites might be able to 

intrude the crust and erupt under favorable conditions at different stages of hotspot evolution. In the 

light of current evidence, it is possible that at least some of the Karoo-related ferropicrites were not 

emplaced during the initial stage of magmatism: (1) The Karoo-related ferropicrites are found only 

as dikes crosscutting CFB lavas and gabbros (Vestfjella) or Precambrian basement 

(Ahlmannryggen; Riley et al., 2005). (2) Unambiguous age data for Karoo-related ferropicrites are 

currently not available (Zhang et al., 2003b; Riley et al., 2005). (3) Paleomagnetic data show that 

the enriched ferropicrite dikes of Vestfjella exhibit a reversed magnetic polarity (sample A18/Ba60 

in Peters, 1989), whereas the main part of the Karoo CFBs, including the wall-rock low-Ti lavas in 

Vestfjella, show normal polarity (Hargraves et al., 1997; Peters, 1989). Nevertheless, all of the 

currently known Phanerozoic ferropicrite suites (Table 5) can be associated with magmatism related 

to plume heads and ferropicrites related to plume tails have not been positively identified.   

 

 
Fig. 11. Olivine-liquid thermometer model for the Vestfjella ferropicrites (depleted type dikes 4 and 5) and Hawaiian 

picrites (Norman and Garcia, 1999). X(Mg) and X(Fe) are cation fractions of Mg and Fe
2+

 assuming Fe
2+

/Fetot=0.9. 

Isotherms have been calculated using the composition-independent equations of Putirka (2005). Stippled lines indicate 

olivine compositions and dashed isotherms show temperature ranges defined by the intersections of observed olivine 

phenocrysts compositions (Green et al., 2001; this study) and olivine-controlled liquid lines estimated based on whole-

rock data. Compositional factors (alkalis, H2O), heat of fusion, and decompression along mantle adiabat are not 

incorporated into the model (cf. Putirka, 2005). 

 

Whether or not ferropicrites exist on oceanic islands is of key importance to understanding of 

ferropicritic magmatism. According to Tuff et al. (2005), oceanic ferropicrites have not been found 

because (1) the small-volume Fe-rich melts get diluted in the areas of thin lithosphere by 

voluminous melts from “common” OIP sources, or (2) the early evolutionary stages of plumes are 

simply not represented in the OIP record. Volcanic rocks on oceanic islands are characterized by 

significant geochemical heterogeneity which is especially strong among the pre-shield and post-

shield stage lavas that represent less-voluminous low-degree melts derived from the peripheral parts 

of plume tails (e.g., Reiners and Nelson, 1998). Such volcanic suites also include high-Fe-Mg rocks 

that show geochemical affinities to ferropicrites, but typically have relatively lower SiO2 and higher 

Al2O3 values (cf. Fig. 10b). These particular dissimilarities are compatible with lower degree of 

melting at shallower depths, respectively, and do not necessarily require different mantle sources. 
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We suggest that, similar to ferropicrites, some of the oceanic plume-derived high-Fe-Mg rocks 

could have been generated from Fe-Ti gabbro -bearing mantle sources. For example, Reiners and 

Nelson (1998) have reported post-shield high-Mg alkali basalts with unusually high FeOtot (up to 15 

wt. %) from Hawaii (The Koloa Volcanic Suite, Kauai). These rocks are similar to ferropicrites in 

having relatively high SiO2 (~44 wt. %), low Na2O + K2O (≤ 3 wt. %), and high (La/Sm)N (1.8–

2.6), (Sm/Yb)N (3.5–6.3), and (V/Lu)N (1.0–1.6), and in containing primitive olivines (Fo85-88) 

typical of primary magmas. Their substantially high LOI values (3.5–9.4 wt. %) indicate strong 

alteration, but, because of inadequate geochemical data, Nb/Y values cannot be utilized to further 

assess their alkalinity. In Fig. 10b, they partially overlap the fields of ferropicrites and 

nephelinites/basanites. Based on the ferropicritic characteristics of the Koloa rocks, high FeOtot and 

(V/Lu)N in particular, they may represent melting of Fe-Ti gabbro-bearing sources in plume tails 

and are well worthy of a closer look in search of oceanic correlatives of ferropicrites. 

 

12. Ferropicrites and Karoo magmatism 

 

The presence of ferropicrites as dikes at Vestfjella and Ahlmannryggen (Harris et al., 1991; 

Riley et al., 2005) raises questions regarding the timing, duration, and significance of ferropicritic 

magmatism in the Karoo LIP. Given that the age relationship between the ferropicrites of Vestfjella 

and Ahlmannryggen have not been reliably established and that the distinctive geochemical 

signatures of these suites indicate different mantle sources and melting conditions for them (Figs. 6, 

9 and 12), it is possible that ferropicrite magmas were generated at different stages of Karoo 

magmatism. Evidence of early stage ferropicrite magmatism is lacking in the lava stratigraphy (e.g. 

Erlank, 1984; Harris et al., 1990; Sweeney et al., 1994; Marsh et al., 1997; Luttinen & Furnes, 

2000; Jourdan et al., 2007a), but this could result from the tendency of high-density picrite magmas 

to accumulate in the lower crust or from unrepresentative sampling of the voluminous but patchy 

volcanic record. In addition, strong lithospheric contamination hampers the recognition of possible 

ferropicritic parental melts for the Karoo magma types, although the relatively low FeOtot contents 

of the Karoo magmas do not favor this possibility. One exception is the so-called high-Fe basalt 

suite in the upper part of the Lebombo lava succession (Sweeney et al., 1994). They have 

geochemical similarities with the enriched ferropicrites of Vestfjella (Figs. 5 and 12) and could 

represent differentiates of ferropicritic parental magmas. Judging from their higher La/Nb and lower 

initial εNd values compared to the enriched ferropicrites (Figs. 5 and 12), however, the high-Fe 

basalts include a lithospheric component that renders reliable geochemical correlation ambiguous. 

In summary, correlatives or magmatic differentiates of the Vestfjella ferropicrites have not 

been positively identified in the Karoo LIP. Based on the available data, ferropicritic magmas may 

have been generated from distinctive mantle sources, possibly during several stages of Karoo 

magmatism, but reliable geochronological data are required to establish the intrusive ages of the 

ferropicrites. Although ferropicrites may not represent a volumetrically significant magma type, the 

OIP-like geochemical traits (Figs. 4 and 5) and the high temperatures of the ferropicritic primary 

melts (Fig. 11) support a plume source for the Karoo LIP (cf. Riley et al., 2005), and contribute to 

the debate on the nature of hotspots and the existence of mantle plumes and their significance as 

sources of LIP magmatism (e.g. Foulger et al., 2005). 

 

 

 

 

 

 

 

 



Heinonen, J.S., Luttinen, A.V., 2008. Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite 

sources. Lithos 105 (3–4), 347–364. http://dx.doi.org/10.1016/j.lithos.2008.05.010 (Author’s postprint) 

25 

 

 
Fig. 12. Primitive mantle-normalized incompatible element patterns for depleted (sample AL/WM1b-98) and enriched 

(sample AL/B20a-98) ferropicrites of Vestfjella, high-Fe lava from central Lebombo (RSC-038; Sweeney et al.,1994), 

Mwenezi picrite (N-117; Ellam and Cox, 1989), and ferropicrite from Ahlmannryggen (Z1812-1;Riley et al.,2005). 

Normalizing values as in Fig. 4. 

 

13. Conclusions 

 

Our results on the ferropicritic (FeOtot > 13 wt. %, MgO 12–18 wt. %) dikes and their 

differentiates (basaltic and meimechitic dikes) in Vestfjella, western DML, Antarctica, and analysis 

of a global ferropicrite dataset, lead to the following conclusions: 

 

1. Geochemically, the Vestfjella ferropicrites have broad affinities to oceanic island basalts 

and picrites and can be divided into two distinct types: (a) Depleted ferropicrites less enriched 

in incompatible elements and with relatively low (La/Sm)N and (Sm/Yb)N, high (V/Lu)N , εSr 

from -18 to -19, and εNd from +7 to +8. (b) Enriched ferropicrites more enriched in most 

incompatible elements and with higher (La/Sm)N and (Sm/Yb)N, but lower (V/Lu)N values, εSr 

from 0 to +1, and εNd from +3 to +4. 

  

2. Combined olivine, whole-rock, and isotopic data show that at least the depleted 

ferropicrites represent Fe-rich, near-primary subalkaline to mildly alkaline melt compositions. 

The immobile incompatible element ratios of the dikes have not been significantly affected by 

subsolidus alteration, fractional crystallization, or contamination, and they can be used for 

characterization of the primary melts and the mantle sources of ferropicrites.  

 

3. The major element data of the Vestfjella ferropicrites are compatible with garnet-bearing 

pyroxenitic mantle sources recently suggested for other ferropicrites and OIB. The 

geochemical signature of the depleted ferropicrites, specifically the strong enrichment of V, is 

remarkably similar to that of oceanic Fe-Ti gabbros and indicates such a component in the 

pyroxenite source. Geochemical modeling supports this interpretation and indicates a similar 

source component in most ferropicrites. The enriched ferropicrites presumably record an Fe-
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rich source component, e.g., ferrobasalt, but their high Fe contents could also reflect relatively 

low-degree melting at higher pressure, as indicated by the high (La/Sm)N and (Sm/Yb)N ratios.  

 

4. The Vestfjella ferropicrites lack geochemical correlatives in the Karoo province; 

specifically, their geochemical signatures are distinct from those of the recently reported 

Ahlmannryggen ferropicrites. Markedly high mantle potential temperatures, derived from 

olivine-melt equilibria for the depleted ferropicrites, support involvement of plume sources 

during Karoo magmatism. 

 

5. Petrogenetic research on ferropicrites requires a coherent classification scheme and critical 

evaluation of possible effects of olivine accumulation and alteration. The shortcomings of the 

currently available data, most notably the lack of compositional data on olivine phenocrysts, 

undermine reliable identification of samples representing ferropicrite melts.  
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