

Using Metadata and Context Information in

Sharing Personal Content of Mobile Users
Panu Vartiainen

Helsinki, 27.2.2003
Master’s Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33724802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta/Osasto – Fakultet / Sektion – Faculty

Faculty of Science

Laitos – Institution – Department

Department of Computer Science
Tekijä – Författare – Author

Panu Vartiainen
Työn nimi – Arbetets title – Title

Using Metadata and Context Information in Sharing Personal Content of Mobile Users

Oppiaine – Läroämne

Computer Science
Työn laji – Arbetets art – Level

Master’s Thesis

Aika – Datum – Month and year

 2/2003

Sivumäärä – Sidoantal – Number of pages

 66+1
Tiivistelmä – Referat – Abstract

The thesis discusses possibilities for using metadata and context information in
annotating, sharing, and searching user-created content in the mobile domain. The
first part of the thesis discusses metadata, ontologies, context information, and
imaging. The latter part of the thesis describes a prototype system for classifying and
annotating digital photographs and storing context information as metadata of the
photographs in a mobile phone. Another role of the prototype system is to perform
context- and ontology-based information retrieval using a mobile phone user
interface.

The prototype system contains a limited RDF metadata engine and an ontology
browser for mobile phones, as well as a server-side metadata and content repository.
The implementation demonstrates that a part of the creation-time context, such as the
location and temporal context, can be automatically gathered in a mobile phone, and
stored as metadata for the content. In addition, the same parts of context information
can be used for searching. The content and the metadata can be stored on a server
and shared with other users. The prototype is built around a tourism scenario that
works as an example of how these technologies can be used in a mobile phone.

Classifications (ACM Computer Classification System 1998):
H.3.5 [Information storage and retrieval]: Online information services – Data sharing,
Web-based services; H.5.2 [Information interfaces and presentation]: User Interfaces –
Graphical user interfaces, Input devices and strategies, Interaction styles;
H.2.8 [Database management]: Database applications – Image databases, Spatial
databases and GIS; I.2.4 [Artificial intelligence]: Knowledge representation
formalisms and methods – Semantic networks

Avainsanat – Nyckelord – Keywords

Image classification, metadata, ontology, context information, mobile user interfaces,
mobile imaging
Säilytyspaikka – Förvaringställe – Where deposited

Library of Department of Computer Science, serial number C-2003-
Muita tietoja – Övriga uppgifter – Additional information

This thesis was written under the commission of Nokia Research Center.
The thesis was declared secret until 1st April 2003.

i

Abbreviations

API – Application Programming Interface

DIG – Digital Imaging Group

DAML+OIL – DARPA Agent Markup Language + Ontology Inference Layer

DBMS – Database Management System

GIS – Geographic Information System

GPRS – General Packet Radio Service

GSM – Global System for Mobile Communication

J2ME – Java 2 Micro Edition

J2SE – Java 2 Standard Edition

JDBC – Java Database Connectivity

JPEG – Joint Photographic Experts Group

JSR – Java Specification Request

LIF – Location Interoperability Forum

MIDP – Mobile Information Device Profile

MLP – Mobile Location Protocol

MMS – Multimedia Messaging Service

OWL – Web Ontology Language

PNG – Portable Network Graphics

RDF – Resource Description Framework

RDFS – RDF Schema

SIR – Semantic Information Router

SMS – Short Message Service

URI – Uniform Resource Indicator

W3C – World Wide Web Consortium

WAP – Wireless Application Protocol

WGS – World Geodetic System

XMP – Extensible Metadata Platform

XTM – XML Topic Maps

ii

iii

Contents

Abbreviations i

1 Introduction 1

1.1 Scope of the thesis ... 2

1.2 Scenarios ... 3

1.2.1 Tourism ... 3

1.2.2 Hobby peer group.. 4

1.3 Structure of the thesis ... 5

2 Metadata and ontologies 6

2.1 Metadata and semantics... 6

2.2 Metadata and ontology languages ... 7

2.2.1 RDF and RDF Schema ... 7

2.2.2 DAML+OIL and OWL... 10

2.2.3 Topic maps and XML Topic Maps (XTM).. 12

2.3 Tools, APIs, and frameworks .. 15

2.4 Metadata query languages... 17

2.5 Ontology editors, browsers, and viewers.. 19

3 Context information in the mobile domain 22

3.1 Different types of context... 22

3.1.1 Computing context .. 23

3.1.2 User context .. 23

3.1.3 Physical context.. 26

3.1.4 Timed context ... 26

3.2 Context information as metadata.. 26

3.3 Researches on context-aware tourist information applications 28

4 Imaging and metadata 29

4.1 Metadata in image files in current applications 29

4.2 Mobile imaging.. 30

iv

4.3 Alternative approaches to image categorization and annotation 32

4.3.1 Automatic image classification .. 32

4.3.2 Annotation by speech.. 33

5 Prototype system for mobile content sharing 34

5.1 Requirements and design for the prototype system 34

5.2 System architecture ... 35

5.2.1 Mobile terminal .. 35

5.2.2 Mobile web services... 38

5.2.3 Repository for content and metadata.. 39

5.3 User interface ... 40

5.3.1 Entering content and metadata to the system 40

5.3.2 Searching for images ... 41

5.3.3 Browsing and editing ontologies... 42

5.4 Implementation ... 43

5.4.1 Client-side class structure... 43

5.4.2 Repository server class structure... 45

5.4.3 Web Services class structures... 46

5.4.4 GIS module ... 48

5.5 Ontologies in the prototype... 48

6 From the prototype towards the future 50

6.1 Limitations of the implementation environment and the prototype..... 50

6.1.1 Memory limitations ... 50

6.1.2 API limitations.. 51

6.1.3 Limitations of the prototype... 51

6.2 Evaluation and comparison... 53

6.2.1 Speed and cost of data transfer and location services 53

6.2.2 Usability .. 54

6.2.3 Performance.. 56

6.2.4 Other issues... 57

v

6.3 Towards the future.. 58

6.3.1 Future work .. 58

6.3.2 Towards the mobile semantic web.. 59

6.4 SWOT analysis... 59

7 Conclusions 61

References 62

Appendix A. Sequence diagram for searching

1

1 Introduction

The recent mobile phones with color screens, cameras, and multimedia

messaging capabilities open up new possibilities for user-created content. With a

camera phone, it is possible to take a photo and send it to a friend in a

multimedia message. However, if the user wants to store a lot of photos and

share them with a bigger group of other users, it is necessary to annotate and

categorize the photos to be able to find them efficiently.

Photos can be automatically categorized to high-level categories, like “city” and

“landscape” or different forms of landscapes, according to their visual content

with an accuracy of up to 90–95% per categorization level [VFJ01]. To perform

more accurate categorization, manual annotation is needed. When searching

photographs, the context of the photo, which is not always seen in the picture,

can be an interesting search criterion. Additional metadata is needed for making

computerized search possible.

Mobile devices have their own limitations in browsing and entering information.

These include smaller screen size and slower text input than in desktop systems.

On the other hand, pieces of context information, such as location, can be used in

mobile phones and networks. New browsing and annotation methods that are

designed especially for mobile phones are needed.

2

1.1 Scope of the thesis

This thesis is based on the following research problems:

1. Find out some scenarios and use cases for using metadata in sharing user-

created content in the mobile domain

1.1. How much and what kind of metadata can be generated automatically?

1.2. Which simple methods of user input can be used in annotation?

1.3. How can the user be motivated for annotating his images?

2. Evaluate potential technologies for sharing personal content of mobile users

2.1. How do the existing metadata and ontology technologies work in the

mobile environment?

3. Design and implement a prototype of using metadata for a selected scenario:

tourism

3.1. Design and implement a user interface for annotating images with

metadata

3.2. Design and implement a user interface for the information retrieval

process using metadata

3.3. Evaluate advantages and disadvantages of using metadata and

ontologies in the selected scenario

3.4. Find out possible and suitable formats of metadata in the mobile domain

Two scenarios are presented later in this section. Methods for automatic

generation, manual creation and management of metadata are discussed later in

this thesis. In order to find feasible solutions to the research problems, I have

designed and implemented a prototype of an image sharing system with a user

interface for mobile phones. In the prototype, tourism is used as an example use

3

case, in the spirit of city highlights in the Virtual Tourist service1. The prototype

system gathers context information (especially location) in the situation of taking

the photograph, lets the user annotate and semantically classify the image in the

phone, and stores the collected information as the metadata for the image.

Moreover, in the search process the current context is used together with the

user-selectable classification for searching photographs.

The prototype includes a graph-based ontology browser and editor for mobile

phones. It can be used for annotating the content, extending ontologies, and

performing ontology-based search. The mobile phone client uses a limited,

lightweight RDF metadata engine that was created as a part of the system. The

content and the metadata are stored in a content and metadata repository server.

1.2 Scenarios

Here are the two main scenarios that were chosen to be on the background of the

prototype application design. The tourism scenario is fully supported in the

prototype, except for sending the multimedia message, which is a basic

functionality of the phone. The event notifications and user profiles that are used

in the Hobby peer group scenario were not implemented in the prototype.

1.2.1 Tourism

Peter, a student who is spending a week of his vacation in Germany, is walking

on a marketplace in Berlin. It’s half past nine in the morning of a quiet Tuesday

in November. The marketplace is quite empty. Peter is wondering what this

marketplace looks like on some other time of the year and what happens there.

1 See http://www.virtualtourist.com/

4

Peter starts the Travel Browser on his mobile phone. The application connects to

a travel portal. The service performs a query according to Peter’s current

location. Peter can see photos of the festival that takes place each September in

the city. He picks one of the photos, and sends it in a multimedia message

(MMS) to his friend.

After a while, Peter feels like a lunch. He opens the Travel Browser, selects the

category “Restaurants” and gets a list of restaurants nearby, sorted by distance.

To get more precise results, Peter selects “Restaurants → Fish” from the browser,

and gets a list of fish restaurants. Peter selects a restaurant that looks nice in the

photo and is described to have reasonable prices. The system shows a map with

Peter’s current location and the location of the restaurant.

In the afternoon, Peter finds a nice café and wants to share the information about

it on the service. He takes a photo, and categorizes the photo as “Restaurants →

Cafeterias → Modern”. He types in the name of the café and describes it briefly

using the keypad. The image is submitted to the server together with the

metadata including the current location and the information Peter just entered.

Other people can now find the cafeteria from the service.

1.2.2 Hobby peer group

Jack, 17, has been doing judo for four years. He is going to attend a judo

competition in Bradford and wants to share the photos he takes at the

tournament with the local judo club.

Jane, a judo coach from Bradford, is one of the editors of a judo ontology. She has

added “Bradford Judo Competition” as a subclass to “Judo → Competitions”

using the ontology editor. She has also created a time, location, and user profile

based event notification of the judo competition.

5

Jack travels to Bradford. Since he has claimed judo as a hobby in his personal

profile, he gets an advertisement of the competition when he arrives to the city.

The advertisement message contains a link to the home page of the competition.

Jack can see the list of competing pairs on the competition web site.

Jack adds descriptions to the photos he takes (e.g. “Matt Johnson and Damon

Smith competing for gold”). The photos will be connected with the “Bradford

Judo Competition” –category that Jane had created.

1.3 Structure of the thesis

The thesis contains two parts. First we discuss metadata, ontologies, context

information, and imaging from the perspective of mobile computing. In Section 2

we discuss metadata and ontologies in general and some of the available

technologies for using semantic metadata. There is an overview on some

metadata languages, tools and APIs, and desktop ontology editors / browsers. In

Section 3 we discuss the possible uses of different type of context information.

Section 4 deals with the specialties of imaging and metadata as well as

researches on automatic image classification.

The latter part of the thesis discusses the content sharing prototype system.

Section 5 contains the description of the architecture and the implementation of

the prototype. The prototype is evaluated in Section 6. Finally, in Section 7, the

conclusions of this thesis are drawn.

6

2 Metadata and ontologies

This section contains an introduction to metadata and semantic information. In

addition, some of the available metadata and ontology languages, tools and

toolkits, as well as metadata query languages are discussed. Some ontology

browsers and editors for desktop environment are presented in the end of the

section.

2.1 Metadata and semantics

Metadata is data about data. For example, in a traditional library catalog there is

a metadata card about each book. It usually contains the author, the year of

publication, the classification of the book, and possibly some keywords, a brief

description, number of pages, and some other data.

In the world of computers, there are different types of metadata. One type of

metadata describes the technical properties of the media, like the dimensions of

an image in pixels, or the length of a file in bytes. These kinds of technical

properties have been embedded into the files or the file system for decades, and

they are widely used. Another type of metadata describes the content and the

context of the piece of information. This can include classifications and brief free-

text descriptions of the actual content, as well as the date of creation, the location

of creation, the author, etc.

The content description metadata and context metadata help searching,

especially when the content is not textual. Furthermore, a textual description in

natural language is not always enough for effective search.

In natural languages, a single word does not always represent a single concept.

For example, the word sense does not define an unambiguous concept. It may be

interpreted as a verb or as a noun with one of the many different meanings or

roles in phrases (e.g. “sense of humor”). Sometimes we need to describe the

7

relations between different concepts or items. The use of cross-linked vocabularies

and hierarchical classifications in a computer-readable form helps us to express

the semantics of a concept and speak about things with common “words”.

Vocabularies can be described with, e.g., the RDF Schema language, which is

discussed below.

2.2 Metadata and ontology languages

For representing semantic metadata, there are various languages. The discussion

of this thesis concentrates on the languages that are recommended by W3C.

These include RDF, RDF Schema, and OWL that is a revision of DAML+OIL

[McH03]. As a comparison point, the Topic Maps language is discussed briefly.

For a more detailed view on metadata languages, see [HHV02].

In the prototype that is described in this thesis, RDF is used for managing

metadata in both the terminal and the server. The advantage of RDF is that its

basic structure is simple enough to be managed in a mobile terminal. In the future,

OWL (Lite) could possibly be used for richer semantics and ontology mapping.

2.2.1 RDF and RDF Schema

The Resource Description Framework (RDF) is a language for representing

metadata about Web resources, or about anything that can be identified with a

uniform resource identifier (URI). RDF provides a framework for expressing the

metadata so that it can be exchanged between applications without losing the

semantics. This information is expressed in statements that have the form of

Subject – Predicate – Object -triples. Any part of a triple can be a URI representing

a resource, and the object can also be a literal [KCM03]. A triple forms an arc in a

directed graph, where the subject and object represent the two ending nodes of

the arc, and the predicate represents the labeled arc that connects the two nodes.

8

As an example, we can form an RDF statement from an English sentence (Figure 1).

The sentence constituents are represented with URIs in the RDF model.

Using the RDF Schema language [BrG02] we can describe vocabularies that can

be used in RDF documents. The vocabularies can include classes and properties.

The RDF Schema language supports multiple inheritance in creating subclasses

and subproperties. Compared to the XML Schema language [TBM01, BiM01], the

RDF and RDF Schema languages concentrate on expressing the semantics of the

metadata instead of the structure of the data [PaS02].

The recommended format for RDF serialization is XML-based RDF/XML [Bec02].

The semantics of RDF/XML is different from the semantics of an ordinary XML

(a) “The creator of http://www.example.org/index.html is John Smith”:

(b) Subject: http://www.example.org/index.html

Predicate: http://purl.org/dc/elements/1.1/creator

Object: http://www.example.com/staffid/85740

(c)

(d)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://www.example.org/index.html">
<dc:creator rdf:resource="http://www.example.com/staffid/85740"/>
</rdf:Description>
</rdf:RDF>

Figure 1. A simple statement written (a) in English, (b) as an RDF statement, (c) as

an RDF graph, and (d) in RDF/XML [MaM02] serialization format.

9

document. The triples can also be represented in other formats, such as N-triple2

that is easy to parse on a computer, or Notation 3 (N3) 3 that is easier to write for

humans. In addition, triples can be stored in relational databases.

RDF is defined in a collection of W3C documents. The only one that has gained

the state of a W3C recommendation (until the end of the year 2002) is RDF

Model and Syntax Specification [LaS99], and a version of the RDF Schema

specification [BrG00] has been published as a candidate recommendation. The

latest RDF document set (November 2002) includes six working draft

documents, ranging from an introduction [MaM02] to the model-theoretic

semantics [Hay02]. The November 2002 RDF specifications include a support for

XML Schema datatypes.

RDF vocabularies

There are many RDF vocabularies and schemas in use. The Dublin Core Element

Set4 describes 15 predicates, e.g. creator (see the example above), title,

subject, language, description, and rights. It also provides plain-text

descriptions about the use of these predicates.

A specialized version of the Dublin Core element set is described in PhotoRDF,

which is published as a W3C note [LaB02]. It uses a modified Dublin Core

schema and adds technical and content schemas. The document describes a

system that demonstrates how RDF and the Dublin Core elements could be used

in describing photographs on the WWW. The system includes an application

called RDFPic that embeds PhotoRDF metadata into JPEG image files by using

comment blocks of a JPEG file [LaB02].

2 See http://www.w3.org/2001/sw/RDFCore/ntriples/

3 See http://www.w3.org/DesignIssues/Notation3

4 See http://dublincore.org/documents/dces/

10

The dmoz Open directory project5 defines a global cross-linked classification for

web resources that is used e.g. in the Google search engine. The classification is

huge: it takes over 35 megabytes of space in gzip-compressed RDF/XML format

without the links to the categorized content.

The W3C Composite Capability/Preference Profiles (CC/PP) [KRW02] are also

described in RDF. The profiles can be used for describing the properties and

capabilities of a terminal, e.g. the supported content types, the screen resolution

and the color capabilities. CC/PP profiles can be used for adapting the content to

fit the properties of the terminal.

The RDF Site Summary (RSS)6 is a lightweight, extensible metadata description

and syndication format. Minimally, an RSS-document describes channels that can

contain URL-retrievable items with titles and descriptions. The channels can be

used, e.g., for delivering news feeds. RSS 1.0 includes Dublin Core, Syndication

and Content modules. There are also many proposed modules available that

include audio, company (stock), email, search, and streaming modules.

In plain RDF/RDF Schema there are no ways of mapping vocabularies directly to

each other. Different URIs are interpreted as different elements, even if they have

the same meaning. The mapping must be done at the application level, if the

subclassing procedure of RDF Schema is not enough. For this problem, OWL

provides a solution with ontology mapping (i.e. expressing equality of classes

and properties) [SMV02].

2.2.2 DAML+OIL and OWL

The American ontology language project called DAML (DARPA Agent Markup

Language) and the European project OIL (Ontology Inference Layer) joined

5 See http://www.dmoz.org/

6 See http://purl.org/rss/1.0/spec

11

forces to produce a common ontology language called DAML+OIL [CHH01]. It

is an ontology language, based mainly on RDF and RDF Schema, with a support

for XML Schema data types. The DAML+OIL specification was published as a set

of W3C notes.

In 2002, the W3C Web Ontology working group used DAML+OIL as a basis for

the design of the OWL Web Ontology Language [DCH02]. The working group

decided to keep OWL more compatible with the RDF language, and waited for

the decisions of RDF datatyping, which was first published in the November

2002 RDF working drafts. The XML Schema datatypes can be used in OWL like

in RDF.

Using OWL we can describe classes, individuals, and properties with more

complex structures than in RDF. The properties can be defined as symmetric or

transitive properties, or inverses of other properties. Classes can be described as

subclasses of other classes like in RDF Schema (rdfs:subClassOf). In

addition, classes can be described with ontology mapping (owl:sameClassAs),

disjoint operations (owl:disjointWith), set operations (owl:unionOf,

owl:interserctionOf, owl:complementOf), and property restrictions.

[DCH02]

The OWL language specifications describe three versions of the language:

OWL Lite, which is a limited version, OWL DL (Description Logics) that includes

the complete OWL vocabulary but is interpreted under a number of simple

constraints, and OWL Full that includes all the properties of the language

[SMV02].

OWL Lite supports transitive properties as well as equality, inequality, and

datatypes. It supports cardinality restrictions with values limited to 0 and 1. The

set operations for classes and the disjoint classes are not supported. Engines and

tools for OWL Lite should be easier to implement than tools for the more

complex versions of OWL. [SMV02]

12

An example of an OWL ontology is presented in Figure 2. It is a part of an

ontology describing animals and humans. The example describes that the class

Person is a union of the classes Man and Woman, and that Man and Woman are

disjoint. An inference engine that uses the ontology can now tell that if Mary is

an instance of Person and Mary is an instance of the negation of the class Man,

Mary must be an instance of the class Woman. Furthermore, if the inference

engine using the example ontology is told that Mary hasChild Joe, then it can

infer that Joe hasParent Mary.

The OWL specification suite consists of six documents (November 2002

situation). For an overview on the documents, see the Web Ontology Language

(OWL) Guide [SMV02] that is an overview for OWL.

2.2.3 Topic maps and XML Topic Maps (XTM)

The Topic Maps standard [ISO13250] specifies the SGML representation for topic

maps. In addition to that, there is an XML version of the topic maps paradigm

called XML Topic Maps (XTM) [PeM01], which is specified by the topicmaps.org

consortium. Topicmaps.org is an independent consortium that aims in

developing the applicability of the topic maps paradigm to the WWW. Members

from companies including Empolis, InfoLoom, Mondeca, Ontopia, and Sun

Microsystems have been working for the specification of XTM.

In the topic maps paradigm, there are topics, occurrences, and associations [Pep00].

A topic can describe a concept, a person, an entity, or anything we can talk

about. A topic can have one or more types, which represent the class of a topic.

An occurrence can be, for example, an image that displays the topic, or a

description of a topic. Occurrences can have different roles, e.g. “article” or

“illustration”. An association attaches one topic to another. Associations have

types, e.g. “Helsinki is the capital of Finland,” states an association between the

topics “Helsinki” and “Finland” with the type “is_capital_of”. In addition,

13

associations have roles, e.g. the “is_capital_of” –association has the roles of

“city” for Helsinki and “country” for Finland. The type of an association role is

also a possible topic.

<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns ="http://www.w3.org/TR/@@/owl-ex#"

>

<owl:Class rdf:ID="Animal">

<rdfs:label>Animal</rdfs:label>

</owl:Class>

<owl:Class rdf:ID="Male">

<rdfs:subClassOf rdf:resource="#Animal"/>

</owl:Class>

<owl:Class rdf:ID="Female">

<rdfs:subClassOf rdf:resource="#Animal"/>

<owl:disjointWith rdf:resource="#Male"/>

</owl:Class>

<owl:Class rdf:ID="Man">

<rdfs:subClassOf rdf:resource="#Person"/>

<rdfs:subClassOf rdf:resource="#Male"/>

</owl:Class>

<owl:Class rdf:ID="Woman">

<rdfs:subClassOf rdf:resource="#Person"/>

<rdfs:subClassOf rdf:resource="#Female"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasParent">

<rdfs:domain rdf:resource="#Animal"/>

<rdfs:range rdf:resource="#Animal"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Person">

<rdfs:subClassOf rdf:resource="#Animal"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasParent"/>

<owl:allValuesFrom rdf:resource="#Person"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Person">

<owl:unionOf
rdf:parseType="Collection">

<owl:Class rdf:about="#Man"/>

<owl:Class rdf:about="#Woman"/>

</owl:unionOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasChild">

<owl:inverseOf rdf:resource="#hasParent"/>

</owl:ObjectProperty>

A Parent of a Person must
be another Person

An Animal can be either
Male or Female

Domain: Only animals can
have parents
Range: Only animals can
be parents

x hasParent y ⇔ y hasChild x

Every person is
a Man or a Woman

Figure 2. A part of an OWL ontology describing Animals and Persons. The excerpt was

taken from an OWL ontology example (http://www.daml.org/2002/06/webont/owl-ex).

14

In topic maps, there are also the concepts of identities, facets, and scopes. While

topics (e.g. countries) can be referred to by different names in different topic

maps, we need a way to combine those different names under the same identity.

This can be done using a public subject, for example a standardized list of

country codes. We can use facets for assigning properties to information

resources. Scopes allow limiting the range where an association is valid.

An example of representing topic maps in XTM format is presented in Figure 3.

<topic id="hamlet">
<instanceOf><topicRef xlink:href="#play"/></instanceOf>
<baseName>
<baseNameString>Hamlet, Prince of Denmark</baseNameString>

</baseName>
<occurrence>
<instanceOf>
<topicRef xlink:href="#plain-text-format"/>

</instanceOf>
<resourceRef xlink:href=
"ftp://www.gutenberg.org/pub/gutenberg/etext97/1ws2610.txt"/>

</occurrence>
</topic>

<topic id="tempest">
<instanceOf><topicRef xlink:href="#play"/></instanceOf>
<baseName>
<baseNameString>The Tempest</baseNameString>

</baseName>
<occurrence>
<instanceOf>
<topicRef xlink:href="#plain-text-format"/>

</instanceOf>
<resourceRef xlink:href=
"ftp://www.gutenberg.org/pub/gutenberg/etext97/1ws4110.txt"/>

</occurrence>
</topic>

<association>
<instanceOf><topicRef xlink:href="#written-by"/></instanceOf>
<member>
<roleSpec><topicRef xlink:href="#author"/></roleSpec>
<topicRef xlink:href="#shakespeare"/>

</member>
<member>
<roleSpec><topicRef xlink:href="#work"/></roleSpec>
<topicRef xlink:href="#hamlet"/>

</member>
</association>

Figure 3. This example contains a part of an XML Topic Map that contains two

topics that represent William Shakespeare’s plays, and an association between the

topics of “Shakespeare” and “Hamlet”. The example was taken from [PeM01].

15

2.3 Tools, APIs, and frameworks

In this section we discuss some of the open source toolkits available for RDF and

RDF-based languages. The discussion concentrates mainly on the toolkits and

APIs for the Java platform. Additionally, two RDF server or repository systems

(Joseki and Sesame) are presented. In addition to the presented tools, there are

many other implementations for e.g. C, Lisp, and Perl languages. Descriptions of

more tools can be found in [SiH02].

Jena7 [Bri02] is an RDF and DAML+OIL framework for Java by the Semantic Web

activity from Hewlett Packard Labs. It includes support for storing RDF in

relational database systems. The software package is big, and the required JARs

take several megabytes (Jena 1.6.0). The software is developed continuously. It

provides APIs for generating, managing and querying RDF and DAML+OIL

models. In our prototype system, the Jena framework is used on the server side.

The RDF API8 by Sergey Melnik from Stanford University provides basic

functionality for managing RDF models in Java applications. The latest release

for this API is from January 2001. The API is smaller than the Jena RDF libraries,

and its JAR distribution takes about 300 kilobytes of storage space.

KAON (the Karlsruhe Ontology and Semantic Web Tool Suite)9 is an open source

ontology management tool suite. It includes an API for building ontology-based

applications, and tools for ontology creation and management. It focuses on

business applications. KAON uses an ontology language based on RDF with

proprietary extensions for symmetric, transitive, and inverse relations, relation

7 See http://www.hpl.hp.com/semweb/jena.htm

8 See http://www-db.stanford.edu/~melnik/rdf/api.html

9 See http://kaon.semanticweb.org/

16

cardinality, modularization, meta-modeling, and explicit representation of

lexical information.

Joseki10 is an implementation of an experimental WebAPI (former RDF NetAPI)

for the remote query and update of RDF models. It includes a client API and a

server, which can be run as standalone, embedded in a Java program, or inside

an application server. The following operations are designed to be implemented

in the RDF NetAPI [Sea02]:

1. Operations on the contents of a model: query and update

2. Operations on whole models: get and put

3. Operations about capabilities provided by a server:

capabilities and range of operations on a particular RDF store.

Similar operations (query, update, and get) are implemented in the servlets of

our prototype system. Our prototype implementation does not use the Joseki

server or the RDF NetAPI, since we need to use location-based queries.

Sesame11 is an open source RDF Schema based repository and querying facility

that supports RDQL and RQL. It handles the requirements of the RDF model

theory and supports the transitivity of the rdfs:subClassOf –property. The

Sesame server requires a DBMS with JDBC support.

None of the presented tools and frameworks can be used in the J2ME

applications on mobile terminals because of the software and memory

requirements do not match the limitations of the mobile environment. However,

the server applications of our prototype system use the Jena toolkit for managing

the RDF metadata.

10 See http://www.joseki.org/

11 See http://sesame.aidministrator.nl/

17

2.4 Metadata query languages

There is not yet a standard for RDF query language, but there are many

suggestions for an RDF query language by different parties. This section

discusses few of the available RDF query languages. More information on RDF

and Topic Map databases, as well as Topic Map query languages, can be found

in the article [RSH02]. The available implementations of the presented query

languages work on top of a relational database management system and a

specific RDF toolkit.

Our prototype system does not use any of the query languages. Instead of that,

we use the metadata model management methods provided in the Java API of

the Jena framework.

RDQL is an RDF query language that looks closely like SQL. It is derived from

the SquishQL query language. RDQL does not support transitive closures of

subclasses and subproperties [MSR02]. This is one of the reasons why RDQL was

not used in the prototype.

As an example, below is an RDQL query. It requests the items (?a) whose

property category has a value that is a direct subclass of attraction. The

items and their category classes (?b) are returned as response.

SELECT ?a, ?b

FROM <http://example.org/rdf/data.rdf>

WHERE (?a, <loc:category>, ?b)

AND (?b, <rdfs:subClassOf>, <loc:attraction>)

USING loc FOR <http://example.org/rdf/loc.rdf#>,

rdfs FOR <http://www.w3.org/2000/01/rdf-schema>

RQL [KAC02] is another SQL-based approach that was developed in the FORTH

Institute of Computer Science. RQL supports the RDF and RDF Schema

semantics including transitive closures of subclass and subproperty hierarchies

18

[KAC02]. It uses the SELECT-FROM-WHERE –query structure of SQL, and it

adds its own syntax for expressing classes, instances, and relations.

Below is an example of RQL query. When executed, it gets the items (X) whose

property category has a value that is a transitive subclass of attraction. The

query returns the items and the category classes ($Y) of the items:

SELECT X, $Y

FROM {X}category{$Y}

WHERE {$Y}<(attraction)

This kind of queries could be highly usable in the implementation of the server

part of a community-shareable system.

TRIPLE [SiD02] is a query, inference, and transformation language for the

Semantic Web. It was designed especially for querying and transforming RDF

models. It allows semantics of languages to be described as rules, and this way it

can use RDF Schema, Topic Maps or UML semantics. It includes also support for

DAML+OIL.

The query language in Profium SIR (Semantic Information Router) is called

RDFQL. It supports interactive queries, timed queries, and persistent queries

[Saa02]. Timed queries are performed according to a schedule. For example, a

stock query can be automatically performed every 30 minutes, and if there are

interesting results, the end-user can be notified. Persistent queries can be

configured to notify the user whenever information that matches the query is

feed into the system.

19

2.5 Ontology editors, browsers, and viewers

For desktop computers, there are various ontology editors available. These,

however, require a big screen size and are not portable “as is” to the world of

mobile devices. This section discusses some properties of graphical ontology

editors and ontology-based browsers. More ontology editors are described in

[SiH02].

The Protégé-2000 ontology editor12 provides a tree-view access to the ontology

(see Figure 4). It has various plug-ins, like a visualization tool that uses the open

source GraphViz graph-rendering engine. It uses a proprietary internal

representation format and it can import and export data in the RDF and RDF

Schema format.

12 See http://protege.stanford.edu/

Figure 4. Protégé-2000 ontology editor from the Stanford University has various features,

but unfortunately the user interface requires the user to study how to use the program.

20

The KAON Tool Suite13 includes an ontology editor, that supports graph- and

treeview based editing (see Figure 5). The graph view has hyperbolical graph

features, and it re-organizes itself during editing. IsaViz14 is a graphical ontology

editor that is based on the GraphViz rendering engine. Editing large ontology

graphs in IsaViz seems quite cumbersome, because of the small fonts that require

a detailed zoom to be readable.

13 See http://kaon.semanticweb.org/

14 See http://www.w3.org/2001/11/IsaViz/

Figure 5. KAON OI-modeler (Ontology-Instance-modeler) provides both

(hyperbolical) graph-based view and tree views for editing ontologies.

21

Web-based ontology browsers, such as the ones demonstrated by Endeca15 and

BPallen16 (see Figure 6), provide filtering by selecting categories from different

classifications. The image retrieval and yellow pages systems from the Semantic

Computing group (SeCo) of HIIT (Helsinki Institute of Information Technology)

include web-based ontology browsers that provide tree-view access to multiple

ontological categorizations for filtering the search [HVH02, HSS02]. Thoméré et

al. have presented a web-based ontology editing and browsing system that uses

a Java applet for displaying the graphs of ontologies [Tho02].

The presented ontology browsers make use of the whole desktop PC screen size.

None of them can be easily ported to the small screen of a mobile phone. Later in

this thesis I present a graph-based mobile phone user interface component that is

suitable for ontology-based filtering and annotation, as well as for simple

ontology editing.

15 See http://www.endeca.com/demos/demo_text.html

16 http://www.bpallen.com/

Figure 6. The BPallen ontology browser provides a web user interface for filtering

the search results by selecting from categories according to multiple classifications.

22

3 Context information in the mobile domain

The research area called context-aware computing concentrates on the use of

context information. A lot of context information is already available for

application programmers in the current smart phone category mobile phones. In

this section we concentrate on the context information in the mobile environment

and discuss the issues of creating metadata from the context information.

In some fields of context-aware computing, e.g. pervasive computing, it is

important to model the quality properties of the context information [HIR02].

There can also be multiple sources and multiple values for a single piece of

context information, but these questions are out of the scope of this thesis. In the

design of the prototype system we assumed that exactly one instance of each of

the required aspects of context is available with adequate accuracy.

3.1 Different types of context

In this section, the context information is categorized into four categories. I use

the semantic categorization by Schilit, Adams, and Want [SAW99] with

additions from Chen and Kotz [ChK00]. Schilit’s categorization contains

Computing context, User context, and Physical context. Chen and Kotz added Time

context as a separate category.

Some of the examples of using the different context categories in mobile phones

are gathered from a white paper from Nokia, called Mobile Web Services

Interfaces [Nok02]. It presents candidates for mobile web services interfaces that

could be provided by the mobile operators for the third-party service providers.

23

3.1.1 Computing context

Computing context describes the resources available for devices: network

connectivity, communication costs, and communication bandwidth as well as

available printers, displays, and workstations [ChK00].

Terminal profile specifies the technical capabilities of the terminal. These include:

• Size of the screen (in pixels)

• Type of the screen (monochrome or color, number of colors)

• Support for features, e.g., WAP and Java

• Maximum memory sizes for WAP decks and Java MIDlets

• Support for different content types

Terminal profiles could be expressed as CC/PP device profiles [KRW02]. The use

of terminal profiles could help in content adaptation, like the transmission of

images in the correct resolution and format.

3.1.2 User context

User context can contain the user’s profile, location, people nearby, and even the

current social situation [ChK00].

Location

The most widely used piece of context information is location. There are different

possibilities for sensing the current location of a device. The GPS satellite

positioning system gives quite accurate results outside. Unfortunately the GPS

signal is lost when the device enters a building [MaS00]. On a mobile phone it is

possible to use the Cell-ID of the current cellular network base station to identify

24

the current location. Many mobile phone operators, including Radiolinja and

Sonera in Finland, already provide location-based services that use the

information of current network cell [Rad02, Son02]. Vodafone is also building its

own location-enabled service platform in many European countries [Vod02].

Location information may cost when the mobile network operators provide it,

but the future price is an open question.

The most widely used global coordinate system is WGS-84. It is used in GPS and

many of the mobile location services. However, the structure of the location

information varies between services. For example, LIF (Location Interoperability

Forum)17 is a global industry initiative, which develops and promotes industry

common solutions of Location Based Services. LIF has delivered a Mobile

Location Protocol (MLP) specification, which defines an application-level

protocol (with XML-syntax messages) for querying the location of mobile

stations.

MLP serves as the interface between a Location Server and a location-based

application. The protocol specification contains support for e.g. emergency

messages, standard messages, and triggered messages. The specification

supports inaccuracy zones for location information, and multiple coordinate

systems, of which WGS-84 is obligatory.

User profile and presence

There is long-term and short-term information about the user available. A long-

term user profile can contain for example nickname, occupation, gender, marital

status, interests, and language preferences of a user. Short-term properties can

contain information on the current end-user context (in a meeting, at work, at

home, on a holiday).

17 See http://www.locationforum.org

25

Gathering user profiles for each service separately by querying the user can be

annoying. Most users don’t want to personalize themselves, even if they wanted

to use personalized services. Using a centralized user profile could help in

solving this problem. [Haa01]

User profiles could be stored on the phone or on a server maintained by e.g. a

network operator or a third-party service provider. Mobile operators could

gather user profiles, for example, when the user registers a mobile phone

subscription.

Another way of gathering user profiles is to use social filtering methods. In social

filtering, the users’ opinions about different items (books, food, wine, music) are

gathered centrally when using the system, and compared between each other.

Recommendations are made according to the opinions of similar users.

[Haa01, p. 10-13]

Access management for the profile information is also needed. There is a W3C

recommendation, P3P (Platform for Privacy Preferences), for managing the

privacy of profile information for services on the WWW [Cra02]. With P3P,

application programmers can create agents that can control the availability of,

e.g., contact information for marketing purposes. In the mobile environment, the

operator could offer the user profiles for third party services, according to the

privacy preferences of the user.

In the Mobile Web Services Interfaces white paper [Nok02], presence is defined as

a short-term, dynamic user profile. Presence information could contain the user’s

contact information, as well as the current social context and the willingness to

participate in a certain type of communication. In the current mobile phones, the

user can manually profile her mobile phone by selecting a desired notify level

from a list (general, meeting or silent) according to the current social situation.

This sets some properties of the mobile phone, mainly the types (e.g. ringing

tone, beep, vibration, or none) and volume of user notification sounds for

26

different types of events (e.g. incoming call, calendar alerts, or incoming

message). The same method can be used in context-aware messaging

applications.

3.1.3 Physical context

Physical context contains lighting, noise levels, traffic conditions, and

temperature [ChK00]. Physical context information can be gathered from sensors

like thermometers (temperature), light sensors (lighting, inside/outside,

pocket/table), microphones (noise levels), or accelerometers (gestures,

movement, position). The information of these sensors could be used in, e.g.,

guessing the current social situation, identifying gestures and movement, and

determining the location of the device. [Tuu00, p.53]

3.1.4 Timed context

Timed context contains time of the day, week, month, and the time of year

[ChK00]. It can be used together with the other context classes to produce

context-based notifications and service search. At least, searching for sports

events, exhibitions, opening times, and such could benefit from the use of the

timed context. In countries that have a big difference between seasons, such as in

Finland, it is not relevant to promote e.g. skiing possibilities in the middle of

summer or water sports in the middle of the winter.

Our prototype system stores the time information as part of the metadata of the

image, but it does not use it as a search criterion.

3.2 Context information as metadata

Current smart phones have the potential of attaching context information to the

media created with them. Since we are able to get the location information and

27

identify the user in a mobile phone, it is quite straightforward to embed this data

into the photographs. By storing the available context of the image (or a part of

the context) as metadata, we can use it later for searching.

In the scope of relevance of search, I think that the most informational parts of

context to be embedded into images would be the user context and time context.

Computing context becomes useful when we think of content adaptation and

delivery. The use of physical context could help in automatically classifying the

content.

Chen and Kotz describe the term Context history for time-stamped recording of

the computing context, the user context, and the physical context [ChK00]. The

prototype application that is presented later in this thesis, gathers pieces of the

context history as metadata of images.

When handling context information, the privacy needs to be concerned [HIR02].

There may be situations where pieces of the context history of other people can

be identified, even if they didn’t want to. This can happen, for example, if we

store the identifiers of surrounding people when taking a photo, and later share

the photo (including the embedded metadata) with other people.

One solution for managing the privacy of context information could be to use the

Platform for Privacy Preferences (P3P) [Cra02]. P3P is a W3C recommendation

for managing privacy rules and preferences. The service providers give

information about the privacy policies of their services. The user can select,

which kind of information can be given to whom and for which kind of use. The

user agent can store a set of preferences about privacy policies using a language

called APPEL (A P3P Preferences Exchange Language).

28

3.3 Researches on context-aware tourist information applications

There are some context-aware prototype implementations of tourist information

guides that use location information on Web Pads and PDA’s. These include the

GUIDE project [CDM00] and the Cyberguide project [AAH97]. Both of these

systems provide tourist information for people visiting a city or a site.

In the GUIDE system [CDM00], the user borrows a terminal from the tourist

information booth of a city. The terminal is a Pad PC that has a grayscale screen

of 800 by 600 pixels and runs the Windows 95 operating system. The GUIDE

system uses WLAN cell-based location information and photos for determining

the user’s location. The user can plan a route for his trip, and display web pages

according to the current location. The system also maintains history information

about the user’s path.

The Cyberguide system gives navigation aids for indoor and outdoor use

[AAH97]. The system uses PDA devices with external positioning equipment as

a terminal. The Outdoor-Cyberguide is designed to work as a context-aware

tourist guide on the city. The Indoor-Cyberguide is designed to work only

inside, e.g. on open house days, and it uses infrared beacons (made of remote

controllers) for getting location information. In addition to aiding navigation,

Cyberguide allows displaying information about items at the current location,

and interaction by using email. There is also a version called CyBARguide that

allows the users to modify the database of services and add their own comments

and ratings.

For more examples of context aware applications see the survey by Chen and

Kotz [ChK00].

29

4 Imaging and metadata

In this section I describe some properties of metadata in imaging, mobile

imaging, and recent research in automatic image classification and non-

traditional ways of annotation.

4.1 Metadata in image files in current applications

Metadata (or non-payload data) is embedded into image files in many of the

current image-creation applications. There are some competing frameworks for

managing metadata in images. I present some examples of how metadata is

embedded into image files in the frameworks.

W3C has presented a scheme for annotating photos. The system, called

PhotoRDF [LaB02], consists of a server and an annotation application. The

annotation application, RDFPic, inserts Dublin Core metadata elements as RDF

into the comment block of the JPEG file. The server side of the system uses

Jigsaw web server platform18 for Java that supports RDF metadata extraction

from JPEG image files. PhotoRDF uses an RDF vocabulary based on the Dublin

Core element set.

Adobe XMP (Extensible Metadata Platform) has its own block-encodings for

embedding RDF-based XMP-data into JPEG, TIFF, PNG, GIF, and PDF files. All

the current Adobe products have support for XMP metadata19. XMP uses the

RDF data model, and it adds e.g. a proprietary datatyping system. XMP schemas

describe properties that handle technical data about different types of media, as

well as rights management and media management. The XMP platform manages

the granularity of media by allowing annotations on parts of a document.

18 See http://www.w3.org/Jigsaw/

19 See http://www.adobe.com/products/xmp/main.html

30

The XMP specification describes means for embedding the metadata in different

types of media files. In a JPEG file, the XMP metadata is stored inside an XML

Packet (XPacket) that is put into an APP1 block of the JPEG file.

DIG-35 [DIG01] is an XML-based image metadata framework. The JPX metadata

format, which is used in JPEG 2000, is based on it [CIH02]. The specification

includes categories for image creation, content description, history, intellectual

property rights, and image identification metadata.

Image creation metadata describes the technical properties and settings of the

camera or scanner. Content description metadata describes the caption, the

location, and the persons and things in the photo. DIG-35 can even be used for

describing events that happened during the creation of the media. In addition,

the content description metadata can contain an audio stream with a spoken

description of the photo.

In the Java ImageIO framework, which is included in J2SE 1.4 and later, there is a

package called javax.imageio.metadata that provides support for metadata in

images. The metadata in images is considered to be “anything that is not pixels”,

e.g. technical metadata in an image format specific way, and content metadata.

The ImageIO framework handles metadata in XML-format, and provides a DOM

interface for application programmers.

4.2 Mobile imaging

In the year 2002, a number of mobile phones with digital cameras were brought

to the market. Some of the phones are delivered with integrated cameras, and

some have a camera as an external accessory. Digital images can be transmitted

between phones using multimedia messaging, or uploaded to a server, like in

the Club Nokia Photo Zone service.

31

The WAP-browsers in the current mobile phones have support for images. The

MIDP Java platform in mobile phones has also made it possible to use images in

user-created applications.

In the Nokia 7650 mobile phone, the Camera application stores photos in JPEG

format with VGA resolution (640x480 pixels). It stores the date and time

information as a line-feed delimited ASCII string into the JPEG comment block

of the image file. It also creates a thumbnail of the image and stores it as a

separate file. The user can manage the images on the phone by renaming the files

and storing them into folders. Image management is done in the Images

application that displays a list of images with thumbnails, filenames, and date

stamps.

Currently, the Nokia 7650 mobile phone attaches the following metadata to the

created image files20:

<Filename, date and time, phone model>

The prototype application described in this thesis stores the following

information, and provides means for adding more properties:

<Title, description, category, date and time, location, author, …>

A mobile phone equipped with a camera has the potential for gathering context

information and for attaching it to the created images or other media. While we

can use location information and efficiently identify the user in a mobile phone,

it would be straightforward to embed these into the images taken with the

camera of the phone. By storing the available context of the image, we can use

that context information later for searching.

20 In addition, the Club Nokia Photo Zone service on the WWW/WAP allows entering a caption, a

plain text description, and keywords for the images that are stored in the system.

32

4.3 Alternative approaches to image categorization and annotation

While our prototype uses manual categorization and annotation, there are also

other ways for classifying and annotating images. This section discusses some of

the recent research on alternative methods of categorization and annotation. The

presented methods could be feasible in a mobile phone environment in the

future, but the issues with the required computing resources should be carefully

estimated.

4.3.1 Automatic image classification

According to recent research, a timed sequence of photographs can be

automatically segmented to events according to the content of the images [StL02].

There has also been research on automatically grouping single images from a

photo library into semantically meaningful categories using low-level visual

features. There are researches on semantic classification of photographs into

indoor and outdoor scenes [SzP98], city versus landscape and different forms of

landscapes [VFJ01]. The accuracy of semantic classification in the current

systems can be up to 90–95% in City/Landscape and Indoor/Outdoor

classification [VFJ01].

Face detection methods can be used for finding human faces from photographs

[RBK98]. Face recognition, in addition, can be used for recognizing the person in

the photo. At least some of the face detection and face recognition methods use

neural networks, which brings out speed issues, at least on a mobile phone

implementation.

33

4.3.2 Annotation by speech

There are researches of annotating images with speech. A system called SRIM,

developed at the Media Technology Laboratory of the Helsinki University of

Technology, uses the Java Speech API and Microsoft speech recognition engine.

The software embeds the recognized speech as metadata into PNG image files

[Kiv01]. The system stores the description from the speech and looks for pre-

defined keywords to determine e.g. the filenames and folders. However, in the

usability evaluation of the system [Vak02], problems were found with the speech

recognition. If there was any background noise, the system failed to recognize

the speech input. There were also problems with pre-recorded speech. These

problems seemed to be caused by the properties of the speech recognition

software, not the annotation method itself. More developed speech recognition

software that is capable of recognizing speech even in a noisy environment

would make the speech annotation method more usable.

34

5 Prototype system for mobile content sharing

A prototype system was created as a part of this thesis work for demonstrating

the use of metadata in sharing mobile content. The prototype provides means for

using RDF metadata in a mobile application and storing information about the

current context as metadata of the content.

The prototype system is configured to work as a tourism portal that allows users

to share images by manual semantic classification and automatically gathered

context information. By changing the ontology, the same system could be used

for sharing images of any specific interest area.

In this section I describe the requirements for the design of the prototype and the

architecture of the prototype system. I present the user interface of the system,

the implementation issues, and the use of ontologies in the prototype.

The presented prototype system is evaluated and compared with other means of

mobile information retrieval in the next section.

5.1 Requirements and design for the prototype system

On the background of the prototype design there were the research problems

and the scenarios presented in Section 1. The properties of the Nokia 7650 mobile

phone were used as a base for the design. One of the main problems was to fit

the ontology browsing and management user interface into the screen size of the

mobile phone. Another goal was to keep the amount of obligatory textual user

input small, yet being able to define the search criteria efficiently. A third

problem was to keep the memory requirements small enough for the terminal

end, to make the system feasible with real mobile phones.

These problems were solved as follows. A graphical ontology browser that

displays the surroundings of one node at a time in a graph and is navigable with

35

a 4-direction joystick was designed and implemented. The content and metadata

were chosen to be stored on a server-side repository. A limited lightweight RDF

engine for the mobile phone was implemented. The system uses location

information together with the joystick-navigable ontology browser for filtering

the search results.

5.2 System architecture

The prototype system is built of the following parts (see Figure 7):

A. The terminal. On the terminal, we run a custom camera application with

annotation capabilities and a browser application for searching annotated

content.

B. Mobile web services. These include the Location web service and the User

Profile web service. Mobile web services are simulated on a normal web

service server.

C. A repository server. The server stores and manages both content data and

metadata.

The different parts of the system have no implications to future Nokia products,

even if some of them are named after current components in some Nokia

products and white papers.

5.2.1 Mobile terminal

The terminal part of the prototype was first decided to be implemented on the

J2SE platform, because of the limitations of the J2ME. In the beginning the user

interface properties of the Nokia 7650 mobile phone were simulated in a J2SE

application with bitmap skins and buttons. This made the design and the

implementation of the user interface components more flexible, and a ready-

36

made RDF engine could be used. It helped in finding out the requirements for a

possible phone implementation.

The self-made terminal user interface simulator is a J2SE application with a

bitmap skin of the Nokia 7650 phone. It supports on-screen simulation of the

joystick and the action buttons of the phone. This way the input methods and the

properties of the mobile phone screen can be simulated. The Camera and the

Browser applications were created on the top of the simulator. The Camera

application includes annotation capabilities and the Browser application can be

used for searching images based on classification and location.

After getting knowledge with the terminal simulation, the terminal end

applications were quickly implemented as J2ME midlets that can be run on the

Nokia 7650 mobile phone. For that we needed to create a simple, limited RDF

engine that is able to input and output triples and to perform simple queries

according to the fields of the triples.

RDF
engine

Metadata repository

Media storage

Mobile Web Services
Location Term. profile

User profile
& presence

Content & Metadata
Repository Server

Terminal

Camera
application

Servlets

J2ME midlets /
J2SE simul.

WASP
WebService server A http server (Tomcat)

+ servlets / WebS.

Browser
application

Metadata on
Context & User
location, contact info

(a)

(b) (c)

Ontology browser /
editor component

Metadata

Images

Figure 7. The prototype environment is built of (a) the terminal end applications, (b)

the mobile web services simulation, and (c) the repository for content and metadata.

37

The terminal-end components and applications are described in the following

paragraphs.

Ontology browsing and editing

I have created a mobile ontology browser component (Figures 8a and 12) that

allows the user to navigate through an ontology class structure on a mobile

phone screen using the four-direction joystick of the 7650. The screenshots were

taken from the J2SE version of the software.

The ontology browser allows the user to classify media or enter search criteria

from the ontology. The component also includes a simple editor that allows

extending the class structure of ontology, if the user is allowed to modify the

ontology. The access management problem was left outside the scope of the

prototype implementation.

 (a) (b)

Figure 8. Annotating photographs by using ontologies. (a) Navigating through the

ontology graph to select the category. (b) Adding free-text descriptions.

38

Camera and Browser applications

When taking a picture, the Camera application allows the user to describe the

content by selecting a category (Figure 8a) and by entering free-text descriptions

for the photo (Figure 8b). The software gets the location information (coordinates

and location name) automatically from the Location web service, and the user

contact information (name, e-mail address) from the User profile web service.

The application uploads the image and the gathered metadata to the metadata

repository.

The Browser application sends queries to the metadata repository. The

repository engine performs the query, gets the requested items and sorts the

items according to the distance. The user can select a node from the category

graph in the ontology browser to get a list of items that match the selected

category. After selecting an item in the list of results, the user can select to

display the content (the actual image) and the detailed metadata of the item, or a

map that shows the current location of the terminal and the location of the

selected item. The map image is generated on the fly by the GIS module that can

be used through the Location Web Service.

5.2.2 Mobile web services

The system uses three web services that are named after the mobile web services

interfaces in the Nokia white paper [Nok02].

The Location web service is implemented in the prototype by using a map window

where we can point and click the “current location”. The terminal-end

applications request the current location from the location web service. The

current coordinates (in the WGS-84 coordinate system) and the current location

name are transmitted in the response.

39

The user name and contact information are requested from the User profile web

service. In the future, this service could include the interest of the user, preferred

food, language preferences, etc.

The Terminal profile web service could be used in the future for receiving the

dimensions and color properties of the terminal screen, as well as the supported

image formats.

5.2.3 Repository for content and metadata

The repository stores the content (digital photos), the metadata describing the

content, and the ontologies that are used in the metadata description. The

terminal applications request ontologies or parts of them from the server (get

and query functions), and send new metadata of the photos to the server (update

function).

The query can include the current location (or location of interest) as well as a

selected category. The result set includes only items within a reasonable

distance, which is 30 kilometers in the prototype by default (see Figure 9).

Figure 9. The browser displays a list of the items that are located within the selected

geographical distance and match the selected category.

40

When a user with sufficient access rights edits the ontology, the ontology editor

component sends the updates to the repository server. When new images are

added, the metadata is also sent to the repository server.

The metadata server uses some functions similar to the ones that were presented

in the RDF NetAPI [Sea02]. The server needs to support location-based queries

and RDF Schema transitivity, which are not supported in the Joseki

implementation of the RDF NetAPI server, so we needed to create a server of our

own.

5.3 User interface

The user interface issues are divided into three parts. Firstly, there are two main

use cases. One is entering the content and metadata. The other one is searching

for items in the system. Secondly, both of these use cases utilize the ontology

browser, for classifying data or for filtering the search results.

5.3.1 Entering content and metadata to the system

The prototype includes a content description tool. It is implemented in a Camera

application –look-alike midlet (see Figure 10 for details). Another possibility

would have been to only store the automatically gathered metadata (location

and author information) in the Camera application and to integrate the free-text

description part to an Image management application. In the real Images

application of the Nokia 7650 phone, the images can currently be renamed and

put into folders and the user can even upload selected images to Club Nokia

Photo Zone service21.

21 The Club Nokia Photo Zone is a service that can be used on the WWW and WAP. It allows

entering a caption, a plain text description, and keywords for the images that are stored in the

system. The images can be uploaded directly from certain phone models to the service. See

http://www.club.nokia.com/ for details.

41

5.3.2 Searching for images

The prototype includes a browser application for searching the content (images)

that is fed into the system (Figure 11). It filters the items by the following criteria:

1. Distance between the current location and the location of the item

2. The category that can be selected with the ontology browser

component

The system allows icons to be used for representing each category. This way we

can display a visual hint of the category in the list of results for better human-eye

filtering of the results. However, creating such icons is currently not possible in

the prototype, and the icons should possibly be created and attached by using a

desktop system.

Take photo

store metadataLocation WS
(Using a map window in the demo)

+ User Profile
& Presence WS

user input:
•Title
•Description
•Category (using ontology)

Figure 10. Annotating the photographs. The user takes a photo. The system retrieves

the current location from the location web service. The user selects the corresponding

category from the ontology browser, and enters a free text description. The system

automatically gathers the location and author information. The user accepts the

metadata, and it is stored together with the image to the repository.

42

If the ontology had icon representations for each class, we could use the icons for

browsing the ontology on smaller screens. Each class could even have a vocal

representation in addition to the textual and visual symbols.

5.3.3 Browsing and editing ontologies

The prototype includes a user interface component for mobile management of

ontologies. The component allows users to navigate through an ontology graph

on a mobile phone screen using the four-direction joystick of the 7650. The user

can classify media or enter search criteria from the ontology by using the

component. In addition, the component includes a simple editor that allows

extending the class structure of the ontology by creating subclasses. The editing

feature of the component is show in Figure 12.

Figure 11. The browser application. From the list of results the user can select to

view the image, the details or the map. The user can use the ontology browser to

select a category for filtering search results.

43

5.4 Implementation

The class structures of the system with UML class diagrams are presented in this

section. A sequence diagram for the Search use case is presented in Appendix A.

5.4.1 Client-side class structure

In this section, I describe the J2ME (midlet) version of the client software. The

client uses a self-made limited RDF engine implementation for handling RDF

statements.

There is a Mobile Media API for J2ME22, which has camera support, but it is not

included in the MIDP 1.0 that is implemented in the 7650 phone. Because of this

the camera functionality is simulated. The location coordinates of the terminal

must be retrieved and handled on the server side, since in the current versions of

J2ME there is no way to find out the current location. The J2SE version of the

client uses web services for requesting the current location, but this feature is not

implemented in the current J2ME version of the client software.

22 See http://java.sun.com/products/mmapi/

Figure 12. The ontology editor. The user with appropriate access rights can use the

ontology editor for extending the ontology by adding subclasses.

44

Figure 13 depicts a class diagram for the J2ME implementation of the terminal

end applications. The limited RDF engine has two classes: MetaRepository

that stores RDF statements and handles the input of the statements in the

N-Triple format, and the class Statement that represents the data structure of

an RDF statement. The RDF engine stores subclass hierarchies and can perform

simple queries, but it does not implement all of the features in the RDF model

theory.

The graphical ontology browser consists of three classes: GraphView, which

contains the painting and navigating methods for the ontology browser, and

GraphNode and GraphLink, which represent the nodes and arcs in the data

structure of the RDF graph.

stores

0..1 *

1

1

*2

1

1

1

1

1

1

currentNode selectedNode

LemonBrowser

doSearch(subject, predicate, object)
putDescrData(uri)

GraphView

populateFromRDF()
addSubClass(GraphNode gn, String subClassName)
addLinks(GraphNode base, Statement[] categories)

GraphNode

Vector links
String name
String url

addLink(GraphNode another, linkName)
boolean isEndNode()
getURL()

GraphLink

String name
String uri
GraphNode start
GraphNode end

getOpposite(GraphNode gn)

MetaRepository

Vector statements

addStatement(Statement s)
addStatements(String statements)
query(subject, predicate, object)
queryFirst(subject, predicate, object)
load(url)
getInstance()

Statement

subject
predicate
object

getSubject()
getPredicate()
getObject()

Canvas

MIDlet

CameraViewer

sendImageMetaData()
takePhoto()
uploadPhoto()

Figure 13. Client side class structure. LemonBrowser and CameraViewer are the

main MIDlet classes. GraphView is the ontology browser component.

MetaRepository is the limited lightweight RDF engine implementation.

45

LemonBrowser is the main class for the search tool midlet. It binds together the

user interface of the browser application, and manages displaying the search

results. It uses the selected classification and the location information for filtering

the search of interesting items.

CameraViewer is the main class for the image annotation tool midlet. It

simulates the Camera application of the Nokia 7650 phone with extended

annotation capabilities. It gathers the context, and uses the

ontology browser / editor component for classifying the content. Moreover, it

uses the MetadataInputForm class for requesting the free text descriptions

from the user and displaying the metadata.

5.4.2 Repository server class structure

The repository server runs on top of the Tomcat web server. The repository

functionality is implemented by using three servlets. In Figure 14 you can find

the servlet classes.

In MetaServlet, we process the metadata operations. Internally it uses the

memory-based DAML+OIL model from the Jena toolkit for managing RDF data.

The DAML+OIL-version of the model is used, because the system uses the

MetaServlet

damlModel

GET getAll()
GET query(subject, predicate, object)
POST addData()

UploadServlet

POST uploadContent(contentData)

ImageServlet

GET getImage(URL, maxwidth, maxheight, format)

HttpServlet

Figure 14. There are three servlets in the system. MetaServlet handles the

metadata of images. UploadServlet takes care of incoming images.

ImageServlet manages the content-adaptation for the user’s device

by adjusting the image size and format.

46

transitivity of subclasses, which is not supported in the RDF model of Jena. The

servlet is used for storing metadata about items and for querying metadata.

After adding metadata, the servlet stores the whole model into a pre-defined file

using the RDF/XML serialization. The Jena toolkit includes support for storing

the RDF metadata into a relational database, but I chose to keep the server

lighter and not to include a DBMS in the system. For communicating with the

terminal, MetaServlet uses the N-triple syntax of RDF, since it was easier to

implement on the terminal end than the official RDF/XML format.

UploadServlet is designed for storing the content on the repository server. It

stores the uploaded photographs on the web server to a pre-defined path, and

returns the URL for the stored resource, so the client can create RDF triples with

that resource URI.

ImageServlet handles the content adaptation when the client needs to display

photographs. The images are shrunk to fit the screen of the mobile device, and

transmitted in a requested format. This helps in keeping the communication

costs small, since it reduces the byte size of the transmitted images significantly.

On the other hand, the J2ME environment does not even support image scaling,

since it could be quite a heavy operation for many mobile terminals.

5.4.3 Web Services class structures

The web services use the WASP Server for Java by Systinet23. The developer

version of the server is available as a plug-in for the Sun ONE Studio for Java.

The web services are presented in Figure 15 and described below.

LocationWS is the web service that handles the location information and

geographical maps. The prototype implementation of LocationWS receives the

23 See http://www.systinet.com/products/wasp_jserver/overview

47

current location from the class MapView. The user can enter the “current

location” by clicking in a map window, and the location web service gets the

coordinates and the name of the location. In a real implementation, the network

operator could provide the location web service, and the location information

could be retrieved from the cellular network. The current prototype

implementation of the location web service allows requesting a map with the

current location and the location of the selected item highlighted.

UserProfileWS handles the contact information of the user. It just returns the

name and email-address of the user. In the future, this could contain more usable

information of the user, like the hobbies, profession, gender, age, and marital

status. These could be used for sorting the search results.

0...n
1

coordinate source

1

MapView

addItem()
findItems()
findPlaces()
getCurrentItem()
getMap()
loadMapImage()
loadOutline()
makeToolPanel()
populateMap()

MapRepository

addItem()
find()
findPlaces()
findPopulatedPlace()
load()
loadRoad()

MapItem

country
dd_lat
dd_long
fc
name
pc
url

distance(MapItem another)

MapView.CoordinateConverter

zoomX
zoomY
southBound
westBound

zoomIn()
zoomOut()
center()
toLatLong()
toScreenCoords()

gis

webservice

LocationWS

(mapView)
getCurrentLocation()
getMap(MapItem anotherItem)

TerminalProfileWS

getScreenSize()
getScreenType()

UserProfileWS

getName()
getEmail()

MapImage

lat
lon
image

Figure 15. The class structure of the web services and the GIS module. The class

MapView is used for simulating the current location with an on-screen map. It also

produces bitmap images from vector map data to be displayed in the client.

48

TerminalProfileWS allows retrieving the terminal properties on the server

side. These include the size and type of the screen of the terminal.

5.4.4 GIS module

The server part of the prototype includes a simple Geographic Information

System (GIS) module. It uses geographic names freely downloadable from the

Geographic Names Database24, maintained by the U.S. National Imagery and

Mapping Agency. For vector maps, it can use the data available from the Digital

Chart of the World (DCW)25 in ArcView export format. The GIS module was

implemented for experimenting the use of location information in the

simulation. It is able to render maps for selected regions, if the vector map data is

available. It can also display objects on a map, and draw a map with the current

location and a selected item. The classes of the GIS module are presented in

Figure 15.

5.5 Ontologies in the prototype

The prototype system uses the Dublin Core properties for expressing the title,

description, creator, and location data. It also presents a vocabulary of its own

for categorizing and expressing relations between the categories.

The image annotation part of the prototype creates seven statements for each

photograph. In the ontology editor, three statements are created for each new

subclassed category. See Figure 16 for an example of these. The available

memory of the device limits the maximum number of statements that can be

handled at once on the terminal.

24 http://www.nima.mil/gns/html/

25 http://www.maproom.psu.edu/dcw/

49

The current implementation handles and stores the ontology and the statements

about the photographs all in one place. Support for multiple ontologies could be

added in the future. This would allow more flexible usage of third-party

ontologies.

1: <rdf:Description rdf:about='&loc;transport'>
2: <rdf:type rdf:resource=&rdfs;Class'/>
3: <loc:icon xml:lang='en'>transport.png</loc:icon>
4: <rdfs:comment xml:lang='en'>Public Transport</rdfs:comment>
5: <rdfs:subClassOf rdf:resource='&loc;Category'/>
6: </rdf:Description>
7: <rdf:Description rdf:about='&loc;transport-Station'>
8: <rdf:type rdf:resource=&rdfs;Class'/>
9: <rdfs:subClassOf rdf:resource=&loc;transport'/>
10: <rdfs:comment>Station</rdfs:comment>
11: </rdf:Description>
12: <rdf:Description rdf:about='http://myhost/pics/railwaystation-

2.jpg'>
13: <dc:title>Helsinki Railway Station from the street</dc:title>
14: <loc:category rdf:resource='&loc;transport-Station'/>
15: <dc:date>2002-10-03T13:12</dc:date>
16: <dc:description>The station was designed by the Finnish

architect Eliel Saarinen</dc:description>
17: <dc:coverage>Helsinki; Lat: 60.20243, Long:

24.93216</dc:coverage>
18: <loc:location rdf:resource='&loc;Helsinki'/>
19: <dc:creator>John Doe</dc:creator>
20: </rdf:Description>

Figure 16. In this excerpt of the metadata repository, we use the namespace dc for Dublin

Core vocabulary, and the namespace loc for our categorization vocabulary. The category

class transport (lines 1–6) was created by hand, and its subclass tranport-Station

(lines 7–11) was automatically created using the ontology editor of the system. Lines 12–

20 show an annotation for a photo that was created with the system.

50

6 From the prototype towards the future

In this section I evaluate the presented prototype, its limitations and compare it

to other means of mobile information retrieval. In the end of this section, I

present future development ideas and a SWOT analysis for the system as a

tourist information portal.

6.1 Limitations of the implementation environment and the prototype

The general limitations of the implementation environment, especially the

limitations of the J2ME environment, had an effect on the prototype. The

memory limitations were not a big problem. The API limitations, instead, forced

us to make compromises and workarounds. The prototype system itself has

some limitations that are discussed in this section.

6.1.1 Memory limitations

In mobile phones, one critical issue is the size of the applications. Both the

runtime memory footprint and the storage size of the midlet are limited. In the

Series 60 phones (e.g. the Nokia 7650 phone), these are not that critical, since the

applications can take up to 4 megabytes of storage space, and use up to 1,4

megabytes of heap (runtime) memory. In the Series 40 phones (e.g. the Nokia

7210 phone) the size of a midlet suite is limited to 64 kilobytes and the available

heap size for an applet is 200 kilobytes.26

In the presented system I managed to keep the size of the midlets reasonable.

The size of the RDF engine is 6 kilobytes (inside a jar package). The user interface

26 The memory limitation information were taken from specifications for Java phones in Forum

Nokia, http://www.forum.nokia.com/ .

51

component of the ontology browser / editor takes another 6 kilobytes. The size of

the whole client-end midlet package is 41 kilobytes.

6.1.2 API limitations

The Java MIDP (Mobile Information Device Profile) has got only a limited set of

Java API packages. Ready-made metadata toolkits (e.g. the Jena Framework) can

be used on the server-side, but for the terminal we needed to create a lighter

solution.

Two important APIs that are lacking from the MIDP 1.0 specification are 1) an

API for the location information and 2) a camera control API. There is a Java

Mobile Media API27 available that allows camera control in Java midlets. It is

implemented in the Nokia 3650 phone, which will be available in early 2003.

There is also a JSR (Java Specification Request) for Location API for J2ME28.

In the MIDP 1.0 specification (and even in the MIDP 2.0), there is no support for

XML and web services. There is a Java Specification Request for J2ME Web

Services Specification (JSR 172), which should include XML support. Despite the

fact that there are open source XML parsers for J2ME available, our prototype

uses the N-Triple format to keep the size of the application small.

6.1.3 Limitations of the prototype

The search criteria are limited to a single categorization and the geographical

distance from the current location to the target. Adding multiple categorizations

would be quite easy, but the user would need to browse one categorization at a

time. In this case, a search summary page showing the different search criteria

27 See http://java.sun.com/products/mmapi/

28 See http://jcp.org/en/jsr/detail?id=179

52

could be useful. The page could even contain an option of selecting different

locations and the distance limit for the location-based search. On the other hand,

these changes would increase the complexity of the user interface.

As noted in the Section 5.4, obtaining the location information is simulated by

using point-and-click on an on-screen map. In the future, this could be replaced

by location services provided by the operators. Another possibility could have

been to use the numeric cell ID (CID) and the location area code (LAC) of the

mobile network, which are available in the Nokia 7650 API for native

applications, but not for Java midlets. This would have allowed displaying items

that are inside the current cell or the current area on the network of a single

operator. User profile and terminal profile are not yet fully used in the prototype

system, but there is a place for them in the architecture.

Context privacy is not yet managed in the prototype. The user is not questioned

for willingness to post the location data. According to the current practices and

regulations in Finland, the location information should be used only if the user

gives permission for using it. In the system, the user should be notified that his

current location is stored and published in the service, together with his unique

ID, the current time, and the photograph.

The MIDP version of the client implementation lacks the support for location

information and maps. This is because there is no API for accessing web services

in the current MIDP Java implementations. This could be easily circumvented

with creating a servlet interface to the current location and map services.

The presented prototype uses pre-defined URLs for connecting to the tourist

portal. If the system was used in many countries at different sites, service

discovery mechanisms should be used for connecting a local portal instead of a

central one.

53

6.2 Evaluation and comparison

6.2.1 Speed and cost of data transfer and location services

The speed of data transfer and the connection delays make a significant part of

the usability of the mobile services. The cost of the services is another essential

issue. The estimations in this section are based on the GSM/GPRS services of the

Finnish mobile phone operators in the end of the year 2002.

Most of the current GSM networks with GPRS support have a maximum transfer

rate of 13.4 kbit/s per timeslot. A mobile terminal with GPRS multislot class 6 can

use combinations up to 2+2 timeslots and 3+1 timeslots. This gives us a

maximum transfer rate of 26.8 – 40.2 kbit/s for downloading and 13.4 –

26.8 kbit/s for uploading. At these speeds, uploading a 40-kilobyte JPEG image

(with the maximum 640x480 pixel resolution of the Nokia 7650 phone) would

take 12 – 24 seconds, and downloading a 5-kilobyte image (160x120 pixels) that

fits to the screen would take 1 – 1,5 seconds for the transfer plus the time for

initiating the connection.

In Finland, most operators have a monthly fee for GPRS subscription and use

also the amount of transmitted data as a basis for invoicing. If the amount of

monthly-transmitted data is 5 megabytes, the average price for a megabyte stays

between 2,60€ and 4,20€ per megabyte29. In this case, uploading one JPEG image

of size 640x480 and 40 kilobytes would cost 0,10 – 0,16€. Some of the operators

offer GPRS service with a monthly fee only, so increasing the amount of

transmitted data would decrease the price per megabyte.

29 Calculations are based on price information from four Finnish GSM operators in October 2002.

The monthly fees for a basic GSM subscription (about 3–5€ per month) are not included in the

calculations.

54

Location-based SMS-services in Finland cost currently (December 2002) about

0,60€ for a query, which is approximately the same as the prices of other

commercial SMS-services. It is hard to estimate, how much would the location

information cost for a service like the tourist portal of the prototype.

6.2.2 Usability

A field research from the year 2000 shows, that searching information by using

WAP on a mobile phone (Nokia 7110e and Ericsson R320s in the research) can be

cumbersome, slow, and costly [Nie00]. Some of the reasons for this were 1) delay

in establishing connection, 2) the price of circuit-switched GSM data, 3) small

screen size in mobile phones 4) slowness of textual input with the mobile phone

keypad, and 5) design/implementation failures in WAP services.

Packet-switched GPRS connections have been at least a partial cure for the first

two problems. The smart phone category mobile phones have bigger screen sizes

(e.g. 176x208 pixels in Nokia 7650) than the phones that were used in the

research (96x65 in Nokia 7110e), and the bigger screen size helps navigating. The

T9-dictionary-based text input has improved the writing speed. There are still

delays in navigating the menus of a WAP service, when the phone needs to fetch

new WAP pages from the network.

By using location information and computer-understandable metadata we can

possibly overcome some of the problems in the mobile information retrieval. The

number of network requests can be made smaller, and the user input can be

minimized.

The procedures for finding a fish restaurant in different SMS and WAP services

and the prototype are presented in Table 1. The user actions in the table describe

a shortest relevant path of actions that I could find for (in some cases partly)

accomplishing the task. The price comparisons should be considered suggestive,

55

and the prices can differ from operator to another. The future price of the

location information for applications like our prototype is still an open question,

and the price of using the prototype system cannot be accurately estimated.

Usability tests or expert reviews for the user interfaces were not performed, but

they would help in finding problems with the user interface.

The content annotation and sharing on the mobile phone, which is another half

of this prototype, is not possible in the other presented services. The other

services (except the WWW search engine) have only content that is fed to the

system by one of the administrators. For example, the yellow pages services

show only advertisements of the services of paying customers.

Table 1. Comparison of different forms of mobile browsing in a “Find a nice fish

restaurant” use case with the Nokia 7650 phone. The time and cost estimations are

approximate and not tested on real users.

Service
User actions

and time estimation
Costs for the

user
Other

Location-
based SMS

(On Radiolinja
and Sonera
GSM networks
in Finland)

Need to know the SMS service number and the
keyword in advance

1. Start sending a message

2. Type the number of the SMS service

3. Type SMS message (“FIND RESTAURANT”),

4. Wait for an answer. As response, get the
address and name for the two nearest ones.

5. If these are not enough, send another message
(“FIND MORE”) to get the two of the next
closest restaurants

~ 1 min for the nearest two restaurants

Service SMS:

0,59€–0,66€ / two
matches

Gives only the two
closest alternatives;
limited selection of
service types.

The user needs to
know how to get to
the specific
address.

Works on nearly
any GSM phone.

GPRS WAP

aktivist.fi
service

1. Open the WAP browser

2. Browse the operator’s service menu to find the
service (or open the service from bookmark)

3. Browse through title pages

4. Select “City info”

5. Select “Helsinki”

6. Select “Restaurants”

7. Select “Fish restaurants”

8. Select one of the restaurants

9. If the address is nearby (need to know the
address!), ok, otherwise return to step 8.

~ 2–3 min for finding the list of restaurants

Service 0,49€
(only for the first
time)

Data ~0,07€ (24kB)

Overall costs
0,56€

If there are many
results, the user
needs to check one
by one, which are
near, which far
away.

The user needs to
know how to get to
the specific
address, and know
from the address if
it is nearby.

56

Service
User actions

and time estimation
Costs for the

user
Other

GPRS WAP

Finnish
Yellow pages
service

1. Open the WAP browser

2. Browse the operator’s service menu to find the
service (or open the service from a bookmark)

3. Wait for title page to disappear

4. Type keywords into field

5. Type city (“Helsinki”)

6. Type current street address

7. Select FIND

8. The service lists the names of 20 nearest
services and their addresses. Select one of the
matches

9. Select “Map” to display a zoomable map that
displays the location of the selected restaurant

10. Click “call” to invoke a voice call to the
restaurant to make table reservations.

~ 2–3 min for finding the restaurants

Service 0,55€ /
search

Data ~0,10€ (35 kB)

Overall costs:
0,65€

The user needs to
type in the current
city and address.

Downside: level of
categorization –
Found no match in
the whole Helsinki
for “Fish
restaurant”
(“Kalaravintola”),
another search was
needed with the
keyword
“Restaurant”.

The user can get a
map showing the
restaurant.

GPRS WWW
using the
ReqWireless
WebViewer
and Google

1. Open the web browser

2. Pick Google from the bookmarks

3. Type “Fish restaurant Helsinki”
Google returns with a list of hits

4. Select the first hit – link to activist.fi city guide,
class “Fish restaurants” in Helsinki. The
activist.fi service returns a list of fish
restaurants and their addresses.

5. Select a link and get detailed description and
images of the selected restaurant.

~ 3–4 min for finding the list of restaurants

Service: free

Data: 0,30€–0,60€
(~100–300 kB, with
images)

Overall costs:
0,30€–0,60€

The service is
designed for
desktop use and is
more difficult to
use on the mobile
phone.

GPRS context-
aware browser

(The prototype
presented in
this thesis)

1. Launch the tourist browser application

2. Select category using the ontology browser:
Restaurants → Fish

3. Select “Results” from the menu. The system
returns a list of fish restaurants within the
surrounding 30 km.

4. Highlight on one of the items and select
“display” to see a photo and the description of
the restaurant.

5. Select “Map” from the menu to see a map with
the destination and the current location

Service: free?

Location
information:
0,10€–0,50€
(an estimation)

Data: 0,10€–0,30€
(~30–100 kB)

Overall cost:
0,20€–0,80€

Finds only items
that are fed into
the service.

The items can be
added using a
mobile phone.

The overall cost
depends on the
price of location
information and
the pricing of the
portal service.

6.2.3 Performance

All the server-side components, including location (map) services, location-based

queries, and image transformation, require a lot of resources. The server side is

57

neither optimized nor performance-tested. There are solutions for better

performance location-based search available.

N-Triple was used in our prototype for transmitting RDF-metadata between the

server and the terminal. Using N-Triple saved application space, since we did

not need to include an XML parser in the midlets. On the other hand, N-Triple is

not the most size-optimized format for transmitting metadata. Using it for

transmitting big amounts of metadata (e.g. more than 10 statements) requires

more space than using the XML format. In RDF/XML, each subject needs to be

transmitted only once. The use of namespaces saves also a lot of bytes. Currently

the use of RDF/XML would eat a little of application space, but if an XML-parser

was included in the MIDP API, the RDF/XML format would be a better option.

Compression would also help in reducing the size of transmitted ontologies.

6.2.4 Other issues

The presented system would help in creating shareable, mobile-accessible

services with a repository of resources. Storing the context information raises an

issue of privacy. An example of privacy violation could be a service that stores

the unique identifiers of the surrounding persons together with the location and

time information, and makes all of them publicly available together with the

photo. It would be fairly easy for unknown parties to gather person registers that

store a location of a certain person at a certain time.

The system should also filter out illegal (e.g. copyrighted) or inappropriate

content. The filtering process could include automatic parts and human

moderators.

58

6.3 Towards the future

6.3.1 Future work

There are different ways to continue the development of the system. One user

interface issue would be adding a free-text search possibility to selecting the

category. Alternative visual representations for ontologies should be considered.

We could try out tree-views for ontologies on a mobile terminal, and implement

more complex editing of ontologies on a mobile phone.

User interface testing would help in getting more objective results on the pros

and cons of the presented search and annotation methods. In the user interface

tests, our system could be compared with the traditional WAP or WWW

browsing using a mobile phone, and the existing mobile-accessible image

repositories.

Automatic image classification, automatic high-level context detection, and

different annotation methods, such as speech annotation could be feasible

further in the future. These fields of research should be monitored while the

computing capabilities in the mobile phones develop further.

The use of multiple facets, multiple ontologies or semantically richer ontologies

should be researched further. This way we could perform queries like “find

timetables for ferries to a nearby island”. The system should also include a way

of expressing multiple photographs or pieces of information about the same

target, e.g. a restaurant, its menus and wine lists, and photos from the street and

inside. Linking to web pages and different services could be a very usable

feature.

Since the server part of the system is not optimized, the server end should be

performance tested and optimized on the most crucial parts. The real

59

implementations of the Location API, the Web Services API, and the Camera API

should naturally be used, when they become available for the terminals.

6.3.2 Towards the mobile semantic web

Automatic and easy manual semantic annotation of content at the creation time

could help in creating content for the semantic web30, in addition to managing a

personal collection of images or creating shareable tourist portals. However,

even richer annotation methods could be used. These could include user

interface solutions for annotation with multiple ontologies, and easier semantic

linking between two resources or between two ontology elements in different

ontologies. The prototype shows that semantic annotation can be made on the

field during the creation of the content, and it does not even require big efforts

from the user. The use of context and semantically annotated services could help

in creating user-friendly compositions of mobile services.

6.4 SWOT analysis

If we consider the future enhancement ideas that were described above, we can

imagine an enhanced and polished production version of the system, customized

to be a tourist information service. A SWOT analysis for using such a system as a

tourist information portal is presented in Table 2. Most of the presented

weaknesses depend on the current implementation and could be fixed in the

future. I think that the success of such a system would depend at least on the real

added value it provides to the users, and the technical maturity of the system,

and the market trends.

30 Visions for the semantic web are presented in [BHL01].

60

Table 2. A SWOT analysis of an imaginary production version of the presented system,

if it was customized to be a tourist information service.

Strengths

• Only a small amount of textual user
input required in annotation of the
images

• The use of context information
together with classification allows
simple and efficient search without
textual input

• The presented system is feasible in
the current smart phone class mobile
devices; it is simple and light-weight

• The ability of entering user-created
content to the service with rich
annotation by using only the mobile
phone is a major advantage over the
existing systems

Weaknesses

• Currently no compatibility with the
present systems (WWW search
engines, WWW pages)

• The ontology browser user interface
can be too complex / too unfamiliar
for some users

• Uploading content to the service
costs – this can limit the popularity of
the service

• Different users can classify the items
differently

• Language barriers were not
considered in the current
implementation

Opportunities

• Mobile virtual communities could be
formed from the users of the system

• Other, cheaper forms of positioning
could be used

• Linking to WWW or WAP resources
would be easy to add

• Automatic image classification and
annotation by speech could be used
in the future for minimizing the
efforts of annotation

• The service could be
internationalized by adding
translations of the captions of classes
for other spoken languages

Threats

• The possibility of misuse can require
too much effort from the service
provider

• The users might not want to annotate
images manually

• The required amount of user input
during annotation might be too
much

• Gaining a critical mass of users and
content could be difficult if the
location information costs too much

61

7 Conclusions

The existing tools for managing metadata, vocabularies, and ontologies were

designed for the desktop computers. Especially ontology editors and browsers

use a lot of space on the computer screen. The programming tools for using

metadata languages, e.g. RDF engines, require too much memory to be used in

mobile phone applications on the client side.

In this thesis we presented a system that supports ontology- and context-based

annotation, sharing, and information retrieval in the mobile environment. The

system uses the existing RDF metadata language in Java MIDP applications for

mobile phones. The presented prototype includes a complete system for using

ontologies in sharing user-created content with mobile phones.

The presented solution suggested that the creation time context, such as location

and time, should be automatically stored as metadata for the content. The

content and the metadata can be stored on a server to be shared with other users.

The location information together with a simple classification can be usable

search criteria for many services. The tourism scenario works as an example of

how these technologies can be usefully combined.

Automatic image classification, image recognition, and speech annotation could

help in even easier creation of the metadata in the future. In a public service, the

different pieces of the context that are stored should be carefully considered in

order to protect the privacy of the users and the surrounding persons.

The presented system was compared with the current WAP and SMS

applications. The concept allows creating portals with content that can be

created, published, searched, and used with mobile phones. In the future, the

methods of the presented system could be used for combining different services

under a single context-aware user interface.

62

References

AAH97 G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, M. Pinkerton:
Cyberguide: a mobile context-aware tour guide. Wireless Networks 3, no. 5
(October 1997), 421–433.
http://portal.acm.org/citation.cfm?doid=272186.272199

Bec02 D. Beckett (ed), RDF/XML Syntax Specification (Revised). W3C Working
Draft 8-November-2002.
http://www.w3.org/TR/2002/WD-rdf-syntax-grammar-20021108
[19.1.2002]

BHL01 T. Berners-Lee, J. Hendler, and O. Lassila, The semantic web. Scientific
American 284(5):34-45 (May 2001).
http://www.sciam.com/2001/0501issue/0501berners-lee.html
[31.10.2002]

BiM01 P.V. Biron, A. Malhotra (eds), XML Schema Part 2: Datatypes. W3C
Recommendation 02 May 2001. http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/ [27.2.2003]

BrG00 D. Brickley, R.V. Guha (eds), Resource Description Framework (RDF)
Schema Specification 1.0, W3C Candidate Recommendation 27-March-2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
[20.5.2002]

BrG02 D. Brickley, R.V. Guha (eds), RDF Vocabulary Description Language 1.0:
RDF Schema, W3C Working Draft 12-November-2002.
http://www.w3.org/TR/2002/WD-rdf-schema-20021112/
[19.1.2003]

Bri02 B. McBride, Jena: Implementing the RDF model and syntax specification,
http://www-uk.hpl.hp.com/people/bwm/papers/20001221-

paper/ [16.10.2002]

Cra02 L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, J. Reagle
(eds), The Platform for Privacy Preferences 1.0 (P3P1.0) Specification,
W3C Recommendation 16-April-2002.
http://www.w3.org/TR/2002/REC-P3P-20020416/ [20.1.2003]

ChK00 G. Chen, D. Kotz, A Survey of Context-Aware Mobile Computing Research,
Dept. of Computer Science, Dartmouth College, TR2000-381.
http://citeseer.nj.nec.com/390713.html [2.12.2002]

CIH02 G. Colyer, K.Ishii, J. Hunter, Mapping between Dublin Core and JPX (JPEG
2000) Metadata, ISO/IEC JTC1/SC29/WG1 N2736, 15 October, 2002.
http://www.jpeg.org/metadata/wg1n2736.pdf [26.2.2003]

CHH01 D. Connolly, F. van Harmelen, I. Horrocks, D.L. McGuinness,
P.F. Patel-Schneider, L.A. Stein (eds), DAML+OIL (March 2001) Reference
Description, W3C Note 18-December-2001.
http://www.w3.org/TR/daml+oil-reference [21.5.2002]

CDM00 K. Cheverst N. Davies K. Mitchell and A. Friday: Experiences of developing
and deploying a context-aware tourist guide: the GUIDE project. Proc. of
MobiCom '00, ACM 2000, pp. 20-31,
http://doi.acm.org/10.1145/345910.345916 [19.1.2003]

63

DCH02 M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks,
D.L. McGuinness, P.F. Patel-Schneider, L.A. Stein, OWL Web Ontology
Language 1.0 Reference, W3C Working Draft 12-November-2002.
http://www.w3.org/TR/2002/WD-owl-ref-20021112/ [16.12.2002]

DIG01 Digital Imaging Group (DIG35). DIG35 Specification: Metadata for Digital
Images, Version 1.1, June 18, 2001.
http://www.i3a.org/i_dig35.html

Haa01 M. Haarala, Gathering and Managing Information for Centralized User
Profiles for Utilisation in Third Generation Mobile Services, 2001, Master’s
thesis, University of Helsinki, Dept. of Computer Science.

Hay02 P. Hayes (ed), RDF Semantics, W3C Working Draft 12-November-2002.
http://www.w3.org/TR/2002/WD-rdf-mt-20021112/ [27.2.2003]

HHV02 E. Hyvönen, P. Harjula, K. Viljanen, Representing metadata about web
resources. Proc. Of Semantic Web Kick-Off in Finland, HIIT Publications,
Helsinki, Finland, 2002, pp. 47–75.
http://www.cs.helsinki.fi/u/eahyvone/stes/semanticweb/
kick-off/proceedings.html

HIR02 K. Henricksen, J. Indulska, and A. Rakotonirainy, Modeling context
information in pervasive computing systems. Proc. of Pervasive 2002,
Zürich, Switzerland, August 26-28, 2002.
http://link.springer.de/link/service/series/0558/tocs/t2

414.htm.

HVH02 E. Hyvönen, K. Viljanen, A. J. Hätinen, Yellow pages on the semantic web.
Proc. of XML Finland 2002, HIIT Publications.
http://www.cs.helsinki.fi/u/eahyvone/xmlfinland2002/

ProceedingsXML2002-final.pdf [20.1.2003]

HSS02 E. Hyvönen, A. Styrman, S. Saarela, Ontology-based image retrieval. Proc.
Of XML Finland 2002, HIIT Publications.
http://www.cs.helsinki.fi/u/eahyvone/xmlfinland2002/

ProceedingsXML2002-final.pdf [20.1.2003]

ISO13250 ISO/IEC 13250:2000 Information technology – SGML applications – Topic
maps

KAC02 G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl,
RQL: A declarative query language for RDF, in Proc. of WWW2002,
Honolulu, Hawaii, USA, 2002.
http://doi.acm.org/10.1145/511446.511524 [14.1.2003]

Kiv01 J. Kivinen, Puheesta digitaalikuvan metadataksi (in Finnish), a report from
Helsinki University of Technology, 2001.
http://www.media.hut.fi/GTTS/Suomi/dt&raportit/

j_kivinen_2001.pdf [2.12.2002]

KRW02 G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, M.H. Butler (eds), Composite
Capability/Preference Profiles (CC/PP): Structure and Vocabularies, W3C
Working Draft (8-November-2002).
http://www.w3.org/TR/CCPP-struct-vocab/. [18.10.2002]

64

KCM03 G. Klyne, J. J. Carroll, B. McBride (eds), Resource Description Framework
(RDF):Concepts and Abstract Syntax. W3C Working Draft 23-January-2003.
http://www.w3.org/TR/2003/WD-rdf-concepts-20030123/
[26.2.2003]

LaB02 Y. Lafon, B. Bos, Describing and Retrieving Photos using RDF and HTTP.
W3C Note (19-April-2002), http://www.w3.org/TR/2002/NOTE-
photo-rdf-20020419 [21.5.2002]

LaS99 O. Lassila, R. Swick (eds), Resource Description Framework (RDF) Model
and Syntax Specification, W3C Recommendation (22-February-1999).
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
[22.1.2003]

MaM02 F. Manola, E. Miller (eds), RDF Primer. W3C Working Draft
(11-November-2002), http://www.w3.org/TR/2002/WD-rdf-primer-
20021111/ [10.1.2003]

MaS00 N. Marmasse, C. Schmandt, Location-aware information delivery with
ComMotion. Proc. Int. Symposium on Handheld and Ubiquitous Computing,
HUC 2000, 157-171, Bristol, UK, September 2000.
http://citeseer.nj.nec.com/marmasse00locationaware.html
[20.1.2003]

McH03 D. L. McGuinness, F. van Harmelen (eds), Web Ontology Language (OWL):
Overview, W3C Working Draft 10 February 2003,
http://www.w3.org/TR/2003/WD-owl-features-20030210/
[25.2.2003]

MSR02 L. Miller, A. Seaborne, A. Reggiori, Three Implementations of SquishQL, a
Simple RDF Query Language. Proc. Of 1st International Semantic Web
Conference (ISWC2002), Sardinia, Italia, June 9-12th, 2002

Nie00 J. Nielsen, WAP field study findings, December 2000.
Online: http://www.useit.com/alertbox/20001210.html
[15.1.2003]

Nok02 Mobile Web Services Interfaces, Nokia white paper, 2002.
http://nds1.nokia.com/press/pdfs/Mobile_Web_new_A4.pdf.
[16.10.2002]

PaS02 P. Patel-Schneider, J. Siméon, The Yin/Yang Web, XML Syntax and RDF
Semantics. Proc. Of WWW 2002, Honolulu, Hawaii, USA, 2002.
http://doi.acm.org/10.1145/511446.511504 [19.1.2003]

Pep00 S. Pepper, The TAO of Topic Maps. XML Europe 2000, Paris, France, June
2000. http://www.gca.org/papers/xmleurope2000/papers/s11-
01.html [30.10.2002]

PeM01 S. Pepper, G. Moore, XML Topic Maps (XTM) 1.0, TopicMaps.org
Specification 06-August-2001.
http://www.topicmaps.org/xtm/1.0/xtm1-20010806.html
[22.1.2002]

65

RSH02 V. Raatikka, K. Salminen, E. Hyvönen, XML, RDF(S) and Topic Map
Databases, in Semantic Web Kick-Off in Finland, HIIT Publications,
Helsinki, Finland, 2002, pp. 77–109.
http://www.cs.helsinki.fi/u/eahyvone/stes/semanticweb/
kick-off/proceedings.html

Rad02 Metropolis Location Application Interface (LAIF).A brochure from
Radiolinja in Finnish, available from http://www.radiolinja.fi/
[27.9.2002]

RBK98 H.A. Rowley, S. Baluja, T. Kanade, Neural network-based face recognition,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 20,
no.1 , pp. 23-38, Jan. 1998

Saa02 J. Saarela, Semantic Information Router (SIR), in Semantic Web Kick-Off in
Finland, HIIT Publications, Helsinki, 2002, pp. 257–263.
http://www.cs.helsinki.fi/u/eahyvone/stes/semanticweb/
kick-off/proceedings.html

SAW99 B. Schilit, N. Adams, R. Want, Context-aware computing applications. In
Proceedings of IEEE Workshop on Mobile Computing Systems and
Applications, pages 85–90, Santa Cruz, California, December 1999. IEEE
Computer Society Press.

Sea02 A. Seaborne, An RDF NetAPI, Proc. of ISWC 2002, pp. 399–403, Springer
2002. http://link.springer.de/link/service/series/0558/
bibs/2342/23420399.htm [2.12.2002]

SiH02 P. Silvonen, E. Hyvönen, Semantic web tools, in Semantic Web Kick-Off in
Finland, HIIT Publications, Helsinki, Finland, 2002, pp. 137–152.
http://www.cs.helsinki.fi/u/eahyvone/stes/semanticweb/
kick-off/proceedings.html

SiD02 M. Sintek, S. Decker, TRIPLE — A query, inference, and transformation
language for the semantic web, Proc. Of International Semantic Web
Conference (ISWC), Sardinia, June 2002.
http://triple.semanticweb.org/iswc2002/TripleReport.pdf
[14.1.2003]

SMV02 M.K. Smith, D. McGuinness, R. Volz, C. Welty (eds), Web Ontology
Language (OWL) Guide Version 1.0, W3C Working Draft 4 November 2002,
http://www.w3.org/TR/2002/WD-owl-guide-20021104/
[19.1.2003]

Son02 Instructions for using the Sonera SMS “Missä”-service, available in Finnish
from http://www.sonera.fi/ [27.9.2002]

StL02 A. Stent, A. Loui, Using event segmentation to improve indexing of
consumer Photographs, Proc. Of ACM SIGIR 2001.
http://doi.acm.org/10.1145/383952.383960. [30.10.2002]

SzP98 M. Szummer, R.W. Picard, Indoor-outdoor image classification, In IEEE Int.
Work. On Content-based Access of Image and Video Databases, January
1998.

Tho02 J. Thoméré, K. Barker, V. Chaudhri, P. Clark, M. Eriksen, S. Mishra, B.
Porter, A. Rodriguez, A web-based ontology browsing and editing system.
Proc. of Artificial Intelligence 2002, pp. 927-934.

66

TBM01 H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn (eds), XML Schema
Part 1: Structure, W3C Recommendation 2-May-2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
[27.2.2003]

Tuu00 E. Tuulari, Context aware hand-held devices. Espoo, VTT Electronics, 2000.
VTT Publications; 412 ISBN 951-38-5563-5; 951-38-5564-3.
http://www.inf.vtt.fi/pdf/publications/2000/P412.pdf

VFJ01 A. Vailaya, M. A. T. Figueiredo, A.K. Jain, H.-J. Zhang, Image classification
for content-based indexing, in IEEE Transactions on Image Processing, vol.
10, no. 1, pp. 117—130, Jan. 2001.

Vak02 M. Vakkilainen, Käytettävyystestaus: Puhe digitaalikuvan metadatan
lähteenä (in Finnish), a report from Helsinki University of Technology, 2002.
http://www.media.hut.fi/GTTS/Suomi/dt&raportit/

kaytettavyysanalyysi.pdf [20.1.2003]

Vod02 Vodafone signs Siemens as global location enabling server supplier, A press
release from Vodafone, 12 March 2002. http://www.vodafone.com/
[20.1.2003]

Appendix A–1

Appendix A. Sequence diagram for searching

User

Highlight an item from the result list

LocationWS :MetaServlet:GraphView :MetaRepository:LemonBrowser

Create a description form

Get the image from the ImageServlet

putDescrData()

Populate the list of results

doSearch()

query(null, "#category", "#Restaurant")

HTTP GET, action=query

getCurrentLocation()

triples (N-Triple)

Statements (java objects)

The user selects a category

Menu: "Search results"

Menu: "Show item"

query(resource, null, null)

query

triples (N-Triple)

Statements

MapItem

Display the list of matching items

Display the form with the image and details

