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Abstract

Not only being essential to life as we know it water also has peculiar behaviour in

comparison to other liquids. The macroscopic anomalies of water are driven by its mi-

croscopic structure. It is agreed upon that the molecular-level structure of liquid water

is highly structured due to its extensive hydrogen-bond network. However, the details

on the structure remain debated. Moreover, it is surprising how little is known about

the behaviour of water when it interacts with other substances, taken how important

water is as a solvent.

Studying the structure of liquids is not straightforward and each method has its

particular sensitivity. Inelastic x-ray scattering is a versatile method for structural

analyses, and thus can provide information from a new perspective. Compared to many

other techniques it has several advantages when investigating liquids: for example,

bulk structures can be studied and no vacuum environment is needed. In the element-

sensitive x-ray Raman scattering the electronic excitations from core to unoccupied

molecular orbitals reveal the local environment. On the other hand, information on

the electronic structure is also obtained with x-ray Compton scattering, in which the

ground-state electron momentum distribution is probed.

In this thesis, the problematics of the hydrogen-bond network of water is approached

by observing the effects other components have on it with x-ray Raman and Comp-

ton scattering. The thesis includes studies on ionic, hydrophobic, and hydrophilic

interaction, particularly in aqueous LiCl, water-alcohol mixtures and aqueous polymer

poly(N-isopropylacrylamide). The information obtained from these systems both elu-

cidates the structure of the hydrogen-bond network of water, and further affirms the

benefit of inelastic x-ray scattering methods in studying a wide range of disordered

materials.
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1 1 INTRODUCTION

1 Introduction

Water’s role as the solvent of life makes it ever so interesting. Water covers more

than 70% of the Earth surface and it is essential for our survival on Earth - not just as

something to drink or clean with, but vital to the biological processes in our bodies. For

example, water is a key player in protein folding, [1, 2] or creating the cell membrane

surface, [3] and DNA would not have the double-helix structure if it would not be

solvated in water.

Given the importance of water, it is surprising how little is actually known about

it. We know that a water molecule consists of three atoms: one oxygen and two

hydrogens. Due to their polarity, water molecules can form hydrogen bonds with other

water molecules. Hydrogen bonding makes water a quite unique substance. There are

over seventy anomalous properties of water, and most likely not all of them are even

discovered yet. For example, water in solid form (ice) is less dense than liquid water,

and additionally, the density of liquid water is not a linear function of temperature as

water is most dense at 4 ◦C.

Although the existence of a hydrogen-bond network in water is generally agreed

upon, the details of the microscopic structure of water have been under heated debate

for a long time. Since 1933, the general idea of the hydrogen-bond network of liquid

water has been that it is on average a tetrahedrally arranged fluctuating version of the

more robust tetrahedral structure of ice. [4] However, every now and then this view

has been questioned, and the debate of water structure is still ongoing (see References

5–9 and references therein).

If the structure of pure water is still a question, so is the effect on the hydrogen bond

network when other components are added. The macroscopic effects are often clearly

visible, for example as changes in viscosity, conductivity, or even color. However, in

the microscopic scale the effects are far less known. For example, for most molecules

it is unknown how many water molecules hydrate them in aqueous solutions, or how

far-reaching impact the solute can have on the structure of water.

What makes liquid water so controversial is the fact that studying liquid structure

is not straightforward, because the time or length scales needed to study the fluctuating

network are not easily accessible. Typical experimental methods to study water are, for

example, neutron [10,11] and x-ray diffraction, [12–14] which can provide the radial dis-

tribution functions of the studied system (the average positions of the atoms compared

to some reference atom). For example, the way to get even more precise radial distribu-

tion functions for ambient water has been studied recently by extending the momentum

transfer range in the x-ray diffraction measurement. [15] Additionally, information on

water structure can be obtained with small angle x-ray scattering, [16–19] for example



1 INTRODUCTION 2

on demonstrating whether liquid water is a homogeneous [16] or not. [17] On the other

hand, infrared or Raman spectroscopies are indirectly linked to the structure of water

via the vibrations of the bonds, [20–23] such as in the case where the timescale of the vi-

brations of the bonds in liquid water were found to support the uniform, homogeneous

structure for the hydrogen-bond network of water. [24] Another useful vibrational tech-

nique is nuclear magnetic resonance, [25–27] which was recently applied, for instance,

to study the water-methanol mixtures at different temperatures. [28]

On their own, and especially to support the experimental results, computational

methods are often used in liquid studies due to the effortless structural characterization.

Typical computational method is classical molecular dynamics simulations [29, 30], in

which a set of parameters, such as choice of charges to characterize the molecules,

interaction methods, or thermodynamic conditions, are used to create a simulation

of the liquid. As it is computationally relatively light, classical molecular dynamics

has been applied to vast amount of aqueous systems, ranging from pure water to

studying long polymers in water. [31, 32] Another typical computational method is

ab initio molecular dynamics, [33–38] where the forces in the simulation are derived

from quantum mechanical electronic structure calculations. This method allows more

flexibility as, for example, chemical reactions can take place during the simulation.

On the other hand, it is computationally more demanding than the empirical classical

molecular dynamics. Lately, discussion on how well the ab initio methods can produce

the thermodynamical quantities of pure water has been ongoing. [33–35] Additionally,

there are computational methods that mix classical and quantum calculations in order

to improve the results while keeping the computational load reasonable. [39–42]

In the 21st century, x-ray spectroscopic methods have become important in liquid

studies. [43, 44] Besides x-ray emission [45–50] and resonant inelastic x-ray scattering,

[51–53] x-ray absorption and x-ray Raman scattering provide information on the local

structure of liquids. For example, x-ray absorption and x-ray Raman scattering have

been used especially to characterize the structure of liquid water [17, 48, 54–61] and

ice, [54, 62–66] in addition to probing the structure of aqueous mixtures. [48, 67–69]

Moreover, from discussing the covalent nature of the hydrogen bond in ice, [70–72]

Compton scattering has been used to extensively study liquid water and ices, [73–79]

most recently in nanoconfinement, [80] aqueous mixtures and alcohols, [81–83] and it

has been used to study even more complex systems, such as clathrates. [84–86]

In this thesis, x-ray Raman scattering and Compton scattering are used to study wa-

ter mixtures. X-ray Raman scattering probes the unoccupied electronic states via core-

electron excitation, whereas Compton scattering provides information on the ground-

state electron momentum density. They both are inelastic photon-in-photon-out pro-

cesses which utilize hard x-rays. Thus, as hard x-rays penetrate matter easily, the

inelastic x-ray scattering methods can be used to study bulk properties and the use

of vacuum environment in the experiments is not necessary. Although they do not
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give direct structural information, the results are linked to the structure of the system.

In the interpretation of the results, both the knowledge from previous work and com-

puter simulations with, for example, density functional theory can help to connect the

measured quantities to the structure.

The aim of this thesis is to examine the effect that different molecules, ions, or

polymers have on the hydrogen-bond network of water. In order to understand the

behaviour of more complex systems, such as proteins, simpler systems should be un-

derstood first. So far, even for the simplest systems, including pure water, no consensus

on the local structure has been found. The different ways water can interact are intro-

duced in the following chapter, where also the scientific debate on the specifics of each

interaction is discussed. As the rest of the introductory part of the thesis, following the

introduction to water, the x-ray Raman and Compton scattering theory and methods

are discussed. Finally, each paper in this thesis, representing different viewpoints to

the interactions of water, is summarized and the thesis is completed with concluding

remarks.
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Figure 1. Left: Hydrogen bond (dashed line) between two water molecules. The polarity
of the molecules makes hydrogen bonding possible (illustrated with colors). Right: A fully
hydrated water molecule (in the middle) with four hydrogen bonds in a nearly tetrahedral
orientation.

2 Water

Water molecules are highly interactive because they can form strong hydrogen bonds.

This ability to bond makes water the complex system it is. In this section, the

hydrogen-bond network of water is discussed from the structural point of view. Special

emphasis is paid on how the hydrogen-bond network is altered when it is in contact with

different type of molecular entities, based on the occasionally contradictory research

results.

2.1 Hydrogen-bond network of water

The electric charge in water molecules is not distributed evenly in the molecule due

to differences in the electronegativity of oxygen and hydrogen atoms. Thus, water

molecules are polar, which makes it possible for the molecules to bond to each other

by electrostatic attraction. Besides the electrostatic interaction, partial charge transfer

can take place between the water molecules, which makes the bond appear as partly

covalent. [87–89] Due to the intermediating hydrogen atom, the bonds created between

water molecules are called hydrogen bonds (see Figure 1 for schematic presentation). It

is beneficial to differentiate the molecules involved in the hydrogen bond: one covalently

bonded to the bonding hydrogen is the hydrogen bond donor, while the other one

is hydrogen bond acceptor (illustrated in Figure 1). Compared to different bonds, a

hydrogen bond (5.5 kcal/mol) [90] is stronger than van der Waals interaction (typically

of the order of 0.2 kcal/mol), but a lot weaker than covalent bonds (∼120 kcal/mol for

the O-H bond in water molecule).

In a fully hydrated state water molecule can form four hydrogen bonds (Figure

1). This tetrahedral static structure is found in ice (Ih), whereas in liquid water most
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Figure 2. Hydrophilic (blue) and hydrophobic (red) groups of poly(N-isopropylacrylamide)
polymer. The hydrophilic groups form hydrogen bonds with water whereas the hydrophobic
groups are nonpolar and do not bond with water.

of the bonding persists,1 but the molecules are moving and constantly forming and

breaking bonds with new partners. The lifetime of a hydrogen bond in liquid water is

approximately 1 ps or less, [21, 92–94] whereas broken hydrogen bonds are short-lived

(less than 200 fs). [93, 95] On that account, liquid water has constantly fluctuating

extensive hydrogen-bond network.

2.2 Water in solutions

The aim of this thesis is to study how the hydrogen-bond network of water changes

when water is mixed with other molecules or polymers. Besides water, other molecules

can also be polar and can form hydrogen bonds. This type of interaction that takes

place with water via the hydrogen bonding is called hydrophilic interaction (”water

loving”). On the other hand, molecules can be nonpolar and they do not form hy-

drogen bonds. When water interacts with nonpolar solutes the interaction is called

hydrophobic interaction (”water fearing”). Compared to the intermolecular forces of

the hydrophilic interaction, the hydrophobic interaction is governed by an interplay

between entalphy and entropy. However, most polymers and molecules consist of both

hydrophilic and hydrophobic groups, and as such they are called amphiphilic. As

an example of amphiphilicity, in Figure 2 the hydrophilic and hydrophobic groups

of poly(N-isopropylacrylamide) polymer are illustrated. Both hydrophiles and hy-

1In 2004, Wernet et al. suggested that liquid water would be a two-component system, with low-
density water (with four hydrogen bonds per molecule) and high-density water (with two hydrogen
bonds per molecule), and the high-density water would be the more dominant component. [57] Their
conclusion has received opposition, and created intense discussion on the water structure which is still
ongoing. [5–9, 91]
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Figure 3. A) An urea molecule with seven hydrogen bonds with water molecules. B) A
lithium ion with four hydrating water molecules. C) A chloride ion with six hydrating water
molecules.

drophobes (and, obviously, amphiphiles) have been suggested to either enhance or

disrupt the local structure of water. Enhancement or disruption of the water structure

by solutes typically means in practice that the hydrating water has different number

of hydrogen bonds than pure water would, or that the tetrahedral structure is altered.

In the following, the different types of interactions are introduced.

2.2.1 Hydrophiles

A considerable amount of molecules or functional groups fit into the hydrophiles cat-

egory. No general rules have been established on how hydrophiles affect the local

structure of hydrating water, mostly due to the large variety of molecules and possi-

ble interactions. However, as they form hydrogen bonds, hydrophiles are incorporated

into the hydrogen-bond network of water, but their effect on the surrounding water is

dependent on the molecule in question.

Urea is one of the most studied small hydrophilic solute largely due to its usability

in denaturing proteins. [96] It is highly hydrophilic, with the capability of forming

up to eight hydrogen bonds with water (see Figure 3 A for a urea molecule with

seven hydrogen bonds). However, the average number of hydrogen bonds per urea

molecule in liquid water has been estimated to be between 2–6. [97] Urea is found to

fit to the hydrogen-bond network of water, [97–100] and the dynamics of the water

molecules are not found to be altered from those of bulk water. [100,101] However, for

example, discussion is still ongoing whether urea is capable of enhancing [102–104] or

disrupting [105, 106] the surrounding water network. Nevertheless, with the ability of

being a part of the hydrogen-bond network, urea is a good example case of hydrophiles.

In this thesis, the hydrophilic interaction is playing a role in papers II–IV, as the

studied systems (alcohols and poly(N-isopropylacrylamide)) have hydrophilic domains.
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2.2.2 Ions

The ion-water interaction can be considered to be hydrophilic, as ions are charged

particles. However, following the typical definitions of monatomic ions, in this thesis

the interaction between water and ions is not called hydrogen bonding. Nevertheless,

ions are easily hydrated and they are incorporated into the hydrogen-bond network of

water. Depending on the charge of the ion, it interacts with either the oxygen or the

hydrogen of a water molecule. Examples of possible hydration shells of lithium and

chloride ions are illustrated in Figure 3 B and C, respectively. Although it has not

entirely been agreed upon, the idea of how ions are actually hydrated differs from what

is seen in most textbooks, where water molecules are drawn in highly ordered manner

(see insets in Figures 3 B and C).

Historically, ions have been labeled as structure makers or structure breakers, based

on their assumed capability to enhance or disrupt the hydrogen bond network of water.

This idea stems from the Hofmeister series, in which ions are classified by their ability

to affect proteins in water. [107,108] However, as the experimental and computational

methods to study the hydration of ions have improved, this type of classification has

proven to be incorrect. [69,109–115] Although the electric field of ions can be observed

up to 30 Å in water, [116] long-ranging effects on water structure are not typically

observed. [69, 110, 111, 117, 118] However, there are findings that the water network

would be affected beyond the first hydration shell. [114, 119, 120]

Another dispute concerning ions is their hydration numbers. Although being one of

the basic ways to describe the local structure, it still remains unknown how many water

molecules surround ions. For example, the most often reported hydration number for

lithium is 4 (similar as is seen in Figure 3 B), but the number in fact varies between

2–6, [121–129] and the observed hydration number can also vary depending on the

concentration. [130, 131] This further confirms that despite being seemingly simple

systems, ionic solutions prove to be complex and difficult to study. In this thesis, the

ionic interaction with water is discussed in paper I, where the effects LiCl has on the

water structure is studied with x-ray Raman scattering.

2.2.3 Hydrophobes

In 1945, Frank and Evans suggested that water molecules would form iceberg-like

structures around hydrophobic groups in order to explain the excess entropy observed

in mixing. [132] However, later most studies on hydrophobes have found no indication

on such formation in liquid mixtures. Conversely, in high pressures water does freeze

around solutes. These structures are called clathrates, but in normal conditions this

clathrate formation does not take place. [133]

Over the years, numerous studies have been conducted on how water behaves around

hydrophobes and the findings are manifold. For example, some recent studies have
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found evidence of an enhanced water structure. [134–136] Raschke et al. found in a com-

putational study that water structure at the hydration shell of hydrophobes would be

more ordered, but between the hydration shells water would be less ordered. [136] Davis

et al. observed with Raman scattering measurements and multivariate curve resolution

that for linear alcohols the hydration shell water is more tetrahedral and has stronger

hydrogen bonds. However, they also observed that when temperature was increased or

the hydrophobic chain was long enough, there was no enhanced structure. [134]

Otherwise, there are several studies that have found that water structure around

hydrophobes is less ordered than in bulk water. [137–139] For example, from neutron

scattering studies Buchanan et al. found that there is no indication of enhanced struc-

ture of water around methane. They concluded that in fact the structure is slightly

less tetrahedral than in bulk water. [139]

An interesting notion about hydrophobes is that some results suggest that the

size of the hydrophobes affects its ability to influence water structure. [140–142] Large

hydrophobes, with hydrophobic surfaces that are extensive (and almost flat), break the

hydrogen bonds of the water molecules, as the network cannot arrange itself without

breaking bonds. On the other hand, when the size of the hydrophobe decreases, the

hydrophobic surface becomes more and more curved. In this case, the hydrogen-bond

network of water can be wrapped around the hydrophobe without a loss of hydrogen

bonds.

Paper II of this thesis especially focuses on the hydrophobic interaction by studying

the effect of the size of the hydrophobic group of alcohol molecules on the structure of

water. The hydrophobic interaction also appears as an important factor in paper IV,

as it is found to affect the phase transition of an aqueous polymer.



9 3 INELASTIC X-RAY SCATTERING

Figure 4. Schematic presentation of the inelastic x-ray scattering process.

3 Inelastic x-ray scattering

In the methods used in this thesis, the electrons are mainly interacting with the x-rays

through inelastic processes. In this section, the theoretical background for inelastic

x-ray scattering is briefly discussed. Throughout the thesis, atomic units are used

(~ = e = me = cα = 1), while energies related to scattering are given in electron volts

(eV) and distances in Ångströms (Å).

In the inelastic x-ray scattering process, a photon with energy ω1, wave vector k1,

and polarization unit vector ê1 scatters from the target, which is initially in state |I〉

with energy EI , leaving it in final state |F 〉 with energy EF . The scattered photon has

energy ω2, wave vector k2, and polarization unit vector ê2, and it is scattered to an

angle φ. Thus, energy ω = (ω1 − ω2) and momentum q = (k1 − k2) are transferred to

the target (see Figure 4).

In the non-relativistic limit, the double-differential scattering cross-section for non-

resonant inelastic x-ray scattering, [143]

d2σ

dΩdω2

=

(

dσ

dΩ

)

Th

S(q, ω), (1)

consists of two factors: the Thomson scattering cross section, which is only dependent

on the experimental set-up,

(

dσ

dΩ

)

Th

= r20

(

ω2

ω1

)

|ê1 · ê2|
2, (2)

where r0 is the classical electron radius, and the dynamic structure factor

S(q, ω) =
∑

F

∣

∣

∣

∣

∣

〈F |
∑

l

eiq·rl|I〉

∣

∣

∣

∣

∣

2

δ(EF −EI − ω), (3)

where the latter summation is over all electrons in the system at the positions rl.

The dynamic structure factor contains all the material-dependent information of the

system.
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Figure 5. Computational oxygen K-edge spectra for an isolated water molecule. The figures
on the right hand side represent the transitions from ground state (1S) to excited states: A for
the LUMO 4a1 orbital, B for the LUMO+1 2b2 orbital and C for higher unoccupied molecular
orbitals. The transitions and orbitals are calculated with the ERKALE code. [144,145]

The dynamic structure factor can reveal information on different processes. Whichever

process dominates the S(q, ω) depends on the transferred energy ω and momentum q,

which can be controlled by the choices in the experimental set-up. In this work, two

different inelastic x-ray scattering methods are used, and in the following the basics of

the methods are recalled.

3.1 X-ray Raman scattering

When the transferred energy ω is near the core binding energies, i.e., the ionization

energies of an electron in a certain orbital, a significant contribution to the dynamic

structure factor comes from a process called x-ray Raman scattering. For the x-ray

Raman scattering the dynamic structure factor in the single-particle excitation picture

is

S(q, ω) =
∑

f

∣

∣〈f |eiq·r|i〉
∣

∣

2
δ(Ef −Ei − ω), (4)

where the initial state |i〉 is a core orbital in the ground state of the system and the

final states |f〉 are final orbitals in the presence of the core hole, i.e., the unoccupied

molecular orbitals of the system. The energies Ei and Ef are the orbital energies

corresponding to the initial and final states. In Figure 5, the x-ray Raman scattering

process is presented for the oxygen K-edge for an isolated water molecule. Sharp

transitions can be seen for the excitations to the lowest unoccupied molecular orbital

(LUMO), and to the second unoccupied orbital (LUMO+1), followed by contribution

of excitations to multiple higher-energy molecular orbitals.
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Figure 6. Compton profile of aqueous poly(N-isopropylacrylamide). The incident photon
energy was 87 keV and the scattering angle 163.3◦.

For small values of |q| the exponential in equation 4 can be expanded:

eiq·r ≈ 1 + iq · r+ ... (5)

Thus, most of the contribution to S(q, ω) arises from dipole transitions (〈f |r|i〉) at

small values of |q|. This makes x-ray Raman scattering comparable to x-ray absorption

spectroscopy, where only the dipole transitions are probed. However, compared to x-

ray absorption, x-ray Raman scattering is beneficial in many ways. The incoming

energies can be chosen to be nearly arbitrarily high, and thus the penetration depth is

much larger, making studies of bulk materials possible. Additionally, the experiments

for x-ray absorption at the oxygen K-edge require vacuum as the low-energy x-rays

are absorbed by air, which makes the experiments more difficult. With x-ray Raman

scattering, absorption by air is low, as the incoming and scattered photons belong to

the hard x-ray range (>10 keV).

Moreover, with x-ray Raman scattering it is possible to study transitions beyond

the dipole transitions, as the magnitude of q can be adjusted. The possibilities of

obtaining additional information by using large momentum transfers have been exten-

sively studied. [146–149] However, in this thesis, the momentum transfers are restricted

to values that are small enough to make the x-ray Raman scattering results comparable

to x-ray absorption results.
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3.2 X-ray Compton scattering

In the high energy transfer ω and high momentum transfer |q| region, the dominating

contribution to the dynamic structure factor S(q, ω) originates from Compton scatter-

ing. From van Hove’s idea of presenting the dynamic structure factor as a correlation

of the motion of the scattering particles, [150] an important notion with respect to

understanding Compton scattering can be made: with high momentum transfers, dif-

ferent particles scatter independently. Thus, the scattering electrons in the Compton

regime are independent of each other and collective processes of the electrons are not

being probed. This approximation is called the impulse approximation.

Eisenberger and Platzman [151] further refined the impulse approximation in the

Compton scattering theory. They stated that when the transferred energy is substan-

tially higher than any other energy related to the ground state of the electron, the

scattering process takes place very rapidly, so the potential where the electron is mov-

ing can be regarded constant. With this approximation the dynamic structure factor

reduces to

S(q, ω) =

(

1

2π

)3 ∫

|χ(p)|2δ(ω −
q2

2
− q · p)dp, (6)

where χ(p) is the Fourier transform of the ground-state wave function and |χ(p)|2

is the ground-state electron momentum density N(p). When equation 6 is integrated

over pq, the electron momentum projection on q, the dynamic structure factor becomes

S(q, ω) =
J(pq)

|q|
, (7)

where J(pq) is the Compton profile and pq is the electron momentum in the direction

of q. For isotropic systems, such as liquids, the Compton profile can be expressed as

J(pq) =
1

2

∫

dΩ

∫ ∞

|pq|

pN(p)dp. (8)

The momentum of the electron in the direction of the scattering vector (pq) can be

approximated with the relativistic effects taken into account as [152, 153]

pq ≃
|q|

2
−

(ω1 − ω2)

c

√

1

4
+

c4

2ω1ω2(1− cosφ)
, (9)

where c is the speed of light.

An example of a Compton profile is shown in Figure 6, where it is presented in

scattered-photon energy and electron momentum scales. Interesting features in a

Compton profile arise from the delta-function in equation 6. The position of the Comp-

ton profile in the energy scale (or the Compton shift) is governed by the term q2

2
, which
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depends only on the incoming photon energy and the scattering angle. The width of

the Compton profile is determined by the term q · p, i.e., the electron momentum in

the direction of the momentum transfer.

Note to the reader about notation concerning Compton scattering: In the remaining

part of the thesis, where Compton scattering is discussed (papers III and IV), an

established notion is used, where the momentum of the electron pq in an isotropic

system is referred as q, which should not be confused with the momentum transfer

discussed in this section.
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4 Methods

In order to perform an inelastic x-ray scattering experiment that requires high en-

ergy resolution with high statistical accuracy, x-ray sources with very high brilliance

have to be utilized. Thus, the inelastic x-ray scattering experiments are performed at

third-generation synchrotron sources with specialized instrumentation. Additionally,

for interpreting the experimental data, theoretical calculations are needed in order to

connect the measured spectra to molecular structures. In this section, the experimental

setups are introduced, followed by short explanation on the calculations. Finally, the

analysis and interpretation of the results are discussed.

4.1 Experiments

The experiments in this thesis were performed at the European Synchrotron Radiation

Facility (ESRF) apart from the experiment in paper III, which was performed at the

SPring-8 synchrotron radiation source. Detailed explanation of the BL08W beamline

at SPring-8 can be found in Reference 154. In the following, the setups of the two

beamlines used at ESRF are discussed.

4.1.1 Experimental setup at beamline ID16 (ESRF)

The high-resolution inelastic x-ray scattering beamline ID16 was used in the x-ray Ra-

man scattering experiments.2 [155] At ID16, the x-rays were produced by the storage-

ring electrons with three undulators. The undulator radiation was monochromatized by

two monochromators: a Si(111) double-crystal monochromator and a Si(440) channel-

cut monochromator, which further refined the bandwidth. The monochromatized radi-

ation was focused with a Rh-coated toroidal mirror. The spot sizes in the experiments

in this thesis were 150× 50µm2 and 100× 30µm2 (papers I and II).

The intensity of the incoming beam was monitored with Si pin diode before the

sample. The scattered beam was energy analyzed with nine spherically bent Si(660)

analyzer crystals and collected with a Medipix2 pixel detector in a Rowland circle

geometry. This combination created a possibility of imaging the origin from the scat-

tered x-rays inside the sample along the beam. [156] This could be used to effectively

remove the background scattering from the signal originating from the sample. The

x-ray Raman scattering spectrum was measured by keeping the analyzer energy fixed

and scanning the incident photon energy. The total energy resolution obtained in the

experiments at ID16 were 0.5 eV and 0.57 eV (papers I and II).

2Inelastic x-ray scattering beamline ID16 was closed for operation in 2012 and the inelastic x-ray
scattering spectroscopy research continues at the new beamline ID20 as a part of the ESRF upgrade
programme.
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Figure 7. Left: Experimental liquid flow setup at beamline ID16. The liquid column
(sample) is indicated with blue arrow, whereas the peristaltic pump is indicated with green
arrow. The incoming and scattered beams are indicated with yellow and orange arrows.
Right: Close-up of the nozzle and the sample.

4.1.2 Experimental setup at beamline ID15B (ESRF)

Beamline ID15B [157] can be used for Compton scattering experiments. At ID15B, the

x-rays are produced by the storage-ring electrons with a seven-period asymmetric mul-

tipole permanent-magnet wiggler. Horizontally focusing bent Laue-crystal monochro-

mators are used and the incident intensity is monitored with a Si pin diode.

High statistical accuracy is needed for Compton scattering experiments as the

changes in the Compton profiles are small. Hence a 13-element Ge solid state detector

is used to detect the scattered photons. Each of the detectors has their own electronics.

Although the Ge solid state detector does not achieve as good momentum resolution

as high-resolution scanning crystal spectrometers described in Reference 157, for liquid

water systems the need for high statistical accuracy outweighs the requirement for a

high momentum resolution. [82] The momentum resolution obtained in the Compton

scattering experiment (paper IV) was 0.64 a.u. while the observed statistical difference

at the Compton peak (pq = 0 a.u.) was less than 0.1% of the peak height.

4.1.3 Sample environments

In order to avoid radiation damage to the sample, [158, 159] in the x-ray Raman scat-

tering experiments the samples are contained in a peristaltic-pump based closed-loop

setup (see Figure 7). With the setup, a stable vertical liquid column (diameter 2 mm)

is produced from a stainless steel nozzle. In this set up, the sample is being constantly

renewed and thus the radiation exposure to a specific volume is reduced.

Due to the small quantity of available sample, the liquid flow setup could not be

used in the x-ray Compton scattering experiment (paper IV), and thus a different

type of sample environment was used. In this case, the sample was in a 2 mm diameter

borosilicate glass capillary with 10 µm thick walls connected with copper sample holder
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to a cryostat which controlled the temperature of the system. The system was in a

vacuum chamber with 25 µm thick Mylar windows to remove the air from the vicinity

of the sample.

4.2 Calculations

Calculation of the x-ray Raman spectrum or Compton profile from a modeled system

can help to connect the experimental spectra to molecular structures. In this section,

the computational methodology is briefly discussed.

In order to computationally obtain a Compton profile or an x-ray Raman spec-

trum, information on the electronic structure is needed. The computational approach

assumes the Born-Oppenheimer approximation, [160] where the nuclei are considered

to form an external potential for the electrons. The electrons of the system should

be described by a many-body wave function that satisfies the Schrödinger equation.

However, solving such a problem for realistic system with many electrons is unfeasible,

and approximations are needed.

In density functional theory, [161, 162] the energy of the system is a functional of

the electronic density ρ(r) instead of the wave function. In order to construct the

electronic density, Kohn and Sham introduced a methodology with a fictitious set

of noninteracting electrons, with their orthogonal wavefunctions, φi(r), equaling the

electronic density, ρ(r) =
∑

i |φi(r)|
2, summed over all of the electrons. [163] The

Kohn-Sham wavefunctions satisfy the Kohn-Sham Schrödinger equation

(

−
1

2
∇2 + VKS(r)

)

φi(r) = ǫiφi(r), (10)

where ǫi are the Kohn-Sham eigenvalues corresponding to the Kohn-Sham orbitals

φi(r), and the potential is given by

VKS = Vext(r) +

∫

ρ(r′)

|r− r′|
dr′ + Vxc(r). (11)

The potential is a sum of the external potential due to a set of nuclei Vext(r), the

mean-field of all the electrons (called Hartree potential), and the exchange-correlation

potential Vxc(r). The exchange due to Pauli repulsion and correlation due to Coulombic

interactions beyond the mean-field Hartree potentials are approximated in the calcu-

lations (for approximations see, for example, References 163–169).

When the exchange-correlation is approximated and an initial density for the system

is given, the Kohn-Sham equations can be iteratively solved to produce the electronic

density. According to the formal construction of the theory, the Kohn-Sham orbitals

can only be used to create the electron density. However, in practice, the orbitals

are often considered to represent single-particle wave functions, [170] and the energies
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are considered to be orbital energies and used to calculate, for example, the excitation

energies. [171] For the Compton scattering calculations, the electron momentum density

is obtained as a sum of the Fourier transformed Kohn-Sham orbitals. [172]

In this thesis, the density functional theory calculations are performed with the

StoBe-deMon code [173] (papers I and III) and with the ERKALE code [144, 145]

(papers II and IV). Details of each calculation are found in the papers. For the x-ray

Raman calculations the transition-potential approximation was used. [174] Essentially

in this approximation, following the Slater’s transition state approximation, [175] half

an electron is in the core state, but the unoccupied molecular orbitals are kept unoccu-

pied. This reduces the amount of calculations needed, as one calculation is performed

instead of calculating the transitions from a core orbital to the excited orbitals. [176,177]

The spectral calculations are done with small molecular clusters. Thus, it is required

to have structures that would resemble real situations as well as possible. There are

multiple ways to obtain such structures, but in this thesis classical molecular dynamics

simulations [29] are used. In principle, classical molecular dynamics is a simulation of

the movement of atoms or molecules. Each atom is assigned a force field (a potential),

and the atoms interact with each other. Sequentially, in small time steps, the forces

are calculated, and the atoms are moved accordingly. In a nutshell, classical molecular

dynamics is a numerical method to solve Newton’s equations of motion.

For the classical molecular dynamics simulations the Gromacs software [178] is used

with OPLS-AA [179] and TIP4P [180] force fields. Exception is made in the case of

aqueous LiCl (paper I), where modified OPLS-AA force field is used for Li and Cl ions

to correct the error arising from the lack of polarizability in the water force field. The

rest of the simulation details are described in the papers. From the simulations small

roughly spherical clusters (with radius of 4–6 Å) were randomly selected for the density

functional theory calculations. In paper III, the clusters are further modified to obtain

more precise information. To connect the spectra from calculated static clusters to the

experimentally measured dynamical system, the spectra are calculated for a set of at

least hundred clusters, thus generating random variety to the structures.

4.3 Analysis and interpretation

In the case of inelastic x-ray scattering, careful data analysis of the measured spectra

should always be made as the differences in the measured quantities are often small.

Here selected points about the data analysis are reviewed. More detailed explanation

of all the aspects of data analysis can be found in literature (for example, for Compton

scattering, see Reference 181, and for x-ray Raman scattering, Reference 182). De-

scription of the individual choices done in the data analysis in this thesis can be found

in the papers.

As described in the Section 4.1, the x-ray Raman experiments are done using a crys-
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tal spectrometer in the so-called inverse scanning geometry, where the analyzer energy

is fixed and the incident photon energy is scanned. The x-ray Raman spectrometer has

a capability of real-space imaging of the sample, [156] which produces not only spectra,

but at the same time images of the beam path within the sample and its environment

as well. The region of interest within the aquired images can be selected for the data

analysis, and thus only the signal from the sample (and not the sample holder or en-

vironment) is analyzed further. The collected spectra are normalized to the incident

photon flux, and the spectra of each analyzer are shifted to a common energy-transfer

calibration and interpolated to the same energy grid. Energy-dependent corrections

are needed in the data analysis. Most notable is the absorption on the path of the beam

between the incident-flux monitor and the sample. The analyzer energy is kept fixed

during the experiments, which removes the concern about the energy-dependence of

the spectrometer efficiency. Background from valence electrons (Compton or plasmon)

must be removed from the spectra. This is typically done by subtracting a suitable

monotonically varying function from the spectra. Finally, the spectra are normalized

to equal area in a specific energy range.

The Compton scattering experiments are done using a Ge solid state detector,

which yields spectra through a multichannel analyser electronics. In the Compton

scattering experiments, the spectra are acquired repeatedly, each one integrated for

a few minutes. First the different spectra of the individual detectors are shifted to

match in energy scale and summed together. The energy scales of the detectors are

determined by x-ray fluorescence from a known calibration sample. In the Compton

data analysis, the absorption corrections are also needed. Additional energy-dependent

corrections arise from the detector efficiency and the scattering cross section. Multiple

scattering correction is taken into account when processing the Compton profiles. The

background is measured from an empty sample cell, and subtracted from the Compton

profiles. The Compton profiles are normalized to the number of electrons in the system

before summing the results from different detectors together. Finally, the symmetric

negative and positive sides of the Compton profile are averaged.

When the data analysis and computational work has been done, begins the most

interesting part of scientific work – interpretation of the results. In the following

sections, the current general ideas for the interpretation of the oxygen K-edge spectra

and Compton profiles are discussed.

4.3.1 Oxygen K-edge spectra

In the discussion of the oxygen K-edge spectrum typically three different regions are

examined: the pre-edge (E≈535 eV), the main-edge (E≈538 eV), and the post-edge

(E≈540 − 542 eV) (illustrated in Figure 8). The spectrum depends on the molecular

structure of the scattering system, but the correlation is not straightforward. Neverthe-

less, some interdependence has been observed. Typically, the increase in the intensity in



19 4 METHODS

534 536 538 540 542 544 546 548 550 552
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A B C

Energy transfer (eV)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Figure 8. X-ray Raman spectrum at the oxygen K-edge for pure water, with pre-edge (A),
main-edge (B), and post-edge (C).

the pre-edge area is connected to breaking or weakening of hydrogen bonds. [54,66,183]

On the other hand, increased intensity in the post-edge is related to the tetrahedral

ordering of the system (as in hexagonal ice), [57, 62, 63, 66] whereas the main-edge is

enhanced when density increases, i.e., the scattering molecule has more (nonbonded)

near neighbours. [183–185] However, the spectral changes are rarely independent of each

other and typically changes are seen in more than one region. For example, when water

is heated, the pre-edge is increased and the post-edge is decreased while the main-edge

remains unchanged. [17, 56] In comparison, when pressure is increased in water, the

pre- and post-edges remain unchanged, but changes are seen in the main-edge. [66,186]

Additionally, a good estimation on the experimental sensitivity of geometrical

changes can be drawn from the work by Pylkkänen et al. [56] They studied the oxygen

K-edge spectra for liquid water in different temperatures and in normal pressure with

an experimental setup corresponding to those in this thesis (papers I and II). In their

work, two spectra are distinguishable if the temperature difference is approximately

20 ◦C. Thus, the structural changes needed to take place in the studied system have

to be of the order of the changes taking place when the temperature of liquid water is

altered 20 ◦C in order to observe changes in the oxygen K-edge spectra.

The energetics of the system can give a rough estimate on the change in amount

of hydrogen bonds. In the liquid water range (0–100 ◦C), the total energy absorbed is

approximately 1.8 kcal/mol when water is heated from 0 ◦C to 100 ◦C. On the other

hand, the enthalpy of fusion for water (ice Ih to water at 0 ◦C) is 1.4 kcal/mol. In

contrast, the enthalpy of vaporization is 9.7 kcal/mol (liquid to gas at 100 ◦C). Thus,

the changes upon heating liquid water over the whole range are of the same order than

upon melting of ice. In ice (Ih) each water molecule has four hydrogen bonds, whereas

for liquid water (at low temperatures) the number of hydrogen bonds is estimated to be,

on average, 3.4–3.6 per molecule. Thus, the number of broken bonds upon melting is

approximately 0.5 bonds per molecule. Smallest changes that can be seen in the spectra
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Figure 9. Example difference Compton profiles for water dimer. On the left hand side are
the difference Compton profiles with changes in the covalent O-H bond length and on the
right hand side are the difference Compton profiles with changes in the O..O hydrogen bond
length.

thus correspond to a change of 0.1 hydrogen bonds per molecule (approximately the

same amount as in 20 ◦C temperature difference). This corresponds to 1 fully broken

hydrogen bond in 35 water molecules at room temperature.

From previous work, rough guidelines on the magnitude of the changes observable

with x-ray Raman scattering can be concluded. Additionally, previous work gives

some starting points to the interpretation of the spectra. In more complex compounds,

especially those which include oxygen in addition to the oxygen in the water molecules,

the spectral features cannot be interpreted as simply. Overall, in all interpretations,

understanding the system is important and attention must be paid to the specifics of

the studied case.

4.3.2 Compton scattering

Similarly to x-ray Raman scattering, Compton scattering does not represent directly

any structural quantities of the studied system although Compton profiles depend on

the structure of the system. Thus, the interpretation of the results is not straight-

forward and model calculations are important. Hakala et al. [77, 82, 187] and Nyg̊ard

et al. [74–76] have done extensive work on how to interpret the Compton scattering

results for water.

According to Hakala et al., [187] the most notable local structural changes in liquid

water systems reflected in the Compton profiles arise from changes in covalent bond

lengths and the intermolecular distances. In order to illustrate these changes, a test

calculation for altering the covalent bond length (O-H participating in the hydrogen

bond) and oxygen-oxygen (hydrogen bond) length for water dimer is shown in Figure

9. The O-H bond lengths are originally 0.985 Å and O..O bond length 2.763 Å and

the Compton profiles are calculated with the ERKALE code. The difference Compton

profiles for changes in intra- and intermolecular lengths vary quite notably. The dif-
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ference Compton profile for a change in the covalent bond length has a broad shape,

with signal clearly deviating from zero to high momentum (∼3 a.u.). However, for

intramolecular change the resulting difference Compton profile has high-frequency os-

cillations that approach zero at lower momentum. These examples are in line with the

results of Hakala et al. [187]

These models are done for small systems, but the basic principle is generally also

observed for larger systems. Typically, the differences in Compton profiles are caused

by density variations, for example, when temperature is altered, [74, 75, 85] or in dif-

ferent ice phases [79]. Alternatively, the differences can arise from changes in covalent

bond lengths, for example, when hydrogen in water was replaced with deuterium (thus

affecting the bond lengths). [75] However, in most cases both of these effects are ob-

served. Even though these intra- and intermolecular signatures can be thought as a

rule of thumb, it is always advisable to perform extensive calculations to match the

studied system as well as possible.
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5 Summary of papers

In the following, the four papers of the thesis are presented. They describe example

cases for the different ways water can interact. In the first two papers, the structural

changes in water are observed with x-ray Raman scattering, whereas in the following

two, Compton scattering is used to characterize the systems. In the first paper (I),

the hydration of ions is studied. In paper II, the hydrophobic interaction is studied

with alcohol molecules with varying length of the hydrophobic group. In paper III, the

solvation of ethanol molecules is studied from the Compton scattering point of view.

The fourth paper (IV) describes the structural changes of a self-arranging polymer in

water.

5.1 Saturation Behavior in X-ray Raman Scattering Spectra

of Aqueous LiCl (Paper I)

Many questions regarding the hydration of ions are debated. For example, the effect

ions have on the hydrogen-bond network of water or on the structure of the first

hydration shell (both in terms of number of molecules or their arrangement) are not

agreed upon. LiCl is highly soluble to water (up to 2.5 water molecules per one ion),

which makes it a good candidate to study the disruption of the hydrogen-bond network

as the concentration of the ions can be gradually increased to high concentrations.

In this work, changes in the hydrogen-bond network are studied with x-ray Raman

scattering in a concentration range of 0–17 M (mol of LiCl / kg of water).

The oxygen K-edge spectra are observed to change linearly until the concentration

of approximately 11 M (equivalent to 5 water molecules per ion pair) after which

the spectra saturate. One would assume to see some nonlinearity at a concentration

of approximately 5 M, where stoichiometrically all the water molecules are on the

hydration shells of the ions. However, at this point nothing special is observed in the

spectra. On the other hand, concerning hydrogen bonds, the numbers are more logical:

at 5 M there are 44 hydrogen-bond donors and acceptors per ion pair whereas at 11

M there are only 20 left. Depending on how many hydrogen bonds are broken on the

first hydration shell of ions, [114, 121–131, 188–190] 6–13 donors or acceptors per ion

pair are left for water-water interactions at 11 M, whereas approximately 30 are left at

5 M. Thus, the hydrogen-bond network can be altered linearly until a concentration at

which almost no network is left to break.

The results in this article suggest that there are no long-range effects on the

hydrogen-bond network because the saturation concentration is so high. Thus, in

conclusion, ions only affect water molecules at their first hydration shell and are not

capable of destroying (or creating) structure at longer distances.
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Figure 10. Schematic illustration explaining the findings of Paper III.

5.2 Effect of the Hydrophobic Alcohol Chain Length on the

Hydrogen-Bond Network of Water (Paper II)

Alcohol molecules are practical to study the hydrophilic and hydrophobic effects. Small

linear alcohols have the same hydrophilic OH group and they form similar hydrogen

bonds with water molecules. However, the hydrophobic hydrocarbyl chain length in-

creases from methanol to propanol. Hence the hydrophobic interaction volume in-

creases for longer alcohols. In this x-ray Raman scattering study, the small linear

alcohols are mixed with water in the same mole fractions in order to investigate the

effects of the increasing hydrophobic interaction. The mole fractions are 5% and 15%,

which correspond to 15 vol-% and 37 vol-% in ethanol-water mixtures. Thus, the sur-

face area between the alcohols and water is substantial, but most of the oxygen K-edge

signal comes from water molecules.

Surprisingly, no changes are observed in the oxygen K-edge spectra beyond a su-

perposition of signals from oxygen in alcohols and in water. Thus, the results suggest

that alcohols do not alter the hydrogen-bond network substantially. The work con-

cludes that, upon hydration of alcohol molecules, there is no change in the number of

hydrogen bonds, nor is the tetrahedrality of water molecules changed.

5.3 Measurement of Two Solvation Regimes in Water-Ethanol

Mixtures Using X-Ray Compton Scattering (Paper III)

In this work, water-ethanol mixtures are studied in different concentrations with x-

ray Compton scattering. When the Compton profile of the mixtures are compared

to the Compton profiles of pure liquids (in equivalent weights), two distinct difference

Compton profiles are obtained. The low concentration (5.5 mol-%) difference Compton

profile deviates from those of high concentrations (15.7 to 73.1 mol-%). With the help
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Figure 11. Aqueous PNIPAM in swollen hydrophilic state (left) and collapsed hydrophobic
state (right). Far right is a schematic illustration of the coil-to-globule transition.

of density functional theory calculations, the changes in the Compton profiles can be

identified to mainly arise from two geometrical changes in the liquid (see Figure 10). At

low concentration, the mixture has elongated covalent bond lengths compared to those

of pure liquids. However, at high concentrations, a density increase of the mixture is

observed. This is a commonly known phenomenon: 1 unit volume of water and 1 unit

volume of ethanol equal less than two unit volumes of water-ethanol mixture. However,

it is surprising that at low concentration the bond length elongation is observed instead.

One can readily compare this work to results of paper II, where no changes are

observed in the x-ray Raman scattering spectra for water-ethanol mixtures in con-

centrations between 5 and 15 %. This highlights the different type of information

obtainable with Compton and x-ray Raman scattering and how sensitive Compton

scattering is for the changes in the covalent bond lengths.

5.4 Molecular-Level Changes of Aqueous Poly(N-isopropyl-

acrylamide) in Phase Transition (Paper IV)

Aqueous poly(N-isopropylacrylamide) (PNIPAM) is a self-arranging thermoresponsive

polymer. In water at approximately 32 ◦C PNIPAM changes its conformation from

a swollen hydrophilic state to a collapsed hydrophobic state (see Figure 11). The

transition is reversible, and it can be observed visually. The side chain of PNIPAM has

groups that can form hydrogen bonds with water molecules and it also has hydrophobic

domains (see Figure 2 on page 5). Additionally, the carbonyl group (C=O) accepts

up to two hydrogen bonds and the amine group (N-H) donates one hydrogen bond.

Therefore, a long PNIPAM polymer can form hydrogen bonds with itself. It is proposed
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that upon the phase transition the hydrogen bonding between PNIPAM and water

reduces and PNIPAM starts to form intrachain hydrogen bonds. [191–198] Additionally,

the hydrophobic parts of PNIPAM affect the phase transition. [32, 192, 199, 199–202]

In this paper, the phase transition of PNIPAM is studied with Compton scattering.

When the experimental difference Compton profile is compared with computationally

obtained Compton profiles for certain type of changes, the results show that in the phase

transition of aqueous PNIPAM two changes takes place: there is an increased amount

of broken hydrogen bonds and the covalent bond lengths are elongated. The results

demonstrate the complexity of the system, as these two changes are contradictory in

simple systems (weakening of hydrogen bonds is usually related to the contraction of

the covalent bond lengths). The results indicate that the hydrophobic interaction is

important in the phase transition as the breaking of the hydrogen bonds cannot on its

own explain the two observed changes.
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6 Concluding remarks

Despite profound work, the structure of liquid water in solutions still remains am-

biguous, although the solvating properties of water have been observed to have major

importance in nature. Thus, new information with inelastic x-ray scattering is valuable.

As inelastic x-ray scattering methods lack the typical challenges of liquid studies using

x-rays (for example, sensitivity to surface or need for vacuum environment), nearly

routine experiments on liquids can be conducted.

Four experiments on aqueous solutions were presented in this thesis as examples

of different interactions in water. With x-ray Raman scattering the structure of the

hydrogen bond network of water was observed only to be altered in the first hydration

shell of the ions, despite the long range to which the charge of the ions can be detected

in water. Additionally, x-ray Raman scattering was used on alcohol-water mixtures to

study the hydrophobic interaction. The oxygen K-edge spectra were observed to remain

unaltered upon addition of alcohols, which suggests that the hydrophobic interaction

does not affect the hydrogen-bond network of water. Water-ethanol mixtures were fur-

ther studied with Compton scattering, which confirmed that no alteration on hydrogen

bonding occurs. As Compton scattering is extremely sensitive to the changes in the

covalent bonds, at low concentrations elongation of the intramolecular bond lengths

was observed. The final studied system included in this thesis is a self-arranging aque-

ous polymer, poly(N-isopropylacrylamide). The study underlined the sensitivity of the

Compton scattering to internal bond lengths as upon the phase transition overall bond

lengths were observed to elongate and hydrogen bonds break. This finding emphasizes

the importance of the hydrophobic interaction in the phase transition.

Overall, the experiments in this thesis demonstrate the complexity of the water

systems. There is no universal truth on how water structure is altered when interacting

with other components – the systems have their own unique response. The experiments

indicate that water is flexible and capable of adapting to new circumstances. They also

show the importance of obtaining information with different techniques: by combining

knowledge a better picture can be achieved.

The inelastic x-ray techniques are constantly improving. The beamlines and x-

ray sources keep becoming better, while computational capacities continue to grow,

with more and more codes being developed specifically to the needs of inelastic x-ray

scattering. Thus, in the future, the details of water structure can be assessed even

more precisely. With insightful planning of the experiments, important steps can be

taken towards the ultimate goal of understanding water.
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Pettersson, and K. Hämäläinen, Correlation of Hydrogen Bond Lengths and Angles in

Liquid Water Based on Compton Scattering. J. Chem. Phys. 125, 084504 (2006).

[78] S. Ragot, J.-M. Gillet, and P. J. Becker, Interpreting Compton Anisotropy of Ice Ih: A

Cluster Partitioning Method. Phys. Rev. B 65, 235115 (2002).

[79] C. Bellin, B. Barbiellini, S. Klotz, T. Buslaps, G. Rousse, T. Strässle, and A. Shukla,
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