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Foreword

Quantitative trait loci (QTL) /association mapping aims to identify the genomic loci associated

with the complex traits. From a statistical perspective, multiple linear regression is often used

to model, estimate and test the effects of genetic markers on a trait. With genotype data derived

from contemporary genomics techniques, however, the number of markers typically exceed the

number of individuals, and it is therefore necessary to perform some sort of variable selection or

parameter regularization to provide reliable estimates of model parameters. In addition, many

quantitative traits are dynamic in nature. Accordingly, a longitudinal study that jointly maps

the repeated measurements of the phenotype over time may increase the statistical power to

identify QTLs, compared with the single trait analysis. This thesis focuses on the Bayesian

modeling and variable selection/regularization of QTL data derived from longitudinal studies.

First, we review the principal frequentist regularization methods for analyzing a single trait. In

the second work, we move to the Bayesian regularization methods, we consider a fast variational

Bayes algorithm for parameter estimation, and we compare it to the classic Markov chain Monte

Carlo method. In the third work, a non-parametric Bayesian varying coefficient method for

analyzing longitudinal data with a large number of time points is developed. In the fourth work,

we apply another two possible longitudinal models: (1) a multilevel model and (2) a mixed

effect model to map a wood properties data set that is characterized by a small number of time

points. An important perspective throughout this thesis is multiple hypothesis testing, which

is applied to formally judge the statistical significance of the QTLs and reduce the number of

false positive loci. Several existing frequentist and Bayesian procedures for multiple testing have

been evaluated in the thesis.
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1 Introduction to linear regression

Regression is a statistical technique aiming to model and estimate the associative relationship

between two or more variables. This section provides a brief introduction to linear regression,

which is the simplest and perhaps the most widely used regression technique.

A simple linear regression model with two variables involved can be formally defined as

yi = β0 + xiβ1 + ei, (1.1)

where yi (i = 1, . . . , n) is the ith observable value of the response variable (or dependent variable)

y, and xi is the ith observable value of the explanatory variable x. The unknown regression

coefficients are β0 and β. The intercept term β0 describes the population mean, and the slope

term β describes how strongly the explanatory variable x is related to the response variable y.

Furthermore, the error terms ei are assumed to follow a normal distribution N(0, σ2
0) with mean

zero and variance σ2
e independently for i = 1, . . . , n.

In practice, the response variables are often influenced by more than one explanatory variable.

In the case we have p (p > 1) explanatory variables, it is natural to extend the equation (1.1) to

the form of multiple regression, which is

yi = β0 +

p∑
j=1

xijβj + ei, (1.2)

and the model can be further written in the matrix form:

y = Xβ + e, (1.3)

where y = [y1, ......, yn]T ,X =



1 x11 · · · x1p
...

...
...

...
...

...

1 xn1 · · · xnp


, β = [β0, β1, ......, βp]

T , and e = [e1, ......, en]T .

1.1 Least squares and uncertainties

Under the condition n > p + 1, by minimizing the sum of squared errors (SSE) function (y −

Xβ)T (y −Xβ) with respect to the unknown regression coefficients β, the following ordinary

least square (OLS) estimates are obtained:

β̂ols = (XTX)−1XTy. (1.4)
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The estimation can be done from a maximum likelihood (ML) point of view. The likelihood

function of model (1.3) is

p(y|β, σ2
0) = (2π)−

n
2 (σ2

0)−
n
2 exp[− 1

2σ2
0

(y −Xβ)T (y −Xβ)]. (1.5)

By maximizing the likelihood function with respect to β and σ2
0 , we obtain the ML estimates:

β̂ML = (XTX)−1XTy, and σ̂2
0ML = (y−Xβ̂)T (y−Xβ̂)

n . In fact, the ML estimates β̂ML are

exactly the same as β̂ols. Thus, below we discuss these matters mainly from the SSE and

OLS estimation point of view. The ML estimates of σ2
0 is known to be biased, and an unbiased

alternative is a restricted maximum likelihood (REML) (Patterson and Thompson 1971) estimate

σ̂2
0 = (y−Xβ̂)T (y−Xβ̂)

n−p−1 .

The OLS method directly provides point estimates of the regression parameters, but not the

uncertainty estimates. In order to evaluate the uncertainty quantities such as the variances or

confidence intervals, we need to consider the sampling distribution of β, which is constructed

by repeated sampling with the levels of explanatory variable X held constant. The sampling

distribution of β is a multivariate normal distribution MVN(E[β̂],COV(β̂)). The mean E[β̂]

is equivalent to β indicating that the OLS estimators are unbiased. The covariance of β̂ is

COV(β̂) = σ2
0(XTX)−1. Typically, σ2

0 is unknown, and its unbiased estimate can be applied

here. So we obtain an estimated covariance matrix as ĈOV(β̂) = σ̂2
0(XTX)−1.

For a single regression coefficient βj (j = 0, 1, ......, p), we have

β̂j − βj
s[β̂j ]

∼ t(n− p), (1.6)

where s[β̂j ] =
√

COV(β̂)jj is the standard error, and t(n − p) is a Student-t distribution with

n − p degree of freedom. The density function of the Student-t distribution with ν degree of

freedom is

p(x|ν) =
Γ(ν+1

2 )
√
νπΓ(ν2 )

(1 +
x2

ν
)−

ν+1
2 . (1.7)

On the basis of (1.6), we can construct the confidence interval with 1 − α confidence level as

CI(1−α;βj) = [β̂j −Qt(1− α
2 |n−p), β̂j +Qt(1− α

2 |n−p)], where Qt(•) represents the Student-

t distribution. The confidence interval can be used as a criterion to determine whether the

parameter βj is zero or not (i.e. βj = 0 or βj 6= 0). If 0 /∈ CI(1 − α;βj), we conclude that the

variable j is significant at the 1− α confidence level. The typical choice of the significance level

α is 0.01, 0.05 or 0.1.

Hypothesis testing is an alternative way of assessing significance. We name the event H0: βj = 0
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as a null hypothesis, and H1: βj 6= 0 as an alternative hypothesis. For linear regression, we often

consider the t test. The test statistic is t∗j =
βj
s[βj ]

. If t∗j > Qt(1−α
2 |n−p), we reject null hypothesis

H0 and accept H1. Another interpretation can be given from the perspective of p-value. The

p-value is defined as "the probability of obtaining a test statistic at least as extreme as the one

that was actually observed given that the null hypothesis H0 is true" (Goodman 1999). If the

p-value is smaller than the significance level α (say α=0.05), we conclude that the alternative

hypothesis H1 is accepted, with the risk of making a wrong decision controlled at α. In fact,

the t test is equivalent to the above mentioned confidence interval approach. Other possibilities

for assessing statistical confidence are F test and Wald test (Kutner et al. 2004), which are not

covered here.

1.2 Model fitting and prediction

After obtaining the OLS estimates β̂ from the data (X,y), we could evaluate how well the

estimated linear model fits the original data by calculating the mean square error

MSE =
1

n
(y − ŷ)T (y − ŷ), (1.8)

where ŷ = Xβ̂. Note that here the same data are used to first estimate the unknown parameters,

and second "predict" their own response values.

In practice, a more interesting task is to predict the response values for some new explanatory

data Xnew by calculating ŷnew = Xnewβ̂. If it happens that we obtain the true response values

ynew later, we could use a similar mean square error type of criterion to evaluate the predictive

ability:

PE =
1

n
(ynew − ŷnew)T (ynew − ŷnew), (1.9)

Note that we name this metric as "PE" (representing the prediction error), in order to distinguish

it from the "MSE" defined in the equation (1.8).

In general, MSE often provides over-optimistic estimation of model fitting compared with PE,

because MSE involves model estimation and prediction using the same data. This is known as

the "over-fitting" phenomenon, which will be discussed in Section 4.

Linear regression has been widely applied in diverse fields such as biology, economics and social

science. This work is mainly concerned with the application of linear regression techniques in

quantitative genetics. Briefly, a typical data set combines, phenotype data, which reflects certain

observable characteristics or traits such as human height or barley kernel density, and genotype

data that comprises information about the DNA sequence. A linear regression can be used to (i)

identify segments of DNA sequence which are highly associated with the traits, and (ii) predict
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the phenotype values based on genotype data. A more comprehensive description of the genetics

applications will be given in Section 6.

2 Beyond the linear model

The standard linear regression model is mainly based on the assumptions that (i) the relation-

ship between response and explanatory variables is roughly (additively) linear, (ii) the response

variables are Gaussian distributed continuous variables and (iii) the responses are i.i.d. dis-

tributed. Fitting data that violate these assumptions into a standard linear model may not be

efficient for either identifying significant explanatory variables or for making predictions. More

specific regression techniques are needed in order to fit such data. For example, data with binary

response variables such as disease status, can be fitted using logistic regression where a logistic

link function is applied to transform the binary response into continuous space; in this way, a

connection between discrete responses and (continuous) explanatory variables can be built. The

logistic regression belongs to the generalized linear model (GLM) family, which aims to release

the assumption (ii) of Gaussian residual error structures in the linear regression model (1.3) (Mc-

Cullagh and Nelder 1989). A full discussion of the GLM is beyond the scope of this discussion

since we focus on situations where the assumption of Gaussian residual errors is applicable.

2.1 Strategies for modeling non-linearity

If the relationship between response and (one of the) explanatory variables severely departs from

linearity, then the following, more general, regression form might be considered

yi = f(xi) + ei, (2.1)

where f(•) may represent any mathematical function, for example, in linear regression, we have

f(xi) = β0 + xiβ1. A possible extension of linear regression can be achieved by adding higher

degree (i.e. greater than 1) polynomial terms of the same variable xi (Ruppert et al. 2003):

f(xi) = β0 + xiβ1 + x2iβ2 + x3iβ3 + · · ·. (2.2)

Since f(xi) remains to be a linear combination of several covariates, the least squares method

introduced above is applicable for estimation. Generally speaking, a quadratic or cubic polyno-

mial function is sufficient to describe data with a simple non-linear relationship; for example,

a quadratic polynomial function is often used to model the simple monotonic growth of a tree

(e.g. Sillanpää et al. 2012). For more complicated situations, higher degree (i.e. >3) polyno-
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Figure 1: LIDAR data fitted by polynomial regression: estimated curves by polynomials with degree 2
(quadratic), 3 (cubic), 5 and 10 are shown in solid lines with green, red, black and magenta
colors, respectively. Original data points are shown in blue dots.

mials might be applicable, but they may not provide substantial improvements in model fitting.

Ruppert et al. (2003) provide a nice illustration of this problem in a LIDAR (light detection

and ranging) data set that used the reflection of laser-emitted light to detect chemical bounds in

atmosphere. The explanatory variable is the distance traveled by the light before it is reflected

back to its source (represented as "range"), and the response variable is the logarithm of the

received light from two laser sources (blue dots in Figure 1). Clearly, these data are associated

in a non-linear pattern, and therefore a higher degree polynomial regression should be used to fit

the data. Figure 1 also shows fitted curves by polynomials with degrees 2 (quadratic), 3 (cubic),

5 and 10, respectively in solid lines. Note that the lower degree polynomials (i.e. with orders

2, 3 and 5) do not adequately describe the sudden downturn shown in the middle part of the

data, and furthermore they do not seem to fit the data particularly well in either upper or lower

boundaries. While, the higher order polynomial function (i.e. degree=10) provides a generally

good fits with the data, but the curve is complex and shows many un-necessary wiggles.

Briefly, a common disadvantage of polynomial regressions is that they often fail to properly

capture the local trends of certain data that have quite sophisticated non-linear patterns. Next,

we discuss a possible improved approach named spline basis extensions. A spline regression with
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order s+1 or degree s (spline order=degree+1) is defined by

f(xi) = β0 + xiβ1 + · · ·+ xsiβs +

K∑
k=1

(x− ζk)s+βs+k, (2.3)

where (x − ζk)+ = x − ζk if x > ζk and is equal to 0 otherwise, A < ζ1 < ... < ζK < B, and

xi ∈ [A,B]. Compared with a polynomial regression, a linear combination of spline bases or

truncated power series
∑K
k=1(x−ζk)s+βs+k are further added in order to better describe the local

behavior of the data. The values of ζk (k = 1, ...,K), which specify the locations where those

truncated spline bases are joined, are often refer to as (interior) knots. The number of knots

and how they are placed over the range of the explanatory variables, as well as the order of the

spline, need to be chosen by the user, and the combination of choices determines the quality of

the curve fittings.

A popular variation of the standard spline approach is B-spline (De Boor 2001; Fahrmeir and

Kneib 2011). A B-spline basis can be obtained by taking certain differences of the spline bases.

B-spline bases are orthogonal, and therefore are numerically more stable especially for some large

data sets. Fitting Ruppert et al.’s (2003) LIDAR data with B-splines provided an apparently

improved fit compared with the polynomial regression (cf. Figure 1 and 2). For example, we

examined four different settings of Knot numbers (K ) and spline orders (s): (i) K = 5, s = 2, (ii)

K = 5, s = 4 (iii) K = 20, s = 2 and (iv) K = 20, s = 4, where spline orders 2 and 4 correspond

to linear spline and cubic spline, respectively. Since the data are quite evenly distributed over the

x-axis, we specified the knot locations to be equal separated. The splines fit the data generally

quite well even when the spline orders are low (Figure 2), but with the cubic spline providing a

smoother fit than the linear spline at several of the curve peaks and valleys shown in the curve;

however, when the number of knots increases, such differences between spline orders are not

clear. By contrast, the choice of number of knots has a substantial impact on the smoothness of

the curve, with the fitted curves with 5 knots smoother than curves with 20 knots (Figure 2).

Analogous to the linear multiple regression model (1.3), when multiple explanatory variables

need to be considered, it is possible to extend (2.1) to an additive model (Ruppert et al. 2003;

Hastie et al. 2009):

yi =

p∑
j=1

fj(xij) + ei. (2.4)

When many p curves need to be fitted simultaneously, choosing the most appropriate spline and

knot parameters becomes a difficult task, which is rarely possible through data exploration and

visualization. Section 4 will include an introduction to some possible procedures for automat-

ically determining the number of knots.

11



Figure 2: LIDAR data fitted by B-spline regression: estimated curves by B-splines with (i) orders=2
(linear), No. of knots=5, (ii) orders=4 (cubic), No. of knots=5, (iii) orders=20, No. of
knots=2 and (iii) orders=20, No. of knots=4. are shown in solid lines with green, red, black
and magenta colors, respectively. Original data points are shown in blue dots.

2.2 Linear mixed effects model

In many regression studies, the data might be collected from different sources, groups or clusters,

with individuals within one cluster often more correlated with each other than the individuals

collected from different clusters. Hence, it may not be appropriate to assume that all the in-

dividuals within a pooled sample are independently distributed as with model (1.1). In such

circumstances, a linear mixed model (LMM) can be applied in order to account for the structure

of the data by adding some cluster-specific random effects into the standard regression model

(West et al. 2007). Assuming that among a total of N individuals (in the pooled data), there are

m clusters (and thatm < n), and in the ith cluster (i = 1, ...,m) there are ni number of individu-

als (N =
∑m
i=1 ni), then the data can be arranged as (yik,xik), in which yik represents responses

for clusters i = 1, ...,m, and within-cluster samples k = 1, ..., ni, and xik = [1, xik1, ..., xikp] rep-

resents covariates for fixed effects. A linear mixed model is defined by

yik = xikβ + zikbi + eik, (2.5)

12



where β = [β0, β1, ..., βp]
T are the fixed effect coefficients, zik = [1, xik1, ..., xikq] are covari-

ates for random effects (q < p) which may be chosen as a subset of the fixed effect covariates

xik (Schelldorfer et al. 2011), bi = [bi0, bi1, ..., biq]
T are the random effect coefficients, and eik

are the residual error terms. For the random effects and residual error terms, we may assume

bi
i.i.d.∼ MVN(0,Λ), and ei = [ei1, ..., eini ]

T i.i.d.∼ MVN(0,Σi). Thus, individuals within one

cluster are assumed to be correlated to some degree, and the within cluster correlations are

introduced by the covariance structures Λ and Σi. Furthermore, the random effects and error

terms are assumed to be mutually independent.

In practice, a two-step algorithm can be used to estimate the parameters involved in LMM:

(i) estimate the covariances Λ and Σi by the REML method, and (ii) assuming the variance

components are known, then estimate fixed and random effect coefficients β and bi as solutions

from mixed model equations. More details of this LMM approach can be found in references

such as Ruppert et al. (2003).

The LLM methods have been used in various problems in quantitative genetics such as genome

wide association studies (Kang et al. 2007), and phenotype prediction/genomic selection studies

(De Los Campos et al. 2009). In those applications, the term "cluster" often refers to popula-

tions, pedigrees or families from where the data were collected. The focus of this thesis is on

longitudinal studies for data sets with repeated measurements over time within each individual,

and thus the clusters are the individuals.

2.3 Multivariate regression

Here we discuss another possible extension of the linear regression for multiple response data

(i.e. data taken from the same individuals). Sometimes response variables are highly correlated,

and yet it is often valuable to simultaneously consider the multiple responses within the same

model. As an extension of the univariate regression model (1.3), a linear multivariate regression

model can be applied:

yik =

p∑
j=1

xijβjk + eik, (2.6)

where yik is the ith observation of the kth response variable (i = 1, ..., n, k = 1, ...,m), xij is

the ith observation of the jth explanatory variable (i = 1, ..., n, j = 1, ..., p), βjk is regression

coefficient of jth explanatory variable and kth response. The residual errors are assumed to

be Gaussian distributed: ei = [ei1, ..., eik]T
i.i.d.∼ MVN(0,Σ). Here, the terms "multiple" and

"multivariate" may cause some confusion. In this thesis, multivariate regression refers to a

regression model with multiple response variables, which is distinct from a univariate regression

with a single response variable. The term (univariate) multiple regression refers to a model with

13



Figure 3: Profile plot of the BMD data: for each individual, his/her relative change in signal BMD is
plotted against age. The individual trajectories of males and females are shown in blue and
red solid lines, respective.

multiple explanatory variables, as opposed to a simple regression or marginal regression with a

single explanatory variable.

It is possible to apply the ordinary least squares (OLS) method to estimate the regression

coefficients in (2.6). Indeed, the OLS estimates of (2.6) are equivalent to the OLS estimates

obtained by separately fitting k univariate regressions for one response at a time (Izenman

2008). Thus, the OLS approach could not take the covariance among multiple responses into

account. In the next section, we discuss a possible modification of model (2.6) which is mainly

applicable for the longitudinal data.

3 Regression techniques for longitudinal data

In biology, many quantitative traits such as height and weight, are dynamic in natural popula-

tions. A study that aims to quantify dynamic behavior of quantitative traits will use repeated

measurements of the target trait taken from the same individual- longitudinal data (Diggle et al.

2002). For example, 1-3 repeated measurements on adolescent bone mineral density (BMD) were

taken from 261 North American adolescents (age 9-25) (Bachrach et al. 1999; Hastie et al. 2009)

(Figure 3). The impact that gender has on the relative change in signal BMD (see Figure 4) can
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Figure 4: Profile plot of the BMD data by ignoring the labels for individuals: the original data points
are shown in blue and red dots for males and female, respectively. The fitted curves by
splines are shown in blue and red solid lines for males and females.

be quantified by separately fitting the following quadratic splines with knots specified at ages 12

and 18 to the male and female data, respectively: f(t) = α0+tα1+t2α2+(t−12)2+α3+(t−18)2+α4.

The fitted curves clearly indicate that a spurt in bone growth happens earlier in females than in

males (Figure 4).

3.1 A Linear mixed model approach

While profile and/or scatter plots are useful tools for providing a rough description of longitudinal

data, regression methods are needed to provide more precise estimation, testing and prediction

of interesting quantities. In a longitudinal data set, the common assumption is that the within-

individual variability is less than the between-individual variability and therefore it is natural to

apply a linear mixed effects model (LMM) (2.5) where the individual can be treated as a cluster.

A popular LMM approach for longitudinal data is random intercept and slope model:

yik = α0 + α1tik + αi0 + αi1tik + xikβ + eik, (3.1)

where yik is the response of kth repeated measurement of subject i (i = 1, ..., n, k = 1, ...,mi, n

is number of subjects, mi is the number of repeated measures of the subject i), tik represents the
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time points (e.g. recorded calender time, age...), α0 and α1 are (time relevant) fixed intercept

and slope parameters, and αi0 and αi1 are the random intercept and slope parameters, xik =

[xik1, ...,xikp] are the fixed effect covariates (other than time), β are the fixed effect coefficients of

xik, and eik are residual error terms. Note that in this work, we assume the covariates xik remain

unchanged over time, so we may ignore the label k from xik. Like in (2.5), the random effect

and residual errors are assumed to be Gaussian distributed: αi = [αi0, αi1]T
i.i.d.∼ MVN(0,Λ2×2),

and ei = [ei1, ..., eimi ]
T i.i.d.∼ MVN(0,Σi). The fixed effect part α0 + α1tik describes population

level linear trend, and the random effect part αi0 +αi1tik describe the individual departure from

the population trend. Some data such as the BMD data may have strong non-linear trends. In

those cases, the model (3.1) can be extended by

yik = f(tik) + fi(tik) + xikβ + eik. (3.2)

Here the fixed and random effects f(tik) and fi(tik) can be specified by basis expansion ap-

proaches such as splines.

For example, analyzing Bachrach et al.’s (1999) BMD data using a mixed model allows us to

include an age-gender interaction term in the model in addition to the additive effects. Specially,

we fit the following mixed model:

yik = f(tik) + αi0 + xiβ + xif
∗(tik) + eik, (3.3)

where, f(tik) = α0 + tikα1 + t2ikα2 + (tik − 12)2+α3 + (tik − 18)2+α4, and f∗(tik) = tikγ1 + t2ikγ2 +

(tik− 12)2+γ3 + (tik− 18)2+γ4. The gender covariate xi is coded as 1 for females, and 0 for males.

The fixed effect term f(tik) describes the population trend of bone growth, and the interaction

term xif
∗(tik) describes the deviations from the overall trend by females. Since there are only

1-3 repeated measurements over 1 individual, only a random intercept term αi0 is used. We

further assume αi0
i.i.d.∼ N(0, τ20 ), and eik

i.i.d.∼ N(0, σ2
0). Thus it is now clear that the gender

variable has significant (P < 0.05) interactions with age (Table 1), further indicating gender

influences bone growth.

Table 1: Analysis of the BMD data by an age × gender interaction LMM model (3.3): the estimated re-
gression coefficients for the fixe effects and the corresponding statistical significance (p values)
by a t test are shown.

variables xi (gender) xi × tik xi × t2ik xi × (tik − 12)2+ xi × (tik − 18)2+
coefficients 2.79 -0.5104 0.02283 -0.02719 0.0061
p values 0.0003 0.0001 0.0001 10−5 10−5
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3.2 A multilevel model approach

Next, we illustrate an alternative approach called multilevel model for analyzing longitudinal

data, as this type of method has been used in several quantitative genetics studies (e.g. Heuven

and Janss 2010; Sikorska et al. 2013). The multilevel model can be seen as a two step approach.

In a first step, we fit the repeated measured responses yik of each subject with respect to time

tik (i = 1, ..., n, k = 1, ...,mi):

yik = ψi0 + ψi1tik + eik. (3.4)

For simplicity, here we assume linearity between yik and tik. In a second step, we take ψi0 and

ψi1 as latent response variables. Next, we fit

ψi0 = α0 + xiβ0 + αi0, (3.5)

and

ψi1 = α1 + xiβ1 + αi1, (3.6)

respectively. Here xi represents covariates other than time, and αi0 and αi1 are residual terms.

Alternatively, by considering ψi0 and ψi1 as correlated responses, (3.5) and (3.6) can also be

simultaneously fitted by a multivariate regression model.

Next, we show how such a multilevel model is connected to the LMM. Substituting (3.5) and

(3.6) back to (3.4), we have

yik = ψi0 + ψi1tik + eik

= α0 + xiβ0 + αi0 + (α1 + xiβ1 + αi1)tik + eik

= α0 + α1 + αi0 + αi1tik + xiβ0 + xiβ1tik + eik. (3.7)

If we assume αi0 and αi1 as random effects, then the equation (3.7) becomes the mixed effects

model (3.1) plus an extra interaction term xiβ1tik.

The difference between these two approaches is obvious: the multilevel model first fits the

temporal trends of the original responses and the estimates the effects of covariates other than

time on latent responses, which are summary statistics of the temporal trend; however the LMM

estimates the temporal trend and the effects of the other covariates simultaneously.

3.3 A multivariate varying coefficient regression approach

Now let us focus on a special type of longitudinal data where the repeated measures of all the

individuals (i = 1, ..., n) are collected at the same time points (t1, ..., tm). In such case, each
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y(tk) = [y1(tk), ..., yn(tk)]T (k = 1, ...,m) can be treated as a single response variable. Note that

here we change the notation from yik to yi(tk). Therefore, it is possible to apply the multivariate

regression model (2.6) to the data:

yi(tk) = β0(tk) +

p∑
j=1

xijβj(tk) + ei(tk), ei = [ei(t1), ..., ei(tm)]T
i.i.d.∼ MVN(0,Σ). (3.8)

In longitudinal contexts, this type of model is often referred to as a varying coefficient model

(Ruppert et al. 2003; Fahrmeir and Kneib 2011). As we have mentioned earlier, the standard

OLS estimates cannot take the dependency structure among the data into consideration, which

is not optimal for parameter estimation in longitudinal data sets. In a longitudinal data, the

usual assumption is that two repeated measurements (within the same subject) at nearby time

points should be more similar than two measures taken from further apart. A popular strategy

is to re-parameterize βj = [βj(t1), ..., βj(tm)] (j = 0, 1, ..., p) as a function over time (e.g. by

spline basis expansions) instead of considering them as separate parameters. Additionally, when

hypothesis testing, it is favorable to construct a test statistic that assess the whole function

instead of the single parameters see e.g. Ma et al. (2002) and Xiong et al. (2011). We should

also notice that the varying coefficient model (3.8) is closely connected to the mixed model (3.3)

with interaction effects. In (3.8), all the covariates are modeled as interactions with time.

Furthermore, the ML estimate of the residual covariance matrix Σ may involve too many param-

eters when the number of time points is large. Under such circumstances it is easier to assume

that the residual covariance matrix follows some parametric structure. The simplest setting, for

example, is Σ = σ2I, where I is an identity matrix. However, to better describe the temporal

correlation among residuals, we may alternatively specify it to be the first order autoregressive

structure Σ(s1, s2) = σ2ρ|s1−s2|

1−ρ2 (0 < ρ < 1, s1, s2 = 1, ...,m). The temporal correlation decays

when the distance between two time points increases.

In the area of quantitative genetics, a series of methods based on the varying coefficient model

has been developed for mapping dynamic traits with several different covariance structures (Ma

et al. 2002; Liu and Wu 2009); reviewed by Wu and Lin (2006).

4 Model selection and regularization

We have discussed various regression techniques that are applicable to different situations. In

general, most methods should be appropriate for data with a sufficiently large sample size (e.g.

hundreds of individuals) and relatively few explanatory variables or bases (e.g. less than 10 vari-

ables). In many contemporary statistical studies, however, data sets comprise some hundreds or

even thousands of explanatory variables- they are high dimensional data. Analyzing such high
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dimensional data sets with traditional regression tools is questionable due to computational in-

feasibility. We therefore briefly discuss the main challenges posed when faced with attempting

to analyze large data sets using either standard multiple linear regression (1.3) and/or least

squares estimation (1.4), but it is worth noting that similar problems may occur when using

other types of regression models (that we have discussed earlier). More detailed descriptions

of such challenges in large scale regression analyses can be found in Hastie et al. (2009) and

Izenman (2008).

First, from a computational point of view, standard OLS estimation involves calculation of the

inverse of a p × p matrix XTX. The matrix XTX can easily become ill-conditioned as p in-

creases. In an extreme case, when p > n, XTX starts to become a singular matrix, and the

inverse matrix does not exist. Second, from the model fitting standpoint, a linear model with a

large number of explanatory variables may provide a good fit with the original data, but subse-

quently fit the new data poorly due to over-fitting (see e.g. Section 1.2).

Two strategies will likely improve model estimation. First, we may retain a few of the likely

important explanatory variables into the model, and exclude the remaining, presumably unim-

portant, variables based on certain selection criteria- i.e. use model (variable) selection methods.

Second, it may be possible to keep all explanatory variables in the model, but add a penalty to an

OLS estimator in order to help inversion of ill-conditioned matrix, -the so called regularization

methods (Izenman 2008). Regularization methods typically push the coefficients of unimpor-

tant variables towards zero (setting a regression coefficient to zero is equivalent to excluding the

corresponding variable from the model), while keeping large coefficients of important variables.

Hence regularization methods aim to reduce model complexity, similar to the aims of variable

selection, and thus may be considered as a variable selection method.

Now let us extend the discussion of model/variable selection techniques to a broader class of

regression techniques. In brief, the model selection can be used to achieve the following:

Selection of the fixed effects: Similar to the variable selection problem in a standard linear

regression, in a linear mixed effects model (2.5) with high dimensional covariates for fixed

effects, it is often beneficial to select a small number of important variables for fixed effects

into the model. The variable selection can be used in multivariate regression (2.6) and

additive models (2.4) as well, but there the selection of one variable corresponds to the

selection of a group of regression coefficients instead of a single parameter.

Selection of knots or degree of smoothness: In Section 2.1, we demonstrated the impor-

tance of choosing the degree in a polynomial model (2.2), or choosing the number of knots

in a spline model (2.3): a model where the degree polynomials are too low or where there

are two few knots cannot describe the complex pattern of the data (i.e. is underfitted);
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conversely, a model with too many bases will fit the data "too well" by showing a lot of

unnecessary wiggles (i.e. is overfitted). Below in Section 4.5, we focus on discussing

about the automatic strategies for selecting number of knots in B-splines.

Selection of random effects and covariance structure: In a mixed effects model, another

important issue is to select covariates for the random effects and specifying correct covari-

ance structures for both random effects and residual errors. Besides, specifying a good

residual covariance structure is also important for multivariate regression (e.g. see Müller

et al. (2013).

The publications (or submitted manuscripts) of this work focus on (i) variable selection in a

standard linear regression model (Articles I and II), (ii) selection of fixed effects explanatory

variables in a longitudinal mixed model (Article IV), and (iii) selection of both explanatory

variables and knots in a multivariate varying coefficient model (Article III). Note, however, that

the selection of random effects or covariance structure in the mixed model or varying coefficient

model are not an essential topic of the thesis. In the remaining part of this section, we introduce

some technical backgrounds of model selection from a frequentist statistics point of view in order

to support the main articles in the thesis. Finally, we discuss Bayesian model selection.

4.1 Model selection criteria

Evaluating the success of a regression model requires useful tools for model assessment. For

this purpose, a model may further refer to a subset of explanatory variables in a multiple linear

regression or a number of knots in splines. Generally speaking, a model will be judged as good

if it provides good predictability, is parsimious and is easy to interpret.

In order to assess a model based on its predictability, we may either evaluate its extra-sample

or in-sample prediction error (Hastie et al. 2009). The extra-sample error is estimated under

the assumption that there are two separate data sets: a training data set (X,y), and a test

data set (Xnew,ynew). The training data are used for estimating the regression coefficients (e.g.

by ordinary least squares), and the test data are used to evaluate the prediction error. The

in-sample prediction, by contrast, use a single data set under the assumption that there are new

measurements of the responses y on the same input data X.

A simple approach to estimate the extra-sample predictability is to divide a data set into two

parts of roughly equivalent size: with one part of the data used for learning, and the remaining

data then used for validation and evaluation of prediction error. Dividing a data set is only

appropriate for large data sets. When the sample sizes are low, one can apply a K-fold cross

validation (CV) method (Picard and Cook 1984). The CV divides the data into K equivalent
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parts (Xk,yk) (k = 1, ...,K), with each part (Xk,yk) used sequentially as a test set, and the

remaining K − 1 parts (Xk−1,yk−1) used for training, and the prediction error is estimated as

an average over the K runs: typically, a 5 or 10-fold CV is recommended in practice (Hastie et

al. (2009).

Methods for estimating in-sample prediction error (IPE) often start from the point that the

training error (or MSE) often gives an overly optimistic estimate of prediction error. Since, the

IPE should be larger than MSE, we may represent their relationship by IPE=MSE+O, where

O should be a positive value. Asymptotically, this relationship leads to the Akaike information

criterion (AIC) (Akaike 1974):

AIC = lnMSE +
2

n
df, (4.1)

or from the maximum likelihood point of view, AIC can also be defined by

AIC = − 2

n
lnmax-likelihood +

2

n
df, (4.2)

where df represents degree of freedom, the number of effective parameters in the model, and n

is the sample size. In a multiple regression model (1.3), df is equivalent to the total number of

regression coefficients, which is p+1. As the term 2
N df penalizes a model with more parameters,

AIC is seen as an approach for achieving a compromise between obtaining the best model fit

and keeping model complexity comparatively low.

An alternative choice for assessing model fit is Bayesian information criterion (BIC) (Schwarz

1978), defined by

BIC = lnMSE +
lnn

n
df, (4.3)

or

BIC = − 2

n
lnmax-likelihood +

lnn

n
df. (4.4)

Note that as lnn > 2, when n > 7, the BIC tends to favor more parsimonious model compared

with AIC. As suggested by its name, the BIC has a Bayesian origin, and this aspect will be

covered in the next section.

4.2 Stepwise selection methods

Now we start to discuss some automatic model selection procedures for a regression model. Here,

we first focus on the standard multiple linear regression (1.3). Since the main aim of multiple

regression is to select a subset of important explanatory variables to construct a good model, the

problem is often referred to as "variable selection" instead of "model selection". Intuitively, one

may apply "all best subset selection" (Kutner et al. 2004), an approach that simply enumerates
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all possible combinations of explanatory variables. For each combination of variables, the above

mentioned model selection criteria such as CV, AIC and BIC is used to measure the model

goodness of fit, and the model with optimal selection score is selected as the best. Despite its

simplicity, this approach is often not applicable in practice due to its heavy computation cost.

For example, with p variables, the total number of possible models is 2p; thus when p = 100,

there are 2100 ≈ 1.27× 1030 possible models to assess.

A computationally more effective alternative is a stepwise method, which includes forward se-

lection and backward elimination of variables. Forward selection starts from a null model (i.e.

with only the intercept term), and then adds explanatory variables one at a time into the model

with the improvement of the model, judged, for example by CV, AIC, BIC or a t statistic. This

process continues until explanatory variables cease to improve the model. In contrast, backward

elimination begins with a full model (i.e. all the variables are involved), and then removes vari-

ables from the model, again one variable at a time, and continues with this process as long as

the model improves, after which no more variables are deleted. Moreover, it is also possible to

use a combination of forward selection and backward elimination in one algorithm (see Kutner

et al. 2004).

4.3 Regularization methods

The stepwise methods and similar variants, are greedy algorithms in that, they can easily reach

some local maxima. In addition, such discrete model search strategies are not stable, meaning

that they may provide quite different results even if there is only a small change in the data sets

(Hastie et al. 2009; Izenman 2008). Instead, some continuous procedures, mainly referring to

regularization methods, are able to overcome these problems.

A classic regularization method is ridge regression (Hoerl and Kennard 1970), defined by

β̂r = min
β

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j . (4.5)

An l2 penalty term λ
∑p
j=1 β

2
j is added to the SSE function in order to shrink the regression

coefficients towards zero. The tuning parameter λ determines the degree of shrinkage. In prac-

tice, an optimal value of λ (λ > 0) can be chosen by using any of the above mentioned model

selection criteria. The ridge estimates can be analytically derived as

β̂r = (XTX + λA)−1XTy, (4.6)
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where X and y are defined in the same way as in equation (1.4), and A =



0 · · · 0

... 1
...

. . .
...

0 · · · 1


.

The ridge regression has been criticized because it tends to over-shrink regression coefficients

of some explanatory variables towards zero, even though those variables are considered to be

important; in other words, ridge regression can fail to distinguish between important variables

and un-important variables. In addition, due to the continuous nature of the l2 penalty, ridge

regression cannot shrink any regression coefficient exactly to zero, and therefore cannot provide

a parsimonious model.

A somewhat newer approach is least absolute shrinkage and selection operator or LASSO (Tib-

shirani 1996), defined by

β̂l = min
β

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |. (4.7)

In LASSO, an l1 penalty λ
∑p
j=1 |βj | is used instead of the l2 penalty. The l1 norm, dis-continuing

at zero, guarantees that some coefficients can be shrunk exactly to zero, with LASSO also

benefitting by tending to shrink the coefficients of important variables than ridge regression.

These properties can be better seen from a Bayesian point of view, which will be explained

in Section 5.2. The LASSO solution is not analytically available, and requires sophisticated

convex optimization algorithms such as least angle regression (LARs) (Efron et al. 2004) and

the coordinate descent algorithm (Friedman et al. 2007; 2010).

The l1 penalty can also be used for selection of fixed effects in a linear mixed effects model (see

Schelldorfer et al. 2011).

4.4 LASSO and multiple hypothesis testing

A nice feature of LASSO is that it is able to shrink the coefficients of some explanatory variables

exactly to zero, and therefore LASSO can be regarded as a variable selection tool. However,

some theoretical and empirical studies have indicated that LASSO tends to choose too many

variables into the model, so that some variables with quite small coefficients are included in

addition to those variables with large effects (Bühlmann and Van De Geer 2011). This retention

of variables with weak effect typically happens especially when the CV is used to choose the op-

timal value of the tuning parameter. Thus, if the choice of significant variables relies on LASSO

variable selection, we have to tolerate some false positives (i.e. type 1 error rate). Hypothesis

testing is needed to reduce the number of false positives. Since LASSO is often applied on high
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dimensional data, a multiplicity adjustment might be needed when doing simultaneous testings

on many parameters (Meinshausen et al. 2009).

In general, it is not a simple task to perform hypothesis testing based on the LASSO estimates.

Constructing a test statistic for a LASSO estimate of a regression coefficient is not a straight-

forward task, because LASSO estimates do not asymptotically follow any standard parametric

distribution. Some existing approaches such as those presented by Wasserman and Roeder

(2009), Meinshausen et al. (2009), and Minnier et al. (2011) are based on sub-samplings or

perturbations.

4.5 Model selection on B-splines

Now we move to the problem of selecting degree of smoothness or knots in spline regression.

Here we focus on the B-spline bases, an orthogonalized version of the standard splines (2.3). We

start from the case of single explanatory variable xi. The regression model is specified as

yi =

m∑
k=1

ψik(xi)βk + ei, (4.8)

where ψik(xi) (k = 1, ...,m) are m B-spline bases. As shown in Section 2.1, the number of

knots is the key factor determining the smoothness of the estimated curve, with too many or too

few number of knots causing overfitting and underfitting respectively. One strategy to obtain

a good model is to pre-specify a fairly large number of knots in the model to ensure that it

does not under-fit the data. Because equation (4.8) has the same linear form as the standard

multiple linear regression (1.3), the same type of variable selection or regularization methods

can then be applied in order to avoid over-fitting. Here, we focus on the ridge regression with

an l2 norm penalty λ
∑m
k=1 β

2
k, because it has a simple analytical solution form. The ridge

regression independently assign an individual squared penalty to the parameter of spline base

with a common penalty factor λ. In some situations such as in longitudinal studies, the usual

assumption is that the response data at nearby (time) points have more similar values compared

to the data measured at further distances. In order to better describe such dependency structure,

it is often preferable to alternatively use a fusion or difference penalty. The corresponding

penalized B-spline regression is called p-spline (Eilers and Marx 1996). In some literature, these

models often refer to non-parametric or semi-parametric regression models (Ruppert et al. 2003;

Fahrmeir and Kneib 2011). The widely used first and second order difference penalties are

λ
∑m
k=2(βk − βk−1)2 and λ

∑m
k=3(βk − 2βk−1 + βk−2)2, respectively. These differential penalties

push the coefficients of the bases at adjacent knots to similar values, and thus smooth the

estimated curve. We used the p-spline method to re-analyze the LIDAR data examples in
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Figure 5: Comparison of fitted curves by p-spline with a second order difference penalty and B-spline
without any penalty for the LIDAR data: estimated curves by p-spline and regular B-spline
regressions are shown in red and green colors, respectively. Original data points are shown
in blue dots.

Section 2.1. The cubic spline and number of knots were specified to be 20, and we choose

the second order difference penalty. The 10-fold CV was used to select an optimal value of λ.

Compared with the curve estimated by the B-spline method without any penalty, the penalized

method provides much smoother fit without presenting any undue undulations in the curve

(Figure 5). It is possible to extend the idea of p-spline to the additive model (2.4) and the

varying coefficient model (3.8) by assigning the difference penalties to the coefficients of each

explanatory variables. When the number of explanatory variables is large, a combination of the

LASSO l1 penalty and the difference penalty can be used to achieve variable selection and curve

smoothing simultaneously (Daye et al. 2012).

5 Bayesian formulation and computation

So far, we have introduced the various regression models, and the relevant estimation, model

selection and inference issues from a frequentist statistics point of view. Now, we introduce the

Bayesian way of handling model selection and associated validation problems. In a Bayesian

statistical model, there are three key factors: (i) a likelihood function p(y|θ), the probabilistic

description of data y conditional on the unknown parameters θ, (ii) a prior p(θ), the probabilistic
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hypothesis of the parameters without knowing the data, and (iii) a posterior distribution p(θ|y),

the conditional distribution of θ given y. Note that here a probability distribution is represented

in the density form. The Bayes theorem tells that

p(θ|y) =
p(y|θ)p(θ)

p(y)
. (5.1)

Note that the denominator p(y) =
∫
p(y|θ)p(θ)dθ is a normalizing constant. Thus, sometimes

we might also express the Bayes theorem as

p(θ|y) ∝ p(y|θ)p(θ). (5.2)

The posterior distribution combines the data likelihood with the prior information. This in

principle differs from the frequentist statistics, where the inference is done merely based on the

likelihood. Another difference is that in a Bayesian model, the parameters are often estimated

as a whole posterior distribution, so that the uncertainties such as standard errors and credible

intervals are directly estimable. However, frequentist approaches such as maximum likelihood,

only provide point estimates of parameters and the level of uncertainty has to be estimated from

the sample distribution.

In a Bayesian model, the choice of priors is an important issue. When good prior knowledge

about the parameters is available, we may choose a relatively informative prior and this, may

have a quite large impact on the posterior, especially when there are few data. In the absence of

good knowledge about the parameters, a flat non-informative prior might be preferable. While,

the posterior distribution shrinks to the likelihood when the prior is chosen to be flat, it can

still be useful to take advantage of Bayesian computational tools. More details about Bayesian

modeling and computation can be found in Gelman et al. (2004).

5.1 Marginal likelihood and BIC

Now we move to some Bayesian approaches for model selection. Following a Bayesian approach,

we may treat a model M as a random variable as similar as the model parameters θ. Here we

focus on discrete model spaceM ∈ [M0,M1, ...,MN−1] with the corresponding model parameters

θ ∈ [θ0,θ1, ...,θN−1], where N is the total number of possible models. For instance, in a linear

regression (1.3) with p explanatory variables, there are N = 2p possible models. We need to

compute the posterior distribution of the model M :

p(M |y) ∝ p(M)p(y|M), (5.3)
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where p(M) is prior probability of the model, and p(y|M) is marginal likelihood, which is

equivalent to the integral
∫
p(y|θ,M)p(θ|M)dθm, and coincidences with the denominator of

(5.1). In practice, people often specify equal prior probabilities to the models, and in that case

the posterior is equivalent to the marginal likelihood.

After computing the posterior distribution for all the models, we may seek the optimal model

that gives the highest posterior probability. Alternatively, it is also possible to calculate the

Bayes factor (BF) in order to compare two models M1 and M0.

BF10(y) =
p(y|M1)

p(y|M0)

=
p(M1|y)

p(M0|y)

p(M0)

p(M1)
. (5.4)

As a ‘rule of thumb’ if BF10 is greater than 3 (or 2 lnBF10 is greater than 2), then model M1

should be favorable over model M0 (see Kass and Raftery 1995).

Clearly, the computation of the marginal likelihood is crucial for performing calculation of model

posterior and BF. In many situations, the integral computation is often not tractable, which

requires numerical solutions. Both stochastic sampling and determinist approximation methods

are applicable. One possibility is using a Laplace approximation to the logarithm of the integral,

which results in the following solution

ln p(y|M) ≈ ln p(y|M, θ̂)− lnn

2
df, (5.5)

where θ̂ is the maximum likelihood estimate, n is the sample size, and df is the degree of freedom

(Hastie et al. 2009). Note that −2 ln p(y|M) is equivalent to the above defined BIC form in

(4.4). Below, we show an alternative solution for approximating the marginal likelihood by using

a variational Bayes method.

5.2 Bayesian regularized linear model

We describe the Bayesian representation of the multiple linear regression model (1.3). As we

have shown earlier, it is possible to write the equation (1.3) in the likelihood function form:

p(y|β, σ2
0) = (2π)−

n
2 (σ2

0)−
n
2 exp[− 1

2σ2
0

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2]. (5.6)

For the regression coefficients β0 and βj (j = 1, ..., p), we may specify the following normal

priors: β0 ∼ N(0, τ20 ) (τ20 > 0), and βj ∼ N(0, τ2) (τ2 > 0). For the residual variance, an

Inverse-gamma prior is used: σ2
0 ∼ IG(a, b) (a, b > 0). The normal and Inverse-gamma prior
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are conjugate priors for β and σ2
0 , guaranteeing that the full conditional posterior distributions

p(β|σ2
0 ,y) and p(σ2

0 |β,y) are also in the normal and Inverse-gamma distribution form, respec-

tively. Conjugate priors are important for constructing some efficient computational algorithms

such as Gibbs sampling methods and variational approximation methods (which will be dis-

cussed in Section 5.4).

The next issue is to specify certain values for the hyper-parameters τ20 , τ2, as well as a and

b defined in the priors. If we want the priors on the regression coefficients to be flat and non-

informative (i.e. with very limited impact on the posterior), then we may fix variance components

τ20 and τ2 to be very large values, such as τ20 = τ2 = 106. An extreme choice is the improper

uniform priors: p(β0) ∝ 1(−∞,+∞) and p(βj) ∝ 1(−∞,+∞), so that the priors densities are con-

stant over the parameter space and have no influence on the posterior at all. In this case, the

Bayesian mode point estimates of β are just equivalent to the OLS estimates. For the prior of

the residual variance, a popular non-informative prior setting is to specify the hyper-parameters

a and b to be quite small, such as a = b = 0.0001.

5.2.1 Bayesian ridge regression

Alternatively, when some regularization for the regression coefficients is needed, we should choose

more informative prior or the regression coefficients of the explanatory variables βj (j = 1, ..., p).

That means the value of τ2 should be chosen not to be very large in order to make sure that the

prior p(βj) = N(βj |0, τ2) has non-negligible effect on the posterior evaluation, i.e. to shrink some

coefficients toward zero. It is popular to treat the τ2 as a random variable as well, and a hyper-

prior p(τ2) can be specified for it. By doing this, we obtain a following hierarchical prior setting

for βj as p(βj |τ2)p(τ2). For simplicity, here we specify p(β0) ∝ 1(−∞,+∞), p(σ2
0) ∝ 1(0,+∞) and

p(τ2) ∝ 1(0,+∞). The posterior becomes

p(β, σ2
0 , τ

2|y) ∝ p(y|β, σ2
0)

p∏
j=1

p(βj |τ2)p(τ2)p(β0)p(σ2
0)

∝ p(y|β, σ2
0)

p∏
j=1

p(βj |τ2)

∝ (σ2
0)−

n
2 exp[− 1

2σ2
0

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2](τ2)−

p
2 exp[− 1

2τ2

p∑
j=1

β2
j ]. (5.7)
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Temporally, we assume σ2
0 and τ2 to be fixed. The maximization of the posterior with respect

to β leads to:

β̂ = max
β

p(β, σ2
0 , τ

2|y)

⇔ β̂ = min
β

[− ln p(β, σ2
0 , τ

2|y)]

⇔ β̂ = min
β

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 +

σ2
0

τ2

p∑
j=1

β2
j . (5.8)

Interestingly, β̂ is equivalent to the ridge regression estimate (4.5). We obtain a Bayesian

interpretation of the ridge regression with l2 penalty: a normal prior with zero mean and a

common variance τ2 on each coefficient βj (j = 1, ..., p) (Hsiang 1975). In the frequentist ridge

regression, the tuning parameter λ̂ =
σ2
0

τ2 is explicitly selected by model selection criteria such

as cross validation. In the Bayesian approach, σ2
0 and τ2 are considered as random variables

similarly as the regression coefficients, and all the parameters are simultaneously estimated in a

same procedure.

Furthermore, the Bayesian ridge regression model (5.7) can also be thought of as a linear mixed

effects model (2.5). The intercept term β0 can be seen as an fixed effect, and
∑p
j=1 xijβj can

be seen as the random effects. This indicates that we can use any computational algorithm for

LMM to solve the ridge regression problem. Conversely, we can treat any other mixed effects

model as a Bayesian model, and apply the Bayesian computational tools on those models.

5.2.2 Bayesian LASSO

Similarly, the LASSO has a Bayesian interpretation (Tibshirani 1996). The l1 penalty λ|βj | on

each regression coefficient βj corresponds to a Laplace (or double exponential) prior

p(βj) =
λ

2
exp(−λ|βj |). (5.9)

The Laplace prior is a non-conjugate prior, and may cause some troubles for Bayesian compu-

tation. Inspired by the fact that the Laplace distribution is equivalent to a scale mixture of

normals
λ

2
exp(−λ|βj |) =

∫ ∞
0

1√
2πτ2j

exp(−
β2
j

2τ2j
)
λ2

2
exp(−

λ2τ2j
2

)dτ2j , (5.10)

a hierarchical conjugate prior p(βj |τ2j )p(τ2j ) ∝ N(βj |0, τ2j )Exp(τ2j |λ
2

2 ) are often used in practice

to replace the Laplace prior (Figueiredo 2003; Park and Casella 2008; Yi and Xu 2008). In

contrast with the ridge regression, here each βj owns an individual level variance parameter

τ2j . Thus, the LASSO is able to provide more flexible and adaptive estimates than provided
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by a ridge regression, i.e. by shrinking less if the coefficient is large, and shrinking more if the

coefficient is small.

5.2.3 Spike and slab priors

Another popular hierarchical prior setting for βj is the spike and slab prior (Kuo and Mallick

1998; O’Hara and Sillanpää 2009):

p(βj |rj , τ2) = (1− rj)1{βj=0} + rjN(0, τ2), (5.11)

where rj (rj = 0, 1) is a binary indicator variable. Furthermore, we may specify a conjugate

Bernoulli prior to rj , and an Inverse-gamma prior to τ2. The spike and slab prior is a mixture

of a point mass at zero and a normal distribution. When rj = 0, we have βj = 0, and variable

is excluded from the model. When rj = 1, we have βj 6= 0, and the explanatory variable is

believed to be important. The indicator plays a role on excluding the un-important variables,

and enhances the effects of important variables. Another nice feature of the spike and slab prior

is that the posterior mean estimate of rj can be used as a posterior inclusion probability (PIP)

in order to quantify how important the variable is.

The Bayesian representation of the linear mixed effect model and varying coefficient model for

the longitudinal data can be found in Articles IV and III.

5.3 MCMC sampling

In Bayesian regularized regression models, the posteriors are intractable, and need numerical

solutions. As with the frequentist maximum likelihood approach, it is possible to seek the (nu-

merical) point estimates of the parameters which maximize the posterior; this is often called

Maximum a posteriori (MAP) estimation. As we have pointed out earlier, there are some alter-

native methods in Bayesian statistics that are able to evaluate the whole posterior distribution

instead of only producing the point estimates. Two such approaches involved in this thesis will

be briefly introduced.

We first start with the Markov Chain Monte Carlo (MCMC) algorithms, which is a class of

stochastic methods for simulating the posterior distribution. They target at generating a Markov

Chain: a sequence of dependent samples, which converges to the target posterior distribution

p(θ|y).
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5.3.1 Metropolis-Hastings sampling

Metropolis-Hasting (MH) sampler (Metropolis et al 1953; Hastings 1970) uses an acceptance/rejection

rule to generate a Markov chain that converges to the target distribution p(θ|y). Assuming an

initial state θ(0) has been given, a proposal distribution q(θ′|θ(1)) is used to suggest a value θ′

for the next state. Next, we calculate the Metropolis-Hastings acceptance ratio

r =
p(θ′|y)q(θ(1)|θ′)
p(θ(1)|y)q(θ′|θ(1))

, (5.12)

The proposal value is accepted by the new θ(1) with the probability min(r, 1), otherwise we set

θ(1) = θ(0). Following the same rule, we simulate a dependent sample with sufficient length, to

guarantee that it converges to the target posterior. The convergence may be checked by either

simple visual inspection or by more formal decision tools (Gelman et al. 2004). Another issue is

to choose a good proposal density to make sure that the average acceptance ratio of the chain is

neither too high nor too low. Robert and Casella (2004) provides details about some common

choices of proposal densities.

5.3.2 Gibbs sampling

The Gibbs sampler (Geman and Geman 1984) is an alternative way of setting up an MCMC algo-

rithm. In a Gibbs sampler we simulate each single component θj (j = 1, ..., N) of θ = [θ1, ..., θN ]

successively from its full conditional distribution p(θj |y,θ−j), where θ−j = [θ1, ..., θj−1, θj+1, ..., θN ].

Though it was developed independently from the MH methods, the Gibbs sampler is in fact

closely connected to the MH sampler, indeed presenting a special case of MH, where a new

state generated from the proposal distribution is always accepted. Because of this, the Gibbs

sampler should be faster and easier to be used in practice, and it should be a preferable choice

for large data sets. A general requirement for using a Gibbs sampler is that the full conditional

distributions for all the parameters are tractable and thus as many conjugate priors as possible

should be used. For many problems, we could apply a combination of Gibbs and MH samplers,

so that the Gibbs sampling is used for most of the parameters which are conjugate, and the

MH sampling is only used for the non-conjugate parts (Gelman et al. 2004). Gibbs samplers for

Bayesian LASSO and two other related models can be found in Article II, and the Gibbs sampler

for a longitudinal linear mixed model with spike and slab priors for selecting fixed effects can be

found in Article IV.
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5.3.3 Posterior summarization

The MCMC approach generate posterior samples for each parameter θj (j = 1, ..., n), which

approximates its marginal posterior distribution. From the MCMC samples, it is easy to obtain

both the point estimates such as posterior mean and posterior median, and uncertainty estimates

such as standard error and credible interval for a parameter (Kyung et al. 2010).

5.4 Variational approximation

As a sampling based method, MCMC, is able to provide a quite accurate approximation to

the exact posterior distribution of a high dimensional linear model but with huge time demands

(Carbonetto and Stephens 2012). It is often preferable to use a faster method by sacrificing some

estimation accuracy when dealing with some large data sets, with potentially good alternatives

including some determinist approximation algorithms such as the Laplace approximation (Bishop

2006), variational Bayesian methods (Jaakkola and Jordan 2000; Beal 2003; Ormerod and Wand

2010) and expectation propagation (Minka 2001); however, Our focus is on the variational Bayes

(VB) approach.

The VB method seeks a tractable free form of variational distribution q(θ|y) which approximates

the exact (intractable) posterior distribution p(θ|y). One popular setting of q(θ|y) is in a

factorized form:

q(θ|y) =

N∏
i=1

q(θi|y). (5.13)

For simplicity, we assume that the approximate posterior is a product of the marginal posteriors

of each single parameter θi. It is also possible to divide θ into [θ1, ...,θM ] (M < N), where θj

j = 1, ...,M might be a group of parameters.

We seek an estimate q̂(θ|y), that minimizes the Kullback-Leibler (KL) divergence (Kullback and

Leibler 1951):

KL(q||p) =

∫
Θ

q(θ|y) ln
q(θ|y)

p(θ|y)
dθ. (5.14)

This approach guarantees that the variational solution is at the closest distance to the true pos-

terior in the probability sense. By minimizing the KL function with respect to the approximate

marginal posterior of each single parameter: q(θi|y) i = 1, ..., N , we obtain

q̂(θi|y) =
exp{Eq̂(θ−i|y)[ln p(θ,y)]}∫

Θi
exp{Eq̂(θ−i|y)[ln p(θ,y)]}dθi

(5.15)

∝ exp{Eq̂(θ−i|y)[ln p(θ,y)]}, (5.16)
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where Eq̂(θ−i|y)[ln p(θ,y)] is the expectation of the log-joint posterior distribution with respect

to q̂(θ−i|y) =
∏
j 6=i q̂(θj |y), the product of distributions of all other partitions of θ except θi.

The optimization is done by updating (5.15) for i = 1, ..., N iteratively, until convergence. The

solution is guaranteed to at least converge to a local minima of the KL function. Similarly as

the Gibbs sampler, in VB, it is beneficial to use conjugate priors to make sure that q̂(θi|y) are

recognized as known parametric distributions. In that case, the computation of the required

moments/expectations becomes straightforward. Where such conjugate priors are not available,

numerical integrations are needed, and this increases the computation demand. Alternatively,

one may also consider the fixed form variational approximation to the non-conjugate part (Sali-

mans and Knowles 2013; see also Article III). In Article II, we derived VB algorithms for several

regularized regression models such as Bayesian LASSO.

In addition, the VB also provides an estimate to the marginal likelihood p(y). We have

ln p(y) =

∫
Θ

q(θ|y) ln
p(θ,y)

q(θ|y)
dθ −

∫
Θ

q(θ|y) ln
p(θ|y)

q(θ|y)
dθ

=

∫
Θ

q(θ|y) ln
p(θ,y)

q(θ|y)
dθ + KL(q(θ|y)||p(θ|y))

≥
∫

Θ

q(θ|y) ln
p(θ,y)

q(θ|y)
dθ

≡ L(q(θ|y)). (5.17)

We call L(q(θ|y)) a lower bound of the logarithm of the marginal likelihood ln p(y). Since ln p(y)

is a constant, the minimization of the KL function and the maximization of the lower bound

happen at the same time. When q̂(θ) approximates p(θ) well, we can also expect the lower

bound L(q̂(θ|y)) to be a good approximation to the ln p(y). Besides, it is easy to calculate

L(q̂(θ|y)) after obtaining q̂(θ|y) based on the formula:

L(q̂(θ|y)) =

∫
Θ

N∏
i=1

q̂(θi|y) ln p(θ,y)dθ −
∫

Θ

N∏
i=1

q̂(θi|y)

N∑
i=1

ln q̂(θi|y)dθ

= E∏N
i=1 q̂(θi|y)

[ln p(θ,y)]−
N∑
i=1

Eq̂(θi|y)[q̂(θi|y)]. (5.18)

Therefore, it is possible to use the variational lower bound as a model selection criterion just

like BIC (Beal and Ghahramani 2003). Based on these ideas, Nott et al. (2012) developed a

Bayesian variable selection method for the multiple linear regression model, which is connected

to the stepwise regression. We further generalized their idea for performing variable selection in

the varying coefficient model (see Article III).

A fast computation speed is the major advantage of the VB method, and for many of the

regression models discussed above, it can usually converge within several hundreds of steps; by
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contrast, MCMC methods often need simulations that proceed for more than 10000 steps. A

drawback of the VB method, however, is that, it often underestimates the uncertainties, i.e.

provides too narrow estimates of the standard errors. This might be problematic, if we want to

construct some test statistics or credible intervals based on VB estimates.

5.5 Bayesian multiple hypothesis testing

The Bayesian regularized regression approaches directly provide both point estimates and their

uncertainties, so that the construction of test statistics are convenient. However, it has been

argued that the Bayesian approaches usually cannot automatically take the multiplicity adjust-

ment into account (Berry and Hochberg 1999; Scott and Berger 2010) when dealing with high

dimensional data, just like classic frequentist methods.

In this work, we consider two possible methods for multiplicity adjustment. The first method

is permutation (Churchill and Doerge 1994), which constructs the test statistic by repeatedly

reshuffling the response data. Since permutation usually requires much re-sampling of the data

(i.e. for thousand times), it would be preferable to use this method together with the fast VB

estimation procedure. More information is provided in Article II. Second, for the MCMC spike

and slab regression, it is possible to apply a Bayesian false discovery rate (BFDR) based method

by taking the advantage of the estimated posterior inclusion probabilities. A convenient thing

is that the BFDR method relies on one MCMC chain, without any need for re-sampling. In

our example analyses (see Article IV), its performance seems to be competitive to some LASSO

related testing methods.

While these methods for hypothesis testing as well as some other possible approaches have been

verified in some empirical studies, the theoretical results are still lacking in general. Thus, we

may conclude that the Bayesian multiple hypothesis testing is an open research problem, and

deserves more investigation.

6 Applications in quantitative genetics

We have introduced some background for understanding the statistical methodology side of the

articles. In this section, we describe some problems in quantitative genetics that we want to

solve by applying those regression models. Our study targets are quantitative traits containing

continuous phenotype measurements in plants or animals, such as kernel weight in barley (Tinker

et al. 1996), density and fiberwall thickness in wood of Scots pine (Article IV) and active

probability of mouse behavior (Xiong et al. 2011).
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6.1 QTL/association mapping

We want to identify a quantitative trait locus (QTL), a region of the genome that is associ-

ated with a quantitative trait. In practice, the measurable genotype data is a panel of genetic

markers, such as amplified fragment length polymorphisms (AFLPs) or single nucleotide poly-

morphisms (SNPs) (Vignal et al. 2002). We typically consider biallelic markers, which have

three possible genotypes AA, AB and BB. In some specific circumstances such as a back cross

design, there might be only two genotypes AA and AB. Typically, a QTL is not exactly located

at any marker, but when the marker density is high, the QTL should be closely correlated (or

in linkage disequilibrium) with some markers. Thus, we may simply use marker positions as a

proxy for QTLs (Xu 2003). We focus on QTL mapping problems with hundreds or thousands of

genetic markers. A typical data set could be represented by (yi,xij) i = 1, ..., n and j = 1, ..., p,

where yi is phenotype measurement of individual i, and xij is the genotype data of the individual

i and marker j, coded as 1 for AA, 0 for AB and -1 for BB. Intuitively, the multiple regression

model (1.3) can be used to build the relation between phenotypes and genotypes. The regres-

sion coefficients, representing the effects of the markers on the trait, can be estimated by some

regularization methods. The hypothesis testing can then be used to judge QTLs (Please read

Articles I and II for more details).

Many traits such as wood density change during their developmental process of life. For dy-

namic traits where there have been repeated measurements over multiple time points, the above

introduced three regression methods for the longitudinal data are applicable (see Articles III and

IV).

6.2 Genomic selection

A side perspective of this thesis is genomic selection, which is a prediction problem (Meuwissen

et al. 2001; De Los Campos et al. 2009). We have a training data set consisting of the

individuals from old generations with phenotypes and genotypes measured, and a validation

data set consisting of the younger individuals which only have genotypes. The training data is

used to estimate the effects of the markers, and then the validation data is used for estimating

the breeding values (see Article I for details).

7 Conclusions

We have proposed a series of Bayesian multiple regularization or variable selection methods for

QTL analysis of complex traits. Our focus is on developing some variable selection methods for

longitudinal data, which have not yet been widely applied in statistical genetics.
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7.1 MCMC vs. Variational Bayes

We studied two algorithms for the Bayesian computation. The MCMC sampling algorithm

provides accurate approximation to the full posterior distribution, but is relatively slow and typ-

ically, more explanatory variables (markers) require more MCMC steps to achieve convergence.

On the other hand, the deterministic VB method converges much faster than MCMC, but often

provides downward biased estimates to the uncertainties, which becomes problematic if we want

to construct some test statistics or intervals. An alternative choice for approximate computation

is expectation propagation (EP), but it has been argued that EP may provide upward biased

estimates of uncertainties (Rue et al. 2009). Nevertheless, the VB method can serve as a good

tool for fast exploration of the data. We suggest that the MCMC method is the preferable

method for small data but that the VB method is a good, fast alternative for some large data

sets when it is sufficient to obtain point estimates. It is also possible to use the VB estimates as

the initial state of the MCMC sampling to ensure rapid convergence of the Markov chain.

7.2 Frequentist methods vs. Bayesian methods

We have considered both frequentist and Bayesian regularization methods here, and in this

context, these methods do not appear particularly different. For example, the frequentist ridge

regression, LASSO and mixed effects model all have Bayesian interpretations, and thus we may

treat them as Bayesian models and use Bayesian computational tools to obtain the solutions.

One notable difference between approaches is that by using Bayesian computational methods

such as MCMC and VB, we approximate the full posterior distribution and often consider the

posterior mean as the point estimate, while the solution of ML coincides with the (posterior)

mode. This may partially explain why the results from some frequentist methods differ from the

results of their corresponding Bayesian counterparts (see Article I).

7.3 Multiple loci methods vs. single locus methods

In some genetics literature, this type of regularized regression methods refers to methods that

analyse multiple loci. In contrast, a single locus method refers to approaches using a marginal

regression (defined in equation (1.1)) to analyze one marker at a time. The multiple loci methods

are believed to be superior to the single locus methods, because they simultaneously estimate

additive effects of multiple loci on one trait, which may better mimic the underlying biology.

However, the single locus methods also have some advantages. First, quite mature multiple

hypothesis testing methodologies have been developed from both frequentist (Dudoit and Van

Der Laan 2008) and (empirical) Bayesian perspective (Efron 2010). Although some multiple
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testing procedures have also been developed with the regularization methods, it seems that none

of them has been accepted as a standard approach. Second, single locus methods benefits from

being easily and quickly implemented. For example, contemporary genome-wide association

mapping studies (GWAS) may comprise an excess of one million SNPs and are thus difficult to

analyze using multiple loci methods due to the multimodality problem and the high computa-

tional demands. See, for example, Peltola et al. (2012) for an attempt to apply one multiple loci

approach on huge GWAS data sets. By contrast, single locus methods are still applicable, and,

indeed, become a standard choice for such purposes. It is also possible to combine the concepts

of both methods by first using a single locus method to preselect a subset of several thousand

loci with the smallest p-values, and then performing a multiple locus method on the subset of

loci in order to obtain more accurate estimates; see Fan and Lv (2008) for an example of sure

independence screening.

7.4 Comparison of three modeling strategies for longitudinal data

The statistical modeling of longitudinal QTL data is an important aspect of this thesis. As

shown in earlier sections, we consider three closely connected longitudinal models: a linear mixed

effects model, a (non-parametric) varying coefficient model, and a multilevel model. Overall,

longitudinal models by jointly analyzing phenotype repeated measurements at multiple time

points show greater statistical powers for QTL detection than those single trait methods by

analyzing a single time point at a time. The LMM should be most general approach, and

should be applicable in many different situations. The varying coefficient model is an time-gene

interaction model, with a lot of time related parameters need to be estimated, so that it might

be more suitable for the data with a sufficient number of time points. The multilevel model is a

computationally easy approach of LMM, and can be more efficiently implemented in some big

data sets. However, by separately estimating the effects of temporal trends and genetic markers,

it might not provide as accurate estimates of uncertainties as the LMM approach (Sikorska et

al. 2013).

7.5 Future work

There is still plenty of room in this thesis for improvement. For example, from the methodology

point of view, it would be valuable to have more investigation into the multiple hypothesis testing

issue. From the application point of view, it is possible to apply the current methods to other

problems in genetics such as time series gene expression data.
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