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Abstract 

The microbiota can be depicted as a measurable organ consisting of microbial 

cells, and creating a unique ecosystem together with the host eukaryotic cells. 

Therefore, to understand the normal physiology and pathology of animal 

ecosystems, it is mandatory to tackle a comprehensive analysis of the host, the 

microbiota, and their interactions. Since over 99.8% of the microbes cannot be 

cultured, metagenomics offers a path to the study of their community structures 

and metabolic potential. These goals are achievable thanks to the recent 

advances in sequencing complex assortments of small genomes, through 16S 

and WGS approach. In spite of the great number of latest studies, there is not a 

defined and standardized pipeline to measure the microbial community; rather, 

significant efforts are needed to optimize sample preparation and data analysis 

workflows for metagenomics analysis of microbiome. 

In the present PhD Thesis, a major task is aimed at developing rapid and 

efficient workflows for metagenomics analysis. These include the choice of the 

sample, the extraction methods more efficient according to sample features, 

choice of sequencing approaches and the statistical methods. 

A developed workflow was successfully applied to investigate to the first time 

the sheep gut microbiome, to perform association studies linking gut microbiota 

to T1D host traits in mice and to assess dietary and immunogenetic background 

impact over gut microbiota in a translational murine model of NAFLD. 
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1.1 Microbiome: definitions 

The concept of the human microbiome was first suggested by Joshua Lederberg, 

who coined the term ‘‘microbiome, to signify the ecological community of 

commensal, symbiotic, and pathogenic microorganisms that literally share our 

body space’’ (Lederberg and McCray 2001). The human body, both outside and 

inside, plays host to innumerable microbes. The microbial communities that 

colonize the human body help to protect us from pathogens, to digest food, and 

provide nutrients, signaling molecules affecting host functions, and a large array 

of antigens continuously challenging the immune system. It has been estimated 

that the human microbiome consists of up to 100 trillion cells, 10-fold the 

number of human cells. The microbes in the human body encode over 100 times 

the number of genes compared to genes contained within the human genome 

(Bäckhed et al., 2005; Ley et al., 2006a). The human microbiota may include 

bacteria, fungi, archaea, protist, and viruses, distributed throughout the human 

body (i.e. oral cavity, urogenital tract, skin, and gut). Given their associated 

functions and wide distribution, human microbiota have a significant influence 

on the physiology, nutrition, and immunity of the human body. Thus, a detailed 

understanding of the genetic basis of system biology in human requires 

knowledge of both the human genome and the associated microbial 

metagenome. Disruptions of these human-associated microbial communities or 

the imbalance of the relationships between these microbes and human host can 

therefore lead to severe health problems. To this extent, increasing attention is 

paid to the connection between the dynamics of the human microbiome and 

human health, from infectious disease to metabolic homeostasis. 
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1.2 The Human Microbiome Project 

The HMP was launched by the National Institutes of Health (NIH) in the fall of 

2007. One of the main aims of HMP was to use sequencing to examine the 

microbes associated with the human body. Its main purpose is to create 

resources for the research community, with a focus on building a “healthy 

cohort” reference database of human microbiome genome sequences (known as 

metagenomic sequences), computational tools to analyze complex metagenomic 

sequences, and clinical protocols for sampling the human microbiome. The 

“healthy cohort” project is a sequencing study of the microbiome based on 

sampling from 5 major body sites (18 subsites): nasal passages, oral cavities, 

skin, gastrointestinal (GI) tract, and urogenital tract. The body sites were 

selected by a panel of experts in human microbiology. The study recruited 300 

adults (of whom half were women and half were men) who were clinically 

verified to be free of overt disease. About 20 percent of the study participants 

self-identified as a racial minority and 10 percent as Hispanic. Each participant 

was sampled up to three times over a 2-year period. Two kinds of sequencing 

data were collected: microbial taxonomic characterization using the 16S 

ribosomal ribonucleic acid (rRNA) marker gene and sequence data from entire 

microbial communities (i.e., metagenomic sequences). When the project started, 

the goal was to sequence 1,000 reference genomes. Today, the goal is to 

sequence 3,000 reference genomes. Results from the first 178 genomes and 

550,000 genes sequenced were published in 2010. These sequences, 

representing two kingdoms (Bacteria and Archaea), nine phyla, 18 classes, and 

24 orders, were distributed among the gastrointestinal tract, the 

urogenital/vaginal tract, the skin, the oral cavity, and the respiratory tract 

(Nelson et al., 2010). In addition to the healthy cohort project, the HMP is 

managing a series of demonstration projects to evaluate associations between the 

microbiome and disease in the major body sites (i.e. eczema, Crohn’s disease, 
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necrotizing enterocolitis, inflammatory bowel disease (IBD), ulcerative colitis 

and bacterial vaginosis). Additionally, the project is accumulating clinical and 

phenotype data associated with the healthy cohort sequencing data. 

 

 

Figure 1. The figure shows the relative abundance of bacterial, fungal and viral communities at different body sites 
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1.3 Gut microbiome 

The human gut is the habitat for a diverse and dynamic microbial ecosystem. 

Each individual has a unique signature gut flora, composed of some 100–1000 

microbial species, composed predominantly of bacterial species (Tap et al., 

2009, Qin et al., 2009). Gut microbiota and host have a symbiotic relationship 

due to their co-existence and co-evolution. On one hand, gut microbiota depend 

on the host for their growth and survival. On the other hand, most of the gut 

microbiota are non-pathogenic and can benefit the host in many ways: extraction 

of nutrients and energy from diet intake (Sonnenburg et al., 2005; Yatsunenko et 

al., 2012; Kau AL et al, 2011), protection from enteropathogen invasion 

(Fukuda et al., 2011), contribution to the development of a normal immune 

system or function (Olszak T et al., 2012; Ahern PP et al., 2014). In contrast, the 

imbalance between the gut microbiota and the host has been associated with 

many diseases. Colonization of the gastrointestinal (GI) tract starts at birth and 

evolves and changes over a lifetime, such that the adult human GI tract is home 

to a unique ecosystem of several billion bacteria.  The infant’s gut is first 

colonized by maternal and environmental bacteria during birth and continues to 

be populated through feeding and other contacts (Sekirov et al., 2010). Factors 

known to influence colonization include gestational age, mode of delivery 

(vaginal birth vs c-section), diet (breast milk vs formula) and exposure to 

antibiotics (Marques et al., 2010; Fouhy et al., 2012). The intestinal microbiota 

of newborns is characterized by low diversity and a relative dominance of the 

phyla Proteobacteria and Actinobacteria; thereafter, the microbiota becomes 

more diverse with the dominance of Firmicutes and Bacteroidetes, which 

characterizes the adult microbiota (Qin et al.,2010). In particular, in the human 

adult host, the proximal small intestine contains relatively small numbers of 

bacteria in healthy subjects (O’Hara et al., 2006). The microbiology of the 

terminal ileum represents a transition zone between the jejunum, containing 
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predominantly aerobic species, and the dense population of anaerobes found in 

the colon. Bacterial colony counts may be as high as 10
9
 colony-forming units 

(CFU)/mL in the terminal ileum immediately proximal to the ileocecal valve, 

with a predominance of gram-negative organisms and anaerobes. On crossing 

into the colon, the bacterial load and variety of the enteric flora change 

dramatically. Loads of 10
12

 CFU/mL or greater may be found and are comprised 

mainly of anaerobes such as Bacteroides, Porphyromonas, Bifidobacterium, 

Lactobacillus and Clostridium, with anaerobic bacteria outnumbering aerobic 

bacteria by a factor of 100 to 1000:1. The predominance of anaerobes in the 

colon reflects the fact that oxygen concentrations in the colon are very low; the 

flora has simply adapted to survive in this “hostile” environment. While the gut 

microbiota evolves with age and varies in composition along the length of the 

GI tract, the microbiota composition of adult host is, in general, constant in time 

(Vanhoutte et al., 2004, Seksik et al., 2003). However, the gut microbiota 

composition is influenced by diet, socioeconomic conditions and health/disease 

status; indeed, imbalance of the gut microbiota, aka dysbiosis, can predispose 

individuals to a variety of disease states ranging from gut intrinsic disorders 

such as inflammatory bowel diseases (Nell et al., 2010), Crohn’s disease and 

ulcerative colitis, and colonic cancer (Scanlan et al., 2008, Arthur et al., 2012) 

to systemic diseases such as allergic diseases (Kuitunen et al., 2009, 

McLoughlin et al., 2011) and metabolic syndromes such as obesity (Turnbaugh 

et al., 2009, Ley et al., 2010), diabetes (Wen  et al., 2008, Musso et al., 2011, 

Qin et al., 2012), arteriosclerotic diseases (Koeth et al., 2013, Wang et al., 

2011), and nonalcoholic steatohepatitis (NASH) (Henao-Mejia  et al., 2012, 

Abu-Shanab et al., 2010). For these reasons, a  current goal is to characterize the 

human microbiota, enabling the study of its variation according to factors such 

as population, genotype, disease status and profile, age, nutrition, as well as 

exposure to various medications, and dietary factors. Worldwide, scientific and 

commercial interest in the cross-talk between microbes and their human hosts 
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has also fueled by the recognition that the intestinal microbiota plays a pivotal 

role in many aspects of human health and disease. 

 

1.4 Host-Microbiota interactions and diseases 

In recent years, concerted efforts to identify, describe, and quantify the bacterial 

communities of the mammalian gastrointestinal tract have begun to shed the first 

lights. In this contest, the role of the microbiota in regulation of host energy 

balance and metabolism can be studied at various levels. The composition of the 

bacterial flora can then be monitored simultaneously with changes in the 

animal’s body weight. One very powerful tool to address this question is germ-

free mice raised in an environment completely devoid of bacteria. By simply 

comparing the physiology of germ-free mice with that of conventionally raised 

animals, one can obtain useful information about how bacteria can shape host 

metabolism. Experiments have shown that germ-free animals seem to be 

protected from diet-induced obesity (Backhed F. et al., 2007). However, this 

protective effect was later shown to be strongly dependent on the sugar 

compositions, that is type of sugar of these diets, not just the amount of fat-

derived calories (Fleissner et al., 2010). This may well be because germ-free 

animals lack the bacterial enzymes needed to digest polysaccharides, leading, 

therefore, to a lower calorie intake. Complex polysaccharides are processed in 

the gut and fermenting microbes produce short-chain fatty acids (SCFAs). 

Butyrate, propionate, and acetate are SCFAs that can be directly used by 

colonocytes as an energy source or be further transported to the liver where they 

can be used as substrates for lipid synthesis (Wolever et al., 1991; Scheppach et 

al.,1994). Given these observations, a series of experiments were performed to 

show that the ability of carbohydrate fermentation together with the production 

of SCFAs was linked to induction of obesity. When germ-free mice were 
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colonized either by whole bacterial flora (Backhed F. et al., 2004) or by 

saccharolitic fermenting bacteria such as Bacteroides thetaiotamicron together 

with Methanobrevibacter smithii, which facilitates fermentation (Samuel BS et 

al.,2008), an increase in body weight and adiposity was observed. In other 

studies, introduction of HFD in conventionally raised animals was accompanied 

by a shift toward fermenters in gut flora. Animals on HFD had a microbial 

community that was characterized by a general decrease in microbial diversity 

and a phylogenetic shift from Bacteroidetes toward Firmicutes (Turnbaugh et 

al., 2004). This could further be attributed to an extensive bloom of one of the 

families within Firmicutes, namely Erysipelotrichaceae (Turnbaugh et al., 2008; 

Fleissner et al., 2010). Interestingly, Turnbaugh and collaborators have 

demonstrated that the phenotype was somewhat transferable: wild-type germfree 

mice colonized with flora from ob/ob mice (Turnbaugh et al., 2004) as well as 

mice that received HFD (Turnbaugh et al., 2008) were better at storing fat 

compared to those colonized with a normal flora. Of note, gut microbiota play 

an important role in the regulation of autoimmunity (Wu HJ et al., 2012; 

Longman et al., 2013) and its involvement has been suggested in the 

development of T1D as early as 1987 (Suzuki T et al., 1987). Following on from 

this, experiments using NOD mice that were transferred from specific pathogen-

free (SPF) conditions to germ free (GF) conditions showed a marked change in 

insulitis and the incidence confirmed the role of gut microbiota as a regulator of 

islet-specific autoimmunity (Alam C et al., 2011; Wen L et al., 2008). The first 

gut microbiota study in humans for T1D compared the microbiome between 

four Finnish children with T1D and four age and HLA-DQ-matched healthy 

children (Giongo A et al., 2011; Brown CT et al., 2011); subsequently, in the 

follow-up study, those Finnish children who developed T1D had a decreased 

ratio of Firmicutes vs Bacteroidetes, supporting a cross-sectional study showing 

that Bacteroidetes were more abundant in islet-specific autoantibody-positive 

children than in autoantibody negative children (de Goffau et al., 2013; de 
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Goffau et al., 2014). Furthermore, heightened gut permeability has been 

demonstrated to be one of the phenomena that precede the clinical onset of T1D 

in animal models of autoimmune diabetes, as well as in patients with T1D and 

prediabetic individuals (Neu J et al., 2005; Vaarala et al., 2008). Evidence from 

animal studies has been largely derived from two rodent models: NOD mice and 

the BioBreeding diabetes-prone (BBDP) rat. It has been suggested that the 

imbalance of bacteria, such as Bacteroidetes, which ferment short-chain fatty 

acid (SCFA), can affect the gut permeability. Indeed, in parallel to the changed 

gut permeability, BBDP rats, before clinic onset, have a different gut bacterial 

composition from that of diabetes-resistant (BBDR) rats, with relatively higher 

abundance of Bacteroides sp. in diabetic rat (Schwartz RF et al., 2007; Brugman 

S et al., 2006). At disease onset, the gut bacterial profile was also different 

between BBDP and BBDR rats (Roesch LF et al., 2009). Specifically, the 

BBDP rats had a lower proportion of the probiotic-like bacteria, such as 

Bifidobacterium and Lactobacillus, but had higher numbers of Bacteroides, 

Ruminococcus and Eubacterium (Roesch LF et al., 2009). At the cellular level, 

there were also structural changes in the intestinal morphology accompanying 

the increased permeability in BBDP rats (Neu J et al., 2005; Graham S et al., 

2004; Watts T et al., 2005) and at the molecular level, the expression of multiple 

tight junction proteins was down- or up-regulated, in both BBDP rats and T1D 

patients, thus affecting the gut permeability, including occludin, members of 

claudin family and zonulin (Sapone A et al., 2006; Watts T et al., 2005; Vaarala 

et al., 2008).  
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Figure 2. Gut microbiome and host interactions 

 

Another aspect is related to the importance of the gut microbiota in the healthy 

development of the mammalian immune system (Brestoff et al., 2013). Direct 

evidence comes from germ-free mice, in which multiple defects in the gut 

immune system have been noted, including impaired development of gut-

associated lymphoid tissue (GALT) (Bouskra et al., 2008), generation of colonic 

regulatory T cells (Atarashi K et al., 2011) and production of IgA (Moreau MC 

et al., 1978). Importantly, the profound effects that commensal microbiota have 

on immunity is not limited to the gut immune system, but extends to the 

systemic immune response (Mazmanian et al., 2005). Germ-free mice have an 

elevated IgE level and overall are skewed toward Th2 immune responses, which 

can be normalized by exposure to a diverse microbiota during early life 

(Cahenzli J et al., 2013). Although the various mechanisms by which gut 

microbiota regulate host immunity are, as yet poorly elucidated, a couple of 

mechanisms have been proposed: directly activating the innate immune response 
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through Toll-like receptors (TLR) by molecular patterns from gut bacteria 

(Kingma SD et al., 2011; Oh JZ et al., 2014; Round JL et al., 2011) or 

modulating immune responses via G-protein-coupled receptor (GPCR) by 

bacterially derived metabolites (Maslowski KM et al., 2009; Thangaraju M et 

al., 2009). The activation of innate immune responses by gut microbiota-derived 

molecular patterns mostly depend on bacteria cell wall components such as 

flagellin (Oh JZ et al., 2014; Vijay-Kumar M et al., 2010), LPS and 

polysaccharide A (PSA) (Round JL et al., 2011). This suggests that malfunction 

of the innate immune system may promote the development of metabolic 

syndrome through modification of the gut bacterial profile. More surprisingly, 

gut dysbiosis has been implicated in chronic metabolic disorders such as the 

non-alcoholic fatty liver disease (NAFLD) (Dumas ME et al., 2006; Wang et al., 

2011). NAFLD encompasses a spectrum of hepatic pathologies. Accumulation 

of triglycerides in hepatocytes (hepatic steatosis) is the most common liver 

phenotype in NAFLD. Some individuals with hepatic steatosis develop 

nonalcoholic steatohepatitis (NASH), a more severe type of liver damage 

characterized by hepatic inflammation and liver cell death. Urinary metabolites 

of NAFLD-susceptible mice, when fed HFD, were enriched in microbiota-

derived methylamines: dimethylamine, trimethylamine (TMA), and 

trimethylamine-N-oxide (TMAO). TMA is synthesized exclusively by symbiotic 

bacteria (Al-Waiz et al., 2007) and can be further transformed into TMAO by 

the microbiota themselves or at least in humans by the liver enzyme FMO3. The 

production of methylamines by microbiota results in decreased bioavailability of 

choline for the host and seems to trigger NAFLD in mice. This idea was further 

explored by Wang et al., who could link high levels of TMAO in plasma with 

increased risk for cardiovascular disease in humans (Wang et al., 2011). 

Furthermore, as accumulating literatures underpin the importance of the gut 

microbiome to intestinal functions, a novel concept of microbiome–gut–brain 

axis has been evolved. The gut receives regulatory signals from the Central 
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Nervous System (CNS) and vice versa. The term gut–brain-axis thus describes 

an integrative physiology concept that incorporates all, including afferent and 

efferent neural, endocrine, nutrient, and immunological signals between the 

CNS and the gastrointestinal system (Romijn et al., 2008). CNS can influence 

gut microbiome through neural and endocrine pathways in both direct and 

indirect manners. The autonomic nervous system (ANS) and hypothalamus–

pituitary–adrenal (HPA) axis that liaise the CNS and viscera can modulate gut 

physiology such as motility, secretion and epithelial permeability as well as 

systemic hormones, which in turn affects the niche environment for microbiota 

and also host-microbiome interaction at the mucosae (Cryan and Dinan, 2012). 

The influence of microbiome on CNS functions is manifested in both normal 

and disease conditions. There is a crucial link between gut microbiome and CNS 

maturation under physiological state. External cues derived from indigenous 

commensal microbiota affect prenatal and postnatal developmental 

programming of the brain (Al-Asmakh et al., 2012; Douglas-Escobar et al., 

2013). As multiple mechanisms guide the impact of microbiome on the CNS, it 

is therefore of particular interest to explore the role of microbiome in the 

regulation of CNS disorders. While there is still a lack of epidemiological 

evidence to connect microbiome with CNS pathologies, accumulating studies 

have underscored the importance of microbiome in a range of CNS disorders, as 

multiple sclerosis, anxiety, stress, depression and autism (Ochoa-Reparaz et al., 

2011). 
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Chapter 2 

Methods to study the microbiome 
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2.1 Metagenomics 

Uncultured microorganisms comprise the majority of the planet’s biological 

diversity. Microorganisms represent two of the three domains of life and in 

many environments, as many as 99% of the microorganisms cannot be cultured 

by standard techniques. Therefore, culture-independent methods are essential to 

understand the genetic diversity, population structure, and ecological roles of the 

majority of microorganisms. In this contest, the advent of high-throughput next-

generation sequencing (NGS) has revolutionized the field of microbial ecology 

and brought classical environmental studies to another level. In fact, this type of 

technology has led to the establishment of the field of “metagenomics”, defined 

as the direct genetic analysis of genomes contained within an environmental 

sample without the prior need for cultivating clonal cultures.  Currently the term 

is also widely applied to studies performing amplification of certain genes of 

interest (marker gene amplification metagenomics), but initially,  was only used 

for functional and sequence-based analysis of the collective microbial genomes 

contained in an environmental sample (full shotgun metagenomics) (Xia et al., 

2011; Handelsman et al., 2009; Riesenfeld et al., 2004). 

 

 

 

 

 

 

Such methodologies allow a much faster and elaborative genomic/genetic 

profile generation of an environmental sample at a very acceptable cost. 

Full shotgun metagenomics has the capacity to fully sequence the majority of 

available genomes within an environmental sample.This creates a community  

biodiversity  profile that can be further associated with functional composition 

analysis of known and unknown organism lineages, i.e., genera or taxa (Tringe 

 

 
16S rRNA  

(amplicon sequencing) 

Shotgun sequencing 

Type of information produced  The taxonomic composition and 

phylogenetic structure of a 

microbial community expressed 

as Operational taxonomic units 

(OTUs). 

Functional and process-level 

characterization of microbial 

communities as a whole, and the 

reconstruction of draft genome 

sequences for individual 

community members. 

Application  Monitor bacterial populations. Detect new members, new genes, 

and resolve complex taxonomies.  

Ability to detect rare members 

of the community (sensitivity)  
Highly sensitive. rRNA makes up 

80% of total bacterial RNA . 

Requires much deeper sequencing 

to achieve the same level of 

sensitivity. 

Table 1. Main features of amplicon and shotgun sequencing 
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et al., 2005). This approach has evolved to address the questions of who is 

present in an environmental community, what they are doing, and how these 

microorganisms interact to sustain a balanced ecological niche. It further 

provides unlimited access to functional gene composition information derived 

from microbial communities inhabiting practical ecosystems. 

Marker gene metagenomics is a fast and gritty way to obtain a 

community/taxonomic distribution profile using PCR amplification and 

sequencing of evolutionarily conserved marker genes, such as the 16S rRNA 

gene (Tringe et al., 2008). This taxonomic distribution can subsequently be 

associated with environmental metadata derived from the sampling site under 

investigation. 

 

Figure 3. Schematic representation of the 16S rRNA gene. Location of variable (purple) and conserved (brown) regions in a canonical bacterial 
16S rRNA. The black region is invariable in all bacteria 

 

The use of 16S rRNA gene sequences to study bacterial phylogeny and 

taxonomy has been by far the most common housekeeping genetic marker used 

for a number of reasons. One of these include its presence in almost all bacteria, 

often existing as a multigene family, or operons; the function of the 16S rRNA 

gene over time has not changed, suggesting that random sequence changes are a 

more accurate measure of time (evolution); and  the 16S rRNA gene (1,500 bp) 

is large enough for informatics purposes (Patel J B, 2001). The 16S rRNA gene 

includes interspersed conserved and nine hypervariable regions, which makes it 

well suited for PCR amplification and sequencing; in this process, probes are 

designed to hybridize to the conserved regions, allowing for amplification and 

sequencing of the variable regions. Focusing on a small part of the microbial 

genome lowers sequencing costs. When 16S rDNA sequences are available, it is 
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possible to cluster them in Operational Taxonomic Unit (OTU), according to a 

percent of similarity threshold (> 97%) in order to classify bacteria within the 

same, or different, OTUs. This approach has been particularly effective for 

monitoring fluctuations in microbial populations. Actually, for all these reasons, 

it has reached an extremely high level of reliability, becoming the most popular 

technique to perform taxonomic classification ( Han et al., 2013; Nava and 

Stappenbeck, 2011; Santamaria et al., 2012). 

 

2.2 Sequencing Technologies 

454 Life Science and Illumina platforms for NGS 

Two commonly used NGS technologies utilized to date are the 454 Life 

Sciences and the Illumina systems, with the ratio of usage shifting in favor of 

the latter recently. 

The 454 pyrosequencer was the first next-generation sequencer to achieve 

commercial introduction in 2004 (Mardis et al., 2008). This DNA sequencing 

technique  is based on the detection of released pyrophosphate (PPi) during 

DNA synthesis. In a cascade of enzymatic reactions, visible light is generated 

that is proportional to the number of incorporated nucleotides. The cascade starts 

with a nucleic acid polymerization reaction in which inorganic PPi is released as 

a result of nucleotide incorporation by polymerase. The release of 

pyrophosphate is conveyed into light using enzyme reactions, which is then 

converted into actual sequence information and because the added nucleotide is 

known, the sequence of the template can be determined. Its main difference 

from the classic Sanger sequencing is that pyrosequencing relies on the 

detection of pyrophosphate release on nucleotide incorporation rather than chain 

termination with dideoxynucleotides (Ronaghi et al., 2001). The 454 

pyrosequencing technology can generate reads up to 1,000 bp in length and 
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∼1,000,000 reads per run and this relatively long read length allows a 

significantly less error-prone assembly in shotgun metagenomics and permits 

greater annotation accuracy (Thomas et al., 2012; Wommack et al., 2008). The 

estimated cost of sequencing using 454 pyrosequencing technology is higher 

than other platforms such as Illumina (US $20 per Mb), and it has a relatively 

low coverage of 0.7 GB per sequencing run. Furthermore, noise generated by 

this 454 pyrosequencing technology affected different aspects of metagenomic 

data analysis and led to biased results. 

In the last years, another sequencing service has become more popular, namely 

Illumina. Illumina sequencing generates many millions of highly accurate reads 

making it much faster and cheaper than other available sequencing methods. 

Illumina sequencing by synthesis is similar to Sanger sequencing, but it uses 

modified dNTPs containing a terminator which blocks further polymerization- 

so only a single base can be added by a polymerase enzyme to each growing 

DNA copy strand. The sequencing reaction is conducted simultaneously on a 

very large number (many millions in fact) of different template molecules 

spread out on a solid surface. The terminator also contains a fluorescent label, 

which can be detected by a camera. Only a single fluorescent color is used, so 

each of the four bases must be added in a separate cycle of DNA synthesis and 

imaging. Following the addition of the four dNTPs to the templates, the images 

are recorded and the terminators are removed. This chemistry is called 

“reversible terminators”. Finally, another four cycles of dNTP additions are 

initiated. Since single bases are added to all templates in a uniform fashion, the 

sequencing process produces a set of DNA sequence reads of uniform length 

(Bentley DR et al., 2008; Mardis et al., 2008). Illumina is now the dominant 

vendor of high-throughput DNA sequencing machines. It has a variety of 

sequencing instruments dedicated to different applications. MiSeq, for example, 

has an output of 15 GB and 25 million sequencing reads of 300 bp in length; 
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clustered fragments can be sequenced from both ends (paired-end sequencing), 

which can be merged so that 600 bp reads can be obtained. Currently, Illumina 

sequencers has been developed in order to run smaller jobs at a much faster rate 

with relatively high throughput and they allow sample preparation sizes of < 20 

ng DNA. When analyzing 16S metagenomics data, this technology obviates the 

need for time-consuming noise removal algorithms required for pyrosequencing 

and makes analysis less error prone (Handelsman., 2009). The greater 

coverage/yield generally offered by Illumina allows significant decrease of 

systematic errors. This advantage and the low cost (∼US $0.50 per Mb) are the 

delineating factors that have turned Illumina into the preferred high-throughput 

sequencing technology for metagenomics studies. 

 

Figure 4. Illumina sequencing by synthesis 
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2.3 Other emerging sequencing technologies 

Additional sequencing technologies are available and can potentially be used for 

metagenomic studies. These include the Applied Biosystems SOLiD,  Pacific 

Biosciences, Ion Torrent and Oxford Nanopore technologies. 

The Applied Biosystems SOLiD 5500 W Series sequencer offers higher 

coverage than 454 pyrosequencing but lower than Illumina (∼120 GB per run); 

however, it can only guarantee a low error rate for sequencing reads of 

maximum 50 bp in length (Metzker et al., 2010). This reduces the possibility of 

generating a reliable and usable de novo assembly for shotgun metagenomics. 

An emerging sequencing technology that may have high impact on the fields of 

genomics and metagenomics was recently developed by Pacific Biosciences, 

PacBio (Metzker et al., 2010). This technology uses single-molecule real-time 

(SMRT) sequencing, which is a parallelized single-molecule DNA sequencing 

by synthesis. PacBio provides much longer read lengths (∼10,000 bp) compared 

to the aforementioned technologies, thus having obvious advantages when 

addressing issues of annotation and assembly for shotgun metagenomics, but 

despite the high read length of PacBio, this technology is limited by high error 

rates and low coverage. In addition to the aforementioned technologies, which 

are based on optics, technologies such as Ion Torrent’s semiconductor 

sequencing benchtop sequencer and Ion Proton are now coming into play. These 

technologies are based on the use of proton emission during polymerization of 

DNA in order to detect nucleotide incorporation.  This system promises read 

lengths of > 200 bp and relatively high throughput, on the order of magnitude 

achieved by 454 Life Sciences systems. Additionally, it offers higher quality 

than 454, especially when sequencing homopolymers, but at a similar cost 

(about US $23 per Mb for the Ion Torrent PGM –314 Chip). An even more 

cutting-edge technology is currently under development by Oxford Nanopore 

technologies, which is developing “strand sequencing”, a method of DNA 
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analysis that could potentially sequence completely intact DNA 

strands/polymers passed through a protein nanopore. This obviates the need for 

shotgun sequencing and aims to revolutionize the sequencing industry in the 

future. For metagenomics, this technology can have obvious advantages, as it 

will eliminate erroneous sequencing caused by shotgun metagenomics and 

exclude the need for the error-prone assembly step during data analysis; 

however, nanopore sequencing is at the moment non commercialized. 

 

2.4 Metatranscriptomics 

The metatranscriptome is the identity and quantity of a complete set of 

transcripts in a population of cells. While metagenomics tells us who is there 

and what they are capable of, based on their gene complement, 

metatranscriptomics tells us what they are doing at that moment. Neither primers 

nor probes are needed, so there is no need to anticipate important genes 

beforehand and transcripts from microbial assemblages are sequenced with little 

bias. Further, paralagous sequences which might crosshybridize on a microarray 

can be distinguished. The approach is particularly amenable to an experimental 

framework in which gene expression is monitored while a biotic or abiotic 

parameter is manipulated. Experimental metatranscriptomics is one of the most 

powerful tools for understanding the timing and regulation of complex microbial 

processes within communities and consortia, as well as microbial dexterity in 

response to changing conditions. Though metatranscriptomics is a small 

conceptual leap from metagenomics, practical considerations have slowed its 

development. One difficulty is that bacterial and archaeal mRNAs typically are 

not polyA tailed, so methods for specific capture of eukaryotic cDNAs are not 

applicable. This results in coextraction of the more abundant and stable rRNAs, 

which can lead to a disappointingly low yield of expressed gene sequences in a 
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large-scale sequencing run, potentially as low as 10% (Lamendella et al., 2012). 

Selectively removing rRNA from the total RNA pool  or embracing the rRNA 

sequences for their insight into community structure (if amplification and other 

steps that could bias the rRNA pool are avoided) help mitigate this issue. 

Another technical challenge of working with RNA is a half-life on the order of 

minutes even under optimal conditions. On a conceptual level, there is not 

always a predictable relationship between mRNA abundance and protein 

activity, since genes can be constitutively expressed and enzyme activities can 

be regulated post-transcriptionally. Metaproteomics, a promising 

complementary technique, offers a better link to metabolic function but a less-

resolved view of instantaneous regulatory responses. 

 

2.5 Metaproteomics 

Metaproteomics is the study of all protein samples recovered directly from 

environmental sources. This approach is able to provide details on the pathways 

that are actively functioning in a community, and on how the synthesis of 

specific proteins can change according to time, location, or environmental 

stimuli (Ottman et al., 2012). In particular, when analyzing a particular 

microbiome, it can be more important to know which functions are carried out 

by the microbial components present in a biological district, than which specific 

microbial species are present within. Different microorganisms can in fact 

perform the same function, thus a divergence in microbial composition between 

two samples is not always correlated to an equivalent altered microbial 

functionality. Although recent advances in DNA sequencing and proteomics 

technologies have opened the door to investigation of the structure and function 

of the gut microbiota without the necessity for cultivation, there have been very 

few efforts to date that have used a multi-‘‘omics’’ approach to study the 
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complex ecosystem in the gut. The ability to combine information about the 

identities of microbial community members (obtained from 16S rRNA gene-

based measurements), metabolic potential (obtained from metagenome sequence 

data) and synthesis (obtained from metaproteome data) should enable 

exploration of the gut microbiota at multiple molecular levels simultaneously. 

 

2.6 Critical issues in NGS technology 

2.6.1 DNA extraction 

Determining the bacterial community structure in fecal samples through 

amplification and sequence analysis of extracted DNA has revolutionized 

gastrointestinal microbiology research over recent years. These culture-

independent techniques for assessing diversity have largely replaced traditional 

culture based approaches as they are considered to be less biased in terms of 

defining true diversity and considerably less labor-intensive (Amann et al., 

1995). Due to the recent rapid increase in DNA-based phylogenetics of bacterial 

communities many different DNA extraction procedures are used, each with its 

own potential biases. In particular, the first step of DNA extraction - disruption 

and/or lysis of the bacterial membranes can be expected to be biased for specific 

bacterial taxa due to differences in cell wall structure and integrity of Gram-

positive and Gram-negative bacteria. This step often involves bead-beating, thus 

most studies comparing methods of DNA extraction find that the major impact 

on the resulting measured community structure is caused by the use of bead-

beating. Therefore, all methods rely on chemical or mechanical disruption, lysis 

using detergents, or a combination of these approaches. Previous studies have 

evaluated differences between DNA extraction methods from fecal samples, 

exploring detection with conventional PCR (Persson et al., 2011; McOrist et al., 

2002), quantitative PCR (Nechvatal et al., 2008), bands on denaturing gradient 
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gel electrophoresis (DGGE) (Maukonen et al., 2012) and phylogenetic 

microarray (Salonen A. et al., 2010) Significant differences in relative 

abundance have been demonstrated when DNA was extracted using different 

methods from mock communities of bacteria and assessed by 16S rRNA 

sequencing (Milani et al., 2013). Wu et al. described the effect of different fecal 

extraction methods on 16S rRNA pyrosequencing, comparing QIAamp DNA 

Stool Minikit, MoBio PowerSoil DNA Isolation Kit and Stratec PSP Spin Stool 

DNA Kit (Wu et al., 2010). Therefore, the extraction of fecal DNA is a 

challenge, since feces not only contains bacterial and host cells but also many 

different substances derived from, for example, food, medicine, secondary cell 

metabolites etc. that can inhibit downstream PCR (Abu Al-Soud et al., 1998; 

Monteiro et al., 1997; Wilson et al., 1997). There is, therefore, the need to 

testing different protocols for DNA extraction for samples of different origin in 

order to obtain optimal results and avoid false interpretations on the bacterial 

compositions and bacterial diversity. 

 

 2.6.2 16S rRNA amplification 

It is widely accepted that sequencing of the 16S rRNA gene reflects eubacterial 

evolution. Since the introduction of SSU rDNA-based molecular techniques, the 

study of microbial diversity in natural environments has advanced significantly. 

In addition, sequencing of the 16S rRNA gene has been widely applied in the 

field of microbial ecology and has resulted in a great number of sequences 

deposited in relevant databases, thus enhancing the value of 16S as the “gold 

standard” in microbial ecology. While the 16S rRNA gene fragment, containing 

one or more variable regions, is the preferred target marker gene for bacteria and 

archaea, this is not the case for fungi and eukaryotes where the preferred marker 

genes are the internal transcribed spacer (ITS) and 18S rRNA gene, respectively. 



Valeria Manghina 
“Development of methods to create and validate metagenomic datasets enabling microbiota associations with host traits” 

PhD Thesis in Biomolecular and Biotechnological Science 
University of Sassari 

33 

 

Taxonomic analysis for prokaryotes (i.e., bacteria and archaea) is regularly 

performed using 16S data derived from varying sequencing technologies (i.e., 

454 pyrosequencing as well as Illumina, Solid and Ion Torrent). The protocols 

and methods used, however, vary considerably with regard to amplification 

primers, sequencing primers and  sequencing technologies. Several studies have 

demonstrated that no single hypervariable region of 16S rRNA gene can 

differentiate among all bacteria. Clarridge showed that the initial 500-1500 bp of 

the 16S rRNA gene sequence was sufficient to discriminate among 100 bacteria 

(Clarridge, 2004); Chakravorty and colleagues have demonstrated that the 

hypervariable regions V2 (nucleotides 137-242), V3 (nucleotides 433-497) and 

V6 (nucleotides 986-1043) contain the maximum nucleotide heterogeneity and 

the maximum discriminatory power for the 110 bacterial species analyzed. Also, 

the hypervariable region V6 (986-1043) is the shortest hypervariable region with 

the maximum degree of sequence heterogeneity (Chakravorty et al., 2007). Four 

hypervariable regions (V4, V5, V7 and V8) particularly V5, were less suitable 

for species identification due to a higher degree of sequence conservation 

compared to the other hypervariable regions. Furthermore, the results of 

Vasileiadis indicate that overall the most prominent hypervariable region for 

bacterial diversity studies was V3, even though it was outperformed in some of 

the tests. Despite its high performance during most tests, V4 had a reduced 

conservation of flanking sequence sites of the V region, V5 performed well in 

the non-redundant RDP database based analysis; however V5 did not resemble 

the full-length 16S rRNA gene sequence results as well as V3 and V4 did when 

the natural sequence frequency and occurrence approximation was considered in 

the virtual experiment. Although, the highly conserved flanking sequence 

regions of V6 provide the ability to amplify partial 16S rRNA gene sequences 

from very diverse owners, it was demonstrated that V6 was the least informative 

compared to the rest examined hypervariable regions (Vasileiadis et al., 2012). 
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In light of this background, it is important to study the most suitable approach 

during the pipeline definition.  

 

2.6.3 16S Data analysis 

There are different tools for 16S data analysis and denoising include QIIME 

(Caporaso et al., 2010),  Mothur (Schloss et al., 2009), SILVAngs (Quast et 

al.,2013), MEGAN (Huson et al., 2007). After the demultiplexing of the dataset 

(the assignment of reads to samples using barcode information), the next step is 

OTU picking. For bacteria/archaea, it is accepted that OTUs of similarity greater 

than 97% correspond to the same species, but also other dissimilarity cut offs 

can be employed, if needed for the downstream analyses. There are numerous 

OTU picking strategies:  

1) De novo is used if amplicons overlap and if a reference sequence collection is 

not available. It clusters all reads without using a reference and is quite 

expensive computationally, hence not very suitable for very large datasets.  

2) Closed-reference is used if amplicons do not overlap and if a reference 

sequence collection is available. This approach discards reads that do not hit a 

reference sequence.  

3) Open-reference is used if amplicons overlap and a reference dataset is 

available. This method clusters reads against a reference dataset, but if the reads 

do not match the reference, they are consequently clustered de novo. All the 

aforementioned are incorporated into QIIME. the most appropriate choice for 

the downstream analysis will depend on the type of data and the user. 

Taxonomic assignment of OTUs can be performed using a variety of algorithms. 

Currently QIIME supports numerous algorithms, such as BLAST, the RDP 

classifier, RTAX, Mothur classifier, and uclust, to search for the closest match 
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to an OTU from which a taxonomic lineage is inferred. This requires reference 

databases of marker genes. Some commonly utilized databases include: 

Greengenes (16S) (De Santis et al., 2006), Ribosomal Database Project (16S) 

(Cole JR et al., 2007), Silva (16S + 18S) (Quast et al., 2013; Pruesse et al., 

2007). 

2.6.4 QIIME 

A very popular software for the analysis of microbial communities is the above 

mentioned QIIME (stands for Quantitative Insights Into Microbial Ecology). 

Initially QIIME was implemented for use of 454 pyrosequencing datasets only, 

i.e., using sff (Standard Flowgram Format) files, but currently QIIME has been 

modified to accept the fastq file format, thereby making the analysis of Illumina 

datasets possible. The QIIME developers provide users with extensive online 

tutorials for several workflows, and, moreover, QIIME is available as an open-

source software package mostly implemented using the programming language 

PYTHON (Caporaso et al., 2010). It supports a wide range of microbial 

community analyses and visualizations that have been central to several recent 

high-profile studies, including network analysis, histograms of within or 

between sample diversity and analysis of whether ‘core’ sets of organisms are 

consistently represented in certain habitats. QIIME also provides graphical 

displays that allow users to interact with the data. This modularity allows 

alternative components for functionalities such as choosing operational 

taxonomic units (OTUs), sequence alignment, inferring phylogenetic trees and 

phylogenetic and taxon-based analysis of diversity within and between samples 

to be easily integrated and benchmarked against one another. QIIME output 

includes a representation of a taxonomic tree in Newick format, which can be 

visualized in applications such as FigTree, and a file in Biom (Biological 

Observation Matrix) format (McDonald D. et al., 2012) representing OTU 

tables. This file can be imported into MEGAN for visualization or into any other 
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statistical software requiring matrix-type data. In addition, alpha-diversity 

analysis (diversity within a sample, eg, Phylogenetic Diversity, Chao, etc.) and 

beta-diversity analysis (diversity across samples, eg, UniFrac, PCoA) (Lozupone 

et al.,2011), as well as taxonomic composition and phylogenetic analyses, are 

supported through QIIME (Kuczynski et al., 2011). 

 

2.7 Final considerations on major challenges in the microbiome study 

The past decade has clearly been a “golden age” for microbiome research. 

Extensive efforts to characterize the human microbiome, coupled with exciting 

advances in sequencing technologies and in computational techniques, have 

tremendously increased our knowledge about the diversity of the microbiome 

and about its composition in health and in disease, but numerous challenges are  

open again: 

1. Modeling microbiome community dynamics. How do microbiomes change 

over time? What are the drivers of those changes? The environment? Health 

status? How does the prevalence of certain species affect other species in the 

community? 

2. Linking microbiome function to community composition. How can the two 

different types of analyses (phylogenetic analysis and metabolic reconstruction) 

be linked so that more nuanced questions can be addressed? In other words, 

which organisms are responsible for which functions? 

3. Integrating different types of -omics datasets. How can genomic data be 

integrated with transcriptomic, proteomic data integrated into a systems 

biology–level approach to studying these communities? 

4. Correlating microbiome shifts with host phenotype. It can be very difficult to 

associate shifts in community composition (or functional state) with host 

phenotype when the phenotype in question is not well defined and when the 

impact of environmental change on that phenotype is unknown.  

5. Definition of an univocal and efficiently analysis pipeline. 
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6. Meeting data volume and computational requirements. Development of an 

infrastructure for people to access available data, increase algorithm efficiency 

and reduce data redundancy.  
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Chapter 3 

Aim of research proposal 
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In keeping with the considerations outlined in the introduction, the main 

objective of this project was the development of a workflow for gut microbiota 

characterization through the application of metagenomics. 

Accordingly, the following aims were established: 

 Development of robust methods of genomic DNA preparation from 

complex samples (i.e. stools) derived from different hosts; 

 Comparative assessment of NGS technology approaches for the 

characterization of the gut microbiota (i.e., metagenomics vs 16S 

analyses); 

 Assembling of  bioinformatic pipelines for metagenomic data analysis; 

 Pipeline validation in association studies linking microbiota with host 

traits. 
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Chapter 4 
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4.1 Samples 

4.1.1 Ovine fecal samples 

The ovine fecal samples, kindly provided by Dr. Gavino Marogna (Istituto 

Zooprofilattico Sperimentale della Sardegna), were collected from five Sarda 

sheep belonging to the same flock. The animals were lactating females, free-

grazing, and without evident clinical symptoms. Fecal samples were collected 

and stored at -80°C until use. 

Two different approaches were used in this work to treat fecal samples. 

According to the first approach, different extraction methods were used to 

extract DNA directly from fecal sample. According to the second approach, the 

fecal sample was pretreated with a so-called “differential centrifugation” before 

being subjected to the various methods DNA extraction; briefly, after thawing at 

4°C, fecal samples (approximately, 100 mg each) were resuspended in 10 ml of 

PBS, vortexed, shaken in a tube rotator for 45 minutes, and subjected to low-

speed centrifugation at 500 x g for 5 minutes to eliminate gross particulate 

material; the supernatants were carefully transferred to clean polycarbonate 

centrifuge bottles (Beckman Coulter, Brea, CA, USA) and kept at 4°C, whereas 

the pellets were suspended again in PBS. The entire procedure was repeated for 

a total of three rounds. Then, the three supernatants obtained from each sample 

were centrifuged at 20,000 x g for 15 minutes, and the three derivative pellets 

were pooled after resuspension with the extraction buffer described below, and 

subjected to DNA extraction as detailed in the “DNA extraction” section in this 

chapter. 
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Figure 5.  Differential centrifugation 

 

4.1.2 Murine fecal samples and cecal content 

The murine fecal samples and cecal contents (analyzed in Chapter 5) were 

kindly provided by Dr. Michael Silverman (Department of Microbiology and 

Immunobiology, Harvard Medical School, Boston, USA). Briefly, cecum was 

removed in hood under aseptic conditions and placed in 10 ml of cold PBS; 

cecum was opened longitudinally and vortex for 10-20 seconds to release 

content. The content was centrifuged 10 minutes at 10,000 x g at 4°C and the 

surnatante was aspirate off.  

The murine intestinal contents analyzed in paragraph 5.7 were kindly provided 

by prof. Svegliati Baroni (Università politecnica delle Marche, Ancona, Italy). 

The samples were collected from mice raised under standard condition, and 

stored at -80°C until use.  
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4.1.3 Human stool samples 

The human stool samples analyzed in paragraph 5.2.2 were kindly provided by 

prof. Francesco Cucca (Institute of Biomedical and Genetic Research, Centro 

Nazionale Ricerche, Cagliari, Italy). The samples were collected from Ogliastra 

population, during a recall for immune traits measurements in fully sequenced 

and/or genotyped individuals and stored at -80°C until use. 

 

4.2 DNA extraction  

Different DNA extraction methods were tested on different animal models to 

extract microbial genetic materials from different substrates. For this purpose we 

used two commercial kits that use the enzymatic and mechanical lysis for the 

microbial wall and membrane disruption, the QIAamp Fast DNA Stool (Qiagen, 

Hilden, Germany) and the E.Z.N.A. Soil DNA Kit (Omega Bio-Tek, Norcross, 

GA) respectively.  

DNA was extracted according to the instruction of the QIAamp Fast DNA Stool 

QIAGEN; briefly, fecal sample was mixed with 1 ml InhibitEX  buffer and 

vortexed until the sample was thoroughly homogenized. After homogenization, 

the suspension was heated for 5 minutes at 95°C for cells that are difficult to 

lyse (such as Gram-positive bacteria). Subsequently, the sample was centrifuged 

at full speed for 1 minute to pellet stool particles. Then, 200 ul of supernatant 

was added to 15 ul proteinase K. After adding AL buffer, ethanol was added to 

lysate. Finally, DNA bound to the QIAamp membrane is washed in two 

centrifugation steps. Wash conditions using two wash buffers ensure complete 

removal of any residual impurities without affecting DNA binding. Purified, 

concentrated DNA is eluted from the QIAamp Mini spin column in 50 ul 

Nuclease-free water (Ambion, Waltham, MA).  
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DNA extraction was performed according to the E.Z.N.A. Soil DNA Kit 

manufacturer’s instructions. Briefly, sample was resuspended in 1 ml SLX -

Mlus buffer and lysed using 500 mg glass beads; after a first incubation at 70°C 

for 10 minutes, a second incubation at 95°C for 2 minutes was performed for 

DNA isolation from Gram-positive bacteria. Then, 270 ul P2 buffer was added 

to remove proteins and inhibitors and 0.7 volumes isopropanol to precipitate 

DNA. Subsequently, 100 ul HTR reagent was added to the pellet resuspended in 

Elution Buffer to remove inhibitors. Finally, DNA bound to the HiBind DNA 

Mini Column membrane is washed in  centrifugation steps to complete removal 

of any residual impurities without affecting DNA binding. Purified, 

concentrated DNA is eluted from the HiBind DNA Mini Column in 50 ul 

Nuclease-free water (Ambion, Waltham, MA).  

In order to extract the microbial DNA from ovine fecal samples we applied the 

protocol published by Hildebrand and colleagues (Hildebrand et al., 2012), that 

combine beads pretreatment with QIAamp DNA Stool protocol (Qiagen, Hilden, 

Germany); also we tested  the  phenol/chloroform/Isoamyl Alcohol (25:24:1) 

organic extraction method on sheep samples.  

In the first extraction, the fecal sample was dissolved in 1 ml TE-buffer (10 mM 

Tris–HCl, 1 mM EDTA, pH 8) and centrifuged at 500 x g for 2 minutes. The 

supernatant was centrifuged for 5 minutes at 19000 x g and pellet was dissolved 

in 1.2 ml TE-buffer. The sample was transferred to a tube containing 0.5 ml 

stainless steel beads (5 mm diameter, Qiagen, Hilden, Germany) and 30 μl 10% 

sodium dodecyl sulphate (SDS). Bacterial cells were lysed by shaking for 4 

minutes on a bead-beater (TissueLyser LT mechanical homogenizer, Qiagen) 

and centrifuged at 2,300 x g for 1 minute. Finally, DNA was extracted using the 

QIAamp DNA stool Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. 



Valeria Manghina 
“Development of methods to create and validate metagenomic datasets enabling microbiota associations with host traits” 

PhD Thesis in Biomolecular and Biotechnological Science 
University of Sassari 

45 

 

In the second extraction,  we used phenol that is a powerful denaturing of the 

proteins and lipid solvent. The chloroform is added to increase the action 

denaturing of the phenol on the proteins, improve the solubilization of the lipids 

and accentuate the difference in density between the organic phase and the 

aqueous phase, facilitating the separation. Briefly, the sample was homogenized  

to equal volume of phenol/ chloroform/Isoamyl Alcohol (25:24:1) and 

centrifuged for 10 minutes at 12000 rpm; to the supernatant (aqueous phase) was 

added 0.7 volume isopropanol to precipitate DNA; then,  the precipitate was 

centrifuged at 12000 rpm for 15 minutes, and the pellet washed with 1 ml 

ethanol. After centrifugation at 12000 rpm for 5 minutes the supernatant was 

eliminated and the pellet was dried on air for 10-15 minutes at room 

temperature. Finally, the pellet was resuspended in 100 ul Nuclease-free water 

(Ambion, Waltham, MA). 

The extracted DNA was quantified on a Qubit 2.0 Fluorometer (Life 

Technologies), using the Qubit ds DNA High Sensitivity Assay Kit (Life 

Technologies). DNA integrity was confirmed on 0.8% agarose gel (Sigma 

Aldrich, St. Louis, MO). 

 

4.3 16S rRNA gene amplification 

Primer design for universal amplification of the V4 region of 16S rDNA was 

based on a protocol published by Caporaso and co-workers (Caporaso et al., 

2011). Amplification of the entire 16S-rRNA genes was performed using the 

universal primers 27F-1492R (AGAGTTTGATYMTGGCTCAG and 

TACGGYTACCTTGTTACGACTT, respectively). In both cases, PCR cycling 

conditions were as follows: 2 minutes at 94°C; 28 cycles of 30 seconds at 94°C, 

30 seconds at 55°C, 2 minutes at 68°C; finally, 7 minutes at 72°C. PCR products 

were confirmed on 2% agarose gel (Sigma Aldrich, St. Louis, MO). Two 
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separate 16S rRNA gene amplification reactions were performed, pooled 

together, cleaned up using AMPure XP (Beckman Coulter, Brea, CA) magnetic 

beads and quantified with the Qubit HS assay (Invitrogen) using  Qubit 

fluorometer 2.0 (Life technologies, Grand Island, NY).  

Library construction 

Libraries were constructed with the Illumina Nextera XT kit (Illumina, San 

Diego, CA). Simultaneous amplicon fragmentation and adaptor sequence 

ligation (also called tagmentation) were performed according to manufacturer 

protocol. Briefly, 5 μl of input DNA at 0.2 ng/μl (1 ng total) was mixed with 

tagmentation buffer (10 μl) and Amplicon Tagment Mix (5 μl), then incubated at 

55° C for 5 minutes. A limited-cycle PCR was carried out to enrich and perform 

dual indexing on the tagmented DNA: 72° C for 3 minutes, 98° C for 30 

seconds, 5 cycles of 95° C for 10 seconds, 55° C for 30 seconds, 72° C for 30 

seconds), and a final cycle of  72°C for 5 minutes. Indexed libraries were 

purified using AMPure XP beads (Beckman Coulter, Brea, CA) and validate 

using High Sensitivity DNA chip on an 2100 Bioanalyzer instrument (Agilent 

Technologies, Santa Clara, CA). Sequence-ready libraries were normalized to 

ensure equal library representation in the pooled samples. 

 

4.4. DNA sequencing 

Pooled libraries were diluted and loaded at 20 pM on a V3 flow cell, with 1% 

phiX control using CBot instrument to generate the clusters, according to the V3 

Illumina TruSeq Paired End Cluster Kit protocol (Illumina, San Diego, CA). 

After clusters generation (density 750–850 K/mm²), DNA sequencing was 

performed with the Illumina HiScanSQ sequencer, using the paired-end method 

and 93 cycles of sequencing. Basecalling was done using Illumina's Real Time 

Analysis (RTA) software version 1.14.21. Obtained BCL files were converted 



Valeria Manghina 
“Development of methods to create and validate metagenomic datasets enabling microbiota associations with host traits” 

PhD Thesis in Biomolecular and Biotechnological Science 
University of Sassari 

47 

 

into QSeq format using Bcl2Qseq 1.9.3, then converted to fastQs. After, all 

reads were subjected to a demultiplexing step using Casava software version 

1.8.2 implemented in HiScan control software (Illumina, San Diego, CA). 

 

4.5 Sequencing data analysis 

The Illumina demultiplexed paired-reads were trimmed for the first 20 bp using 

FASTX and the sequences with Nextera adapter contamination were identified 

using the UniVec database (ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/) and 

removed. Therefore, the paired-reads with a minimum overlap of eight bases 

were merged using a specific QIIME script. OTU generation was done using a 

QIIME pipeline based on USEARCH's OTU clustering recommendations 

(http://www.drive5.com/usearch/manual/otu_clustering.html). Reads were 

clustered at 97% identity using UCLUST to produce OTUs (Edgar, 2010).  

Taxonomy assignment of resulting OTUs was performed using the Greengenes 

13_8 database (Desantis et al., 2006). With taxonomic lineages in hand, OTU 

tables were generated and used for downstream analysis. In particular, alpha 

(Shannon index) and beta (weighted or unweighted UniFrac distances) diversity 

metrics and taxonomic classifications were computed using the QIIME software 

suite (Caporaso et al., 2010; Kuczynski et al., 2011). 

Differential analysis were performed using DeSeq2 (Love MI et al., 2014; 

Anders S et al., 2010), a statistical tool available in QIIME. DeSeq2 implements 

a method based on the negative binomial distribution and it is extensively used 

in RNA-Seq studies. Indeed, in early RNA-Seq studies lacking biological 

replicates, the distribution of feature counts across technical replicates was 

reported to fit well to a Poisson distribution where the variance is equal to the 

mean (Marioni JC et al., 2008; Bullard JH et al., 2010), but when biological 

replicates are included, it has been noted that the Poisson distribution 

ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/
http://www.drive5.com/usearch/manual/otu_clustering.html
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underestimates the variation seen in the data (Robinson MD et al., 2007), a 

problem known as overdispersion. Therefore, the resulting statistical test based 

on Poisson assumptions does not control type-I error. As economical 

considerations typically do not allow large numbers of biological replicates, the 

Negative Binomial (NB) distribution has been proposed because of its ability to 

deal with the overdispersion problem (Anders S et al., 2010; Robinson MD et 

al., 2010) and it has achieved a dominant position in the methodologies to model 

feature counts for RNA-Seq data. The data generated from DNA-seq analysis 

are similar to those obtained by RNA-seq, in both cases are obtained a series of 

raw counts. Furthermore, in both approaches it's not easy to accurately detect 

differentially expressed genes or OTUs between groups. Difficulties faced by 

researchers in DNA-seq study design and analysis, as well as RNA-Seq are: 

general biases and errors inherent in the NGS technology (e.g. biases introduced 

during library preparation, specific biases in sequence quality and error rate), 

undetermined effects of sequencing depth and the number of replicates, the 

combination of technical and biological variation as well as biases within and 

between treatment groups that make it difficult to accurately discriminate real 

biological differences between groups. Therefore, it is possible to use DeSeq2 

approach for the differential abundance analysis obtained from DNA-seq data. 
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According to the aims of this doctoral project, a number of results have been 

obtained that are related to a search for a pragmatic solution toward 

methodological issues and, also, to investigate specific biological issues. 

For the sake of clarity, the results obtained are illustrated below taking into 

account methodological issues (5.1 – 5.3) and biological issues (5.4 – 5.7).   

 

5.1  Validation of robust methods of genomic DNA preparation from 

complex samples 

Feces is a complex sample matrix with regards to DNA extraction. Several 

substances may be co-extracted having inhibitory effects on downstream 

analysis, and the quality and quantity of the extracted DNA will greatly 

influence the outcome of Next Generation Sequencing. In extracting DNA from 

a fecal matrix, two courses can be taken; direct lysis of microbial cells in the 

fecal matrix, or pretreatment of the stool sample to promote the DNA extraction. 

Usually, direct lysis (chemical, mechanical or a combination of these) is the 

most widely applied strategy.  

 

5.1.1  Quality of methods for murine fecal and cecal samples 

We evaluated the efficacy of QIAamp DNA Stool protocol (Qiagen, Hilden, 

Germany), DNA extraction method widely used for gut microbiota studies, on 

murine fecal samples and cecal contents. For this purpose, we extracted DNA 

from four stool samples and four cecal content of two mice. The final DNA 

concentration was higher in cecal samples compared to stool (mean: 9.08 ± 3.77 

ng/µl vs 3.78 ± 2.03 ng/µl,  respectively), however, the quality of the DNA was 

such as to permit the amplification of the 16S rRNA  gene and, therefore, 

suitable for the preparation of libraries for Next Generation Sequencing. 
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Figure 6. agarose gel (2%) of stool and cecal amplicons 

 

5.1.2  Quality of methods for ovine stool samples 

We tested a total of 5 approaches to extract DNA from five fecal samples: DNA 

extraction directly from the fecal matrix using two commercial kits, QIAamp 

DNA Stool protocol (Qiagen, Hilden, Germany) and E.Z.N.A. Soil DNA Kit 

(Omega Bio-Tek, Norcross, GA); DNA extraction with different methods after 

pretreatment of the sample as described in the paragraph 4.1.1 (differential 

centrifugation) in order to enrich for microbial cells, including 

phenol/chloroform/Isoamyl Alcohol (25:24:1) method, the protocol described by 

Hildebrand and collaborators (Hildebrand et al., 2012), and the commercial kit 

protocols previously evaluated directly on the stool sample. Integrity evaluation 

determined by 0.8% agarose gel electrophoresis showed a remarkable 

degradation of the DNA extracted with E.Z.N.A DNA Kit protocol. 

 

Figure 7. 0.8% agarose gel of DNA extracted by E.Z.N.A DNA Kit protocol 

 

DNA concentration was higher in the samples extracted with 

phenol/chloroform/Isoamyl Alcohol method (94.8 ± 18.66 ng/µl), while it was 

lower in those extracted with protocol described by Hildebrand and E.Z.N.A. 

Stool samples Cecal contents +       +        -

E.Z.N.A. soil kitDiff. Centr.+ E.Z.N.A. soil kit
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soil DNA kit (mean: 2.5 ± 0.28 ng/µl). To determine the suitability of extracted 

DNA for downstream Next Generation Sequencing we used 16S rRNA gene 

amplification assays. The results demonstrated that only the DNA extracted with 

E.Z.N.A. soil DNA kit protocol, applied after differential centrifugation, was 

suitable for subsequent PCR amplification and Next Generation Sequencing.  

 

Figure 8. 16S rRNA amplification of samples pretreated 
with differential centrifugation and extracted with 
E.Z.N.A. soil DNA 

 

5.1.3  Quality of methods for  human stool samples 

This study examined stool samples from 52 individuals using two DNA 

extraction approaches to identify and eventually quantify the extent of the DNA 

extraction method (technical variation) impact upon inter-subject variation 

(biological variation). For this purpose we extracted the DNA with the QIAamp 

DNA Stool protocol (Qiagen, Hilden, Germany); then, an aliquot of extracted 

DNA was subjected to purification according to E.Z.N.A. soil DNA kit protocol. 

Subsequently, DNA was subjected to amplification of the 16S rRNA gene and 

sequenced. PCoA Analysis showed that samples clustered according to the DNA 

extraction approach used.  

Diff. Centr.+ E.Z.N.A. soil kit +          +          -
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Figure 9. On the left the PCoA with in blue the samples extracted with Stool kit 
QIAGEN and in red the samples purified with E.Z.N.A. soil DNA Kit protocol; on the 
right the PCoA with samples purified with E.Z.N.A. soil DNA Kit protocol 

 

Indeed, while the ratio Firmicutes / Bacteroidetes does not change regardless the 

used method, the purification with E.Z.N.A. soil kit showed an enrichment of 

Actinobacteria (4.1% ± 8.2% vs 0.68% ± 1.3%; P = 0.005) and Proteobacteria 

(3% ± 3.8% vs 0.83% ± 2.8%; P = 0.07) phyla compared to samples extracted 

only with QIAamp DNA Stool protocol; despite this, the value of alpha diversity 

(Shannon index) was similar (7.38 ± 0.65 vs 7.20 ± 0.95 respectively). 

Furthermore to determine the suitability of extracted DNA for downstream Next 

Generation Sequencing, we subjected to amplification of 16S rRNA gene, 89 

samples treated with both methods; the results showed that only the 58.42% of 

samples extracted with the QIAamp DNA Stool protocol were suitable for the 

NGS libraries preparation, whereas 100% of the samples purified according 

E.Z.N.A. soil DNA kit protocol were suitable. 
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5.1.4  Discussion and conclusion 

Sampling and DNA extraction methods that result in adequate yields of 

microbial DNA are also required to accurately represents the microbial 

community. The DNA yield and quality, and its suitability for downstream PCR 

amplifications varied considerably, depending on the DNA extraction method 

used. In recent years, numerous studies have been conducted to assess the 

potential of different DNA extraction methods from fecal samples of different 

hosts (human, mice, rats and avian samples). However, Ferrand and colleagues 

evaluated different methods from caecal contents and feces of mice with 

classical techniques such as qPCR (Ferrand J et al., 2014); other studies utilize 

the amplification of different hypervariable regions of 16S rRNA gene as V4 

and V6 (Josefsen M H et al., 2015; Xin Peng et al., 2013). Moreover, in most 

studies researchers evaluated the effectiveness of commercial kits, including the 

QIAamp DNA Stool kit which is one of the most used methods. In this context, 

our study provides, for the first time a comparative evaluation between different 

extraction methods of microbial DNA from sheep fecal sample, offering 

innovative approaches in the sample preparation as a pretreatment with 

differential centrifugation and identifying the best method of DNA extraction 

which it is constituted by a combined approach (differential centrifugation 

followed by DNA extraction with Protocol of E.Z.N.A. soil DNA kit). 

We assessed the validity of QIAamp DNA Stool kit protocol in murine fecal and 

cecal samples for intestinal microbiota studies performed with Next Generation 

Sequencing platforms. Furthermore, we observed that, despite being very 

commonly used method, the QIAamp DNA Stool kit might not as robust as 

required; in fact only 50% of human fecal specimens treated with this protocol 

had a good quality; we, therefore, investigated an alternative method that has 

allowed a yield of 100% of samples suitable for the amplification of full 16S 

rRNA gene; in this way we have proposed for the first time the use of 
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purification with E.Z.N.A. soil DNA kit protocol to increase the quality of the 

DNA extracted with the QIAamp DNA Stool kit. In conclusion, it is essential to 

continually evaluate nucleic acid extraction methods, identifying those that are 

the most efficient, accurate and reproducible based on the type and origin of the 

sample to be treated (i.e. human, mouse, sheep) and that reflects the real 

composition of the microbiota. 

 

5.2  Comparative assessment of Illumina technology methods for the 

characterization of the gut microbiota 

In this work, we have compared the impact of different methods for 

metagenomic sequencing and data analysis, making use of real gut microbiome 

from human and mouse. Different gut microbiome samples were obtained from 

intestinal contents and feces of adult mice and from fecal samples of a healthy 

human volunteer. DNA was then amplified with specific primers for the 

hypervariable region V4 and for the complete 16S rRNA gene. The resulting 

V4, full length 16S and whole metagenome datasets were compared in terms of 

microbial alpha-diversity, beta-diversity and community structure.  

 

5.2.1  Mice samples sequencing pipelines 

Full metagenome, complete 16S and V4 sequencing of 6 murine samples (three  

stools and three cecal contents) resulted in an average of 9,672 reads (0.13% of 

filtered total sequences), 199,954 reads (46.73% of filtered   sequences), and 

217,406 reads (72.41% of filtered total sequences) assigned for sample, 

respectively. In fecal samples, a significant greater number of filtered reads 

obtained with the 16S amplicons sequencing (means: 203,538 ± 8,890.79) 

compared to full metagenome (means: 8,427 ± 1,993), but lower than V4 
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amplicons  (means: 221,638 ± 4,961; P = 0.0511); similarly, in cecal content 

samples, a larger number of reads with the V4 amplicons sequencing (means: 

213,175 ± 2,335) were observed compared to metagenome (means: 10,917 ± 

1,075), and 16S amplicons (means: 196,371 ± 152,923; P = 0.194953). On the 

contrary, OTU’s number recorded in fecal samples and cecal content samples 

was lower with V4 than with 16S sequencing (means: 751 ±  96 vs 909 ± 73; P 

= 0.090456 and 767 ± 89.6 vs 904 ± 44.8; P = 0.1003, respectively). 

Samples 16S Reads 
assigned 

V4 Reads 
assigned 

Meta Reads 
assigned 

16S OTUs 
assigned 

V4 OTUs 
assigned 

Meta OTUs 
assigned 

stool       

281 193376 218851 7102 825 640 461 

301A 209884 227366 10719 956 807 774 

301B 207353 218696 7460 947 806 807 

mean 203538 221638 8427 909 751 680 

St.dev. ± 8891 ± 4961 ± 1993 ± 73 ± 96 ± 190.95 

 
Intestinal content 

      

281 183538 212550 10735 888 664 518 

301A 213292 211216 12072 870 815 753 

301B 192282 215759 9945 955 823 711 

mean 196371 213175 10917 904 767 661 

St.dev. ± 15292.5 ± 2335 ± 1075.2 ± 44.8 ± 89.5 ± 125.32 

Table 2.  OTUs and reads numbers for 16S, V4 and full metagenome samples 

 

Shannon’s diversity index was higher in 16S and shotgun metagenome samples 

than V4 samples (7.04 ± 0.49 and 7.24 ± 1.30 vs 5.88 ± 1.24, respectively). 

 

 

 

 

 

 

 

 

 

Table 3. Shannon index value from stool and cecal samples 

16S Samples 16S Shannon 
index 

V4 Shannon 
index 

Meta Shannon 
index 

stool    

281 6.47 4.50 7.59 

301A 7.32 6.23 5.81 

301B 7.32 6.90 8.33 

mean 7.04 5.88 7.24 

St.dev. ± 0.49 ± 1.24 ± 1.30 

Intestinal content    

281 6.35 5.01 5.58 

301A 7.23 6.45 7.35 

301B 7.71 6.48 7.35 

mean 7.10 5.98 6.76 

St.dev. ± 0.69 ± 0.84 ± 1.02 
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Figure 10. bar chart of Shannon index in stool and cecal content  

 

Beta-diversity, investigated by PCoA analysis (unweighted UniFrac distance 

metric), showed an evident clustering of stool and cecal content samples and 

between 16S, V4 and full metagenome samples.  

  

Figure 11. PCoA plot sequencing methods: on the left,full metagenome (orange), 16S (red) and V4 amplicons (blue); on the 
right, stool (red) and cecal content (blue) 

Differential analysis performed by DESeq2 showed that  a number of OTUs 

belonging to either Firmicutes and Bacteroidetes were dramatically 

underrepresented or absent in the V4 datasets compared to the full length 16S. In 

stool samples, at the phylum level, the percentage of Bacteroidetes was higher in 

the 16S than V4 and the entire metagenome (68.58% ± 16.25% vs 47.28% ± 
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22.42% and 54.90% ± 16.53%, respectively); in particular, the genus 

Bacteroides was absent in V4 datasets compared to 16S (0.0% vs 0.38% ± 

0.11%, P = 0.00026 in stool and vs 0.30% ± 0.11%, P = 0.00048 in cecal 

content). Firmicutes was higher in V4 (48.95% ± 25.26) compared to 16S 

(30.47% ± 15.07) and metagenome (40.39% ± 19.64). The phylum of 

Actinobacteria was underrepresented in 16S samples (0.46% ± 0.47) compared 

to V4 (3.39% ± 2.69) and metagenome (3.77% ± 3.14); among members of 

Actinobacteria, Bifidobacterium was differently abundant between 16S (0.047% 

± 0.08), V4 (1.79% ± 1.69; P = 0.0058) and metagenome datasets (0.52% ± 

0.53; P = 0.00017), while Adlercreutzia only between 16S and metagenome 

samples (0.21% ± 0.06% vs 0.82% ± 0.42%; P = 0.049911). On the contrary, in 

the intestinal contents the abundance of Bacteroidetes was higher in entire 

metagenome (73.05% ± 4.90%; P = 0.040978), while 16S and V4 amplicons 

had similar values of the main phyla (Figure 11). An important aspect is that V4 

approach in the stool samples showed a ratio Firmicutes/Bacteroidetes >1 while 

the very same stool samples showed a <1 value with 16S and full metagenome 

analyses (Bacteroidetes higher than Firmicutes). 

 

 

 

 



Valeria Manghina 
“Development of methods to create and validate metagenomic datasets enabling microbiota associations with host traits” 

PhD Thesis in Biomolecular and Biotechnological Science 
University of Sassari 

59 

 

 

 

 

Figure 12. Pie Charts of  principal phyla in stool samples (above) and cecal contents (below) 

 

5.2.2  Human sample sequencing pipelines 

V4 and complete 16S sequencing of the human samples resulted in an average 

229,233 and 126,386 reads assigned for sample, respectively. As expected, the 

OTUs numbers and alpha diversity values were higher for 16S samples than for 

V4 amplicons (means: 1,460 ± 36.77 vs 1,343 ± 4.24; P = 0.154677 and  8.40 ± 

0.007 vs 7.88 ± 0.003; P = 0.026081). 

Samples 16S Reads 
assigned 

16S OTUs 
assigned 

16S Shannon 
index 

V4 Reads 
assigned 

V4 OTUs 
assigned 

V4 Shannon 
index 

 

HumanA 82311 1434 8,42 232402 1346 7.91 

HumanB 170460 1486 8,41 226063 1340 7.86 

mean 126386 1460 8,41 229233 1343 7.87 

St.dev. ± 62331 ± 36.77 ± 0.007 ± 4482 ± 4.24 ± 0.037 

Table 4. OTUs,  reads numbers and Shannon index for 16S, V4 samples 
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Taking into account that significantly lower number of reads obtained by full 

metagenome sequencing, as compared to 16S amplicon sequencing, allow to 

detect similar alpha-diversity indexes in murine samples (see Table 2), we also 

evaluated three different runs of shotgun metagenome sequencing of human 

samples performed at different coverages. A metagenomic library from the very 

same DNA extracted sample was sequenced making use of a v3 flowcell lane (~ 

18.75Gb expected capacity for single lane), a third of a lane (~ 6.25Gb 

expected), and a sixth of a lane (~ 3.1Gb expected).  

 

 

Table  5. OTUs,  reads numbers and Shannon index for metagenome samples 

 

The amount of reads (merged and filtered) generated by NGS was 75,892,265 

(assigned: 109,458 ) for “entire lane”, 36,618,279 (assigned: 61,810) for “1/3”, 

and 28,196,488 (assigned: 36,271) for “1/6”. Nonetheless, the amount of OTUs 

identified was similar in all outputs (2,301 vs 2,247, and 2,195 respectively); 

also, the Shannon index was similar for the three different coverages (9.29, 9.15, 

and 9.13, respectively). 

 

Figura 13. Bar chart of Shannon index values in human samples 
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Differential analysis performed by DESeq2 showed several OTUs belonging to 

the phylum Bacteroidetes differentially abundant between 16S and V4 datasets. 

In fact, even at the phylum level it is evident a different taxonomic distribution 

of the 3 main phyla (Bacteroidetes mean: 48.40 ± 2.43% in 16S, 41 ± 2.5% in 

V4 and 56.93 ± 0.20% in full metagenome; Firmicutes mean: 48.81 ± 2.6% in 

16S, 54.48 ± 2.9% in V4 and 35.83 ± 0.41% in full metagenome. Proteobacteria 

were also differently abundant when comparing the three approaches (1.27% ± 

0.11 in 16S, 2.55% ± 0.28 in V4 and 3.41% ± 0.05 in metagenome) Among the 

genera belonging to the Bacteroidetes phylum, Prevotella was absent in V4 

compared to 16S dataset (0.62% ± 0.07; P = 1.04E-09), while Bacteroides 

fragilis was underrepresented (0.87% ± 0.04 vs 1.70% ± 0.18, respectively). 

Among Proteobacteria, in particular, the Sutterella genus was underrepresented 

in the 16S (0.41% ± 0.05) compared to V4 (1.22% ± 0.12; P = 0.001182) and to 

metagenome (1.15% ± 0.04; P = 0.039243). 

 

  

   

Figura 14. B Pie Charts of  principal phyla in different approaches. 
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Finally, as shown in Figure 13 there are not significant differences in terms of 

taxonomic composition obtained by the analysis of the metagenome at different 

coverages. 

 

5.2.3  Discussion and conclusion 

This study represents the first evaluation of 3 different approaches (V4, 16S and 

full metagenome) performed on different types of sample (feces and cecal 

contents) and, simultaneously, on different hosts (mice and human). In fact, to 

date, no methodological studies of this type have been reported. We also 

performed an assessment on the impact of different coverage on the taxonomic 

characterization. This allowed us to obtain different results that suggested 

several conclusions. The numbers of reads assigned does correlate to numbers of 

OTUs identified and consequently to alpha diversity value; indeed, the number 

of reads is higher in amplicons V4 but this does not corresponds to a higher 

amount of OTUs and higher values of alpha diversity. On the contrary, for the 

16S and, especially, for the full metagenome, greater values of alpha diversity 

and number of OTUs are not due to a higher number of reads assigned. This 

inverse correlation between number of reads, number of OTUs and Shannon 

Index, when comparing V4 vs 16S sequencing, would suggest that V4 datasets 

might be biased toward a more limited number of OTU and, therefore,  showing 

less richness in the composition of microbial communities.  In addition, the full 

metagenome, even with the lowest coverage tested (a sixth of lane), showed a 

high Shannon index, despite a low number of reads assigned. However, it is 

difficult to compare the metagenome with 16S amplicons  due to the different 

number of reads assigned (significantly higher in 16S). In addition, the 16S 

approach allows a greater depth of sequencing (sequencing these rRNA 

encoding regions a highest multiple of times) compared to shotgun metagenome, 

due to a lower number of sequences in 16S than the entire metagenome, which, 

in turn, determines a greater number of reads. An important finding has emerged 

in the coverage analysis carried on the human sample: while the number of reads 

assigned is proportional to the coverage, the taxonomic richness (in terms of 

Shannon index and number of OTUs) was very similar. Also, unlike the murine 

samples, the number of OTUs and Shannon index are higher in the samples of 

the metagenome compared to 16S. Among the taxa that were recorded 

differently according to sequencing strategies, Proteobacteria are normal 

commensal in the human gut but they also represent an important group of 



Valeria Manghina 
“Development of methods to create and validate metagenomic datasets enabling microbiota associations with host traits” 

PhD Thesis in Biomolecular and Biotechnological Science 
University of Sassari 

63 

 

pathobionts; thus, their careful detection and changes monitoring is of 

paramount importance. Therefore, a special attention should be paid to the 

methods that might bias toward over- or toward underrepresentation of this 

group. However, the possibility of using 16S amplicons to obtain functional 

information is an important aspect to consider for the lowest cost and less effort 

bioinformatics required compared to metagenome. This suggests the need to 

evaluate the best approach in view of the microbial community to be 

investigated (i.e. human or mice), the possibility to assess the impact of lower 

coverage (less than 1/6) on the microbiome study and deepen the evaluation of 

the 16S amplicons for the functional studies. Nevertheless, these data relating 

principally to the bias of the V4 respect the 16S observed in mice and in human, 

must be validated using the MiSeq sequencer (Illumina, CA) which is becoming 

the most used Next Generation Sequencing instrument to sequence 

metagenomic samples in recent years. 

 

 

5.3 Comparative assessment of bioinformatic methods for metagenomic 

data analysis. A study model with murine fecal samples 

 

5.3.1 OTU table settings and comparative generation of sample diversity 

metrics  

As introduced in the section “Methods to study the microbiome - 

Metagenomics”, a critical step following the reads acquisition is their 

assignment to OTUs. Once generated, OTUs are the features that will allow to 

assess taxonomy structure and stability or fluctuation of the bacterial 

community. In order to handle the large numbers of OTUs generated and to 

make use of them to characterize the gut microbiota, we evaluated three possible 

approaches. To this extent, we compared the alpha and beta diversity values 

obtained i) from raw OTU table generated from the QIIME analysis, ii) from 

raw OTU table filtered to values higher than 0.5% of OTU abundance or iii) 

from OTU table normalized through a sub-sampling (86970 reads). These 

evaluations were carried out on samples collected at 3 weeks and 10 weeks of 

age from 8 mice (n = 16) to investigate the changes of the intestinal microbiota 
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in the different growth stages. In this study model, as illustrated in Table 6, all 

three approaches measured alpha-diversity values (Shannon index) with no 

significant changes between 3 weeks and 10 weeks. 

 3 weeks old 10 weeks old 

Raw OTU table 8.06 ± 0.56 7.83 ± 0.36 

Filtered OTU table 7.42 ± 0.30 7.43 ± 0.22 

Sub-sampling OTU table 8.66 ± 0.24 8.65 ± 0.89 
Table 6. Shannon index values in 3 weeks and 10 weeks old mice groups 

 

 

Figure 15. Bar chart of Shannon index at 3 weeks and 10 weeks old 

 

Despite the high presence of singleton and doubleton in raw table, the Shannon 

index value was similar in all tables; this can be explained by the poor 

heterogeneity of laboratory mice. Analysis of β-diversity (unweighted Unifrac 

distance metric) illustrates, as expected,  differences in the taxonomic 

composition between the two groups according to the development stages.  

 

Figure 16. PCoA plots in three different approaches. In blue the samples at 10 weeks old; in red the samples at 3 weeks old. 
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Moreover, we tested three different statistical tools designed to define features 

that are differentially abundant between two or more groups of multiple 

samples: DeSeq2, metagenomeSeq and STAMP software. DeSeq2 and 

metagenomeSeq are software packages available in QIIME. STAMP (statistical 

analysis of taxonomic and functional profiles) is a graphical software package 

that provides statistical hypothesis tests and exploratory plots for analyzing 

taxonomic and functional profiles. For DeSeq2 and metagenomeSeq we 

considered the OTUs with FDR multiple test correction value less than 0.05, 

while to STAMP we used a Welch’s test with FDR multiple test correction (≤ 

0.05). As shown by the bar chart below, metagenomeSeq did not identify 

significant differences in the microbial composition of the two groups, while 

STAMP and DeSeq2 identified 186 and 915 differential OTUs respectively, of 

which 179 are in common between them (Venn diagram). 

 

Figure 17. Bar chart of differential OTUs in the  three different approaches 

 

 

 

Figure 18. Venn diagram of OTUs in common between STAMP and DeSeq2 

 

0

100

200

300

400

500

600

700

800

900

1000

DeSeq2 STAMP MetagenomeSeq

number of differential OTUs

≠OTUs



Valeria Manghina 
“Development of methods to create and validate metagenomic datasets enabling microbiota associations with host traits” 

PhD Thesis in Biomolecular and Biotechnological Science 
University of Sassari 

66 

 

5.3.2 Conclusion and discussion 

Next-generation sequencing (NGS) technology has extraordinarily enhanced the 

scope of research in the life sciences, and in particular, it has revolutionized the 

human gut microbiome research. However, this high throughput sequencing 

enabled obtaining thousands to millions of reads per run at decreasing costs but 

raised new challenges, notably for computation analysis of this biological data. 

Bioinformatics is faced with the problem of how to handle and analyze these 

datasets in an efficient and useful way. To date, there is still a serious need for 

bioinformatics pipelines that can efficiently process many large datasets 

enabling a precise and sensitive description of the complex microbial diversity 

of an ecological community. In this context, my doctoral project aimed to define 

a straightforward and optimized pipeline; in particular, in light of the reported 

results, the pipeline should include the use of all the approaches described above 

to assess and validate samples differences in terms of alpha and beta diversity. 

However, the use of different OTU tables, may be of little importance when the 

microbiome are less different from each other and, instead, more importantly, 

when they are most heterogeneous.Noteworthy, for the differential analysis 

performed with DeSeq2 is more sensitive than that achieved with the two used 

methods. This was not completely unexpected since this is a widely used 

software for the analysis of counts in RNA sequencing studies and, in this study, 

it has been applied to similar datasets (DNA reads). 

 

 

5.4 Sample model for gut microbiota: does the fecal sample model for 

intestinal contents in mice? 

Since most of the gut microbiota studies make use of feces to characterize the 

bacteriological content that populate the colonic mucosa, we intended to 

evaluate the possible bias in taxonomy definition driven by the use of fecal 

samples (stool) instead of intestinal (cecal) contents. For this purpose, we have 

collected 8 samples, 4 stool and 4 cecal contents, from 4 mice. 16S analysis 

performed by QIIME showed that in both types of samples, Bacteroidetes are 

more prevalent compared to Firmicutes (Bacteroidetes: 75.17% ± 21.07% in 

stool and 55.61% ± 10.16% in cecal content; Firmicutes: 24.15% ± 19.97% in 

stool and 44.04% ± 10.45% in cecal content), although the rate of Bacteroidetes 
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is higher in stool; however, the differential analysis performed with DeSeq2 did 

not show significant differences between the two groups according to the major 

phyla. 

  

 

Figure 19. Bar charts of principal Phyla distribution in stool and cecal content 

 

Concerning the metrics for community diversity, the values of alpha diversity 

did not reveal significant differences between feces and intestinal contents, 

although the Shannon index is higher in cecal content (7.62 ± 0.68 vs 7.19 ± 

0.40; P = 0.2449) in keeping with the higher OTUs number (1081 ± 82.5 vs 

1065 ± 132; P = 0.6897, respectively). 

 

Figure 20. bar chart of Shannon index value in stool and cecal content  
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Analysis of β-diversity (unweighted Unifrac distance metric) indicates that 

samples grouped according to individual, not for type of sample. 

 

Figure21. In the PCoA plot on the left  in blue color the stool samples and in red the cecal content; in 
the PCoA plot on the right the samples is colored by mouse. 

5.4.1 Discussion and conclusion 

The choice of starting sample is the first critical step in the gut microbiota study. 

However, an important aspect in the choice between feces and intestinal 

contents, is that stool sample can be collected easily anytime, but sample results 

only represent what is being shed at that particular time; the use of intestinal 

contents has the advantage of representing a real gut microbial composition, but 

samples can only be collected after animal sacrifice (in model studies) or else 

with invasive procedure (in human patients or volunteers), turning the  cecal 

content not ideal to be used in most studies (i.e. human gut microbiota). In a 

recent study, Stanley and collaborators comparing fecal and cecal microbiota in 

chicken (Stanley et al. ,2015), demonstrated that fecal microbiota is qualitatively 

similar to cecal microbiota but quantitatively different (OTUs number), yet stool 

samples can be effectively used to detect some shifts and responses of cecal 

microbiota. Our study, carried with mice samples, show a modest reduction of 

complexity in the bacterial community when passing from the gut milieu (cecal 

content) to the cage litter (stool). This difference in OTUs number is not 

significant (P = 0.6897), but might suggest that in the “new” environment (i.e., 

lower temperature, atmospheric oxygen, humidity) might change the relative 

abundance of some species and partially select against some non adapted to the 

new condition. All taken together, in addition, our data showed that there are not 

significant differences in microbial community structure and, then, fecal 

samples can be used to model for the real microbial population structure in the 

colonic mucosa. 
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Nonetheless, while control/treatment differences could be detected using either 

cecal or fecal samples, conclusions are likely to differ. Therefore, when 

drawning wider conclusion through metanalyses originated from studies carried 

with both type of samples might be misleading. Thus, in conclusion, the choice 

of sampling site remains critical in experimental design on gut microbiota 

studies. 

 

  

5.5 First time characterization of the ovine colonic gut microbiota 

Background. Sarda breed sheep is the most consistent breed in Italy and is 

mainly bred in Sardinia. In this region it is important both economically and 

socially being the most relevant species of Sardinian livestock and having 

represented for centuries the sustenance of people living in rural areas. Its 

breeding throughout the past century had a decisive turning point linked to the 

market of sheep dairy products, like cheese. Indeed, Sardinia, with more than 3 

million animals raised and distributed in 12,718 companies, is the leader Region 

of sheep farming in Italy; in fact, it holds more than 40% of the sheep population 

and about 60% of national milk production.  

 

Figure 22. livestock numbers in the year 2013. Font: Laore Sardegna  

 

Therefore, the achievement of further significant information concerning the 

physiology of these animals has a crucial economic relevance. Except for studies 

aimed to investigate the rumen, the microbial component of sheep has been 

poorly analyzed so far. In larger ruminants, the microbiota has been investigated 

for two important reasons: its role in environmental pollution due to methane 

production (Wang et al., 2012), and the possibility to obtain ideal candidates for 

industrial applications connected to the microbial ability to break down 

lignocelluloses (Yue et al., 2013). However, several intestinal diseases of 
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paramount importance affecting sheep and other ruminants alter the systemic 

health status, causing loss of animals and decreasing productivity on farm with a 

profound socio-economic impact. Some of these disease are related to bacteria, 

such as Mycobacterium avium subsp. Paratuberculosis in Johne’s disease 

(Windsor PA 2014), Campylobacter spp. and E.coli O175:H7 (Lacasta D et al., 

2015) as cause of enterocolitis, Salmonella enterica and in particular, serovar 

Abortusovis that is the most common causative agent of ovine salmonellosis in 

southern Europe (Uzzau S et al., 2001). To date, no studies have yet performed 

on the colonic microbiota in sheep and a dataset from healthy animals might be 

useful to add knowledge on the gut physiology of this important animal species. 

 

Results. In the light of these premises, we have characterized the gut (colonic) 

microbiota of healthy Sarda breed sheep, in order to identify a dataset describing 

the sheep “core” microbiome that populated the colonic mucosa. For this 

purpose, stool samples from five sheep were pretreated with differential 

centrifugation and extracted as described in chapter 5.1.2. Sequencing of 

samples resulted in an average of 611329 ± 170798 total sequences and 148969 

± 36368 reads assigned.  

  

 

 Total  reads Reads 

assigned 

Ovine 1 715296 162654 

Ovine 2 721181 174444 

Ovine 3 549000 143126 

Ovine 4 337529 88349 

Ovine 5 733641 176270 

Table 7. Reads numbers obtained from NGS and reads assigned by QIIME analysis 

 

Number of observed OTUs and alpha diversity values was different according to 

different input OTU table. As expected, given the high presence of singleton and 

doubleton in raw table, the OTUs number and the Shannon index value was 

higher in raw table than others two input tables. 

 

 Shannon index Observed OTUs 

Raw table 10.67 ± 0.17 9091 ± 1322 

Filtered table 9.71 ± 0.11 2217 ± 84 

Sub-sampling table 9.58 ± 0.10 1568 ± 35 

Table 8. Shannon index and OTUs number from different tables 
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The QIIME analysis showed a similar taxonomic distribution in five sheep 

investigated. The bacterial community was dominated by Firmicutes and 

Bacteroidetes (mean: 7.99% ± 2.5% and 15.36%  ± 2.86%, respectively), 

followed by Verrucomicrobia (mean: 2.67% ± 1.62%), Proteobacteria (1.82% ± 

0.59%), Euryarchaeota and Actinobacteria (mean: 0.98% ± 0.77% and 0.36%  ± 

0.53%, respectively). 

 

  

Figure 23. Bar charts of main phyla (> 0.5%) 

 

 

 

  

Phylum ov1 ov2 ov3 ov4 ov5 

Firmicutes 79,47% 74,15% 79,98% 76,76% 79,58% 

Bacteroidetes 13,97% 20,32% 13,34% 15,28% 13,91% 

Proteobacteria 2,12% 0,91% 2,33% 2,20% 1,54% 

Actinobacteria 1,31% 0,08% 0,14% 0,15% 0,10% 

Euryarchaeota 0,85% 2,26% 0,68% 0,20% 0,92% 

Verrucomicrobia 0,74% 1,56% 3,02% 4,94% 3,11% 

Spirochaetes 0,57% 0,33% 0,18% 0,12% 0,51% 

Lentisphaerae 0,41% 0,01% 0,01% 0,02% 0,01% 

Tenericutes 0,34% 0,28% 0,18% 0,23% 0,16% 

Fibrobacteres 0,08% 0,01% 0,00% 0,01% 0,01% 

Elusimicrobia 0,06% 0,01% 0,01% 0,02% 0,00% 

Cyanobacteria 0,04% 0,02% 0,02% 0,01% 0,02% 

Planctomycetes 0,02% 0,05% 0,10% 0,05% 0,08% 

Synergistetes 0,01% 0,00% 0,00% 0,01% 0,01% 
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At the class level, Clostridia (mean: 76.81% ± 2.12%), Bacteroidia (15.36% ± 

2.86%), Verrucomicrobiae (2.40% ± 1.45%), Bacilli (1.12% ± 1.19%), 

Gammaproteobacteria (0.97% ± 0.46%), Methanobacteria (0.92% ± 0.79%) and 

Deltaproteobacteria (0.77% ± 0.22%) were the most abundant bacteria ( mean > 

0.5%). 

 

Figure 24. Bar charts of main classes (> 0.5%) 

 

 

Class ov1 ov2 ov3 ov4 ov5 

Clostridia 76,34% 73,82% 79,41% 76,32% 78,18% 

Bacteroidia 13,97% 20,32% 13,34% 15,28% 13,91% 

Verrucomicrobiae 0,54% 1,50% 2,79% 4,36% 2,82% 

Bacilli 3,13% 0,26% 0,53% 0,38% 1,32% 

Gammaproteobacteria 1,31% 0,41% 1,47% 1,07% 0,57% 

Methanobacteria 0,55% 2,26% 0,68% 0,19% 0,92% 

Deltaproteobacteria 0,67% 0,45% 0,85% 1,00% 0,89% 

Spirochaetes 0,57% 0,33% 0,18% 0,12% 0,51% 

Verruco-5 0,20% 0,06% 0,23% 0,58% 0,29% 

Actinobacteria 1,29% 0,00% 0,03% 0,01% 0,02% 

CK-1C4-19 0,25% 0,24% 0,17% 0,22% 0,14% 

[Lentisphaeria] 0,41% 0,01% 0,01% 0,02% 0,01% 

Coriobacteriia 0,01% 0,08% 0,11% 0,14% 0,08% 

Planctomycetia 0,02% 0,05% 0,10% 0,05% 0,08% 

Methanomicrobia 0,26% 0,00% 0,00% 0,00% 0,00% 

Erysipelotrichi 0,01% 0,07% 0,04% 0,05% 0,07% 

Epsilonproteobacteria 0,02% 0,03% 0,01% 0,10% 0,06% 

Alphaproteobacteria 0,07% 0,02% 0,01% 0,02% 0,02% 

RF3 0,09% 0,01% 0,00% 0,00% 0,00% 

Fibrobacteria 0,08% 0,01% 0,00% 0,01% 0,01% 

Elusimicrobia 0,06% 0,01% 0,01% 0,02% 0,00% 

Mollicutes 0,00% 0,03% 0,01% 0,01% 0,02% 
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Betaproteobacteria 0,04% 0,00% 0,00% 0,01% 0,01% 

Thermoplasmata 0,04% 0,00% 0,00% 0,00% 0,00% 

Synergistia 0,01% 0,00% 0,00% 0,01% 0,01% 
Table 10. Classes detected in ovine stool samples 

 

Considering the families, large part of OTUs was attributable to members of 

Firmicutes: Ruminococcaceae (mean: 40.11% ± 6.08%), followed by 

Lachospiraceae (7.83% ± 1.14%), Clostridiaceae (4.18% ± 0.62%), 

Mogibacteriaceae (2.65% ± 1.46%), Veillonellaceae (2.11% ± 0.82%). Instead, 

Bacteroidaceae, Rikenellaceae and Paraprevotellaceae (mean: 4.90% ± 1.37%, 

2.24% ± 0.38% and 1.03% ± 0.63%, respectively) were the most abundant 

members of Bacteroidetes. In addition, the families  Verrucomicrobiaceae, 

Methanobacteriaceae and Desulfovibrionaceae, respectively, belonging to the 

Verrucomicrobia, Euryarchaeota and Proteobacteria phyla, showed an 

abundance higher than 0.5%. 

  

Family ov1 ov2 ov3 ov4 ov5 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae 49,31% 36,47% 37,19% 43,17% 34,43% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;Other 12,20% 15,79% 24,18% 17,04% 18,05% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae 7,70% 9,23% 6,39% 7,14% 8,67% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other 6,58% 7,75% 5,25% 5,88% 5,84% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae 3,37% 7,08% 4,33% 5,12% 4,59% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae 3,59% 4,99% 4,43% 3,53% 4,35% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Mogibacteriaceae] 0,28% 3,10% 3,90% 2,31% 3,67% 

k__Bacteria;p__Verrucomicrobia;c__Verrucomicrobiae;o__Verrucomicrobiales;f__Verrucomicrobiaceae 0,54% 1,50% 2,79% 4,36% 2,82% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Rikenellaceae 2,16% 2,81% 1,74% 2,26% 2,20% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae 1,40% 2,78% 1,63% 1,53% 3,18% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae 0,83% 0,33% 0,45% 0,35% 4,13% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__[Paraprevotellaceae] 0,45% 1,84% 1,31% 1,25% 0,33% 

k__Archaea;p__Euryarchaeota;c__Methanobacteria;o__Methanobacteriales;f__Methanobacteriaceae 0,55% 2,26% 0,68% 0,19% 0,92% 

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae 1,03% 0,37% 1,42% 0,53% 0,41% 

k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae 0,63% 0,43% 0,84% 0,98% 0,81% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptococcaceae 0,45% 0,40% 0,44% 0,61% 0,52% 

k__Bacteria;p__Firmicutes;c__Bacilli;o__Turicibacterales;f__Turicibacteraceae 0,58% 0,11% 0,34% 0,22% 0,91% 

k__Bacteria;p__Spirochaetes;c__Spirochaetes;o__Spirochaetales;f__Spirochaetaceae 0,57% 0,33% 0,18% 0,12% 0,51% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Christensenellaceae 0,15% 0,24% 0,36% 0,31% 0,40% 

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae 0,79% 0,05% 0,12% 0,10% 0,27% 

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae 1,23% 0,00% 0,02% 0,01% 0,02% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__RF16 0,62% 0,07% 0,10% 0,29% 0,11% 
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k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__p-2534-18B5 0,07% 0,35% 0,18% 0,16% 0,36% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__BS11 0,13% 0,15% 0,34% 0,20% 0,29% 

k__Bacteria;p__Tenericutes;c__CK-1C4-19;Other;Other 0,25% 0,24% 0,17% 0,22% 0,14% 

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Paenibacillaceae 1,00% 0,00% 0,00% 0,00% 0,01% 

k__Bacteria;p__Verrucomicrobia;c__Verruco-5;o__WCHB1-41;f__RFP12 0,19% 0,05% 0,21% 0,28% 0,24% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Gracilibacteraceae 0,13% 0,21% 0,12% 0,11% 0,25% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae 0,55% 0,12% 0,04% 0,02% 0,06% 

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Planococcaceae 0,67% 0,01% 0,03% 0,02% 0,06% 

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae 0,05% 0,01% 0,04% 0,51% 0,08% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Dehalobacteriaceae 0,04% 0,08% 0,18% 0,07% 0,13% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tissierellaceae] 0,17% 0,11% 0,04% 0,06% 0,07% 

k__Bacteria;p__Lentisphaerae;c__[Lentisphaeria];o__Victivallales;f__Victivallaceae 0,41% 0,01% 0,01% 0,02% 0,01% 

k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae 0,01% 0,08% 0,11% 0,14% 0,08% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae 0,02% 0,13% 0,06% 0,08% 0,10% 

k__Bacteria;p__Verrucomicrobia;c__Verruco-5;o__WCHB1-41;f__WCHB1-25 0,01% 0,00% 0,02% 0,30% 0,04% 

k__Bacteria;p__Planctomycetes;c__Planctomycetia;o__Pirellulales;f__Pirellulaceae 0,02% 0,05% 0,10% 0,05% 0,08% 

k__Archaea;p__Euryarchaeota;c__Methanomicrobia;o__Methanomicrobiales;f__Methanocorpusculaceae 0,26% 0,00% 0,00% 0,00% 0,00% 

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae 0,02% 0,09% 0,04% 0,03% 0,06% 

k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae 0,01% 0,07% 0,04% 0,05% 0,07% 

k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Campylobacteraceae 0,02% 0,03% 0,01% 0,10% 0,06% 

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Aeromonadales;f__Succinivibrionaceae 0,08% 0,02% 0,01% 0,03% 0,08% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Acidaminobacteraceae] 0,03% 0,03% 0,04% 0,03% 0,08% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__SBYG_4172 0,03% 0,04% 0,04% 0,03% 0,05% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Eubacteriaceae 0,00% 0,01% 0,01% 0,01% 0,15% 

k__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__RF32;Other 0,07% 0,02% 0,01% 0,02% 0,02% 

k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__GMD14H09;Other 0,03% 0,01% 0,01% 0,01% 0,07% 

k__Bacteria;p__Tenericutes;c__RF3;o__ML615J-28;Other 0,09% 0,01% 0,00% 0,00% 0,00% 

k__Bacteria;p__Fibrobacteres;c__Fibrobacteria;o__Fibrobacterales;f__Fibrobacteraceae 0,08% 0,01% 0,00% 0,01% 0,01% 

k__Bacteria;p__Cyanobacteria;c__4C0d-2;o__YS2;Other 0,04% 0,02% 0,02% 0,01% 0,02% 

k__Bacteria;p__Elusimicrobia;c__Elusimicrobia;o__Elusimicrobiales;f__Elusimicrobiaceae 0,06% 0,01% 0,01% 0,02% 0,00% 

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae 0,09% 0,00% 0,00% 0,00% 0,00% 

k__Bacteria;p__Tenericutes;c__Mollicutes;o__RF39;Other 0,00% 0,03% 0,01% 0,01% 0,02% 

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae 0,06% 0,00% 0,01% 0,00% 0,00% 

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;Other 0,04% 0,00% 0,01% 0,00% 0,02% 

k__Bacteria;p__WPS-2;Other;Other;Other 0,00% 0,00% 0,01% 0,03% 0,03% 

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Alcaligenaceae 0,04% 0,00% 0,00% 0,01% 0,01% 

k__Bacteria;p__Firmicutes;c__Clostridia;Other;Other 0,01% 0,01% 0,01% 0,01% 0,01% 

k__Archaea;p__Euryarchaeota;c__Thermoplasmata;o__E2;f__[Methanomassiliicoccaceae] 0,04% 0,00% 0,00% 0,00% 0,00% 

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae 0,04% 0,00% 0,00% 0,00% 0,00% 

k__Bacteria;p__Firmicutes;c__Clostridia;o__MBA08;Other 0,01% 0,00% 0,00% 0,00% 0,03% 

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;Other;Other 0,02% 0,01% 0,01% 0,01% 0,00% 

k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;Other;Other 0,01% 0,01% 0,00% 0,00% 0,02% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__S24-7 0,00% 0,00% 0,00% 0,00% 0,04% 

k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__[Barnesiellaceae] 0,00% 0,01% 0,00% 0,01% 0,01% 
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k__Bacteria;Other;Other;Other;Other 0,01% 0,00% 0,01% 0,01% 0,01% 

k__Bacteria;p__Synergistetes;c__Synergistia;o__Synergistales;Other 0,01% 0,00% 0,00% 0,01% 0,01% 

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__[Exiguobacteraceae] 0,03% 0,00% 0,00% 0,00% 0,00% 

Table 11. Families detected in ovine gut samples  

 

Within the 97 genera identified, microbiota faecal composition showed a 

prevalence of Clostridium, Ruminococcus, Akkermansia and Oscillospira 

(mean: 3.28% ± 0.65%, 3.21% ± 1.77%, 2.39% ± 1.45% and 2.19% ± 0.83%, 

respectively). Instead, sulfate-reducing bacteria as Desulfovibrio and another 

cellulolytic bacteria as Butyrivibrio showed an abundance lower than 0.5%. 

Finally, Methanobrevibacter genus is the most dominant component of 

methanogen populations (mean: 0.71% ± 0.41%). 

Genus ov1 ov2 ov3 ov4 ov5 

f__Bacteroidaceae;g__5-7N15 2,69% 5,39% 3,35% 3,85% 3,89% 

f__Clostridiaceae;g__Clostridium 2,95% 4,20% 3,68% 2,96% 2,60% 

f__Ruminococcaceae;g__Ruminococcus 1,24% 2,44% 2,47% 5,81% 4,07% 

f__Verrucomicrobiaceae;g__Akkermansia 0,54% 1,49% 2,75% 4,35% 2,82% 

f__Ruminococcaceae;g__Oscillospira 2,15% 1,47% 2,14% 3,57% 1,60% 

f__[Mogibacteriaceae];g__Mogibacterium 0,07% 2,19% 2,50% 1,43% 2,39% 

f__Veillonellaceae;g__Phascolarctobacterium 1,28% 2,14% 1,09% 1,27% 1,01% 

f__Lachnospiraceae;g__Coprococcus 2,04% 1,20% 0,43% 0,66% 0,73% 

f__Ruminococcaceae;g__Ruminococcusflavefaciens 0,07% 0,72% 0,44% 2,50% 0,91% 

f__[Paraprevotellaceae];g__CF231 0,43% 1,58% 1,24% 0,86% 0,28% 

f__Lachnospiraceae;g__Butyrivibrio 0,29% 0,69% 0,87% 0,61% 1,28% 

f__Methanobacteriaceae;g__Methanobrevibacter 0,52% 1,46% 0,61% 0,16% 0,78% 

f__Lachnospiraceae;g__Dorea 0,64% 0,63% 0,61% 0,54% 0,40% 

f__Turicibacteraceae;g__Turicibacter 0,58% 0,11% 0,34% 0,22% 0,91% 

f__Bacteroidaceae;g__Bacteroides 0,21% 0,72% 0,18% 0,38% 0,27% 

f__Veillonellaceae;g__Succiniclasticum 0,06% 0,29% 0,28% 0,07% 1,07% 

f__Spirochaetaceae;g__Treponema 0,57% 0,33% 0,18% 0,12% 0,51% 

f__Pseudomonadaceae;g__Pseudomonas 0,48% 0,14% 0,42% 0,18% 0,09% 

f__Peptococcaceae;g__rc4-4 0,24% 0,22% 0,21% 0,39% 0,26% 

f__Bacillaceae;g__Bacillus 0,63% 0,04% 0,09% 0,08% 0,16% 

f__Desulfovibrionaceae;g__Desulfovibrio 0,01% 0,09% 0,46% 0,25% 0,15% 

f__Methanobacteriaceae;g__Methanosphaera 0,03% 0,68% 0,06% 0,03% 0,11% 

f__Paenibacillaceae;g__Paenibacillus 0,82% 0,00% 0,00% 0,00% 0,01% 

f__Micrococcaceae;g__Arthrobacter 0,75% 0,00% 0,01% 0,01% 0,01% 

f__Porphyromonadaceae;g__Paludibacter 0,54% 0,09% 0,02% 0,01% 0,05% 

f__[Paraprevotellaceae];g__[Prevotella] 0,01% 0,21% 0,05% 0,37% 0,04% 

f__Clostridiaceae;g__SMB53 0,08% 0,11% 0,08% 0,06% 0,33% 
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f__[Mogibacteriaceae];g__Anaerovorax 0,02% 0,09% 0,14% 0,13% 0,17% 

f__Veillonellaceae;g__Selenomonas 0,01% 0,11% 0,08% 0,04% 0,31% 

f__Lachnospiraceae;g__Roseburia 0,04% 0,18% 0,12% 0,09% 0,11% 

f__Veillonellaceae;g__Anaerovibrio 0,01% 0,12% 0,03% 0,05% 0,27% 

f__Lachnospiraceae;g__Anaerostipes 0,12% 0,16% 0,03% 0,04% 0,06% 

f__Prevotellaceae;g__Prevotella 0,02% 0,13% 0,06% 0,08% 0,10% 

f__Pseudomonadaceae;g__Pseudomonasstutzeri 0,35% 0,00% 0,01% 0,01% 0,00% 

f__[Tissierellaceae];g__Sedimentibacter 0,07% 0,11% 0,04% 0,06% 0,07% 

f__Pseudomonadaceae;g__Pseudomonasveronii 0,08% 0,03% 0,16% 0,05% 0,03% 

f__Lachnospiraceae;g__Blautia 0,06% 0,08% 0,07% 0,06% 0,07% 

f__Planococcaceae;g__Solibacillus 0,33% 0,00% 0,00% 0,00% 0,00% 

f__Lachnospiraceae;g__[Ruminococcus] 0,04% 0,07% 0,05% 0,05% 0,04% 

f__Clostridiaceae;g__02d06 0,05% 0,03% 0,04% 0,04% 0,09% 

f__Micrococcaceae;g__Microbisporarosea 0,20% 0,00% 0,01% 0,00% 0,00% 

;f__Campylobacteraceae;g__Campylobacter 0,02% 0,03% 0,01% 0,10% 0,06% 

f__Lachnospiraceae;g__Epulopiscium 0,20% 0,00% 0,00% 0,00% 0,00% 

f__Streptococcaceae;g__Streptococcus 0,02% 0,07% 0,03% 0,03% 0,05% 

f__SBYG_4172;Other 0,03% 0,04% 0,04% 0,03% 0,05% 

f__Eubacteriaceae;g__Pseudoramibacter_Eubacterium 0,00% 0,01% 0,01% 0,01% 0,15% 

f__Veillonellaceae;g__Selenomonasruminantium 0,00% 0,04% 0,02% 0,01% 0,12% 

f__Lachnospiraceae;g__[Ruminococcus]gnavus 0,02% 0,06% 0,03% 0,03% 0,04% 

f__Paenibacillaceae;g__Cohnella 0,18% 0,00% 0,00% 0,00% 0,00% 

f__Clostridiaceae;g__Oxobacter 0,00% 0,05% 0,04% 0,04% 0,03% 

f__Erysipelotrichaceae;g__Bulleidia 0,01% 0,03% 0,04% 0,04% 0,05% 

f__Bacteroidaceae;g__Bacteroidesplebeius 0,02% 0,05% 0,02% 0,03% 0,03% 

f__Planococcaceae;g__Lysinibacillusboronitolerans 0,14% 0,00% 0,00% 0,00% 0,00% 

f__Ruminococcaceae;g__Ethanoligenens 0,04% 0,02% 0,02% 0,02% 0,04% 

f__Succinivibrionaceae;g__Ruminobacter 0,07% 0,01% 0,00% 0,01% 0,05% 

f__Peptococcaceae;g__Desulfosporosinusmeridiei 0,05% 0,01% 0,02% 0,02% 0,03% 

f__Planococcaceae;g__Kurthiagibsonii 0,13% 0,00% 0,00% 0,00% 0,00% 

f__[Acidaminobacteraceae];g__Acidaminobacter 0,02% 0,02% 0,02% 0,01% 0,05% 

f__Bacillaceae;g__Bacillusmuralis 0,11% 0,00% 0,00% 0,00% 0,01% 

f__Pseudomonadaceae;g__Pseudomonaspseudoalcaligenes 0,01% 0,01% 0,05% 0,02% 0,02% 

f__Bacillaceae;g__Bacilluscereus 0,03% 0,01% 0,01% 0,01% 0,05% 

f__Xanthomonadaceae;g__Stenotrophomonas 0,09% 0,00% 0,00% 0,00% 0,00% 

f__Clostridiaceae;g__Alkaliphilus 0,08% 0,00% 0,00% 0,00% 0,00% 

f__Clostridiaceae;g__Caloramator 0,01% 0,02% 0,01% 0,01% 0,03% 

f__Pseudomonadaceae;g__Pseudomonasbalearica 0,08% 0,00% 0,00% 0,00% 0,00% 

f__Ruminococcaceae;g__Faecalibacteriumprausnitzii 0,03% 0,01% 0,01% 0,00% 0,01% 

f__Methanocorpusculaceae;g__Methanocorpusculum 0,07% 0,00% 0,00% 0,00% 0,00% 

f__Peptococcaceae;g__Peptococcus 0,01% 0,02% 0,01% 0,01% 0,02% 

f__Clostridiaceae;g__Proteiniclasticum 0,00% 0,01% 0,02% 0,01% 0,03% 

f__Enterobacteriaceae;g__Erwiniachrysanthemi 0,01% 0,00% 0,00% 0,04% 0,01% 

f__Ruminococcaceae;g__Ruminococcuscallidus 0,00% 0,00% 0,01% 0,02% 0,03% 



Valeria Manghina 
“Development of methods to create and validate metagenomic datasets enabling microbiota associations with host traits” 

PhD Thesis in Biomolecular and Biotechnological Science 
University of Sassari 

77 

 

f__Lachnospiraceae;g__Roseburiafaecis 0,00% 0,01% 0,02% 0,01% 0,02% 

f__Verrucomicrobiaceae;g__Akkermansiamuciniphila 0,00% 0,02% 0,04% 0,01% 0,00% 

f__Bacteroidaceae;g__BF311 0,00% 0,01% 0,01% 0,02% 0,01% 

f__Alcaligenaceae;g__Sutterella 0,04% 0,00% 0,00% 0,01% 0,01% 

f__Clostridiaceae;g__Alkaliphilustransvaalensis 0,01% 0,01% 0,01% 0,01% 0,01% 

f__Streptococcaceae;g__Streptococcusalactolyticus 0,01% 0,02% 0,02% 0,01% 0,01% 

f__Lachnospiraceae;g__Pseudobutyrivibrio 0,00% 0,03% 0,00% 0,00% 0,02% 

f__Fibrobacteraceae;g__Fibrobactersuccinogenes 0,04% 0,00% 0,00% 0,01% 0,00% 

f__[Paraprevotellaceae];g__YRC22 0,00% 0,02% 0,01% 0,01% 0,01% 

f__Planococcaceae;g__Planomicrobium 0,01% 0,01% 0,01% 0,01% 0,02% 

f__[Methanomassiliicoccaceae];g__vadinCA11 0,04% 0,00% 0,00% 0,00% 0,00% 

f__Peptostreptococcaceae;g__Tepidibacter 0,00% 0,00% 0,01% 0,00% 0,03% 

f__Clostridiaceae;g__Clostridiumperfringens 0,01% 0,00% 0,00% 0,00% 0,03% 

f__Dehalobacteriaceae;g__Dehalobacterium 0,01% 0,00% 0,01% 0,01% 0,02% 

f__[Paraprevotellaceae];g__Paraprevotella 0,01% 0,02% 0,02% 0,00% 0,00% 

f__Moraxellaceae;g__Acinetobacter 0,04% 0,00% 0,00% 0,00% 0,00% 

f__Erysipelotrichaceae;g__Bulleidiahoa12_73A10 0,00% 0,01% 0,00% 0,01% 0,02% 

f__Lachnospiraceae;g__[Ruminococcus]torques 0,00% 0,01% 0,01% 0,01% 0,01% 

f__Planococcaceae;g__Rummeliibacillus 0,00% 0,00% 0,01% 0,01% 0,02% 

f__Lachnospiraceae;g__Moryella 0,00% 0,00% 0,00% 0,00% 0,03% 

f__Victivallaceae;g__Victivallisvadensis 0,03% 0,00% 0,00% 0,00% 0,00% 

f__Gracilibacteraceae;g__Lutispora 0,01% 0,00% 0,00% 0,01% 0,01% 

f__Microbacteriaceae;g__Leucobacter 0,03% 0,00% 0,00% 0,00% 0,00% 

f__Porphyromonadaceae;g__Parabacteroides 0,00% 0,02% 0,01% 0,00% 0,00% 

f__Gracilibacteraceae;g__Gracilibacter 0,01% 0,00% 0,00% 0,01% 0,00% 

f__Succinivibrionaceae;g__Succinivibrio 0,00% 0,01% 0,00% 0,00% 0,01% 

Table 12. List of genera detected in ovine stool samples 
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5.5.1 Discussion and conclusion 

Bacterial diversities within the rumen of sheep have been investigated in recent 

years as a result of development of 16S rRNA analysis performed by Next 

Generation Sequencing, yet similar data on the gut microbiome diversity in the 

lower gastrointestinal tract of  sheep are limited and obtained through methods 

classified as "classical", such as PCR and culturing, while new approaches have 

been less used. However, new technologies have broadened our appreciation of 

the diversity and complexity of the microbiome. A deeper understanding of the 

entire intestinal microbiome in ruminants (bovine), including those taxa that are 

not core members, is reshaping research questions and hypotheses addressing 

societal and economical pressures to decrease methane emission or nitrogen 

excretion while improving fiber digestibility, feed intake, feed efficiency and 

animal health. In this contest, our work is the first study performed on stool 

samples using Next Generation Sequencing techniques to characterize the gut 

microbiome populating the colon of healthy sheep. These results, then,  

represent the first description of the ovine fecal microbiome and demonstrate its 

outstanding biological diversity. Moreover, we have identified in stool samples 

bacteria involved in the process of nitrate reduction in the rumen as Selemonas 

ruminantium and Campylobacter (Zhao et al., 2015), sulfate reduction bacteria 

as Desulfovibrio (Howard and Hungate, 1976), cellulolytic bacteria as 

Ruminococcus flavefaciens, Fibrobacter succinogenes, Butyrivibrio and 

Clostridium genera ( Ransom-Jones et al., 2012), methanogens Archaea as 

Methanobrevibacter, Methanosphaera (Jansenn and Kirs, 2008; Hook et al., 

2010). Thanks to their ability to efficiently digest fibrous materials, the 

cellulolytic bacteria have gained attention from researchers in animal husbandry 

and biology energy, while the  interest  for methanogenic bacteria  was renewed 

in the past decade because enteric methane generation contributes to global 

anthropogenic greenhouse gas emissions and represents a 2–12% loss of feed 

energy for the animal (Ripple W et al., 2014; Johnson D and Ward, 1996). 

Therefore, even from the fecal samples, it appear possible to gain information of 

the bacterial player that transform feed (plant material) in the sheep rumen from 

a given individual under study or under feeding trial controls. Moreover, based 

on these data, and on the methods we have optimized to sequence the 

metagenome of the colonic sheep microbiota, large-scale studies could be 

carried out to correlate changes in sheep gut microbiota to zootechnical and 

production variables, and with the final aims of optimizing livestock animals 

productivity, their protection from the numerous communicable and not 
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communicable disease and, finally, the modern post-genomic approaches for 

their continuous genetic selection.  

 

 

5.6 A metagenomic dataset to perform association studies linking gut 

microbiota to T1D host traits in a murine model  

Background. Type 1 diabetes (T1D) is a multifactorial disease that results from 

an inflammation of the pancreatic islets of Langerhans, termed insulitis, and 

subsequent destruction of the insulin producing β cells in genetically 

predisposed individuals upon environmental stimulation (Lehuen A et al., 2010). 

Although genetic factors can predispose an individual to T1D, twin and family 

studies show that only a fraction of those genetically predisposed individuals 

(less than 50%)  will develop the disease (Todd JA et al.,2007; Barret JC et al., 

2009; Redondo MJ et al., 2001). Thus, it is strongly believed that environmental 

factors are important for the initiation and development of T1D, including viral 

infection and diet (Bach JF et al., 2002). Further during the last decade, a 

number of studies showed an association with gut microbiota in the 

pathogenesis of T1D; indeed, gut microbiota play an important role in the 

regulation of autoimmunity, tolerance and intestinal permeability that are several 

mechanisms by which gut microbiota could affect the development of T1D 

(Changyun H et al., 2015). In this contenst, non-obese Diabetic (NOD) mice 

spontaneously develop T1D and are model frequently used for studying the 

etiology of this disease (Castano et al., 1990). Indeed, NOD mice develop 

insulitis by the age of approximately 10 weeks, shortly after being weaned from 

their mothers and their (On average, 60-80% of female and 10-20% of male 

NOD) tend to develop overt hyperglycemia indicating diabetes onset between 

12-20 weeks of age (peak = 16-18 weeks). Moreover, the NOD mouse has a 

very special MHC class II region; it lacks the E-complex owing to a deletion in 

the Eα gene (Hattori et al., 1986) and the A-complex is expressed in a form 

unique to the NOD strain, where aspartic acid, at position 57 of the β chain, is 

replaced by serine (Achea-Orbea H et al., 1987). Both restoration of the E 

complex (Nishimoto H et al., 1987; Bohme J et al, 1990) or insertion of a 

normal A complex (Slattery RM et al., 1990) by creation of class II transgenic 

NOD mice was shown to protect from disease. In particular, the transgenic 
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undisrupted Eα gene gives NOD mice total protection from insulitis at least up to 

1 year of age.  

Results. In the light this background, we begun a collaboration with the group 

of Diane Mathis at Harvard Medical School (Boston, MA, USA) to assess 

possible microbiota biomarkers of TD1 susceptibility at the onset time of 

insulitis (pre-clinical phase) and in clinical onset timing. For this purpose, we 

received stool samples collected at 3 weeks and 10 weeks of age from female 

wild type NOD mice and class II transgenic NOD mice that express Eα 

transgene (Eα16 mice). 

To correct for any possible effect due to cage environment and maternal group, 

Eα16 and NOD mice were obtained crossing NOD dam with Eα16 mice sire.  

Progeny was housed mixing in the same cage both genotypes. 

All approaches, as listed in paragraph 5.3, to measure alpha-diversity in 3 weeks 

old mice, and differential analysis performed by DeSeq2, consistently assessed 

no changes associated to genetic background (7.48 ± 0.27 in NOD mice vs 7.36 

± 0.36 in Eα16 mice; P = 0.6134).  

 

Figure 25. Shannon index value between NOD and Ea16 mice at 3 weeks old 

On the contrary, beta diversity analysis (PCoA unweighted Unifrac distance 

metric) demonstrated a maternal effect dominating the microbial taxonomy 

distribution. 
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A B C 

Figure 26. Plots showing the diversity among 16 fecal samples. A) red squares = 3 weeks samples,  blue circles = 10 weeks samples, B) each color 
defines a different cage group; C) red circles = Eα16 mice, blue squares = NOD mice  

 

 

  Gut microbiota of mice at 10 weeks of age, instead, showed different diversity 

metrics and taxonomy according to genotype. Alpha diversity value was higher 

in Eα16 mice compared to NOD mice (8.81 ± 0.23 vs 8.61± 0.12; P = 0.05339, 

respectively).  

 

Figure 27. Shannon index values in Eα16 and NOD mice 

As illustrated in the pie charts below, the Firmicutes group was more abundant 

in Eα16 mice compared to NOD (12% ± 9.2% vs 5% ± 2.6%; P = 0.1075, 

respectively); among the members of this phylum, most of the OTUs classified 

at the family level as Ruminococcaceae were significantly differently abundant 

in the two groups (Eα16 mean: 3.88% ± 2.02%; NOD mean: 1.81% ± 0.83%; P 

= 0.037756); the abundance of Oscillospira genus, representing 90% of this 

family group, was significantly different between the two genotype (Eα16 mean: 

2% ± 0.89%; NOD mean: 0.94 ± 0.34%; P = 0.029076). 
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Figure 28. Pie charts of principal phyla between different genotype in mice at 3 and 10 weeks old (16 fecal samples) 

Noteworthy, also genera members of Lachnospiraceae family as Blautia and 

Dorea (phylum Firmicutes), showed variation in its relative abundance 

according to genetic background ( 0.09% ± 0.08% in Eα16 vs 0.03% ± 0.02% 

NOD, P = 0.048691 and 0.06% ± 0.08% in Eα16 vs 0.01% ± 0.02% in NOD 

mice, P = 0.033131; respectively). 

 

5.6.1 Discussion and conclusion 

Several studies have demonstrated that patients with T1D are characterized by a 

moderate degree of gut microbial dysbiosis. However, there is a paucity of 

studies investigating the gut microbiota changes occurring before the clinical 

onset in genetically susceptible hosts, leaving substantial controversies 

regarding the relevance of the effect of the body’s metabolism on the microbiota 

and/or the effects of the latter over this immunological and metabolic disorder. 

A better understanding of how gut bacteria-induced immunoregulation 

contributes to the pathogenesis of T1D is, therefore, necessary. 

In our study, we found no differences in the microbial composition of the 

microbiota between the two groups with different genotypes at 3 weeks of age. 
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Yet, a close relationship was found with the maternal microbiota, attributable to 

the recent weaning of the pups from the mother. Instead, seven weeks later, at 

the time of insulitis development, but still before the clinical onset, mice gut 

microbiota showed a different taxonomy according their genetic susceptibility to 

T1D. This appears important because at that age, detection of microbial changes 

might serve to monitor the pre-clinical phase of the diabetes. Heightened gut 

permeability has been demonstrated to be one of the phenomena that precede the 

clinical onset of T1D in both animal models of autoimmune diabetes, as well as 

in patients with T1D and prediabetic individuals (Neu J et al., 2005; Bosi E et 

al., 2006; Vaarala O et al., 2008). It has been suggested that the imbalance of 

bacteria, such as Bacteroidetes, which ferment short-chain fatty acid (SCFA), 

can affect the gut permeability (Schwartz RF et al., 2007; Brugman S et al., 

2006). Our work, in accordance with other published studies (Giongo A et al., 

2011; Schwartz RF et al.,2007; Roesch LF et al., 2009), showed a higher 

abundance of bacteroidetes in mice susceptible to develop diabetes; on the 

contrary,  Eα16 mice showed a blooming of Firmicutes, including 

Lachnospiraceae and Ruminococceae families. However, we have to be 

cautious in thinking that a modulation of the gut microbiota may be useful as 

therapeutic intervention. Nevertheless, the advantages of microbial therapies are 

obvious: less expensive, less invasive and potentially long-lasting beneficial 

effects. Thus, extending knowledge on specific host and gut microbial 

composition and functional pathways involved in the development of T1D, may 

shed lights on the potential of novel microbiota-targeted therapeutic approaches 

to prevent or treat T1D. 

 

5.7 Dietary and immunogenetic background impact over gut microbiota in 

a translational murine model of NAFLD 

Background. Non-alcoholic fatty liver disease (NAFLD) is the most common 

liver disease worldwide (Sattar N et al., 2014). Its importance is due to not only 

its prevalence but also its evolution toward non-alcoholic steatohepatitis 

(NASH) and its association with increased risk of hepatic (e.g. cirrhosis and 

hepatocellular carcinoma HCC) and extra-hepatic (e.g. type 2 diabetes mellitus, 

cardiovascular disease, chronic kidney disease and cancer) complications, and 

therefore tends to be associated with increased morbidity/mortality and health 

expenditure (Vernon G et al., 2011; Vuppalanchi R and Chalasani N, 2009). 

Immunogenetics traits might play a significant role in development of NAFLD. 
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Inflammasomes are intracellular multiprotein complexes, expressed in both 

parenchymal and non-parenchymal cells of the liver that, in response to cellular 

danger signals, activate caspase-1, with the release of the pro-inflammatory 

cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) (Szabo and Csak 

2012). The NLRP3 inflammasome, of the NOD-like receptor family, is one of 

the most extensively studied inflammasome component and is able of sensing a 

wide variety of alarm signals, both exogenous as pathogen-associated molecular 

patterns (PAMPS) and endogenous as danger-associated molecular patterns 

(DAMPS) (Martinon and Tschopp 2005). The presence of NLRP3 and/or 

inflammasome activation has been shown in several liver cell phenotype, such 

as hepatic stellate cells (Watanabe, Sohail et al. 2009), macrophages (Stienstra, 

Saudale et al. 2010) and hepatocytes (Csak, Ganz et al. 2011). Its role in the 

pathophysiology of NASH is under investigation, since NLRP3 inflammasome 

components are increased in various diet-induced NASH models in mice and in 

NASH patients (Csak, Ganz et al. 2011; De Minicis, Agostinelli et al. 2014; De 

Minicis, Rychlicki et al. 2014). Recent studies have implicated that the gut 

microbiota might play a role in the development of NAFLD (Mehal 2013). Oral 

treatment of lean germ-free mice with the cecal microbiota of obese mice caused 

an increase in hepatic triglyceride accumulation (Backhed, Ding et al. 2004). 

Further, obese humans are enriched in the microbial energy-harvesting phylum 

Firmicutes, which can directly improve energy yield from intestinal contents 

leading to obesity-associated NAFLD (Turnbaugh, Ley et al. 2006). Dietary 

habits influences the composition of gut microflora, can promote bacterial 

overgrowth and translocation (De Minicis, Rychlicki et al. 2014), allowing 

intestinal bacteria, or their products, to reach the liver through the portal 

circulation. Bacterial products are sensed by the toll-like receptor (TLRs) 

systems to elicit a pro-inflammatory and pro-fibrogenic response at least 

partially mediated by the inflammasome system (Miura, Seki et al. 2010; Tilg 

and Moschen 2015). Moreover, in the gut the inflammasome has an important 

role in regulating epithelial permeability (Zaki, Boyd et al. 2010) and microbial 

ecology (Elinav, Strowig et al. 2011). On this regard genetic inflammasome 

deficiency-associated dysbiosis has been hypothesized to result in abnormal 

accumulation of bacterial products in the portal circulation and in increased 

severity of NASH (Henao-Mejia, Elinav et al. 2012). 
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Results. To validate our methodological approaches in another translational 

model of gut microbiota – traits relationships, they were applied to elucidate the 

dietary and immunogenetic background effects on microbiota community. 

Specifically, to assess the influence of a “westernized” high fat and high 

carbohydrate diet with free fructose and sucrose (HFHC diet) and the lack of 

NLRP3 inflammasome on gut microbial diversity, we evaluated the structural 

differences that possibly occur in WT and NLRP3-/- mice fed with either HFHC 

or chow (standard) diet. In this model, cecal contents were analyzed since a 

single time point at the end of the experiment was evaluated. This activities were 

part of a collaboration with the group of Prof. Gianluca Svegliati Baroni at 

Unversità Politecnica delle Marche (Gastroenterology Department). 

The microbial communities associated to each group of 3-5 animals, for a total 

of 15 cecal samples, were compared according to their α-diversity and β-

diversity. Significant differences in α-diversity were detected on either WT and 

Nlrp3
-/- 

 mice when fed different diets. Although significant, a less pronounced 

difference was observed between WT and Nlrp3
-/-

 chow fed mice, while 

similarly low α-diversity values were recorded in either WT and Nlrp3
-/-

 mice 

when fed with HFHC.  

 

Figure 29. Gut microbiota alpha-diversity values in the 4 groups: calculated 
Shannon’s Index was statistically different as indicated by stars:*P < 0.0001; 
**P= 0.04;***P= 0.01. 
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Analysis of β-diversity clearly illustrates group-level differences in the 

taxonomic composition, with the highest variation according to diet treatment, 

and the variation due to genetic background being increased in HFHC fed mice. 

 

 

Figure 30. Gut microbiota beta-diversity values in the 4 
groups: PC1 and PC2 explained, respectively, 50.82% 
and 24.91% of variation; Light triangles = NLRP3-/- 
HFHC-fed, dark triangles = NLRP3-/- Chow-fed, circles = 
wt HFHC-fed, squares = WT Chow-fed 

 

We also found significant correlations between microbial taxa, lack of NLRP3 

inflammasome and diet. Firmicutes largely outcompeted Bacteroidetes in HFHC 

fed WT mice. In WT mice, HFHC diet appeared also to promote an increased 

abundance of Proteobacteria (3.21% ± 0.88% vs 0.61% ± 0.07% in chow fed 

mice; P = 0.009). However, a blooming of Proteobacteria occurred in an even 

more dramatic fashion in Nlrp3
-/-

 HFHC fed mice compared to chow fed mice 

(averaging 28.48% ± 5.14%; P = 0.001). The increased abundance concerned 

mostly OTUs classified at the family level as Desulfovibrionaceae, including 

Desulfovibrio and Bilophila pathobiont genera, representing 73% and 22% of 

this family group, respectively. Noteworthy, another genus, Akkermansia 

(phylum Verrucomicrobia), showed great variation in its relative abundance 

according to diet and genetic background. Akkermansia accounted for 2.58% ± 

0.08% of the microbial community in chow fed wt mice, while it was almost 

undetectable (0.006%) in HFHC WT fed mice. In mice lacking NLRP3, while 

treated with chow diet, Akkermansia abundance dropped to 0.63 ± 0.26%. 

Interestingly, relative abundance of this genus showed a dramatic increase in 

Nlrp3
-/-

 mice when fed with HFHC diet (12.11% ± 7.02%).  
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Figure 31. Pie charts of more abundant phyla. In red, Firmicutes; in blue, Bacteroidetes; in purple, Verrucomicrobia; in green, Proteobacteria 

All taken together, these data reveal an altered gut microbiota in response to 

HFHC diet, with an expected blooming of energy harvesting microbiota 

members (i.e. Firmicutes) and displacement of the Bacteroidetes phylum. 

Further, our data showed changes of abundance of pathobionts like Bilophila (> 

4 fold change in HFHC diet) whose increase is not dependent on host genetic 

background, as well as an overwhelming increase of Akkermansia and 

Desulfovibrio in HFHC diet that, instead, appeared strongly dependent on 

NLRP3 deficiency. 

 

5.7.1 Discussion and conclusion 

Bacteroidetes/Firmicutes ratio is frequently reported to be reduced in mice 

models with high fat diet and in obese human subjects (Kim KA, 2012; 

Turnbaugh, 2006; Verdam FJ, 2013). Thus, our observation on blooming of 

Firmicutes in HFHC fed mice was expected. In addition, Proteobacteria are less 

represented in eubiotic gut microbiota and a wealth of studies support the 

hypothesis that a bloom of this bacterial taxa is associated to an unstable gut 

microbial community and might actively promote intestinal inflammation (Shin 

NR, 2015).  To this extent, we have reported that the cecal contents from HFHC 

fed mice, particularly in the NLRP3
-/- 

group, carry an increase abundance of 

Proteobacteria and, in particular, of the mucus degrading Desulfovibrio genus. 

In our murine model of NAFLD, this data is of interest since, in addition to tight 

junctions, bacterial translocation across the intestinal wall is limited by the 

mucus layer. The whole intestinal surface is covered by a mucus layer attached 

to the enterocytes, making them poorly accessible to luminal bacteria. Mucins, 

D.              Nlrp3 -/- miceC. WT mice – Chow vs HFHC

Chow HFHC Chow HFHC

Figure 7. Gut microbiota taxonomic composition in mice grouped according to diet and genotype. (A) Gut microbiota
alpha-diversity values in the 4 groups: calculated Shannon’s Index was statistically different as indicated by stars:*P < 
0.0001; **P= 0.04;***P= 0.01. (B) Gut microbiota beta-diversity values in the 4 group: PC1 and PC2 explained, 
respectively, 50.82% and 24.91% of variation; Light triangles = NLRP3-/- HFHC-fed, dark triangles = NLRP3-/- Chow-fed, 
circles = wt HFHC-fed, squares = WT Chow-fe. (C  and D) More abundant phyla are represented in the graph cakes. In 
red, Firmicutes; in blue, Bacteroidetes; in purple, Verrucomicrobia; in green, Proteobacteria.
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the mucus ‘building blocks’, are the substrate for mucus-degrading bacteria such 

as A. muciniphila, a gut commensal that has been proposed to modulates host’s 

cellular pathways involved in basal metabolism homeostasis and immune 

tolerance toward commensal microbiota (Derrien M, 2011). However, 

exaggerate mucus degradation by A. muciniphila might contributes to intestinal 

inflammation due to the increase layer crossing by luminal antigens (Ganesh BP, 

2013). Mucus layer is composed by two mucin chemotypes, distinguished as 

sulphated and sialyated. Sulphomucins are mature forms predominant in healthy 

condition and derived by sialyated mucins through posttranslational 

modification. A reduction on sulphated mucin forms has been shown in acute 

inflammation and this variation reflected the degree of mucosal inflammation, 

suggesting that a lowered amount of sulphomucins might correlate with an 

excessive degradation of the mucus layer and with its increased permeability to 

PAMPS. In addition, the reduction of sulphomucin abundance has been 

associated to increase relative abundance of Desulfovibrio, a species that as well 

as A. muciniphila, is capable to harvest sulphate from intestinal mucins 

dissimilatory sulphate reduction (G. Lennon, 2013). In keeping with these 

previous observations, we showed a dramatic increase in Desulfovibrio and 

Akkermansia in the cecal samples of NLRP3
-/-

 mice following treatment with a 

HFHC diet. Therefore, it could be conceived that, in addition to tight junction 

loosening, mucus layer chemotype variation and degradation by sulphate 

reducing bacterial species might concur to the increased permeability to PAMPS 

and TLR activation in NLRP3
-/-

 mice fed with HFHC diet. Indeed, intestinal 

permeability (G. Svegliati Baroni personal communication) was increased 

significantly in HFHC fed mice compared to Chow fed mice. 

Noteworthy, while its presence has so far been consistently associated to healthy 

mucosa, Akkermansia increased abundance has been recently reported in Rag
-/- 

mice, a model that lacks all mature lymphocytes (Zhang H, ISME J 2015). Thus, 

we report here a similar effect in a different mouse model of adaptive immunity 

deficiency, strengthening the hypothesis that Akkermansia may serve as a 

biomarker of immunodeficiency and that its uncontrolled blooming might 

worsen mucosa inflammation and the leaky gut condition. 
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