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Abstract
We have investigated the role of selection in the determination of the detected levels of in-

trogression from modern maize hybrid varieties into maize landraces still cultivated in situ in

Italy. We exploited the availability of a historical collection of landraces undertaken before

the introduction and widespread use of modern maize, to analyse genomic changes that

have occurred in these maize landraces over 50 years of co-existence with hybrid varieties.

We have combined a previously published SSR dataset (n=21) with an AFLP loci dataset

(n=168) to provide higher resolution power and to obtain a more detailed picture. We show

that selection pressures for adaptation have favoured new alleles introduced by migration

from hybrids. This shows the potential for analysis of historical introgression even over this

short period of 50 years, for an understanding of the evolution of the genome and for the

identification of its functionally important regions. Moreover, this demonstrates that landra-

ces grown in situ represent almost unique populations for use for such studies when the

focus is on the domesticated plant. This is due to their adaptation, which has arisen from

their dynamic evolution under a continuously changing agro-ecological environment, and

their capture of new alleles from hybridisation. We have also identified loci for which selec-

tion has inhibited introgression from modern germplasm and has enhanced the distinction

between landraces and modern maize. These loci indicate that selection acted in the past,

during the formation of the flint and dent gene pools. In particular, the locus showing the

strongest signals of selection is aMisfit transposable element. Finally, molecular characteri-

sation of the same samples with two different molecular markers has allowed us to compare

their performances. Although the genetic-diversity and population-structure analyses pro-

vide the same global qualitative pattern, which thus provides the same inferences, there are

differences related to their natures and characteristics.
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Introduction
Introgressive hybridization has major roles in the evolution of plant populations and in the de-
velopment of novel diversity and adaptive scenarios [1–6]. Among the different consequences
of introgression, such as increased nucleotide diversity, transfer or origin of adaptation, and
creation of ecotypes and species, introgression might also facilitate genetic assimilation, with
the extinction of populations [7,8].

Novel combinations of genes arising from hybridization can represent new sources of varia-
tion on which selection might work. The issue of adaptive introgression due to hybridization as
‘an evolutionary stimulus’ was introduced in the 1950s [1,2,9,10]. There are numerous exam-
ples of this in the literature for viruses, bacteria, and plant and animal species, and on the evo-
lution of wild species (see [11] for review), transgene escape [12–14], and crop-weedy-wild
introgression [15–21]. These have shown the potential for the identification of functionally im-
portant regions of the genome through studies focused on hybridization.

Considering crop plants, the dynamic conservation of landraces can exploit the occurrence
of introgression as a novel source of diversity, even if the level and direction of introgression
might have an important role in favouring adaptive processes or might result in reduction in
genetic diversity (e.g., asymmetric introgression) [16]). At the same time, landraces are an al-
most unique population for use for such studies when the focus is on the domesticated plant.
Indeed, for landraces, the isolation by distance model is often as valid as it is for wild popula-
tions [22–23].

In particular the analysis of recent well-defined events like the introduction of modern vari-
eties can be exploited to study gene flow and selection, especially if samples that were collected
during different periods are available, such as historical collections. To the best of our knowl-
edge, only two studies in Europe have reported on gene flow analysis over time that have in-
volved landraces and modern varieties: one in barley [23] and the other in maize [24].

The present study is based on the previous study of Bitocchi et al. [24], where changes were
compared at the genome level for two collections of maize landraces from the Marche region
that were established at two different times; i.e., one recently (from 2000–2005), and the other
before the introduction and spread of the cultivation of modern maize hybrid varieties (from
the early 1950s). Bitocchi et al. [24] also included flint and dent modern maize hybrid geno-
types (FMM, DMM, respectively) in their analyses, as well as landraces from northern Italy.
On this basis, they indicated that the recent maize landraces originated and evolved from the
gene pool of landraces cultivated in the Marche region (central Italy) before the introduction of
the hybrids, and that hybridization events between these landraces and modern varieties has
occurred. Thus, from population-structure, diversity, and linkage-disequilibrium analyses,
clear and significant levels of introgression into the recent landraces from the modern hybrids
was shown.

By genotyping a subsample of these individuals (including only the accessions from 2000;
accessions collected in 2001–2005 were not included) using amplified fragment-length poly-
morphism (AFLP) molecular markers and using the required simple sequence repeat (SSR)
data from Bitocchi et al. [24], the present study aimed to: (i) investigate the role of selection in
the determination of the detected level of introgression in recent landraces after 50 years of co-
existence with the cultivation of maize hybrid varieties; (ii) identify loci that show effects of se-
lection that might have been important during the formation of the flint and dent gene pools,
or for fitness and adaptation; and (iii) compare the data obtained with these two
molecular markers.
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Materials and Methods

Plant materials
Here, 104 accessions of maize were analysed for a total of 218 genotypes. In particular, five
populations characterised the whole sample, as materials shared with those used in the study of
Bitocchi et al. [24] (Table 1): two collections of flint maize landraces from the Marche region
(Italy) that were collected at two different times, as one in the early 1950s, and thus before the
introduction of maize hybrids (old landraces; OLs), comprising 43 accessions (farmers’ fields)
with 83 genotypes (individuals), and the other from the year 2000 (recent landraces; RLs; the
accessions collected in 2001–2005 in Bitocchi et al. [24] were not included), comprising 20 ac-
cessions with 77 genotypes; a set of traditional maize landraces from northern Italy (NI), which
were used as parents for the development of the flint hybrid varieties; and sets of both flint
(FMM) and dent (DMM) modern maize varieties that each included modern hybrids and in-
bred lines. Thus, we included the same OL, NI, FMM and DMM populations as Bitocchi et al.
[24], with the RLs in the present study as a subsample of those of Bitocchi et al. [24]. The list of
accessions used, along with details of the accession codes, numbers of genotypes per accessions,
local names for the accessions and pedigrees for the hybrids and inbred lines, and the collection
sites of the landraces from the Marche region, are reported in S1 Table. The details of the col-
lections from the Marche region are in Bitocchi et al. [24]. No permits were required for the de-
scribed collections as the locations are not protected in any way, and endangered or protected
species are not involved in the present study.

In the RL population, an accession was included (ANGRMC13) that was not a landrace, but
was instead a dent hybrid that had been bought by one of the farmers some years ago and has
been cultivated in situ to date. The ANGRMC13 RL population was thus used only in the pop-
ulation structure analysis, as a control.

The maize inbred lines used are among the most important elite breeding materials that
have been developed by public institutions for use in temperate regions.

Genotypic data
The genotypes were analysed using 21 SSRs from the study of Bitocchi et al. [24], and using 168
AFLP markers in the present study. The DNA used for the AFLP genotyping was the same as
for the study of Bitocchi et al. [24], which was obtained from young leaves using the miniprep-
extraction method of Doyle and Doyle [25]. The details for the microsatellite markers, amplifi-
cation conditions, and genotyping are reported in Bitocchi et al. [24]. The complete SSR dataset
is also available from the Dryad Digital Repository [26].

Table 1. Number of accessions and genotypes analysed in this study.

Population Population code No. of accessions No. of genotypes

Old (early 1950s) flint landraces from Marche OL 43 83

Recent (2000) flint landraces from Marche RL 20a 77a

Northern Italy landraces NI 11 22

Modern flint maize FMM 8 12

Modern dent maize DMM 22 24

Total 104 218

aThe control accession ANGRMC13 (4 genotypes) was included in the RL population.

doi:10.1371/journal.pone.0121381.t001
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The AFLP protocol was as described by Vos et al. [27], with minor modifications. Briefly, di-
gestion of the total genomic DNA (300 ng) from each accession was carried out using the EcoRI
(5’-G^AATTC-3’) andMseI (5’-T^TAA-3’) restriction enzymes. The digested products
were ligated to the EcoRI (5`-CTCGTAGACTGCGTACC-3`; 3`-CTGACGCATGGTTAA-5`)
andMseI (5`-GACGATGAGTCCTGAG-3`; 3`-TACTCAGGACTCAT-5`) adapters by incu-
bation at 37°C for 4 h, followed by 20 min at 65°C, and a final temperature of 10°C. The DNA
from the restriction–ligation reactions was diluted 10-fold prior to amplification, and pre-selec-
tive amplification was performed using the primers EcoRI (5`-GACTGCGTACCAATTC-3`)
andMseI (5`-GATGAGTCCTGAGTAA-3`), with a single selective nucleotide (MseI+A). These
pre-selective reactions were performed in 50 μL total volume, containing 5 μL diluted DNA
from the restriction–ligation reactions, 75 ng of each primer, 0.2 mM dNTP, 1.5 mMMgCl2, 1×
Taq polymerase buffer, and 1 U Taq DNA polymerase (Promega). Amplifications were con-
ducted with a Perkin-Elmer 9700 thermal cycler (PE Applied Biosystems), using touch-down
PCR. This involved one cycle of 94°C for 45 s, 65°C for 30 s, and 72°C for 1 min, followed by 12
cycles of 94°C for 30 s, 64.4°C to 56.0°C for 30 s, decreasing at 0.7°C with each cycle, and 72°C
for 1 min, and then 20 cycles of 94°C for 30 s; 56°C for 30 s, 72°C for 1 min, and final extension
at 72°C for 10 min. The pre-selective amplification products were diluted 1:10 and used as tem-
plates with primers, each with three selective nucleotides; the EcoRI primers were labelled with
the Cy5 dye. S2 Table gives the AFLP primer combinations used and the number of loci scored
for each combination. The pre-selective reactions were performed in 20 μL total volume, con-
taining 5 μL diluted DNA from pre-selective reactions, 30 ng of each primer, 0.2 mM dNTP, 1.5
mMMgCl2, 1× Taq polymerase buffer, and 1 U Taq DNA polymerase (Promega). The amplifi-
cation cycle was the same as that described above for the pre-selective reactions. The AFLP frag-
ments were separated on 6% polyacrylamide gels by electrophoresis for 2 h at 50W constant
power, using a Genomix system (Beckman, Fullerton, CA). The scoring for absence and pres-
ence of fragments was performed manually. Bands of equal fragment size were assumed to be
homologous. To minimise the effects of size homoplasy, only fragments of the medium/ large
size classes were scored [28]. Only clearly amplified bands were retained for the analysis (bands
with variable intensity across genotypes were not considered). To obtain reliable data, replicated
samples were used to investigate polymorphism within the gel, and control genotypes were used
to align the different gel runs for each primer combination. The complete AFLP dataset is avail-
able as S1 File.

Genetic diversity and divergence analysis
For the SSR data, the effective number of alleles per locus (ne; [29]) and the unbiased expected
heterozygosity (He; [30]) were estimated for each population, using the PopGene version 1.32
software [31]. The population genetics package Arlequin version 3.5 [32] was used to estimate:
(i) the inbreeding coefficient (FIS; [33]) for each population; and (ii) the divergence between
the populations, through FST [33].

To take the dominant different nature of the AFLP markers into account, we first computed
allelic frequencies using a Bayesian method, with non-uniform prior distribution of allele fre-
quencies [34] using the AFLP-SURV 1.0 programme [35]; in this analysis, the inbreeding coef-
ficient (FIS) computed with the SSRs was integrated as a measure of deviation from the Hardy-
Weinberg equilibrium. This method has been shown to produce almost unbiased estimates of
allelic frequencies in dominant markers [36]. The second step was to use the estimated allelic
frequencies to compute ne [29] and He [30] for each population, and the FST [33] between pop-
ulations. Differences between maize landrace populations from the Marche region for the ne
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and He estimates were tested using the non-parametric Wilcoxon signed-ranks test for two
groups; i.e., pairs of estimates for each locus [37].

A Mantel test [38] was performed to test the correlation between the FST matrices obtained
with the SSR and AFLP molecular markers, using the GenAlEx version 6.5 software [39].

Population structure
The population structure of the whole sample considered was investigated using STRUCTURE
version 2.3.4 [40]. For K from one to eight, 20 independent runs were performed, using 30,000
burn-in periods, 30,000 Markov chain Monte Carlo repetitions, and no prior information, and
assuming correlated allele frequencies and admixture. For the AFLP, the procedure applied
took into account appropriately the genotypic ambiguity inherent to dominant markers [41].
The ad-hoc statistic ΔK [42] was used to infer the number of populations (K). The percentage
of membership (q) of each genotype in each of the inferred K populations was estimated by
one final run for 100,000 burn-in periods and Markov chain Monte Carlo repetitions. The per-
centage of membership of each accession was computed by averaging the q values of the geno-
types belonging to the same accession. A non-parametric correlation analysis (Spearman's
correlation coefficient rho [ρ]) was performed to test the relationship between the q values ob-
tained with the SSR and AFLP molecular markers. The Wilcoxon–Kruskal–Wallis non-
parametric test was used to test the differences among the accessions for the average percentage
of membership (q). The JMP 7 software (SAS Institute, Cary, USA) was used for both of
these analyses.

The STRUCTURE data were used to further subdivide the RL accessions into two sub-
groups: RL_A and RL_B, as the accessions that showed low and high introgression, respective-
ly, from the modern maize. For these subsets, the genetic diversity statistics (ne and He) were
used for a comparison with the OL population.

Selection analysis
Two different methods were used to detect SSR and AFLP loci that were affected by selection
during maize evolution. In particular, this analysis was conducted for pairs of populations (e.g.,
OL-RL, OL-DMM, RL-DMM). The NI and FMM populations were not considered in this
analyses because of their small sample size. For the SSR markers, we first applied the method of
Beaumont and Nichols [43], as further developed by Beaumont and Balding [44], and as imple-
mented in the FDIST2 software. This approach is based on an island model and simulates the
distribution of the FST conditioned on the heterozygosity, under the null hypothesis of drift
and migration only. This has been shown to be relatively robust in different demographic sce-
narios [44], especially for population pairs [45]. The procedure used for the SSRs was the same
as that described by Bitocchi et al. [24]. The AFLP markers were analysed using the same ap-
proach, modified for dominant markers; the DFDIST software was used. This programme im-
plements the Bayesian method of Zhivotovsky [34] to estimate allele frequencies. In DFDIST,
the loci with a frequency of the most common allele�0.98 were excluded; thus, a mean ‘neu-
tral’ FST value was calculated after trimming 30% of the highest and lowest FST values. The soft-
ware simulated the evolution of 100,000 neutral loci under a symmetrical island model with
two demes (populations) exchanging migrants. To determine the putative neutral FST, this pro-
cess was iterated, excluding all of the loci that showed departure from the simulated expected
neutral distribution at each following run, until no further locus fell outside the expected distri-
bution. Then, a final run that included all of the AFLP markers was performed to detect loci
under selection using the putative neutral FST estimated. A stringent probability level of
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significance (P<0.01) was used in each test of neutrality, to avoid type I errors (i.e., the risk of
false positives).

Different studies have suggested the use of two or more outlier detection methods to avoid
false conclusions [46–48]. Thus, we applied a second approach, as proposed by Foll & Gaggiotti,
[49], and implemented in Bayescan version 2.1 [49–50], which directly estimates the probability
that each locus is subjected to selection using a Bayesian method. Briefly, the programme defines
two alternative models: one that includes the effects of selection, and another that excludes
them. The probability of each model was estimated for each locus using a reversible-jumpMar-
kov chain Monte Carlo approach [49]. The following default parameters were used: 20 pilot
runs of 5,000 iterations, an additional burn-in of 50,000 iterations, followed by 100,000 itera-
tions with a sample size of 5,000 and thinning interval of 10. For the AFLP, a uniform distribu-
tion of FIS between 0 and 1 was also used, and the loci with the commonest allele at a frequency
�0.98 were excluded. The data are expressed for each locus as a Bayes factor (BF), which corre-
sponds to the posterior probability of the selection model with selection over that without it
(neutral). The Bayes factors can be converted into a scale of evidence for the effects of selection
on the locus [51], as: barely worth mentioning; substantial; strong; very strong; and decisive. For
a locus to be an outlier, the ‘very strong’ and ‘decisive’ levels were considered.

The variations in the genetic diversity, He, between the OL and RL populations (ΔHOL-RL)
and between the two subgroups of the RL population (ΔHOL-RL_A and ΔHOL-RL_B) were calcu-
lated as ΔH = 1 − (HeOL/HeRL), where HeOL and HeRL are the genetic diversities in the OL and
RL populations, respectively [52]. This was carried out separately for neutral loci and for those
detected as outliers.

Sequencing of AFLP locus 26d
Both of the outlier detection methods indicated the AFLP locus ‘26d’ as strongly affected by se-
lection; thus, we sequenced this DNA fragment. Eight different maize accessions were selected,
four carried the 26d fragment (OL accessions VA334 and VA331; RL accessions ANGRMC56
and ANGRMC5), and four were characterised by the absence of the 26d fragment (dent hybrid
variety TEVERE; the A632 and B73 dent inbred lines; the RL ANGRMC52 accession). One in-
dividual for each accession was genotyped, with the protocol performed as described above for
the AFLP genotyping. The data (as presence/ absence of the 26d fragment) were consistent
with the initial score, and thus the fragments for the four genotypes carrying the 26d band were
cut from the polyacrilamide gel using a sterile blade, eluted into a tube with 100 μl double-
distilled water, and incubated at room temperature for 24 h. Two microlitres of the elution
from each cut fragment was used as the template for PCR amplification, with the same AFLP
primer combination that originated the fragment, and under the same conditions, in 100 μL re-
action mix. The PCR products were purified using GFX PCR DNA and Gel Band Purification
kits (GE Healthcare, UK), according to the manufacturer instructions. The samples were se-
quenced on both strands using forward and reverse primers with the cycle sequencing reaction
with BigDye Terminator Cycle Sequencing Ready Reaction kits (Applied Biosystems, Foster
City, CA, USA). The products were resolved on an ABI Prism 3100-Avant automated sequenc-
er (Applied Biosystems, Foster City, CA, USA). Pregap4 and Gap4 of the Staden Software
Package (http://staden.sourceforge.net/) were used for the sequence analysis. The Pregap4
modules were used to prepare the sequence data for assembly (quality analysis). Gap4 was used
for the final sequence assembly of the Pregap4 output files (normal shotgun assembly). The se-
quences obtained were aligned using MUSCLE version 3.7 [53] and edited using BIOEDIT ver-
sion 7.0.9.0 [54]. BLASTn [55] analysis was carried out against the nucleotide collection (nr/nt)
NCBI/ GenBank database (http://blast.ncbi.nlm.nih.gov/Blast.cgi, as accessed on 4 June, 2014).
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A BLASTn analysis was also performed against the sequence database of the B73 Reference Ge-
nome assembly (B73 RefGen_v2) (executed at MaizeGDB, http://blast.maizegdb.org/home.
php?a=BLAST_UI, as accessed on 31 July, 2014).

The inbred lines ANGRMC56 and A632 that are characterised by the presence and absence
of the 26d fragment, respectively, were chosen to carried out reciprocal crosses
(A632 × ANGRMC56; ANGRMC56 × A632). The F1 genotypes were screened for the pres-
ence/ absence of the 26d fragment.

Results

Genetic diversity and population divergence
The effective number of alleles per locus (ne) and the unbiased expected heterozygosity (He)
were computed to estimate the levels of genetic diversity for the five populations considered:
OL, RL, NI, FMM and DMM. This was carried out using both the SSR and AFLP datasets. The
results were very consistent across these two molecular markers (Table 2). In particular, as for
the study of Bitocchi et al. [24], we focused our attention on the comparison between the OL
and RL maize landrace populations, with the aim being to determine changes that have oc-
curred over the last 50 years, thus from before the introduction of maize hybrids. The ne esti-
mates for RL were higher than for OL for both the SSR (ne(OL) = 3.22 vs. ne(RL) = 3.36;
P = 0.006) and AFLP (ne(OL) = 1.37 vs. ne(RL) = 1.43; P<0.0001) datasets. The same was seen
for He (SSR: He(OL) = 0.55 vs. He(RL) = 0.63; P = 0.0007; AFLP: He(OL) = 0.23 vs. He(RL) = 0.27;
P<0.0001).

The highest inbreeding coefficient was that of DMM (FIS = 0.80) (Table 2); this was ex-
pected, as almost all of these accessions were inbred lines. Compared to the OL population, the
RL population showed a significantly higher FIS (1.61-fold; P = 0.005; Table 2), which can be

Table 2. Genetic diversity estimates for the populations analysed using the SSR and AFLP datasets.

Dataset Population ne He FIS

SSR OL 3.22 0.55 0.23

RL 3.36 0.63 0.37

RL_Aa 2.90 0.57 0.33

RL_Bb 3.04 0.63 0.36

NI 3.82 0.65 0.34

FMM 2.81 0.58 0.28

DMM 3.30 0.66 0.80

AFLP OL 1.37 0.23 /

RL 1.43 0.27 /

RL_Aa 1.39 0.24 /

RL_Bb 1.44 0.27 /

NI 1.44 0.27 /

FMM 1.44 0.28 /

DMM 1.47 0.29 /

ne, Effective number of alleles per locus [29]; He, Unbiased expected heterozygosity [30]; FIS, Inbreeding

coefficient [33].

Subgroups of the RL population as determined by the population STRUCTURE analysis:
aRL_A, accessions showing no or low level of introgression from modern maize;
bRL_B, accessions showing high level of introgression from modern maize.

For further population codes, see Table 1.

doi:10.1371/journal.pone.0121381.t002
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explained by the fragmentation, which increased the probability of allele fixation within farm-
ers’ subpopulations, and as a consequence, the level of inbreeding; this has occurred over the
last 50 to 60 years, due to reductions in the cultivation of traditional landraces and their field
sizes, which has led to a reduction in the effective population size of the landraces at the meta-
population level.

Estimates of differentiation (FST) between the pairs of populations computed with the SSR
and AFLP datasets are reported in S3 Table. The Mantel test showed that the matrices obtained
with the two molecular markers were almost identical (r2 = 0.87; P = 0.01; S1 Fig.). The lowest
differentiation was between the OL and RL populations (FST = 0.03 and 0.04, for SSR and
AFLP, respectively; Fig. 1 and S3 Table). While consistent with the data of Bitocchi et al. [24]
that were obtained only with SSRs, also for the AFLP dataset, the genetic differentiation be-
tween OL and the other populations increased from NI (FST = 0.12) to FMM (FST = 0.15), to a
maximum FST of 0.22 for DMM. This trend was similar considering the differentiation between
RL and the other populations, although all of the FST values were lower compared to those

Fig 1. Divergence between populations. Pairwise FST values between the OL and the RL, NI, FMM and
DMM (red squares) populations, and between the RL and the OL, NI, FMM and DMM (grey triangles)
populations for the SSR (a) and AFLP (b)molecular markers.

doi:10.1371/journal.pone.0121381.g001
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obtained for OL, with the estimates between the OL and the NI, FMM and DMM populations
being, on average, 1.6-fold higher that those between the RL and the NI, FMM and DMM pop-
ulations (Fig. 1 and S3 Table).

Population structure
The plot of the average ln likelihood values over 20 runs for K values ranging from 1 to 8
showed that the ln likelihood estimates increased progressively as K increased (S2 Fig.). Thus,
we used the ad-hoc statistic ΔK [42] to infer the number of populations that characterise our
sample. These data were consistent for both SSRs and AFLPs, and suggested that this sample
was made up of two main genetic groups, or clusters (S2 Fig.).

The percentages of membership (i.e., q values) for each genotype in each of these two clus-
ters (hereafter referred to as cluster 1 and cluster 2) were computed (Fig. 2). The correlation
analysis between the q values between the two different molecular markers indicated that they
were highly consistent (Spearman's ρ = 0.84, P<0.0001).

Focusing on the average percentages of membership of each of the five populations in each
of these two clusters (q1 for cluster 1, q2 for cluster 2), the OL population was assigned to clus-
ter 1 (q1 = 0.94 and 0.97, for SSRs and AFLPs, respectively); the RL population was mostly as-
signed to cluster 1 (q1(SSR) = 0.63, q1(AFLP) = 0.79), while the NI population was intermediate
between clusters q1 and q2 (q1(SSR) = 0.45, q1(AFLP) = 0.53) (Table 3). The DMM population was
assigned to cluster 2 (q2 = 0.98 and 0.95, for SSRs and AFLPs, respectively), as was the FMM
population (q2(SSR) = 0.89, q2(AFLP) = 0.62) (Table 3).

The average percentages of membership at the accession level are reported in Fig. 3; the OL
accessions were assigned to cluster 1 with high percentages of membership, which ranged from
a minimum q1(SSR) of 0.62 and q1(AFLP) of 0.87, to a maximum q1(SSR-AFLP) of 0.99 (Fig. 3).
Moreover, the average q1 values of the OL accessions were uniform (Wilcoxon–Kruskal–Wallis
non-parametric test; PSSR = 0.08 and PAFLP = 0.09). Similarly, the DMM accessions were as-
signed to cluster 2 with high values of q2 (q2(SSR) from 0.90 to 0.99; q2(AFLP) from 0.73 to 0.99)
(Fig. 3). As suggested by Bitocchi et al. [24] from their consideration of only the SSR dataset,
the AFLP dataset confirmed that the applied population structure analysis can clearly discrimi-
nate between the landraces cultivated before the introduction of maize hybrids (OL) and the

Fig 2. Population structure at individual level. Percentages of membership to cluster 1 (q1, red) and
cluster 2 (q2, blue) for each of the 218 genotypes for the SSR (a) and AFLP (b)molecular markers. Each
genotype is represented by a vertical bar divided into two coloured segments, the lengths of which indicate
the proportions of the genome attributed to cluster 1 and cluster 2. The arrow indicates the four genotypes of
the control accession ANGRMC13.

doi:10.1371/journal.pone.0121381.g002
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modern maize germplasm (DMM). This thus provides a powerful approach for the study of in-
trogression from modern maize varieties into RL landraces, which should be proportional to
the q2 values. The level of introgression of the RL accessions was highly variable, with the
means of their q1 values being significantly different (Wilcoxon–Kruskal–Wallis non-paramet-
ric test; P<0.0001 for both the SSR and AFLP datasets; control accession ANGRMC13 exclud-
ed). To evaluate the different levels of introgression for the RL accessions (no/ low
introgression, or admixture/ high introgression), a threshold value of q1 was defined for both
of the molecular markers, as the lowest average values of q1 among the OL accessions (0.62 for
SSR, and 0.87 for AFLP). Twelve of the RL accessions (63%) showed no or low introgression
from modern maize (RL_A), while the remaining seven RL accessions were admixed or showed
high levels of introgression (RL_B). As expected, the control RL accession ANGRMC13, which

Table 3. Averagemembership coefficients to each of the two identified clusters for the populations
analysed using the SSR and AFLP datasets.

Dataset Population q1 q2

SSR OL 0.94 0.06

RLa 0.63 0.37

NI 0.48 0.52

FMM 0.11 0.89

DMM 0.02 0.98

AFLP OL 0.97 0.03

RLa 0.79 0.21

NI 0.53 0.47

FMM 0.38 0.62

DMM 0.05 0.95

q1, Average percentage of membership to Cluster 1; q2, Average percentage of membership to Cluster 2.
aThe control accession ANGRMC13 was excluded by this computation.

For population codes, see Table 1.

doi:10.1371/journal.pone.0121381.t003

Fig 3. Population structure at accession level. Average percentages of membership to cluster 1 (q1, red)
and cluster 2 (q2, blue) for each of the 104 accessions for the SSR (a) and AFLP (b)molecular markers. Each
accession is represented by a vertical bar divided into two coloured segments, the lengths of which indicate
the proportions of the genome attributed to cluster 1 and cluster 2. The arrow indicates the control accession
ANGRMC13.

doi:10.1371/journal.pone.0121381.g003
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was not a landrace, but a dent hybrid that had been cultivated in situ for some years, was as-
signed to cluster 2 (q2 = 0.99 for both SSR and AFLP; Fig. 3).

The genetic diversity of RL_A was significantly lower than that of RL (comparisons between
ne and He estimates of RL and RL_A, P<0.05), but not significantly different from that of the
OL population for the SSRs (P>0.30). Considering a significance level of 1%, this was true also
for the AFLPs (P>0.01) (Table 2). The genetic diversity estimates of RL_B were similar to
those of RL (comparisons between ne and He estimates of RL and RL_B, P>0.05), while they
were significantly higher than those of the OL population (P<0.01), with an exception being
the comparison between the ne estimates, which did not reach significance (P = 0.06) (Table 2).

Selection
Tests of neutrality were carried out for three pairs of populations: OL–RL, OL–DMM and RL–
DMM. As in Bitocchi et al. [24], this procedure was applied not only to avoid bias related to
heterogeneity in demographic parameters among subpopulations [45], but also to determine
the loci that were detected as outliers due to selection acting between the flint or dent varieties
(i.e., the OL–DMM and RL–DMM comparisons) or to changing environments or favouring
new alleles introduced by migration from hybrids over the last 50 years of in-situ cultivation
(i.e., the OL–RL comparison).

Two different approaches were used to test for selection, for both the SSR and AFLP molec-
ular markers. The Beaumont and Nichols [43] approach was implemented in the FDIST2 soft-
ware, and this detected only one SSR locus (umc1634) as an outlier in the OL–DMM
comparison, at a significance level of 0.01 (Table 4 and S3 Fig.). The second approach was that
proposed by Foll and Gaggiotti [49] and implemented in the Bayescan software, which allowed

Table 4. Summary of the neutrality test results.

Dataset Ch Locus OL-RL OL-DMM RL-DMM

FDIST2a/ DFDISTb Bayescanc FDIST2a/ DFDISTb Bayescanc FDIST2a/ DFDISTb Bayescanc

SSR 2 bnlg1746 2

9 umc1634 X

7 bnlg1094 3

3 bnlg1523 1 5

AFLP / 11c X

/ 15 d X

/ 25 d X

/ 26 d X 4 X 2

/ 8f X

/ 33f X X

/ 39f X

/ 40f X

/ 45f X

aFor SSR dataset
bFor AFLP dataset
cJeffrey’s interpretation [51], 1, barely worth mentioning (Bayes factor [BF], 1–3); 2, substantial (BF, 3–10); 3, strong (BF, 10–32); 4, very strong (BF, 32–

100); 5, decisive (BF, >100);

X, locus detected as outlier by FDIST/ DFDIST (P <0.01);

For population codes, see Table 1.

Ch, Chromosome.

doi:10.1371/journal.pone.0121381.t004
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the identification of three loci (bnlg1746, bnlg1094, bnlg1523) as putatively under selection, all
of which were detected in the OL–DMM comparison, with bnlg1523 also detected in the OL–
RL comparison. However, these loci showed different intensities of evidence of selection in
terms of the Jeffrey [51] scale. Considering the OL–DMM comparison, the level of evidence of
selection was ‘substantial’ for locus bnlg1746, ‘strong’ for bnlg1094, and ‘decisive’ for bnlg1523;
in the OL–RL comparison, bnlg1523 showed little sign of selection (‘barely worth mentioning’
for the Jeffrey [51] scale) (Table 4).

A total of nine AFLP loci were detected as outliers by the DFDIST analysis (significance
level, 0.01) (Table 4 and Fig. 4). Eight loci (11c, 15d, 25d, 8f, 33f, 39f, 40f, 45f) were detected as
under selection in the OL–RL comparison, and two (26d, 33f) in the OL–DMM comparison,
with 26d being detected also in the RL–DMM comparison. Bayescan analysis identified locus
26d as an outlier, with very strong evidence of selection in the OL–DMM comparison, and
only slight evidence in the RL–DMM comparison. Thus, both of these different methods pro-
vided strong evidence of selection for the AFLP locus of 26d; moreover, this locus showed very
high differentiation between the landraces and the modern maize (FST(OL-DMM) = 0.93; FST
(OL-DMM) = 0.72) (Fig. 4).

Table 5 gives the allelic frequencies of the AFLP fragment (band presence) and unbiased ex-
pected heterozygosity (He) of the AFLP loci detected as outliers (by one or both of the methods
applied) for the OL, RL, NI, FMM, DMM, RL_A and RL_B populations. Considering the eight
loci detected in the OL–RL comparison, their allelic frequencies were intermediate between
those of the OL and DMM populations, and also between the RL_A and RL_B populations; the
frequencies of loci in the RL_A and RL_B populations were closer to the OL and DMM popula-
tions, respectively (Table 5). The only exception was locus 45f, which in the RL population had
a lower frequency than in the OL, DMM, FMM and RL-A populations (Table 5), while it
showed the lowest frequency for the RL_B population, and an allelic frequency in the NI popu-
lation that was similar to RL. Locus 26d, which was detected as under selection in the compari-
son between the landraces (OL/ RL) and the modern maize (DMM), showed allelic frequencies
that were extreme and opposite for the landraces and dent populations (Table 5). For all of
these loci, there was an increase in genetic diversity in RL compared to OL (Table 5). In partic-
ular, the variation of the genetic diversity, He, between the OL and RL populations (ΔHOL-RL)
for the loci detected as under selection in the OL–RL comparison was significantly higher than
that computed for the neutral loci (Table 6). This also held true considering the ΔH values be-
tween OL and the two subgroups of the RL population (RL_A, RL_B) (Table 6). No significant
differences were found in the ΔH values computed for the neutral and outlier loci detected in
the comparisons between the landraces (OL/ RL) and the modern maize (DMM; Table 6).

A neutral dataset was built for both the SSRs and AFLPs by excluding the loci that showed
even a minimal effect of selection (all of the loci that also showed minimal signs of selection are
reported in Table 4). The level of introgression of this neutral dataset (q2 estimate for RL) was
then computed. This analysis was carried out to estimate the level of introgression from mod-
ern maize into landraces that was not inflated by selection, and thus to determine whether se-
lection had a relevant role in determining the introgression detected. The SSRs and AFLPs gave
different results here. In particular, the level of introgression in the RL population computed
with the SSRs indicated a similar q2 value for the neutral loci (q2 = 0.39) and all of the loci (q2 =
0.37) (Wilcoxon–Kruskal–Wallis non-parametric test, P = 0.36; Fig. 5). The AFLP results indi-
cated a significantly lower level of introgression with the neutral loci (q2 = 0.16) than with all of
the loci (q2 = 0.21) (Wilcoxon–Kruskal–Wallis non-parametric test, P = 0.04; Fig. 5).

The neutrality test results were also used to identify loci that showed strong signals of selec-
tion that might have been important during the formation of the flint and dent gene pools, or
for fitness and adaptation. Among the SSR loci, none were detected as under selection by either
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Fig 4. Pairwise comparisons performed with DFDIST using the AFLPmarkers. Plot of FST values
against heterozygosity estimates for the OL–RL (a), RL–DMM (b) and OL–DMM (c) populations pairs. Each
dot indicates an AFLP locus (black dot, neutral locus; red dot, outlier locus).

doi:10.1371/journal.pone.0121381.g004
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of the two methods applied (SSRs, AFLPs); however, the locus umc1634 was detected as an out-
lier with high probability by FDIST2 (significance level, 0.01), and similarly, a strong signal of
selection (maximum on the Jeffrey [51] scale) was found also for the bnlg1523 locus by Bayes-
can. Both of these loci were detected in the OL–DMM comparison. Among the AFLPs, locus
26d showed very strong evidence of selection, as it was detected as an outlier by both methods
in comparisons between the landraces (OL/ RL) and the modern maize (DMM). Moreover,
this locus showed very high levels of differentiation (FST) between the landraces and the

Table 5. Frequency of the AFLP fragment (presence of the band) and unbiased expected heterozygosity (He) of the AFLP loci detected as outliers.

Dataset Locus Comparisona Population

OL RL NI FMM DMM RL_Ab RL_Bc

AFLP fragment 11c OL-RL 0.81 0.49 0.56 0.07 0.11 0.54 0.39

frequency 15d OL-RL 0.07 0.29 0.43 0.55 0.83 0.22 0.34

25d OL-RL 0.02 0.17 0.16 0.13 0.70 0.07 0.38

8f OL-RL 0.86 0.54 0.66 0.28 0.29 0.63 0.39

39f OL-RL 0.95 0.70 0.86 0.76 0.58 0.89 0.46

40f OL-RL 0.03 0.21 0.38 0.21 0.41 0.14 0.36

45f OL-RL 0.98 0.70 0.66 0.92 0.92 0.93 0.42

33f OL-RL/ OL-DMM 0.76 0.42 0.34 0.28 0.00 0.74 0.04

26d OL-DMM/ RL-DMM 0.98 0.87 0.43 0.55 0.05 0.97 0.70

Unbiased expected 11c OL-RL 0.32 0.51 0.50 0.13 0.20 0.51 0.49

heterozygosity (He) 15d OL-RL 0.14 0.43 0.50 0.51 0.28 0.35 0.46

25d OL-RL 0.03 0.29 0.27 0.23 0.43 0.14 0.48

8f OL-RL 0.25 0.51 0.46 0.41 0.42 0.48 0.49

39f OL-RL 0.10 0.43 0.24 0.37 0.50 0.21 0.51

40f OL-RL 0.06 0.34 0.48 0.34 0.50 0.25 0.47

45f OL-RL 0.04 0.43 0.46 0.16 0.15 0.13 0.50

33f OL-RL/ OL-DMM 0.37 0.50 0.46 0.41 0.00 0.39 0.07

26d OL-DMM/ RL-DMM 0.04 0.24 0.50 0.51 0.10 0.05 0.43

aComparison in which the loci were detected as outliers.
bRL_A, accessions showing no or low level of introgression from modern maize;
cRL_B, accessions showing high level of introgression from modern maize.

For further population codes, see Table 1.

doi:10.1371/journal.pone.0121381.t005

Table 6. Variations in the genetic diversity (He) between the populations (ΔH), computed for the neu-
tral and outlier loci detected in the given comparisons.

Neutral loci Outlier loci Pa

ΔHOL-RL 0.12 0.63 0.000

ΔHOL-RL_A 0.04 0.48 0.001

ΔHOL-RL_B 0.12 0.64 0.003

ΔHOL-RL 0.12 0.44 0.096

ΔHOL-RL_A 0.04 0.08 0.482

ΔHOL-RL_B 0.12 0.18 1.000

aSignificance between ΔH values for neutral and outlier loci (Wilcoxon–Kruskal–Wallis non-parametric test).

For population codes, see Table 1.

doi:10.1371/journal.pone.0121381.t006
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modern maize (FST(OL-DMM) = 0.93, and FST(RL-DMM) = 0.72); such high FST are very unusual in
allogamous species like maize, thus, we decided to sequence the 26d AFLP fragment.

The sequence of the 26d locus (total, 170 bp) was obtained by removing the adapter se-
quences and reconstructing the restriction sites. No polymorphisms were identified between
the 26d sequences for the four genotypes used. The sequence has been deposited in the Gen-
Bank database (accession number KP406595).

Through BLASTn [55] searches against the nucleotide collection (nr/nt) database (NCBI/
GenBank), we identified four Zea mays sequences that showed high similarity with the 26d
locus sequence (Fig. 6 and S4 Table). This analysis indicated that the 26d AFLP fragment is

Fig 5. Introgression frommodernmaize into landraces. Level of introgression frommodern maize into the
RL population (q2 values) computed using only the neutral loci. For the comparison, the q2 values were
standardised based on the upper q2 value (q2 of the DMM population) and the lower q2 value (q2 of the OL
population). *, P<0.05.

doi:10.1371/journal.pone.0121381.g005

Fig 6. BLASTn analysis. Alignment of the 26d locus sequence and the four best matching sequences from
BLASTn searches. Grey, EcoRI restriction site; yellow,MseI restriction site.

doi:10.1371/journal.pone.0121381.g006
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part of a DNA transposon, which is a member of the CACTA family, known asMisfit [56].
The sequences of the lines W22 [57] and McC [56] were from the genomic region characterised
by the bronze (bz) locus in maize, which is located on the short arm of chromosome 9 (9S).
TheMisfit transposon sequence of the A654 line is from a genomic region that is characterised
by the delta zein (dzs10) gene, which is located on chromosome 9 [58]. In contrast, as showed
by Fu and Dooner [56], the B73 line does not carry the corresponding genomic region with the
Misfit transposon in the bronze locus; however, for the 26d fragment, we found correspondence
in the B73 line (identity, 99%; e-value, 7e-81), with a region located on chromosome 1: the so-
called pcluster [59]. Several hits for all of the chromosomes characterised by high e-values
(from 3.49e-80 to 3.47e-85) were found by the BLASTn analysis performed against the B73 Ref-
erence Genome sequence database. This was expected, considering that the 26d fragment is a
partial sequence of a transposable element. As for four sequences found in the NCBI nr/nt da-
tabase and the B73 Reference Genome, the 26d fragment that was characteristic of individuals
from the OL and RL populations was characterised by two mutations (Fig. 6). One mutation
was within the restriction site ofMseI (‘TTAA’ for 26d, and ‘TTAT’ for all of the other se-
quences found by BLASTn analysis); this explains the presence of the band for 100% and 96%
of the OL and RL individuals, respectively, and its absence in 96% of the DMM varieties and
lines. The other polymorphism was a mutation 3 bp upstream of theMseI restriction site (a ‘C’
base, instead of ‘T’).

Screening for the presence/ absence of the 26d fragment in the parental genotypes
ANGRMC56 and A632 (characterised by the presence and absence of the 26d fragment, re-
spectively) and in 10 F1 genotypes deriving from their reciprocal crosses, indicated that all of
the F1 genotypes carried the 26d fragment. This excluded the possibility of maternal inheri-
tance for the 26d locus (i.e., chloroplast or mitochondrial genome), which is instead present in
the nuclear DNA.

Discussion
In this study, we have combined the SSR dataset obtained by Bitocchi et al. [24] with AFLP
markers, through which we have been able to characterise the role of selection in determining
the detected level of introgression into maize landraces from hybrids. This was not evident in
the previous study of Bitocchi et al. [24] because of the lower number of loci analysed (i.e., 21
SSRs) compared to the addition here of 168 AFLPs, along with the same 21 SSRs. This was pos-
sible because a larger proportion of the genome was covered, which thus increased the proba-
bility to include loci linked to regions under selection [60].

However, from the comparison of the genetic diversity and the population structure analy-
ses conducted with the SSR and AFLP datasets for our sample, the data were comparable with
the use of this different kind of molecular marker (AFLPs), which confirms the picture
highlighted by Bitocchi et al. [24] relating to the evolution of maize landraces from central Italy
over the last 50 years, after the introduction and spread of modern hybrids.

SSRs versus AFLPs
One of the aims of this study was to compare the data obtained by the analysis of the same sam-
ples with two different molecular markers: SSRs and AFLPs. Even if the genetic diversity and
population structure analyses gave the same global qualitative pattern, there remain some dif-
ferences, which are related to the different natures and characteristics of these different DNA
marker systems (i.e., dominant for SSRs, and co-dominant for AFLPs).

The genetic diversity estimates for SSRs were higher than those for AFLPs. This is related to
the different mutation rates that are characteristic of these two molecular markers. The
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mutation rate is higher for SSRs compared to AFLPs [61–63], which results in higher allele var-
iation for SSRs. Moreover, it is important to consider that the He calculated using dominant
markers can vary from 0 to 0.5, with the maximum reached when the frequencies of absence
and presence of a band are equal (0.5). This consideration clearly indicates that it is not possi-
ble to directly compare absolute values of genetic diversity on data from different kinds of
markers, particularly when the comparisons are made with dominant versus co-dominant
markers [64].

The significant correlations between the SSR and AFLP matrices of FST indicate that both of
these marker systems support the same biological inferences. Nevertheless, the FST estimates
computed with AFLPs was slightly higher than those obtained in the SSR analysis. This was
also shown by Woodhead et al. [65] in a study that compared SSR and AFLP performances in
an analysis of the population genetics structure in Athyrium distentifolium. This might be relat-
ed to the higher number of AFLP loci, which leads to a high probability of including loci linked
to regions under selection, thus increasing the differentiation between the populations [60].
Another explanation might be the polymorphic nature of the SSR loci, which are less likely to
reach fixation, compared to AFLPs, and for individual loci to have an FST estimate of 1.

The consistency seen in the present study between the results from the STRUCTURE analy-
sis with the SSR and AFLP data are in agreement with a previous simulation [42], which
showed that with the STRUCTURE programme, 100 AFLP loci gave results similar to 10 SSR
loci in the detection of the real number of populations. At the individual assignment level, we
observed a similar trend, although the AFLP molecular markers were more efficient than the
SSR loci in the discrimination of the source of an individual among putative populations; in-
deed, the individuals were assigned lower percentages of membership (q) to the respective
groups with the SSR dataset than the AFLP dataset. This lower discriminating power of SSRs
compared to AFLPs was also reported by Campbell et al. [66] in whitefish (Coregonus clupea-
formis), Garoia et al. [64] in Solea vulgaris, and Woodhead et al. [65] in A. distentifolium. In
particular, the lower discriminating power of SSRs compared to AFLPs is due to the lower
number of loci that are generally analysed compared to AFLPs, and it is greater when the sam-
ple analysed has a low structure [67]. These data indicate that in such analyses that involve in-
dividual-based population assignment methods, AFLP molecular markers are particularly
useful in systems characterised by weak population structuring, and also when allogamous spe-
cies are considered.

Introgression and selection
Due to the combined effects of selection and recombination, it is possible to detect the signa-
ture of selection from variant patterns of allelic frequencies, as compared with neutral expecta-
tion [68,69]. Therefore, we used different approaches [44,49] to identify loci that showed
outlier behaviour for both of the molecular markers, and we used this information in two ways:
for the building of a neutral dataset to investigate the genome-wide effects; and to identify loci
with strong signals of selection that might mark genomic regions that have been controlling
important agronomic traits and/ or that contribute to local adaptation [45,46].

Our data based on SSRs only suggested that selection did not influence the introgression
from hybrids into landraces, which was mainly due to a neutral scenario. Moreover, the two
SSR loci detected with high signals of selection between the OL and DMM populations suggest
a selection taking place in the past during the evolution of the flint and dent types, and in any
case, before the introduction of the hybrids. However, the analysis conducted with AFLPs al-
lowed a more detailed scenario; indeed, the estimation of introgression into the recent maize
landraces was significantly lower for neutral compared to all of the AFLP loci, which indicated
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a role of selection in determining introgression from hybrids into maize landraces. Moreover,
for the AFLPs, most of the selection signatures were detected between OL and RL, with putative
AFLP loci under selection showing in RL, frequencies that were intermediate between OL and
DMM. All of these data indicate that in part, positive selection influenced the level of introgres-
sion observed in the RL populations by favouring alleles donated by DMM. The loci detected
as outliers in the comparisons between the OL and RL indicate that selection pressures for ad-
aptation have favoured new alleles introduced by migration from hybrids over the last 50 years.
This shows the critical role of migration in the evolution of landrace populations grown
on farms.

There have been few studies based on investigations of historical adaptive introgression in
cultivated species. Recently, Hufford et al. [21] documented patterns of genome-wide intro-
gression between maize and populations of its wild relative Z.mays ssp.mexicana that were
grown in sympatry in Mexico. They provided evidence of the presence of adaptive alleles from
Z.mays ssp.mexicana into the maize genome that were incorporated during its expansion to
the highlands of central Mexico. In rice, the introgression that has been shown for different
groups of cultivated rice has involved genes that control important agronomic traits [18,19,70].

Along with these studies, our findings show the potential of analysing historical introgres-
sion, and even within as short a time period as 50 years, to provide further understanding of
their evolution and to identify functionally important regions of the genome. Moreover, our
study provides evidence of the great opportunities offered by landraces to reach these goals. In-
deed, landraces are characterised by adaptation that derives from a historical dynamic evolu-
tion (under continuous pressures of different evolutionary forces) that is not only related to
genetic diversity created by new mutations, but also to the capture of new alleles from hybrid-
ization. In particular, as suggested by Barton [71], such introgression can lead to adaptation at
considerably higher rates compared to those for non-hybridizing populations. This is clearly
shown by our data, where signatures of adaptive introgression were found for this very short
time of co-evolution of landraces with modern maize (50 years). The possibility of using land-
race collections taken at different times (closely related populations) further enhances the effi-
ciency of genome scans for divergent selection due to the lower effects of (i) mutations, that are
less likely to obscure a potential selective footprint; and (ii) drift on the genetic diversity param-
eters used to infer loci putatively under selection (see [72]).

A further outcome of our study is related to the identification of loci that show effects of se-
lection in the comparisons between the landraces and the modern maize. In particular, we
found two loci: one, locus 33f, was detected as an outlier in the OL–DMM comparison; and the
other, locus 26d, was identified in the OL–DMM and RL–DMM comparisons. The allelic fre-
quencies of these two loci were extreme and opposite for the landraces (especially for locus
26d) and dent populations; this suggests that for these loci, selection has inhibited introgression
from modern germplasm (negatively selected in the RL landraces). Moreover, as we have seen
for the two SSR loci that showed the strongest signals of selection (umc1634, bnlg1523), and
which are located in genomic regions that carry important genes in the control of the starch
characteristics in the kernels, they enhance the distinction of the landraces from the modern
maize. This suggests that the selected loci were important loci during the formation of the flint
and dent gene pools, and that they have probably experienced purifying selection by the farm-
ers, either consciously or unconsciously. The high values of FST between the landraces and the
modern maize for these loci (FST = 0.72 and 0.93, for 33f and 26d, respectively) are very unusu-
al for neutral loci in an allogamous species like maize, also because of the low relevance of
hitchhiking, due to the rapid decay of linkage disequilibrium. Thus, our data suggest that our
two AFLP loci are tagging a genomic segment that is very close (a few kb) to the phenotypically
causative molecular variant that is associated to the differential fitness in the two populations.
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However, the very high divergence observed for these loci might have an alternative explana-
tion. Indeed, a locus with maternal inheritance (i.e., the chloroplast or mitochondrial genomes)
might show the same departure of allelic frequencies from that expected for nuclear neutral
loci, by assuming that: (i) the polymorphism reflects an old diagnostic polymorphism that was
alternatively fixed after the formation of the flint and dent gene pools; and (ii) introgression
from hybrids has occurred mostly by pollen flow.

We focused our attention on the 26d locus, which showed the strongest evidence of selec-
tion pressures. For this locus, the molecular characterisation of the parents characterised one
for the presence and the other for the absence of the 26d fragment, and of F1 genotypes derived
from reciprocal crosses between them. Along with the sequencing of the 26d fragment, this al-
lowed us to establish that this locus is present in the nuclear genome, and not in the chloroplast
or mitochondrial genomes, and thus maternal inheritance can be excluded. BLASTn analysis
against the B73 Reference Genome indicated high similarity of the 26d fragment sequence in
all of the maize chromosomes, so it was not possible to pinpoint the exact position of our frag-
ment in the maize genome. After all, it is well-known that maize is characterised by a highly
polymorphic genome structure [73,74], with interspersion of genes and retrotransposons that
varies from line to line. Nevertheless, taking this aspect carefully into account, we found high
similarities with sequences of three maize inbred lines located on chromosome 9, in particular
those for the W22 and McC lines were located in the genomic region characterised by the
bronze (bz) locus in maize, on the short arm of chromosome 9 (9S). This genomic region in
maize has several genes that control visible kernel traits, including Colourless kernel 1 (C1),
Shrunken 1 (Sh1), Bronze 1 (Br1) andWaxy (Wx), and it has been shown that the size of the
bz1 region can vary by more than three-fold among maize lines [75]. Thus, our data suggest
that a deeper investigation of this region in our landraces is needed, to identify a possible func-
tional role in the evolution of maize landraces for theMisfit transposable element located on
the short arm of chromosome 9, particularly in the distinction between the flint and dent
maize types. There is evidence in the literature that indicates that transposable element activity
has had a key part in adaptive evolution (for review, see [76]). For example, in maize, Studer
et al. [77] showed recently that a transposable element inserted in a regulatory region of the teo-
sinte branched 1 (tb1) gene, which is one of the major domestication genes in maize, acts as an
enhancer of gene expression, and partially explains the increased apical dominance in maize,
compared to its progenitor, teosinte.

Conclusions
Genome scans using large numbers of randomly selected markers to reveal loci that deviate
from neutral expectations, such that they might represent genomic regions that contribute to
important traits [45,46], have been widely used in different studies (for reviews, see [78,79]) in-
cluding those focused on crop species (e.g. [80–82]). Several of these have been based on AFLP
data in both animal and plant species, to identify loci that show the potential of the approach,
especially in non-model organisms (for review, see [83]). The identification of outlier AFLP
loci in the present study is further evidence of the usefulness and reliability of these methods.

The present study is one of the few that have been aimed at investigating historical adaptive
introgression in cultivated species [18,19,21,70]. One of the major key factors of the present
study is not only the use in the analysis of landraces maintained in situ, and thus under agro-
ecological conditions that have been continuously changing, but also, in contrast to the
studies mentioned above in maize and rice, we had the possibility to study their evolution
over the last 50 years, due the availability of collections carried out at different times. Interest-
ingly, we found that adaptation followed by hybridization with modern maize varieties was
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very fast, with landraces capturing and increasing the frequency of favourable alleles over very
short times.

The implications of such studies are numerous, starting from providing a deep understand-
ing of evolutionary processes, to identifying genes/ genomic regions that control phenotypic
traits, which is a crucial goal for breeders.
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