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1. Introduction 
 
The utility of genotype imputation in genome-wide association studies is increasing as 

progressively larger reference panels are improved and expanded through whole-genome 

sequencing. Developing general guidelines for optimally cost-effective imputation, 

however, requires evaluation of performance issues that include the relative utility of 

study-specific compared with general/multi-population reference panels. This study thus 

provides general guidelines for researchers planning large-scale genetic studies.  

 
1.1. Genome-wide association studies 
 
Genome-wide association studies (GWASs) have successfully identified thousands of 

common, single-nucleotide polymorphisms (SNPs) associated with complex traits. The 

amount of the SNPs assessed in a GWAS is one of the key factors in determining the 

power of these studies. In fact, the greater the number of markers, the higher the 

probability to identify a novel association. In the past decade, the majority of GWAS 

were carried out using a limited number of SNPs experimentally derived by commercial 

genotyping arrays. However, while the design of such arrays has evolved to target up to 

2.5 Million of SNPs, they still survey only a limited repertoire of sequence variation, and 

underrepresent rare and population specific variants. Much more complete extraction of 

genetic variation is now accessible using next-generation sequencing (NGS) 

technologies, but efficient detection of rare and low frequency variants requires 

sequencing hundreds to thousands of individuals and could be therefore very expensive 

and so unfeasible for the majority of the studies1. An alternative cost-effective approach 

to enlarge the frequency spectrum of variants assessed in GWASs capitalizes on publicly 

available sequencing reference panels, especially the 1000 Genomes Project (1000G) 

reference panels. Indeed, ‘probabilistic’ sequenced genomes can be reconstructed by 

means of genotyping imputation methods, inferring untyped variants by combining 

partial haplotypes found in a study sample with the full haplotypes available in a more 

densely characterized reference set.  
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1.2. The genotype imputation method 

The term genotype imputation indicates the process of predicting (or imputing) genotypes 

that are not directly assayed in a sample of individuals. Genotype imputation most often 

refers to the situation in which a reference panel of haplotypes at a dense set of SNPs is 

used to impute into a study sample of individuals that have been genotyped at a subset of 

the SNPs. The fundamental idea is that short stretches of haplotypes can be shared even 

between unrelated individuals from distant common ancestors. These stretches can be 

identified using genotypes for a given set of SNPs. Alleles for SNPs that are measured in 

the reference panel, but not the study samples, can be imputed. In a typical scenario, the 

study sample is genotyped with a commercial genotyping platform for hundreds of 

thousands to millions of SNPs located across the entire genome while the reference panel 

consists in a group of sequenced samples. An overview of this process is given in Figure 

12. Several different statistical descriptions of genotype imputation procedures have now 

been published and implemented in a number of software. In principle, any of the 

software typically used to estimate missing genotypes is based on a simple heuristic3, or 

on an E-M algorithm4, or on more sophisticated coalescent models5. These tools typically 

provide convenient summaries of the uncertainty surrounding each genotype estimate. 

The imputation quality is commonly measured with a parameter called Rsq, i.e., the 

estimate of the squared correlation between imputed and true genotypes or, in other 

words, the ratio of the variances of imputed and true allele counts. In this context, it 

should be noted that the accuracy of predicted Rsq values is, in general, high for common 

variants, but rapid performance degradation is seen for lower minor allele frequencies, 

thereby limiting the applicability of such methods, especially for rare variants. The 

performance depends on multiple factors, including: choice of baseline array, quality of 

input genotypes/haplotypes and limited representation of reference haplotypes carrying 

rare alleles. Also and very importantly, differences in linkage disequilibrium (LD) 

patterns and allele frequency spectrum significantly decrease the quality of imputation 

overall, especially when using public reference panels for ancestral or geographically 

isolated populations6,7. It has, however, been unclear how well general reference panels 

represent variation in populations that were poorly or not at all represented in projects 
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like 1000 Genomes. Furthermore, even for well-represented populations, a complete 

evaluation is needed to assess the benefits of sequencing more study samples for 

successfully imputing rare or low frequency variants.  



	  

 
Giorgio Pistis - Rare variant genotype imputation with thousands of study-specific whole-genome 
sequences: implications for cost-effective study designs. Tesi di Dottorato in Scienze Biomediche, 

Università degli Studi di Sassari 

7	  

Figure 1. Schematic representation of genotype imputation method 

 

 
 
 
Panel A illustrates the genotypes at a modest number of genetic markers in each sample being studied. 
Panel B illustrates the process of identifying regions of chromosome shared between a study sample and 
individuals in the reference panel. In Panel C, observed genotypes and haplotype sharing information have 
been combined to fill in a series of unobserved genotypes in the study sample. (Figure by Yun Li et al, 
Annu Rev Genomics Hum Genet. 2009).  
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1.3. Aim and project overview 

How can imputation be further improved? To dissect this question, we compared 

imputation quality using three complementary sets of reference panels: 1488 Sardinians 

from Sardinia, Italy; 1325 individuals of Northern European ancestry from Minnesota, 

USA; and 1092 individuals from the 1000 Genomes project. These reference panels 

permit comparison of the relative efficiency of study-specific imputation in founder (i.e. 

Sardinia) and continental (i.e. Northern European) populations that have also been 

genotyped, and contrast those results with the current standard approach (i.e. 1000 

Genomes). We also examined different combinations of genome-wide and custom arrays 

for baseline genotypes. Finally, we evaluated the efficiency of the conventional quality 

thresholds to discard poorly imputed rare and low-frequency variants, focusing on 

metrics defined by the two most commonly used imputation software, MACH8 and 

IMPUTE9. Figure 2 shows a schematic representation of the study. 
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Figure 2. Graphical representation of the analyses and study aims 

 
 
The figure shows a scheme of analyses carried out. For each genotype input set we carried out several 
imputation runs (genome-wide for SardiNIA, and on chromosome 20 for other European populations) with 
different reference panels. We assessed imputation quality of each genotyping array/reference panel 
combination by looking at the mean imputation quality (MACH-Rsq) and by comparing imputed markers 
with those directly typed with the HumanExome array (R2). Finally, we assessed the efficiency of standard 
thresholds at the commonly used accuracy metrics (MACH-Rsq/IMPUTE-INFO) in filtering badly imputed 
markers.  
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1.4. The two studied cohorts: SardiNIA and MCTFR 

1.4.1. The SardiNIA cohort 

The SardiNIA project is a genetic and epidemiological study that aims to identify the 

biological and genetic mechanisms involved in age-related traits and diseases. It is based 

in Sardinia, the second largest island in the Mediterranean sea. The targeted area is the 

Lanusei Valley in the Ogliastra region, located in the middle-east area of Sardinia. The 

SardiNIA project enrolled 6921 individuals, representing >60% of the adult population of 

four villages in the Lanusei Valley. All individuals were genotyped using four different 

Illumina genotyping chip array: the HumanOmniExpress GWAS array, containing 

~750,000 markers, and three different custom arrays: the Cardio-MetaboChip, the 

ImmunoChip and the HumanExome, each containing ~200,000 markers10,11. Among the 

6921 volunteers, 1122 were also whole-genome sequenced within the SardiNIA Medical 

Sequencing Discovery Project (dbGaP Study Accession: phs000313.v1.p1) (see 

‘Sequencing’ paragraph for further details).  

 

1.4.2. The MCTFR cohort 

The Minnesota Center for Twin and Family Research (MCTFR12,13) at the University of 

Minnesota specializes in the use of genetically informative family cohorts to investigate 

the etiology of behavioral and psychiatric phenotypes. The MCTFR consists of two 

complementary cohorts. One is a population-based cohort of twins and their parents, and 

the other is a family adoption study. Volunteers leave in the Minnesota State, and were 

all of north European origin. The full MCTFR cohort was genotyped with the Illumina 

660W-quad array containing ~600,000 markers. The full sample was also genotyped with 

the Illumina HumanExome array. Furthermore, 1328 individuals from 602 families were 

whole-genome sequenced (see ‘Sequencing’ paragraph for further details). 

Both SardiNIA and the MCTFR studies were approved by the corresponding institutional 

review boards and a signed informed consent was obtained from every volunteer.  
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2. Materials and Methods 

2.1. Genotyping  

In the SardiNIA cohort genotype calling was performed using the Illumina GenCall 

algorithm (Illumina, San Diego, CA, USA), and an additional 2968 rare variants were 

called for HumanExome using Zcall14. A subset of 1072 samples was also previously 

genotyped with Affymetrix 6.0 (Affymetrix, Santa Clara, CA, USA)15. For the Illumina 

arrays, we discarded samples with a genotyping call rate <95% in HumanOmniExpress, 

or <98% in the other arrays. SNP genotypes were carefully assessed though several 

quality control checks. In particular, we analyzed the four Illumina arrays independently 

and removed markers with call rate <98%, deviating strongly from Hardy Weinberg 

Equilibrium (p <1x10-6), monomorphic (or with minor allele frequency (MAF) <1% for 

HumanOmniExpress), or leading to an excess of Mendelian errors (defined as >1% of the 

families or >1 for HumanExome SNPs called with Zcall). In addition, we removed SNPs 

in common between the chips that showed a high level of discordance or that generated 

>1% discrepancies when comparing genotypes across 13 twin pairs. For full details on 

array quality checks see Supplementary Table S1. After performing quality control 

checks we used the quality-checked (QCed) autosomal markers from the 

HumanOmniExpress, ImmunoChip and Cardio-MetaboChip arrays as baseline genotypes 

to impute variants detected through sequencing, as described below. In order to have 

fully comparable data sets for all analyses described here, we considered only the 6602 

samples for which all four Illumina arrays were successfully genotyped. Data from the 

Affymetrix 6.0 array were instead not combined with the Illumina arrays, given the 

smaller number of samples available (1072 vs 6602); for this set, quality control filters 

have been already described16. From the QCed set of markers, we extracted a subset of 

227 745 SNPs representing most of the content of the Illumina HumanCore array (78.9% 

prior QC), a low-density genome-wide array. Given the extensive overlap, and 

considering that after quality control filtering the effective content of an array is always 

reduced, we treated this subset of markers as an approximation of the genomic content 

accessible with the HumanCore array that we refer to here as ‘pseudo-HumanCore’.  
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Genotyping protocols and quality control procedure for the MCTFR study have been 

described previously13,17. In short, the full MCTFR study sample was genotyped with the 

Illumina 660W-quad array, with 7278 (97.8%) samples and 527 829 (94.3%) markers 

passing quality control filters. The full sample was also genotyped with the Illumina 

HumanExome array, with 7244 (97.4%) samples and 144 075 (58.1%) markers passing 

quality control filters. We initially used 6610 individuals of European ancestry, and 

noticed that the inclusion of the 1181 individuals who were also in the reference panel 

biased accuracy estimates at rare variants because of perfect match of haplotypes. 

(Supplementary Table S2). We therefore restricted the analyses to the 5429 samples not 

overlapping with the reference panel.  

 

2.2. Sequencing  

Samples to be sequenced were selected in trios, taking advantage of their highly 

informative content for haplotypes reconstruction. Trios (or parent–offspring pairs for 

incomplete trios) were selected starting from the founders of all available families to 

assure the representation of all haplotypes that have been propagated within families 

(using ExomePicks, see URLs of Web Resources). For the Sardinians, 2120 samples 

from 695 nuclear families were sequenced to an average coverage of 4.16-fold. Of these, 

1122 samples were part of the SardiNIA project18, whereas the other 998 were 

individuals enrolled in case–control studies of multiple sclerosis and type I diabetes19,20. 

The Sardinian samples were sequenced in part at the CRS4 center (Centro di Ricerca, 

Sviluppo e Studi Superiori in Sardegna) in Pula, Italy, and in part at the DNA Sequencing 

Core center at the University of Michigan, USA, with Illumina Genome Analyzer IIx, 

Illumina Hiseq 2000 and Illumina HiSeq 2500 instruments. The sequencing effort has 

been described in part previously21. Sequenced samples were analyzed as single-end or 

paired-end reads, depending on the success of the paired-end procedure, and the majority 

were produced by 100+100 cycles of paired-end runs. An average of 4.16-fold coverage 

was obtained across all sequenced samples. Raw sequencing data was 1) aligned to the 

GRCh37 assembly available from the 1000 Genomes Project website, using an average 



	  

 
Giorgio Pistis - Rare variant genotype imputation with thousands of study-specific whole-genome 
sequences: implications for cost-effective study designs. Tesi di Dottorato in Scienze Biomediche, 

Università degli Studi di Sassari 

13	  

Phred score of 15 as a threshold to accept or trim sequence bases. The resulting SAM file 

was 2) sorted and 3) indexed, and 4) PCR duplicates were removed. Those steps were 

implemented with BWA 0.5.9 (Burrows Wheeler Alignment tool)22 (step 1), 

SAMTOOLS 0.1.1823 (step 2 and 3), and MarkDuplicates from Picard Tools 1.5223 (step 

4). For the paired-end data produced at CRS4, steps 1, 2, and 4 were performed using the 

Seal toolkit version 0.3.124, whereas indexing (step 3) was performed with SAMTOOLS 

0.1.18. Finally, at both sites quality scores were recalibrated by taking into account 

alignment information and known polymorphisms in the Single Nucleotide 

Polymorphisms database release 132 (dbSNP132), using the GATK 1.1-35-ge253f625. 

Each sample has been verified for sample contamination and swaps by comparing 

genotype likelihoods in the alignment file with the genotypes available from genotyping 

arrays using verifyBamID (see URLs of Web Resources). 

In the MCTFR study, 1328 individuals from 602 families were sequenced to an average 

coverage of 10.4-fold. Three samples gave unacceptable sequence quality, leaving 1325 

total sequenced samples for analysis. The MCTFR samples were sequenced at the 

University of Michigan Sequencing Core (1024 samples, with 150bp paired-end reads) 

and at the HudsonAlpha Institute for Biotechnology (304 samples, with 100bp paired-end 

reads). Reads were aligned to with BWA-MEM version 0.7.4-r38526, duplicates removed 

with Picard version 1.91 (see URLs of Web Resources), and recalibrated with GATK 

version 1.1-35-ge253f6f. All indexing and sorting was done in SAMTOOLS 0.1.18. 

 

2.3. Variant calling 

Variant calling was performed in both studies using GotCloud27, a variant call pipeline 

developed at the University of Michigan (see URLs of Web Resources). Briefly, the 

procedure consisted of detecting an initial set of polymorphic sites (SNP detection) and 

performing an LD-aware genotype refinement using BEAGLE software28. The variant 

site detection algorithm uses a population based approach to increase the power of calling 

variants even in sites with shallow coverage. Variants are then screened to remove false 
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positives and mapping artifacts by using a two steps approach. A first step consists of 

hard filtering based on fixed thresholds applied to coverage depth, strand bias, inflation 

of other alleles and allele balance. This is followed by a second step of filtering using 

non-linear thresholds based on training sets (HumanOmni 2.5M and HapMap) and 

machine learning approach (SVM, support vector machine). After this phase, the 

genotype of each individual is called according to the recalibrated likelihoods generated 

by the sequencing. Finally, genotypes are refined with BEAGLE28, which generates a set 

of haplotypes for each individual.  

Sequencing yielded 17.6 and 27.1 million autosomal bi-allelic SNPs in Sardinian and 

Minnesota samples, respectively, of which 30.6 and 48.4% were not described in 

dbSNP135. 

 

2.4. Genotype imputation  

Genotype imputations for all scenarios were performed on haploid data using Minimac 

(see URLs of Web Resources), a modified version of the MACH software. For SardiNIA, 

phased haplotypes were generated using MACH (-phase option) with 400 states and 30 

rounds by subdividing the variants in 344 groups of 2500 with an overlap of 500, and 

imputation was subsequently performed independently on each phased chunk (for a 

description of the code, see the ‘1000G imputation cookbook’ in URLs of Web 

Resources). Imputation performance was evaluated on seven different input genotype 

data sets: (1) HumanOmniExpress (OmExp), (2) Cardio-MetaboChip (Metab), (3) 

ImmunoChip (Imm), (4) Cardio-MetaboChip and ImmunoChip (MetabImm), (5) 

HumanOmniExpress, Cardio-MetaboChip and ImmunoChip (OMI), (6) pseudo-

HumanCore (pHumCore) and (7) Affymetrix 6.0 (Affy 6.0). For simplicity, we phased 

the Cardio-MetaboChip, ImmunoChip and HumanOmniExpress arrays jointly, and then 

extracted haplotypes at relevant SNPs to perform imputation for each particular 

genotyping set. In actual practice, Cardio-MetaboChip and ImmunoChip will be phased 

without the additional support of a genome-wide array, and hence we assessed the impact 
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of our procedure by phasing separately each SNP set, for chromosome 20. We noticed 

that only imputations performed with the SardSeq panel or its combination with 1000G 

were slightly overestimated (see Supplementary Table S3, and ‘Impact of different 

phasing strategies’ paragraph). In the MCTFR study, haplotypes were phased using 

SHAPEIT2 (v2.644)29 with the following model options: -thread 8 -burn 10 -prune 8 -

main 20 -states 200. Imputation was performed using Minimac and the Illumina 660W-

quad array as baseline genotypes. We used as reference panels the 1000G-ALL (1092 

samples) and 1000G-EUR (379 samples) data sets from the 1000 Genomes March 2012 

release; the full MCTFR sequencing data (1325 samples, named MinnSeq in the text); a 

subset of the Sardinian sequencing data (1488 samples, named SardSeq in the text); and 

combinations of those (see ‘Combination of reference panels’ paragraph). Considering 

the overall high inbreeding in Sardinia, the SardSeq reference panel was created by 

selecting only haplotypes of parents at each sequenced trios to avoid overrepresentation 

of rare variants. We also performed imputation with IMPUTE2 (newest release of 

IMPUTE), to test a different approach for reference panels’ combination (see 

‘Combination of reference panels’ paragraph) and to assess the efficiency of its 

imputation accuracy metric INFO (see ‘Evaluation of imputation accuracy’ paragraph).  

 

2.5. Simulation of European haplotypes  

Because the Minnesota samples were genotyped with different arrays from those used for 

Sardinians, they could not be used to assess relative efficiency of arrays in genotype 

imputation. We therefore generated, by simulation with the HAPGEN30 software and 

1000G-EUR as reference, 6602 unrelated individuals of European ancestry for SNPs 

present in each different genotyping array considered in the SardiNIA study. For 

simplicity, we focused only on chromosome 20. Haplotypes were phased using MACH (-

phase option) with 400 states and 30 rounds, and imputation performed using Minimac, 

as in the SardiNIA and MCTFR data sets. This simulated data set was only used for 

assessing the efficiency of different genotyping arrays and reference panels in genotype 

imputation.  
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2.6. Combination of reference panels  

We used VCFtools31 to combine the SardSeq and the MinnSeq panels with 1000G-EUR 

and 1000G-ALL reference panels for chromosome 20. The variants in each set were 331 

799, 602 317, 851 702 and 377 494 for SardSeq, MinnSeq, 1000G-ALL and 1000G-

EUR, respectively. During the merging procedure, we removed the variants present only 

in one panel, leading to SardSeq+1000G-ALL, SardSeq+1000G-EUR, MinnSeq+1000G-

ALL and MinnSeq+1000G-EUR reference panels containing 249 624, 227 405, 304 899 

and 267 550 variants, respectively. Imputation was then performed using Minimac, as for 

single reference panels. For combinations with 1000G and SardSeq panels, we also 

performed imputation with IMPUTE2 using the -merge_ref_panels option that imputes 

variants unique to one panel into the other, prior imputation. We observed no difference 

in imputation accuracy at all frequency ranges when using this approach, which should be 

preferable for research studies, allowing imputation of all available variants, including 

those that are study specific, in the same run (Supplementary Table S4). In addition, to 

assess the impact of adding a smaller number of population-specific haplotypes, we 

created two additional reference panels using 500 and 1000 randomly chosen samples 

from the SardSeq reference panel and merging them with 1000G reference panels 

(500SardSeq+1000G and 1000SardSeq+1000G, respectively). This analysis was 

restricted to the SardSeq panel and the SardiNIA cohort, because the advantage in 

accuracy was substantial for this population.  

 

2.7. Evaluation of imputation accuracy  

Imputation accuracy was assessed using both the MACH Rsq metric and the squared 

Pearson’s correlation (R2)8 between dosages and the real genotypes (considered as allele 

count) available for the same individuals, extracted from the HumanExome array. The 

Rsq metric is also known as variance ratio, being calculated as the proportion of the 

empirically observed variance (based on the imputation) to the expected binomial 

variance p(1-p), where p is the minor allele frequency. In SardiNIA we tested 21,398 
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SNPs across autosomes for genome-wide evaluation of imputation accuracy and tested a 

subset of 558 SNPs for comparisons restricted to chromosome 20. For the MCTFR study, 

as the baseline array was different, we used a subset of 541 SNPs. The number of SNPs 

tested for comparing imputation with SardSeq versus 500SardSeq+1000G and 

1000SardSeq+1000G was reduced to 517 because 41 SNPs (MAF range 0.0008- 

0.0072%) were not detected in the selected subset of sequenced samples. We also 

assessed efficiency in discriminating between well and poorly imputed markers of the 

imputation accuracy metrics estimated by MACH (Rsq) and IMPUTE (INFO). The INFO 

metric, also known as imputed information score (INFO), is a measure of the relative 

statistical information about the SNP allele frequency from the imputed data. We defined 

good- and bad-quality imputed SNPs as in the original MACH paper, that is, those with 

R2 >0.5 and with R2 <0.2, respectively, and stratified imputed SNPs based on their Rsq 

and INFO scores. This analysis was restricted to chromosome 20, and performed using as 

baseline genotypes the OmExp for the SardiNIA study and the Illumina 660W-quad for 

the MCTFR cohort.  
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3. Results 

3.1. Effect of baseline genotyping array 

This subsection is restricted to the SardiNIA study and the simulated European 

haplotypes, because the MCTFR study used only one array. We found clear differences 

in imputation performance depending on the baseline genotyping set. Comparable 

differences were seen when assessments were done with either the Rsq metric - the 

imputation quality metric from MACH - or the R2 metric, the squared Pearson 

correlation, between dosages and real genotypes8 (Table 1). When using the 1000G 

reference panels for Sardinians, the two custom arrays (Cardio-MetaboChip and 

ImmunoChip) provided very limited information for imputation and far less accuracy 

than the genome-wide arrays, reflecting their low marker density. However, the Cardio-

MetaboChip array performed very well when imputing with the SardSeq panel, allowing 

accurate inference of the rest of the genome (mean Rsq = 0.62, and mean R2 = 0.70 at 

HumanExome SNPs). The relative efficiency was similar when considering all 

autosomes (Table 1 and Supplementary Table S5) or focusing only on chromosome 20 

(Figure 3 and Supplementary Table S6). The extended LD in the population and the 

increased genetic similarity of the reference panel aid in haplotype reconstruction when 

using a relatively small set of markers. The addition of the two custom arrays to the 

OmExp genome-wide array (OmExp+Metab+Imm, called OMI here) did not improve 

quality for common or low-frequency variants compared with that reached using OmExp 

alone. Thus, such arrays provide direct genotyping of low-frequency and rare variants in 

genes of interest but do not contribute to an overall improvement in imputation accuracy. 

We also observed negligible differences in imputation accuracy between the two tested 

Illumina genome-wide arrays, OmExp and pHumCore (Table 1 and Supplementary 

Tables S5 and S6), when imputing the SardSeq panel. In particular, we noticed that the 

low-density genome-wide array pHumCore provided only slightly less accuracy than the 

denser OmExp array when the SardSeq sequencing panel was used for imputation (mean 

R2 = 0.85 and 0.87, for pHumCore and OmExp, respectively, at HumanExome SNPs, 

Supplementary Table S5) and a very similar genomic coverage (92.6 and 91.8% of 



	  

 
Giorgio Pistis - Rare variant genotype imputation with thousands of study-specific whole-genome 
sequences: implications for cost-effective study designs. Tesi di Dottorato in Scienze Biomediche, 

Università degli Studi di Sassari 

19	  

markers imputed with Rsq >0.3, Table 1). Of note, performance was patently lower for 

both arrays and more significantly for pHumCore when imputation was performed with 

the 1000G panels (mean R2 = 0.54 and 0.64, for pHumCore and OmExp, respectively, 

imputing with the 1000G-ALL; Table 1, Supplementary Tables S5 and S6, and Figure 3). 

In contrast, in the simulated European data, the Cardio-MetaboChip performed poorly, 

with insufficient genomic coverage. Contrarily to previous observations32, the pHumCore 

was fairly comparable in efficiency to the OmExp array (Figure 4 and Supplementary 

Table S7), but we expect performance to be overestimated (because the genotypes were 

simulated based on 1000 Genomes). In fact, when we extracted subset of SNPs that are 

present in HumanOmniExpress and HumanCore from the MCTFR genotypes, the 

difference between the two arrays was clearly evident (Supplementary Table S8). This 

difference has also been observed for another European population33. Thus, in founder 

populations it appears that highly accurate imputation can be achieved with cost-effective 

sparse genotyping arrays when a population-specific reference panel is available. 
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Figure 3. Mean R2 for each particular genotyping array/reference panel in the SardiNIA cohort 

 

 
The figure shows the mean R2 at different allele frequency ranges for each particular genotyping 
array/reference panel combination, including the combination of SardSeq and 1000G panels. Results are 
restricted to chromosome 20. 
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Figure 4. Mean R2 for each combination of genotyping array/reference panel in the European 
simulated dataset 
 
 
 

 

 
The figure shows the mean R2 at different allele frequency ranges for each particular genotyping 
array/reference panel, including the combination of SardSeq and 1000G panels. Results are restricted to 
chromosome 20. 
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Table 1. Basic imputation statistics on the SardiNIA samples for different panels/genotyping arrays 
 

 

    Whole imputed SNP set Rsq > 0.3 Shared imputed SNPs 

Array Reference Panel No of SNPs Mean (SD) Rsq % SNPs Mean (SD) Rsq Mean (SD) Rsq 

Imm 

SardSeq 15,071,719 0.258 (0.312) 33.33 0.652 (0.213) 0.299 (0.321) 

1000G-ALL 37,798,002 0.037 (0.134) 3.90 0.638 (0.232) 0.099 (0.213) 

1000G-EUR 16,873,087 0.085 (0.203) 9.68 0.647 (0.231) 0.115 (0.232) 

Metab 

SardSeq 15,069,660 0.617 (0.335) 76.91 0.777 (0.181) 0.685 (0.301) 

1000G-ALL 37,782,741 0.064 (0.170) 7.20 0.614 (0.217) 0.175 (0.260) 

1000G-EUR 16,878,099 0.149 (0.253) 18.05 0.634 (0.219) 0.201 (0.282) 

MetabImm 

SardSeq 14,977,409 0.734 (0.300) 86.51 0.835 (0.163) 0.808 (0.239) 

1000G-ALL 37,721,853 0.100 (0.218) 11.71 0.644 (0.221) 0.272 (0.311) 

1000G-EUR 16,781,983 0.219 (0.303) 27.12 0.667 (0.222) 0.297 (0.328) 

OmExp 

SardSeq 14,580,754 0.861 (0.256) 92.61 0.924 (0.131) 0.935 (0.161) 

1000G-ALL 37,424,729 0.297 (0.382) 33.61 0.796 (0.224) 0.742 (0.322) 

1000G-EUR 16,453,325 0.543 (0.406) 60.89 0.84 (0.206) 0.729 (0.341) 

OMI 

SardSeq 14,319,695 0.862 (0.256) 92.57 0.925 (0.131) 0.937 (0.159) 

1000G-ALL 37,211,511 0.300 (0.385) 34.00 0.799 (0.131) 0.753 (0.318) 

1000G-EUR 16,255,689 0.549 (0.406) 61.50 0.842 (0.206) 0.739 (0.337) 

pHumCore 

SardSeq 15,020,615 0.840 (0.264) 91.81 0.908 (0.139) 0.913 (0.179) 

1000G-ALL 37,793,052 0.234 (0.341) 26.66 0.759 (0.221) 0.614 (0.354) 

1000G-EUR 16,825,817 0.455 (0.398) 52.64 0.802 (0.207) 0.615 (0.367) 

Affy6.0 

SardSeq 14,550,658 0.798 (0.342) 84.51 0.937 (0.116) 0.905 (0.232) 

1000G-ALL 37,328,716 0.263 (0.379) 29.55 0.814 (0.217) 0.721 (0.341) 

1000G-EUR 16,350,040 0.515 (0.416) 57.63 0.843 (0.205) 0.708 (0.357) 

 

The table shows, for each genotyping array/reference panel combination, the number of imputed SNPs and 
the corresponding mean Rsq and SD, the percentage of SNPs with Rsq >0.3, with the corresponding mean 
Rsq and SD, mean Rsq and SD evaluated for 8 842 944 SNPs that were imputed in all genotyping 
array/reference panel combinations (called ‘Shared imputed SNPs’). 
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3.2. Effect of study-specific reference panels 

Study-specific reference panels increased the accuracy and completeness of coverage in 

both Sardinian and Minnesota samples, but the gain in accuracy was greater for the 

Sardinia founder population. In Sardinians, the 1000G-ALL reference panel provided the 

highest number of imputed variants - ~37 million including both indels and SNPs vs ~15 

million SNPs for the SardSeq panel - but the majority were of poor quality and were 

subsequently discarded. For example, for the Metab/SardSeq combination, 11.5 million 

imputed SNPs passed the standard Rsq >0.3 filter, but only 2.7 million and 3.0 million 

reached that threshold for Metab/1000G-ALL and Metab/1000G-EUR, respectively. The 

gap was less striking but still marked when denser genotype data sets were considered, 

and was still noticeable even considering only SNPs present in all reference panels 

(which are enriched for high-frequency variants; Table 1). Consistent results were seen 

for the OmExp, OMI, pHumCore and Affy6.0 data sets, with accuracy consistently better 

when using SardSeq (Figure 3). The benefit in overall accuracy was clear at all frequency 

ranges and even greater for low-frequency and rare variants. For example, using the OMI 

data set, the average R2 for SNPs with MAF ranging from 0.5 to 1% is 0.91, 0.57 and 

0.52 when using SardSeq, 1000G-ALL and 1000G-EUR reference panels, respectively 

(Supplementary Table S5). This reinforces the finding that on average, low-frequency 

variants are hard to impute in founder populations when using external reference panels 

because these variants appear in fewer haplotypes6. Of note, the results remained the 

same after removing 646 Sardinian samples that appear in both the genotyping set and the 

SardSeq reference panel (Supplementary Table S2). To assess whether the advantage 

with the SardSeq panel was attributable to the lower number of European haplotypes 

present in the 1000 Genomes reference, we performed imputation using the MinnSeq 

panel. There was no appreciable gain in accuracy within Sardinians compared with 

1000G-based imputations (Figure 5a, Supplementary Tables S9A and S10). Similar to 

results with Sardinians, the MinnSeq panel outperformed the 1000G panels in the 

MCTFR study at all frequency ranges (Figure 5b and Supplementary Table S9B). 

However, the gain in accuracy was far less than that observed in Sardinians with the 

SardSeq panels. For example, for variants with MAF ranging from 1 to 5%, we observed 
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11% and 42% additional gain in mean R2 for Minnesotans and Sardinians, respectively. 

Of note, in both cohorts the study-specific panel also yielded a higher number of SNPs 

useful for analyses (considering an Rsq >0.3) even when the other reference sets contain 

more SNPs (Supplementary Table S10). 

 

Figure 5. Impact of cross-studies reference panels 
 
 

 

 

The figure shows the mean R2 at different allele frequency ranges for the chromosome 20 of OmExp 
genotyping array for SardiNIA (A) and the Illumina 660W-quad array for the MCTFR (B) study, when 
using different reference panels, including combination of SardSeq/MinnSeq and 1000G panels and cross-
studies references. 
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3.3. Effect of combined reference panels 

We also evaluated the impact on imputation accuracy of extended panels created by 

combining the two study-specific panels and 1000G haplotypes. The combined 

SardSeq+1000G panels provided only marginally higher accuracy at rarer shared SNPs in 

Sardinians (Figure 3 and Supplementary Tables S5 and S6). Slight increase in accuracy 

was also observable for more frequent variants (except for the two custom arrays (Metab 

and Imm), for which the improvement was substantial across all frequency ranges (Figure 

3 and Supplementary Tables S5 and Table S6). Thus, for Sardinians, the inclusion of 

1000G haplotypes would only be beneficial for very rare variants if a genome-wide array 

was used for baseline imputation. In the simulated European set, the addition of SardSeq 

haplotypes to the 1000G panels remarkably increased imputation accuracy for custom 

genotyping arrays (Metab and Imm) for both common and rare variants (Figure 4 and 

Supplementary Table S7). For example, for variants with MAF >40% and MAF ≤50% 

the mean R2 is 0.57 and 0.98, when imputing with 1000G-ALL and SardSeq+1000G-

ALL and using the Metab data set (Figure 4 and Supplementary Table S7). The impact of 

a combined panel was instead negligible for the more comprehensive genotype data 

(OmExp, OMI, pHumCore and Affy6.0). However, imputation on simulated data could 

give slight overestimations, and this could mask the advantage of adding SardSeq to 

1000G panels. Indeed, when considering the MCTFR study, the combined 

SardSeq+1000G-ALL panel provided benefit at all frequency ranges compared with 

1000G-ALL imputation, and for MAF ≤0.5% variants accuracy becomes fairly similar to 

that observed when using the MCTFR-specific panel (Figure 5 and Supplementary Table 

S9). Thus, the Sardinian panel could be generally useful to increase the overall accuracy 

in population cohorts other than Sardinians, especially where only custom array 

genotyping is available or when a study-specific reference is not available. Compared 

with imputation with MinnSeq alone, the addition of the 1000G haplotypes to the 

MinnSeq reference panel was useful only for rare variants in Minnesotans. The difference 

in accuracy was >4-fold higher than that seen in Sardinians comparing imputations with 

SardSeq and SardSeq+1000G panels. Thus, for Europeans, the inclusion of 1000G 

haplotypes in a study-specific panel is sensitively beneficial for very rare variants. Of 
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note, for the Minnesotans, genotype imputation at the full spectrum of frequency ranges 

never reaches the same accuracy as in SardiNIA with the SardSeq panel, even when 

using the combined MinnSeq+1000G with almost twice as many individuals as there are 

in the SardSeq panel. Given the great utility of the Sardinian haplotypes, we further 

examined whether the advantage achieved by imputing with the SardSeq panel could 

have been reached sequencing a smaller number of samples and merging their haplotypes 

with the 1000G panels. For simplicity, we again focused on chromosome 20 and the 

OmExp array. Only for variants with MAF >5% does adding 500 Sardinian samples to 

the 1000G panels provide the same accuracy as the SardSeq panel alone. Instead, adding 

1000 Sardinians to the 1000G panels provides the same accuracy given by the SardSeq 

panel for all frequency bins, with only a modest difference in accuracy for the very rare 

variants (MAF <0.5%) (Supplementary Figure S1 and Supplementary Table S11). Thus, 

sequencing a smaller number of individuals and combining their haplotypes with the 

1000G panels could give imputation accuracy that is highly comparable to a panel 

comprising a large number of samples. However, the caveat remains that the genotype 

accuracy and variant discovery in low-pass sequencing is highly dependent on the 

number of sequenced samples. Consequently, sequencing only 500 samples would not 

provide genotypes as precise as those obtained by randomly selecting 500 samples from a 

set of 2000 sequenced genomes. For example, when we performed variant calling on a 

subset of 508 samples, the heterozygous error rate increased from 2.6 to 11.3% at rare 

sites (Supplementary Table S12). 

 

3.4. Impact of different phasing strategies 

Phasing accuracy is affected by many parameters, including sample size and marker 

density34. As pre-phasing is a key step in genotype imputation, any distortion in this part 

could potentially distort imputation accuracy. We assessed the magnitude of the expected 

decrease in accuracy when Cardio-MetaboChip and ImmunoChip, as well as their 

combination, are phased separately from HumanOmniExpress. As reported in 
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Supplementary Table S3, there is only a slight decrease in accuracy at rarer sites if 

imputation is performed using 1000 Genomes panels. Results are instead less accurate if 

imputation is performed with the SardSeq panel, especially for very rare variants (MAF 

<0.5%). We also noticed that the differences between the two sets of results are larger for 

ImmunoChip than Cardio-MetaboChip, confirming the lower informative content of this 

array even at the phasing level. Of note, even when Cardio-MetaboChip is phased 

separately, it provides accurate genotype imputation over the full genome of Sardinian 

samples when the SardSeq panel is used. 

 

3.5. Performance of imputation quality metrics  

To determine whether the commonly used MACH-Rsq threshold >0.3 and IMPUTE-

INFO >0.4 can be applied to all frequency ranges (and if not, to infer appropriate 

cutoffs), we investigated how well imputation quality metrics can predict true imputation 

accuracy, especially for rare and less common variants. We found that for MAF ≥1%, 

imputation accuracy and therefore concordance between real genotypes and dosages 

using study-specific panels was almost perfect in both Sardinians and Minnesotans 

(Tables 2 and 3 and Supplementary Figure S2). At these frequency ranges, high but 

clearly less concordance was also seen when imputing with the 1000G panels. Whatever 

the reference panel used and the population under study, the standard Rsq cutoff of >0.3 

efficiently discarded most badly imputed markers while keeping most of those imputed 

well (see Materials and Methods). In particular, imputation was so accurate overall that 

even an Rsq cutoff of >0 would leave no badly imputed markers on chromosome 20 

(Tables 2a and 3a) (and only 8 over the entire genome in Sardinians, Supplementary 

Table S13). Similarly for the INFO metrics, the standard >0.4 threshold was efficient to 

discriminate between well and poorly inferred genotypes at this range of frequency 

(Tables 2b and 3b). In contrast, for MAF <1%, we noticed that both metrics were slightly 

overestimated when using the study-specific panels, possibly because of the inclusion of 

relatives with similar haplotypes in the target data set; but overall concordance was better 

than 1000G imputation for this range of frequency as well. Specifically, in this range and 
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when imputation was performed with the 1000G panels, the threshold of Rsq >0.3 was 

less efficient, aggressively discarding some well-imputed variants (eliminating 7-18% 

and 7-25% of the well-imputed markers for ALL and EUR panels) and retaining an 

excess of the badly imputed ones (Tables 2a and 3a and Supplementary Tables S14 and 

S15). The INFO >0.4 threshold instead worked efficiently on selecting well-imputed 

variants, but was too lenient on discarding those of poor quality (Tables 2b and 3b and 

Supplementary Tables S14 and S15). Nevertheless, Rsq >0.3 and INFO >0.4 still remain 

the optimal thresholds. When imputation was performed with the study-specific panels, 

both the Rsq and INFO thresholds were more efficient in capturing all well-imputed 

markers, but less efficient in discarding the poorly imputed. In such cases, i.e. for MAF 

<1% and when imputation is performed with a reference panel that is genetically close to 

the study population, an Rsq threshold of >0.6 and INFO >0.7 should be preferred in lieu 

of the standard thresholds of 0.3 and 0.4, respectively. 
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Table 2. Efficiency of imputation quality metrics in the SardiNIA cohort 
 

A MAF < 1% MAF ≥ 1% 

 SardSeq 1000G-ALL SardSeq 1000G-ALL 

Rsq % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good (n) 

         
> 0 100 (14) 100 (222) 100 (98) 100 (124) 0 (0) 100 (301) 100 (20) 100 (255) 

> 0.1 92.86 (13) 100 (222) 44.9 (44) 92.74 (115) 0 (0) 100 (301) 90 (18) 99.61 (254) 

> 0.2 85.71 (12) 100 (222) 19.39 (19) 86.29 (107) 0 (0) 100 (301) 75 (15) 99.61 (254) 

> 0.3 78.57 (11) 100 (222) 11.22 (11) 81.45 (101) 0 (0) 100 (301) 65 (13) 98.43 (251) 

> 0.4 71.43 (10) 100 (222) 5.1 (5) 70.16 (87) 0 (0) 100 (301) 45 (9) 97.25 (248) 

> 0.5 64.29 (9) 99.55 (221) 3.06 (3) 62.9 (78) 0 (0) 100 (301) 30 (6) 94.9 (242) 

> 0.6 42.86 (6) 95.95 (213) 2.04 (2) 50.81 (63) 0 (0) 100 (301) 20 (4) 89.41 (228) 

> 0.7 28.57 (4) 91.89 (204) 0 (0) 43.55 (54) 0 (0) 100 (301) 15 (3) 82.35 (210) 

> 0.8 14.29 (2) 83.78 (186) 0 (0) 33.87 (42) 0 (0) 100 (301) 0 (0) 72.16 (184) 

> 0.9 7.14 (1) 58.11 (129) 0 (0) 23.39 (29) 0 (0) 98.01 (295) 0 (0) 59.22 (151) 

> 1 0 (0) 0.9 (2) 0 (0) 0 (0) 0 (0) 3.65 (11) 0 (0) 2.75 (7) 

         
B MAF < 1% MAF ≥ 1% 

 SardSeq 1000G-ALL SardSeq 1000G-ALL 

INFO % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good (n) 

         
> 0 100 (7) 100 (189) 100 (81) 100 (83) 0 (0) 100 (307) 100 (32) 100 (251) 

> 0.1 100 (7) 100 (189) 100 (81) 98.8 (82) 0 (0) 100 (307) 100 (32) 100 (251) 

> 0.2 100 (7) 99.47 (188) 90.12 (73) 97.59 (81) 0 (0) 100 (307) 100 (32) 100 (251) 

> 0.3 100 (7) 99.47 (188) 62.96 (51) 96.39 (80) 0 (0) 100 (307) 96.88 (31) 100 (251) 

> 0.4 100 (7) 99.47 (188) 48.15 (39) 93.98 (78) 0 (0) 100 (307) 96.88 (31) 100 (251) 

> 0.5 100 (7) 99.47 (188) 27.16 (22) 89.16 (74) 0 (0) 100 (307) 84.38 (27) 99.2 (249) 

> 0.6 100 (7) 98.94 (187) 17.28 (14) 85.54 (71) 0 (0) 100 (307) 59.38 (19) 98.01 (246) 

> 0.7 71.43 (5) 97.35 (184) 11.11 (9) 73.49 (61) 0 (0) 100 (307) 37.5 (12) 95.62 (240) 

> 0.8 42.86 (3) 92.59 (175) 3.7 (3) 60.24 (50) 0 (0) 100 (307) 15.62 (5) 88.84 (223) 

> 0.9 14.29 (1) 76.19 (144) 0 (0) 44.58 (37) 0 (0) 99.35 (305) 6.25 (2) 72.91 (183) 

> 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 

The table shows the number and the percentage of poorly imputed and well-imputed SNPs (see Materials 
and Methods) that are captured for each Rsq (A) and INFO (B) threshold. Imputation was performed on 
chromosome 20 HumanOmniExpress SNPs, using the SardSeq and 1000G-ALL panels. Statistics are 
reported separately for common and rare variants. 
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Table 3. Efficiency of imputation quality metrics in the MCTFR cohort 

 

A MAF < 1% MAF ≥ 1% 

 
MinnSeq 1000G-ALL MinnSeq 1000G-ALL 

Rsq % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good (n) 

     
    

> 0 100 (38) 100 (129) 100 (80) 100 (92) 0 (0) 100 (284) 100 (4) 100 (258) 

> 0.1 81.58 (31) 100 (129) 72.5 (58) 96.74 (89) 0 (0) 100 (284) 100 (4) 100 (258) 

> 0.2 73.68 (28) 100 (129) 41.25 (33) 95.65 (88) 0 (0) 100 (284) 25 (1) 100 (258) 

> 0.3 57.89 (22) 100 (129) 26.25 (21) 92.39 (85) 0 (0) 100 (284) 25 (1) 99.61 (257) 

> 0.4 47.37 (18) 100 (129) 17.5 (14) 83.7 (77) 0 (0) 100 (284) 25 (1) 98.84 (255) 

> 0.5 28.95 (11) 96.9 (125) 10 (8) 72.83 (67) 0 (0) 100 (284) 0 (0) 96.12 (248) 

> 0.6 21.05 (8) 92.25 (119) 3.75 (3) 59.78 (55) 0 (0) 95.07 (270) 0 (0) 87.21 (225) 

> 0.7 2.63 (1) 72.09 (93) 1.25 (1) 48.91 (45) 0 (0) 89.79 (255) 0 (0) 77.13 (199) 

> 0.8 0 (0) 51.94 (67) 0 (0) 31.52 (29) 0 (0) 79.58 (226) 0 (0) 62.02 (160) 

> 0.9 0 (0) 28.68 (37) 0 (0) 17.39 (16) 0 (0) 59.51 (169) 0 (0) 48.45 (125) 

> 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

     
  

  B MAF < 1% MAF ≥ 1% 

 
MinnSeq 1000G-ALL MinnSeq 1000G-ALL 

INFO % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good (n) 

 
        

> 0 100 (38) 100 (96) 100 (82) 100 (67) 100 (1) 100 (277) 100 (9) 100 (241) 

> 0.1 100 (38) 100 (96) 100 (82) 100 (67) 100 (1) 100 (277) 100 (9) 100 (241) 

> 0.2 100 (38) 100 (96) 97.56 (80) 100 (67) 100 (1) 100 (277) 100 (9) 100 (241) 

> 0.3 97.37 (37) 100 (96) 95.12 (78) 100 (67) 100 (1) 100 (277) 100 (9) 100 (241) 

> 0.4 94.74 (36) 100 (96) 69.51 (57) 100 (67) 100 (1) 100 (277) 100 (9) 100 (241) 

> 0.5 73.68 (28) 100 (96) 41.46 (34) 100 (67) 100 (1) 100 (277) 100 (9) 100 (241) 

> 0.6 50 (19) 98.96 (95) 14.63 (12) 100 (67) 0 (0) 100 (277) 44.44 (4) 100 (241) 

> 0.7 23.68 (9) 95.83 (92) 7.32 (6) 92.54 (62) 0 (0) 99.28 (275) 0 (0) 99.59 (240) 

> 0.8 5.26 (2) 77.08 (74) 0 (0) 71.64 (48) 0 (0) 91.7 (254) 0 (0) 87.97 (212) 

> 0.9 2.63 (1) 40.62 (39) 0 (0) 46.27 (31) 0 (0) 72.2 (200) 0 (0) 63.49 (153) 

> 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 

 
The table shows the number and the percentage of poorly imputed and well-imputed SNPs (see Materials 
and Methods) that are captured for each Rsq (A) and INFO (B) threshold. Imputation was performed on 
chromosome 20 Illumina 660W-quad array SNPs, using MinnSeq and 1000G-ALL as reference panels. 
Statistics are reported separately for common and rare variants.  
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4. Concluding remarks 

We used different reference panels and genotype input sets to investigate the effects on 

imputation in founder and non-founder populations of European ancestry. We found that 

a study-specific reference panel considerably improved imputation accuracy and genomic 

coverage compared with external equally large reference panels, regardless of the 

genotyping array, especially for rare variants. However, the benefit was strikingly higher 

in the founder population of Sardinians, with a precision that was not obtainable in 

Europeans even with a reference panel twice the size. In fact, in such homogenous 

populations each sequenced genome provides information that can be extended to distant 

relatives as well, whereas in continental Europeans, haplotypes carrying rare variants can 

only inform closely related samples. We also observed that in Sardinians a study-specific 

panel boosts imputation even for low-coverage genotyping array(s) like the Cardio-

MetaboChip that are barely informative when imputing with the 1000G panels alone, or 

for the HumanCore that becomes highly comparable for all frequency ranges to the wider 

HumanOmniExpress. Given the low cost of the sparser arrays, accurate population-scale 

imputation is more feasible in the Sardinian founder population than in non-founder 

populations when combined with large-scale sequencing. This is true also for custom 

arrays, which can be specifically designed to include population-specific variants in order 

to increase the power of the association tests for these variants. For example, at current 

cost schedules, with an investment of 500 000 dollars one could genotype ~8300 

Sardinian samples with the HumanCore array instead of ~4500 with the 

HumanOmniExpress. The power to detect association for variants accounting for 0.5% of 

the trait variance thereby rises from 24 to 84%. Finally, we observed that standard 

thresholds on metrics for evaluating accuracy, estimated by two commonly used 

imputation software, are somewhat imprecise for rare variants. We propose that all 

cohorts using study-specific reference panels for imputation consider adopting different 

thresholds for common and rare variants to filter inaccurate genotypes. Taken together, 

these imputation-based analyses can guide genetic studies, and complement recent 

reports32,35 with several novel aspects that can improve performance:  
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-‐ They exploit imputation accuracy with the two larger study-specific reference 

panels so far published, including one that is population specific. 

 

-‐ They also provide the first evaluation of imputation performance of the 1000 

Genomes Project haplotypes in an isolated population.  

 

-‐ They include analyses of large cohorts coupled with the use of HumanExome 

array, allowing appropriate assessment of results for less frequent and rare 

variants.  

 

-‐ Using real data sets, they based analyses on a subset of quality-controlled SNPs 

instead of the full list of markers present on an array (excluding many that are 

likely to be imperfectly genotyped in a case study).  

 

-‐ They evaluate two widely used custom genotyping arrays, Cardio-MetaboChip 

and ImmunoChip, providing information for cohorts that are limited to that source 

of genotypes.  

 

-‐ They also evaluate for rare variants the efficiency of accuracy metric thresholds 

that were previously suggested for common variants.  

Ultimately, full genome sequencing could make imputation methods superfluous, but the 

timescale remains indeterminate. It should be considered that increasing sample size can 

augment genome-wide power to assess rare variants more than increasing array density - 

even up to full genotyping of the complete 1000 Genomes Project variant set32,35. Thus, 

aids to imputation are increasingly valuable, because most studies are likely to be 

collecting increasing numbers of samples and using this inferential process rather than 

sequencing full genomes.  

Overall, population-specific panels might have been thought to be ‘private’, with 

potential discoveries limited to that population. Instead, the effectiveness of population-
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specific reference panels can be appreciable for other populations, but will vary 

depending on the size of the panels and the demographic history of the isolate. Intuitively 

in Europe, their value may be greater for populations like Basques and Greeks, who are 

relatively genetically distant from the European samples selected for the 1000 Genomes 

Project. Here, we show that sequencing efforts from the Sardinian founder population 

can, when coupled with available panels, improve rare variant imputation accuracy in 

other population backgrounds as well. This reinforces the value of isolated populations 

for discovery of variants that are locally enriched but rarer and thus harder to detect in 

international surveys36. 
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5. Supplementary Informations 

5.1. Supplementary Figures 

 
Figure S1. Impact of combined 1000G and subsets of SardSeq reference panels on the SardiNIA 
cohort 
 
 

 

 

 
The figure shows the mean R2 at different allele frequencies ranges, for the chromosome 20 of OmExp 
genotyping array and different reference panels, including combination of SardSeq and 1000G panels. 
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Figure S2. Imputation accuracy: Rsq values versus R2 
	  
	  

	  
The figure shows a scatterplot of estimated Rsq (y-axis) versus R2 (x-axis) for autosomal SNPs on OmExp 
genotyping array in the SardiNIA samples. The black line represents the diagonal line, while the red line is 
the estimated fitted correlation line. A different plot is given for three different minor allele frequency 
ranges and for each imputation panel: SardSeq (A), 1000G-ALL (B) and 1000G-EUR (C). 
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5.2. Supplementary Tables 

 

Table S1. Features of genotyped and derived arrays 
  

 

Array N SNPs N Autosomal SNPs N QCed Autosomal SNPs  % QCed Autosomal SNPs  
MAF < 1% 1% ≤ MAF < 5% MAF ≥ 5% 

HumanOmniExpress 730,525 709,358 607,038 0.00 9.36 90.64 

Cardio-MetaboChip 196,725 196,474 141,231 18.96 13.58 67.46 

ImmunoChip 196,524 192,403 150,979 16.42 13.73 69.84 

HumanExome 247,870 242,296 79,980 56.48 12.08 31.44 

  

pseudo-HumanCore 298,930 288,675 227,745 0.27 5.36 94.37 

Affymetrix 6.0 934,970 895,351 723,763 0.44 11.62 87.94 

 
 

The table shows for each genotyped array, the total number of SNPs, the number of those in autosomes, the number of autosomal QCed SNPs and their 
frequencies. The row corresponding to pHumCore shows the total number of SNPs and those in autosomes for the non-genotyped array. 
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Table S2. Impact of overlapping individuals between target genotyping set and reference panel 
 
 

MAF  
bins (%) 

 SardiNIA genotypes & SardSeq MCTFR genotypes & MinnSeq 

  Full set  
N=6602 

Restricted set 
N=5956 

Full set N=6610 Restricted set 
N=5429 

(0,0.5]  0.751 0.734 0.557 0.490 

(0.5,1]  0.886 0.890 0.759 0.711 

(1,5]  0.953 0.948 0.856 0.825 

(5,10]  0.986 0.986 0.952 0.942 

(10,20]  0.987 0.987 0.965 0.958 

(20,30]  0.985 0.984 0.976 0.972 

(30,40]  0.990 0.990 0.979 0.976 

(40,50]  0.986 0.985 0.960 0.953 

 
 
The table compares the mean R2, at different frequency ranges, in the SardiNIA and MCTFR cohorts when 
imputation is performed with the full study set or after removing individuals that are also included in the 
respective reference panels. The analysis is restricted to chromosome 20, and uses as baseline genotypes 
the OmExp for the SardiNIA study and the Illumina 660W-quad for the MCTFR cohort.  
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Table S3. Impact of array phasing procedure 
 
 
 

  Mean R2 - separated phasing Difference with Table S6 

 
MAF 

bins (%) 
Sard 
Seq 

1000G-
ALL 

1000G-
EUR 

SardSeq + 
1000G-

ALL 

SardSeq + 
1000G-

EUR 

Sard 
Seq 

1000G-
ALL 

1000G
-EUR 

SardSeq + 
1000G-

ALL 

SardSeq + 
1000G-

EUR 

Im
m

 

(0,0.5] 0.347 0.100 0.092 0.456 0.437 0.060 0.000 0.004 0.053 0.055 

(0.5,1] 0.510 0.071 0.110 0.637 0.665 0.044 0.007 0.002 0.038 0.038 

(1,5] 0.588 0.181 0.120 0.696 0.685 0.035 0.001 0.002 0.034 0.026 

(5,10] 0.691 0.322 0.387 0.789 0.789 0.030 0.015 0.003 0.014 0.032 

(10,20] 0.708 0.325 0.377 0.783 0.788 0.034 -0.007 0.001 0.031 0.024 

(20,30] 0.596 0.296 0.222 0.657 0.658 0.019 0.002 -0.004 0.008 -0.018 

(30,40] 0.623 0.316 0.372 0.762 0.728 0.014 0.001 0.001 0.012 0.031 

(40,50] 0.714 0.296 0.326 0.777 0.802 0.021 0.001 0.004 0.013 0.020 

            

  Mean R2 - separated phasing Difference with Table S6 

 
MAF 

bins (%) 
Sard 
Seq 

1000G-
ALL 

1000G
-EUR 

SardSeq + 
1000G-

ALL 

SardSeq + 
1000G-

EUR 

Sard 
Seq 

1000G-
ALL 

1000G
-EUR 

SardSeq + 
1000G-

ALL 

SardSeq + 
1000G-

EUR 

M
et

ab
 

(0,0.5] 0.489 0.117 0.112 0.571 0.555 0.053 0.013 0.015 0.057 0.060 

(0.5,1] 0.753 0.125 0.126 0.712 0.768 0.021 0.005 0.004 0.014 0.034 

(1,5] 0.768 0.254 0.207 0.836 0.823 0.023 0.003 0.002 0.031 0.026 

(5,10] 0.803 0.315 0.320 0.853 0.856 0.020 -0.004 -0.012 0.029 0.025 

(10,20] 0.880 0.417 0.501 0.908 0.905 0.014 0.001 0.015 0.016 0.016 

(20,30] 0.809 0.360 0.348 0.855 0.848 0.019 0.003 0.002 0.019 0.017 

(30,40] 0.816 0.396 0.388 0.866 0.865 0.018 -0.002 0.001 0.022 0.026 

(40,50] 0.891 0.306 0.377 0.907 0.907 0.016 0.006 0.001 0.019 0.010 

           
  Mean R2 - separated phasing Difference with Table S6 

M
et

ab
Im

m
 

MAF 
bins (%) 

Sard 
Seq 

1000G-
ALL 

1000G-
EUR 

SardSeq + 
1000G-

ALL 

SardSeq + 
1000G-

EUR 

Sard 
Seq 

1000G-
ALL 

1000G
-EUR 

SardSeq + 
1000G-

ALL 

SardSeq + 
1000G-

EUR 

(0,0.5] 0.586 0.191 0.165 0.622 0.621 0.025 0.008 0.009 0.016 0.028 

(0.5,1] 0.770 0.188 0.184 0.807 0.810 0.034 0.005 0.003 0.028 0.021 

(1,5] 0.875 0.350 0.299 0.894 0.895 0.017 0.005 0.002 0.016 0.018 

(5,10] 0.907 0.492 0.594 0.929 0.930 0.021 0.000 -0.011 0.014 0.013 

(10,20] 0.932 0.628 0.604 0.943 0.944 0.011 -0.003 0.013 0.010 0.011 

(20,30] 0.904 0.445 0.536 0.919 0.919 0.014 0.004 0.005 0.013 0.013 

(30,40] 0.912 0.629 0.521 0.926 0.926 0.014 0.002 0.001 0.012 0.012 

(40,50] 0.931 0.455 0.537 0.943 0.943 0.010 0.001 0.002 0.011 0.011 

 
 
The table shows the mean R2 when phasing prior imputation is performed separately for Imm, Metab and 
MetabImm genotyping sets (only chromosome 20 and only for the SardiNIA study). The right side of the 
table reports differences with the mean R2 obtained when phasing is performed for all arrays jointly, as 
reported in Table S6. 
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Table S4. Mean R2 values for different imputation approaches 
 
 

MAF bins (%) 1000G-ALL 1000G-EUR SardSeq 
SardSeq + 

1000G-ALL 

SardSeq + 

1000G-EUR 

   
   

(0,0.5] 0.386 0.356 0.766 0.762 0.751 

(0.5,1] 0.522 0.486 0.885 0.886 0.882 

(1,5] 0.600 0.602 0.944 0.948 0.947 

(5,10] 0.842 0.772 0.983 0.983 0.983 

(10,20] 0.920 0.923 0.984 0.985 0.984 

(20,30] 0.906 0.900 0.982 0.982 0.982 

(30,40] 0.955 0.948 0.987 0.987 0.987 

(40,50] 0.900 0.921 0.984 0.984 0.984 

 
 
 
The table shows the mean true R2, for different frequency ranges, when IMPUTE2 is used to perform 
imputation, as well as panels combinations, in the SardiNIA study. Analysis was restricted to chromosome 
20 and used the OmExp as baseline genotypes. Statistics for imputation performed with Minimac for single 
reference panels and for panels combined with VCF tools are reported in Table S6.  
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Table S5. Mean R2 in the SardiNIA sample, for different allele frequency ranges, for all autosomes 
 
A 

 Imm  Metab  MetabImm  OmExp 

                MAF 
bins (%) 

Sard 
Seq 

1000G-
ALL 

1000G-
EUR  

Sard 
Seq 

1000G-
ALL 

1000G-
EUR  

Sard 
Seq 

1000G-
ALL 

1000G-
EUR  

Sard 
Seq 

1000G-
ALL 

1000G-
EUR 

                                

                
(0,0.5] 0.322 0.074 0.073  0.492 0.102 0.097  0.571 0.160 0.150  0.691 0.379 0.337 

(0.5,1] 0.487 0.122 0.106  0.732 0.175 0.145  0.823 0.264 0.226  0.908 0.552 0.501 

(1,5] 0.555 0.182 0.154  0.788 0.247 0.216  0.884 0.351 0.314  0.951 0.677 0.633 

(5,10] 0.592 0.242 0.267  0.824 0.328 0.365  0.910 0.472 0.512  0.974 0.863 0.845 

(10,20] 0.590 0.272 0.318  0.839 0.402 0.468  0.922 0.536 0.586  0.983 0.934 0.926 

(20,30] 0.606 0.304 0.340  0.852 0.466 0.497  0.930 0.597 0.623  0.989 0.944 0.944 

(30,40] 0.577 0.359 0.328  0.849 0.499 0.479  0.927 0.629 0.609  0.988 0.948 0.949 

(40,50] 0.591 0.264 0.310  0.863 0.424 0.481  0.933 0.558 0.607  0.990 0.953 0.950 

                all 
variants 0.486 0.171 0.173  0.703 0.246 0.246  0.787 0.344 0.339  0.871 0.643 0.614 

                                
 
B 

 OMI 
 

pHumCore 
 

Affy6.0 

            MAF 
bins (%) 

Sard
Seq 

1000G-
ALL 

1000G-
EUR 

 

SardS
eq 

1000G-
ALL 

1000G-
EUR 

 

SardS
eq 

1000G-
ALL 

1000G-
EUR 

                        

    
 

   
 

   
(0,0.5] 0.696 0.392 0.350 

 
0.652 0.269 0.244 

 
0.733 0.381 0.347 

(0.5,1] 0.910 0.568 0.515 
 

0.885 0.415 0.371 
 

0.896 0.536 0.494 

(1,5] 0.952 0.688 0.645 
 

0.936 0.540 0.498 
 

0.937 0.635 0.595 

(5,10] 0.974 0.868 0.852 
 

0.961 0.738 0.740 
 

0.964 0.817 0.807 

(10,20] 0.984 0.937 0.930 
 

0.975 0.853 0.855 
 

0.975 0.893 0.895 

(20,30] 0.989 0.948 0.946 
 

0.983 0.894 0.902 
 

0.982 0.921 0.921 

(30,40] 0.988 0.953 0.951 
 

0.982 0.908 0.906 
 

0.983 0.925 0.921 

(40,50] 0.991 0.954 0.952 
 

0.985 0.907 0.910 
 

0.984 0.930 0.933 

            all 
variants 0.873 0.653 0.624 

 

0.849 0.536 0.517 

 

0.834 0.598 0.576 
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Table S6. Mean R2 in the SardiNIA sample, for different allele frequency ranges, focused on chromosome 20, as represented in Figure 3 
 
A 

 Imm  Metab  MetabImm 

                  
MAF 

bins (%) 
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR  
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR  
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq + 
1000G-

EUR 
                                    

                  
(0,0.5] 0.407 0.100 0.096 0.456 0.437  0.542 0.130 0.127 0.571 0.555  0.611 0.191 0.174 0.622 0.621 

(0.5,1] 0.554 0.071 0.112 0.637 0.665  0.774 0.130 0.130 0.712 0.768  0.804 0.188 0.187 0.807 0.810 

(1,5] 0.623 0.181 0.122 0.696 0.685  0.791 0.257 0.209 0.836 0.823  0.892 0.350 0.301 0.894 0.895 

(5,10] 0.721 0.322 0.390 0.789 0.789  0.823 0.311 0.308 0.853 0.856  0.928 0.492 0.583 0.929 0.930 

(10,20] 0.742 0.325 0.377 0.783 0.788  0.894 0.418 0.516 0.908 0.905  0.943 0.628 0.617 0.943 0.944 

(20,30] 0.615 0.296 0.218 0.657 0.658  0.828 0.363 0.350 0.855 0.848  0.918 0.445 0.541 0.919 0.919 

(30,40] 0.637 0.316 0.373 0.762 0.728  0.834 0.394 0.389 0.866 0.865  0.926 0.629 0.522 0.926 0.926 

(40,50] 0.735 0.296 0.330 0.777 0.802  0.907 0.312 0.378 0.907 0.907  0.941 0.455 0.539 0.943 0.943 
                                    

 
 
 
B 

 
OmExp  OMI 

 
pHumCore 

            
 

     
MAF  

bins (%) 
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR  
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR 
 

Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR 
                                    

            
 

     
(0,0.5] 0.751 0.409 0.352 0.765 0.752  0.740 0.424 0.367 0.759 0.747 

 
0.677 0.260 0.255 0.692 0.686 

(0.5,1] 0.886 0.557 0.551 0.889 0.888  0.885 0.571 0.569 0.889 0.893 
 

0.854 0.399 0.362 0.863 0.863 

(1,5] 0.953 0.667 0.630 0.956 0.954  0.954 0.688 0.648 0.957 0.953 
 

0.937 0.509 0.472 0.938 0.938 

(5,10] 0.986 0.904 0.824 0.988 0.987  0.988 0.912 0.845 0.990 0.989 
 

0.971 0.723 0.685 0.971 0.971 

(10,20] 0.987 0.937 0.940 0.988 0.988  0.988 0.946 0.936 0.989 0.989 
 

0.979 0.901 0.900 0.980 0.980 

(20,30] 0.985 0.936 0.925 0.985 0.985  0.985 0.941 0.939 0.986 0.985 
 

0.974 0.772 0.842 0.974 0.974 

(30,40] 0.990 0.949 0.949 0.991 0.991  0.990 0.955 0.964 0.991 0.991 
 

0.982 0.914 0.868 0.983 0.982 

(40,50] 0.986 0.917 0.918 0.986 0.986  0.986 0.919 0.919 0.987 0.986 
 

0.981 0.828 0.861 0.981 0.981 
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Table S6 (Continued) 
 
C 
 

 
Affy6.0 

      
MAF bins 

(%) 
Sard 
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR 
            

      
(0,0.5] 0.740 0.378 0.320 0.739 0.740 

(0.5,1] 0.913 0.621 0.547 0.927 0.922 

(1,5] 0.941 0.642 0.616 0.943 0.940 

(5,10] 0.972 0.879 0.805 0.974 0.975 

(10,20] 0.979 0.887 0.899 0.981 0.980 

(20,30] 0.971 0.868 0.829 0.974 0.971 

(30,40] 0.988 0.943 0.947 0.988 0.988 

(40,50] 0.980 0.884 0.888 0.980 0.980 
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Table S7. Mean R2 values in the simulated data set of Europeans, for different allele frequency ranges, as represented in Figure 4 
 
A 
 
 Imm  Metab  MetabImm 

                  

MAF 
bins (%) 

Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR  
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR  
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR 

                                    

                  
(0,0.5] 0.067 0.277 0.269 0.763 0.751  0.111 0.549 0.485 0.870 0.880  0.129 0.818 0.752 0.895 0.902 
(0.5,1] 0.078 0.289 0.302 0.838 0.835  0.135 0.543 0.591 0.950 0.931  0.153 0.878 0.872 0.980 0.980 
(1,5] 0.144 0.329 0.283 0.878 0.869  0.168 0.551 0.465 0.962 0.961  0.265 0.854 0.810 0.985 0.985 

(5,10] 0.359 0.437 0.454 0.918 0.922  0.378 0.600 0.625 0.970 0.975  0.569 0.963 0.917 0.993 0.993 
(10,20] 0.293 0.410 0.450 0.835 0.857  0.366 0.593 0.598 0.977 0.977  0.500 0.923 0.898 0.992 0.992 
(20,30] 0.374 0.443 0.428 0.832 0.813  0.450 0.632 0.621 0.983 0.983  0.576 0.944 0.871 0.993 0.993 
(30,40] 0.333 0.437 0.442 0.881 0.826  0.372 0.629 0.570 0.982 0.981  0.555 0.919 0.906 0.993 0.993 
(40,50] 0.307 0.350 0.440 0.899 0.938  0.381 0.571 0.581 0.985 0.985  0.529 0.985 0.941 0.995 0.995 

                                    

 
                  

 
B 

 OmExp  OMI 
 

pHumCore 

            
 

     
MAF 

bins (%) 
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR  
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR 
 

Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR 
                                    

            
 

     
(0,0.5] 0.260 0.887 0.893 0.890 0.892  0.274 0.897 0.903 0.896 0.896 

 
0.151 0.846 0.855 0.856 0.863 

(0.5,1] 0.374 0.979 0.979 0.977 0.977  0.385 0.981 0.981 0.979 0.979 
 

0.279 0.960 0.960 0.962 0.962 
(1,5] 0.613 0.988 0.988 0.989 0.989  0.630 0.989 0.989 0.989 0.989 

 
0.449 0.974 0.974 0.976 0.977 

(5,10] 0.874 0.995 0.995 0.996 0.996  0.877 0.996 0.996 0.996 0.996 
 

0.744 0.987 0.987 0.989 0.989 
(10,20] 0.898 0.997 0.998 0.997 0.998  0.916 0.998 0.998 0.998 0.998 

 
0.796 0.993 0.993 0.993 0.994 

(20,30] 0.926 0.997 0.997 0.998 0.998  0.928 0.998 0.998 0.998 0.998 
 

0.816 0.990 0.989 0.992 0.992 
(30,40] 0.939 0.999 0.999 0.999 0.999  0.943 0.999 0.999 0.999 0.999 

 
0.911 0.998 0.997 0.998 0.998 

(40,50] 0.916 0.998 0.998 0.998 0.998  0.918 0.998 0.999 0.998 0.998 
 

0.854 0.995 0.996 0.996 0.996 
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Table S7 (Continued) 
 
C 
 
 

 Affy6.0 

      
MAF 

bins (%) 
Sard
Seq 

1000G
-ALL 

1000G
-EUR 

SardSeq 
+ 1000G-

ALL 

SardSeq 
+ 1000G-

EUR 
            

      
(0,0.5] 0.268 0.915 0.922 0.916 0.913 
(0.5,1] 0.350 0.978 0.978 0.977 0.978 
(1,5] 0.600 0.985 0.986 0.986 0.986 

(5,10] 0.830 0.994 0.995 0.995 0.995 
(10,20] 0.899 0.995 0.995 0.995 0.995 
(20,30] 0.839 0.994 0.993 0.995 0.995 
(30,40] 0.907 0.998 0.999 0.999 0.999 
(40,50] 0.888 0.997 0.997 0.998 0.998 

            

       
 
 
 
 
 
 
 
Table S8. Relative efficiency of HumanOmniExpress and HumanCore arrays in the MCTFR study 
 
 

MAF bins (%) HumanOmniExpress HumanCore 

(0,0.5] 0.478 0.420 

(0.5,1] 0.727 0.613 

(1,5] 0.809 0.677 

(5,10] 0.928 0.782 

(10,20] 0.953 0.837 

(20,30] 0.945 0.840 

(30,40] 0.962 0.901 

(40,50] 0.945 0.875 

 
 
 
The table compares imputation accuracy in the MCTFR cohort when imputation is performed with 
MinnSeq panel and baseline genotypes are subset of SNPs overlapping between the Illumina 660W-quad, 
directly typed, and the HumanOmniExpress and HumanCore arrays (7944 and 3236 SNPs, respectively, 
representing 50% and 46% of the original content).  
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Table S9. Mean R2 values in the SardiNIA and MCTFR studies, for different allele frequency ranges, 
as represented in Figure 5 
 
 

A 
        

 SardiNIA genotypes 

MAF 
bins (%) 

SardSeq + 
1000G-

ALL 

SardSeq + 
1000G-

EUR 

Sard
Seq 

MinnSeq + 
1000G-

ALL 

MinnSeq + 
1000G-

EUR 

Minn
Seq 

1000G-
ALL 

1000G-
EUR 

         
(0,0.5] 0.765 0.752 0.751 0.494 0.468 0.422 0.409 0.352 

(0.5,1] 0.889 0.888 0.886 0.64 0.584 0.581 0.557 0.551 

(1,5] 0.956 0.954 0.953 0.694 0.677 0.682 0.667 0.63 

(5,10] 0.988 0.987 0.986 0.913 0.905 0.915 0.904 0.824 

(10,20] 0.988 0.988 0.987 0.954 0.944 0.951 0.937 0.94 

(20,30] 0.985 0.985 0.985 0.942 0.959 0.937 0.936 0.925 

(30,40] 0.991 0.991 0.99 0.964 0.96 0.959 0.949 0.949 

(40,50] 0.986 0.986 0.986 0.921 0.921 0.917 0.917 0.918 

 
    

        
B 

        
 MCTFR genotypes 

MAF 
bins (%) 

MinnSeq + 
1000G-

ALL 

MinnSeq + 
1000G-

EUR 

Minn
Seq 

SardSeq + 
1000G-

ALL 

SardSeq + 
1000G-

EUR 

Sard
Seq 

1000G-
ALL 

1000G-
EUR 

         
(0,0.5] 0.549 0.521 0.486 0.462 0.421 0.391 0.362 0.324 

(0.5,1] 0.734 0.729 0.717 0.547 0.57 0.466 0.55 0.488 

(1,5] 0.829 0.825 0.819 0.749 0.742 0.686 0.731 0.715 

(5,10] 0.947 0.942 0.936 0.909 0.906 0.883 0.917 0.893 

(10,20] 0.944 0.945 0.944 0.941 0.928 0.917 0.941 0.919 

(20,30] 0.96 0.96 0.96 0.935 0.944 0.94 0.905 0.936 

(30,40] 0.959 0.961 0.96 0.941 0.939 0.927 0.928 0.923 

(40,50] 0.962 0.96 0.958 0.948 0.948 0.933 0.941 0.946 

 
 
 
 
The table shows the mean R2 at different allele frequencies ranges, as shown in Figure 5, for SardiNIA (A) 
and MCTFR (B) studies, using HumanOmniExpress and Illumina 660W-quad arrays as baseline genotypes, 
respectively. 
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Table S10. Basic statistics for imputations in the SardiNIA and MCTFR cohorts using different 
reference panels 
 

 Whole imputed SNPs set  Rsq > 0.3  Shared imputed SNPs 

         
Reference Panel N SNPs Mean (SD) Rsq   

% 
SNPs Mean (SD) Rsq  Mean (SD) Rsq 

SardiNIA 

SardSeq 315,846 0.877 (0.235)   0.94 0.927 (0.125)  0.918 (0.138) 

1000G-ALL 835,114 0.289 (0.377)   0.33 0.791 (0.225)  0.593 (0.351) 

1000G-EUR 361,269 0.543 (0.405)   0.61 0.838 (0.206)  0.568 (0.367) 

SardSeq + 1000G-ALL 232,683 0.933 (0.163)   0.98 0.954 (0.096)  0.924 (0.128) 

SardSeq + 1000G-EUR 211,183 0.948 (0.131)   0.99 0.959 (0.088)  0.920 (0.136) 

MinnSeq 586,293 0.385 (0.401)   0.43 0.811 (0.225)  0.677 (0.321) 

MinnSeq + 1000G-ALL 286,098 0.667 (0.369)   0.75 0.852 (0.200)  0.703 (0.300) 

MinnSeq + 1000G-EUR 251,003 0.715 (0.348)   0.80 0.866 (0.192)  0.696 (0.307) 

          
MCTFR 

 
SardSeq 318,468 0.636 (0.356)   0.74 0.814 (0.217)  0.669 (0.292) 

1000G-ALL 838,326 0.330 (0.375)   0.39 0.752 (0.232)  0.620 (0.306) 

1000G-EUR 364,132 0.607 (0.365)   0.71 0.805 (0.219)  0.592 (0.335) 

SardSeq + 1000G-ALL 235,268 0.791 (0.269)   0.91 0.853 (0.189)  0.704 (0.268) 

SardSeq + 1000G-EUR 213,757 0.829 (0.236)   0.94 0.867 (0.181)  0.700 (0.275) 

MinnSeq 588,975 0.574 (0.338)   0.73 0.738 (0.228)  0.780 (0.224) 

MinnSeq + 1000G-ALL 288,661 0.790 (0.263)   0.92 0.844 (0.188)  0.797 (0.199) 

MinnSeq + 1000G-EUR 253,564 0.831 (0.229)   0.96 0.863 (0.178)  0.794 (0.201) 

 
 
 
The table shows, for SardiNIA and MCTFR cohorts and for each reference panel, the number of SNPs 
included in the reference set, the corresponding mean Rsq and standard deviation, the percentage of SNPs 
with Rsq >0.3, with the corresponding mean Rsq and standard deviation, and the mean Rsq and standard 
deviation evaluated for SNPs that were imputed with all reference panels. 
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Table S11. Mean R2 values for combined 1000G and subsets of SardSeq reference panels, for 
different allele frequency ranges, as represented in Figure S1 
 

MAF bins 
(%) SardSeq 500SardSeq + 

1000G-ALL 
1000SardSeq + 

1000G-ALL 
500SardSeq + 
1000G-EUR 

1000SardSeq + 
1000G-EUR 

           
      (0,0.5] 0.751 0.643 0.737 0.620 0.726 

(0.5,1] 0.886 0.852 0.889 0.844 0.890 

(1,5] 0.953 0.928 0.949 0.922 0.948 

(5,10] 0.986 0.977 0.985 0.973 0.984 

(10,20] 0.987 0.981 0.986 0.981 0.986 

(20,30] 0.985 0.980 0.983 0.980 0.983 

(30,40] 0.990 0.987 0.990 0.987 0.989 

(40,50] 0.986 0.980 0.985 0.980 0.985 

            

	  
	  
The table shows the mean R2 at different allele frequencies ranges, for each particular genotyping 
array/reference panel combination, as shown in Figure S1. Imputation was performed on the SardiNIA 
samples and restricted to chromosome 20 and OmExp genotypes. 
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Table S12. Genotype accuracy for low-pass sequencing 
 
 
 

 
    Low pass results 

Variants grouping N samples 
analyzed 

Number of Variants in 
common between 
sequencing and  

Cardio-MetaboChip 

 
Overall  

Discordance 
Rate (%) 

 
Heterozygote 
Discordance 

Rate (%) 

       

All variants genotyped using arrays 

All variants 
508 

1146 
2120 

2490 
2542 
2573 

 
0.47 
0.29 
0.20 

 
1 

0.73 
0.52 

       

All variants genotyped using arrays, stratified by frequency among low pass samples 

MAF < 0.5% 
508 

1146 
2120 

77 
124 
142 

 
0.12 
0.04 
0.02 

 
11.3 

10.42 
2.59 

MAF 0.5 - 5.0%  
508 

1146 
2120 

484 
498 
502 

 
0.27 
0.10 
0.9 

 
2.05 
1.65 
1.28 

MAF > 5% 
508 

1146 
2120 

1929 
1920 
1929 

 
0.52 
0.36 
0.24 

 
0.96 
0.69 
0.49 

 
 
 
 
The table compares accuracy of genotypes detected through sequencing when performing variants calling 
in the full set (2120 individuals) or in subsets of samples (508 and 1146 individuals). Accuracy was 
evaluated as the percentage of discordant genotypes with those available from Cardio-MetaboChip array. 
Discordance rate is reported for all genotypes as well as for heterozygous sites.
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Table S13. Efficiency of Rsq quality metric on SardiNIA genotypes 
 
 
 

A MAF < 1% 

 SardSeq 1000G-ALL 1000G-EUR 

Rsq % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good left (n) 

       
> 0 99.88 (825) 100.00 (7705) 99.95 (4016) 100.00 (4106) 99.91 (4248) 100.00 (3457) 

> 0.1 73.24 (605) 99.83 (7692) 46.52 (1869) 96.10 (3946) 38.01 (1616) 94.13 (3254) 

> 0.2 63.20 (522) 99.61 (7675) 24.69 (992) 90.60 (3720) 19.90 (846) 87.88 (3038) 

> 0.3 56.30 (465) 99.38 (7657) 13.69 (550) 84.27 (3460) 11.45 (487) 81.52 (2818) 

> 0.4 47.94 (396) 98.97 (7626) 7.84 (315) 75.89 (3116) 7.38 (314) 73.30 (2534) 

> 0.5 40.19 (332) 98.03 (7553) 4.26 (171) 66.63 (2736) 4.61 (196) 65.63 (2269) 

> 0.6 29.78 (246) 96.20 (7412) 2.71 (109) 57.84 (2375) 3.08 (131) 58.11 (2009) 

> 0.7 20.58 (170) 91.69 (7065) 1.37 (55) 48.17 (1978) 2.12 (90) 49.67 (1717) 

> 0.8 11.50 (95) 82.91 (6388) 0.70 (28) 37.26 (1530) 1.32 (56) 40.21 (1390) 

> 0.9 3.87 (32) 60.95 (4696) 0.27 (11) 23.94 (983) 0.56 (24) 27.48 (950) 

> 1 0.00 (0) 0.92 (71) 0.00 (0) 0.17 (7) 0.00 (0) 0.20 (7) 

       
B MAF ≥ 1% 

 SardSeq 1000G-ALL 1000G-EUR 

Rsq % bad (n) % good (n) % bad (n) % good (n) % bad (n) % good left (n) 

       
> 0 88.89 (8) 100.00 (11898) 99.88 (814) 100.00 (10081) 99.82 (1087) 100.00 (10094) 

> 0.1 77.78 (7) 99.96 (11893) 85.89 (700) 99.83 (10064) 74.75 (814) 99.82 (10076) 

> 0.2 44.44 (4) 99.93 (11890) 64.91 (529) 99.50 (10031) 49.86 (543) 99.32 (10025) 

> 0.3 44.44 (4) 99.91 (11887) 45.77 (373) 98.75 (9955) 33.24 (362) 98.01 (9893) 

> 0.4 44.44 (4) 99.86 (11881) 28.83 (235) 97.37 (9816) 21.03 (229) 95.88 (9678) 

> 0.5 44.44 (4) 99.79 (11873) 17.18 (140) 94.75 (9552) 14.14 (154) 92.95 (9382) 

> 0.6 44.44 (4) 99.72 (11865) 11.04 (90) 91.11 (9185) 8.91 (97) 89.04 (8988) 

> 0.7 22.22 (2) 99.57 (11847) 6.01 (49) 85.83 (8653) 5.14 (56) 83.98 (8477) 

> 0.8 22.22 (2) 99.18 (11800) 3.07 (25) 78.60 (7924) 3.49 (38) 77.87 (7860) 

> 0.9 22.22 (2) 96.13 (11438) 1.10 (9) 66.96 (6750) 2.11 (23) 67.22 (6785) 

> 1 0.00 (0) 3.80 (452) 0.00 (0) 2.28 (230) 0.00 (0) 2.28 (230) 
 
 
 
 
The table shows the percentage and the number of poorly and well-imputed SNPs (see Materials and 
Methods) when using OmExp array as baseline for imputation, for each Rsq threshold. Panel A focus on 
variants with MAF <1%, and panel B on those with MAF ≥1%. Reported statistics are genome-wide. 
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Table S14. Efficiency of imputation quality metrics in the SardiNIA cohort, for 1000G-EUR based 
imputations 
 

A  MAF < 1% MAF ≥ 1% 

 1000G-EUR 1000G-EUR 

Rsq % bad (n) % good (n) % bad (n) % good (n) 

      
> 0 100 (109) 100 (105) 100 (30) 100 (255) 

> 0.1 36.7 (40) 95.24 (100) 80 (24) 100 (255) 

> 0.2 14.68 (16) 81.9 (86) 53.33 (16) 100 (255) 

> 0.3 9.17 (10) 74.29 (78) 43.33 (13) 98.82 (252) 

> 0.4 5.5 (6) 67.62 (71) 30 (9) 97.25 (248) 

> 0.5 2.75 (3) 57.14 (60) 10 (3) 90.98 (232) 

> 0.6 0.92 (1) 50.48 (53) 10 (3) 84.71 (216) 

> 0.7 0.92 (1) 45.71 (48) 6.67 (2) 78.82 (201) 

> 0.8 0 (0) 40 (42) 3.33 (1) 71.37 (182) 

> 0.9 0 (0) 25.71 (27) 3.33 (1) 58.43 (149) 

> 1 0 (0) 0 (0) 0 (0) 1.57 (4) 

     
B  MAF < 1%  MAF ≥ 1% 

 1000G-EUR 1000G-EUR 

INFO % bad (n) % good (n) % bad (n) % good (n) 

      
> 0 100 (86) 100 (80) 100 (37) 100 (247) 

> 0.1 89.53 (77) 100 (80) 100 (37) 100 (247) 

> 0.2 62.79 (54) 98.75 (79) 100 (37) 100 (247) 

> 0.3 46.51 (40) 97.5 (78) 86.49 (32) 100 (247) 

> 0.4 31.4 (27) 92.5 (74) 70.27 (26) 99.6 (246) 

> 0.5 18.6 (16) 82.5 (66) 51.35 (19) 99.6 (246) 

> 0.6 11.63 (10) 72.5 (58) 29.73 (11) 97.57 (241) 

> 0.7 4.65 (4) 62.5 (50) 13.51 (5) 95.14 (235) 

> 0.8 3.49 (3) 51.25 (41) 8.11 (3) 87.45 (216) 

> 0.9 0 (0) 38.75 (31) 5.41 (2) 70.04 (173) 

> 1 0 (0) 0 (0) 0 (0) 0 (0) 
 
 
 
 
The table shows the number and the percentage of poorly and well-imputed SNPs (see Materials and 
Methods) that are captured for each Rsq (A) and INFO (B) threshold. Imputation was performed on 
chromosome 20 OmniExpress SNPs, using the 1000G-EUR panel. Statistics are reported separately for 
common and rare variants. 
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Table S15. Efficiency of imputation quality metrics in the MCTFR cohort, for 1000G-EUR based 
imputations 
 
 
 

A  MAF < 1% MAF ≥ 1%  

 1000G-EUR 1000G-EUR 

Rsq % bad (n) % good (n) % bad (n) % good (n) 

      
> 0 100 (96) 100 (83) 100 (2) 100 (256) 

> 0.1 51.04 (49) 98.8 (82) 50 (1) 100 (256) 

> 0.2 28.12 (27) 96.39 (80) 0 (0) 100 (256) 

> 0.3 18.75 (18) 92.77 (77) 0 (0) 98.83 (253) 

> 0.4 9.38 (9) 86.75 (72) 0 (0) 96.48 (247) 

> 0.5 4.17 (4) 78.31 (65) 0 (0) 92.58 (237) 

> 0.6 3.12 (3) 63.86 (53) 0 (0) 83.59 (214) 

> 0.7 2.08 (2) 54.22 (45) 0 (0) 73.83 (189) 

> 0.8 0 (0) 42.17 (35) 0 (0) 63.28 (162) 

> 0.9 0 (0) 26.51 (22) 0 (0) 50 (128) 

> 1 0 (0) 0 (0) 0 (0) 0 (0) 

     
B  MAF<1% MAF ≥ 1%  

 1000G-EUR 1000G-EUR 

INFO % bad (n) % good (n) % bad (n) % good (n) 

      
> 0 100 (80) 100 (62) 100 (8) 100 (241) 

> 0.1 98.75 (79) 100 (62) 100 (8) 100 (241) 

> 0.2 92.5 (74) 100 (62) 100 (8) 100 (241) 

> 0.3 71.25 (57) 100 (62) 100 (8) 100 (241) 

> 0.4 42.5 (34) 100 (62) 100 (8) 100 (241) 

> 0.5 25 (20) 98.39 (61) 50 (4) 100 (241) 

> 0.6 7.5 (6) 93.55 (58) 12.5 (1) 100 (241) 

> 0.7 2.5 (2) 80.65 (50) 0 (0) 95.02 (229) 

> 0.8 0 (0) 59.68 (37) 0 (0) 83.82 (202) 

> 0.9 0 (0) 35.48 (22) 0 (0) 61.83 (149) 

> 1 0 (0) 0 (0) 0 (0) 0 (0) 
 
 
 
 
The table shows the number and the percentage of poorly and well-imputed SNPs (see Materials and 
Methods) that are captured for each Rsq (A) and INFO (B) threshold. Imputation was performed on 
chromosome 20 Illumina 660W-quad SNPs, using the 1000G-EUR panel. Statistics are reported separately 
for common and rare variants. 
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6. URLs of Web Resources 

• Data access: Part of the sequenced samples is available under the SardiNIA 

Medical Sequencing Discovery Project, dbGaP Study Accession: 

phs000313.v3.p2  

• 1000 Genomes: http://www.1000genomes.org/home 

• 1000Genomes imputation cookbook: 

http://genome.sph.umich.edu/wiki/Minimac:_1000_Genomes_Imputation_Cookb

ook 

• HumanExome Design: 

http://genome.sph.umich.edu/wiki/Exome_Chip_Design 

• ExomePicks: http://genome.sph.umich.edu/wiki/ExomePicks 

• GotCloud: http://genome.sph.umich.edu/wiki/GotCloud 

• Picard: http://picard.sourceforge.net. 

• VerifyBamID: http://genome.sph.umich.edu/wiki/VerifyBam 
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