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EXECUTIVE SUMMARY 
 

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, 
northern Lake Victoria. The proprietors of the farm requested for technical assistance of 
NaFIRRI to undertake regular environment monitoring of the cage site as is mandatory 
under the NEMA conditions. NAFIRRI agreed to undertake quarterly environment 
surveys in the cage area covering selected physical-chemical factors i.e. water column 
depth, water transparency, water column temperature, dissolved oxygen, pH and 
conductivity; nutrient status, algal and invertebrate communities (micro-
invertebrates/zooplankton and macro-invertebrates/macro-benthos) as well as fish 
community. The first quarter survey was undertaken in February 2011; the second in 
May 2011, the third in September 2011 and the fourth quarter survey which is the 
subject of this report was undertaken in November 2011. Results/observations made 
are presented in this technical report along with a scientific interpretation and 
discussion of the results with reference to possible impacts of the cage facilities to the 
water environment and aquatic biota. 

Depth profiles and water transparency and GPS positions were determined with an Echo 
sounder, black and white secchi disc and a GPS device respectively. Water column 
temperature, dissolved oxygen, pH and conductivity were measured in-situ with a CTD. 
Water samples for determination of nutrient levels and algal status were collected with 
a Van dorn sampler. Selected dissolved nutrients were analyzed by spectrophotometric 
methods. Zooplankton samples were collected with Nansen type plankton net of 0.24m 
mouth opening and 60µm Nitex mesh. Macro-benthic community was sampled with a 
Ponar grab of open jaw area, 238cm2. Invertebrate samples were analyzed for species 
composition and abundance under binocular and inverted microscopes and with use of 
appropriate taxonomic manuals. Fish were sampled with fleets of gill-nets of varying 
mesh sizes, taxonomically identified and species numbers established per site. 
Observations were also made on aspects of the biology and ecology of the fishes caught. 

Soluble reactive phosphorus (SRP) was higher at DSC/ downstream (0.0147mg/l) 

compared to USC/upstream (0.01mg/l) probably through its release from bottom 

sediments  although this trend does not appear to be significant. Nitrite nitrogen varied 

within narrow limits (0.04-0.043 mg/l) but was significantly higher and comparable at 

USC and DSC in relation to WIC. Ammonium-nitrogen also varied within narrow limits 

but was highest at DSC (0.066mg/l) and lowest at WIC (0.058mg/l). Total suspended 

solids were lower at WIC (0.2 mg/l) and DSC (0.4 mg/l) compared to USC (1.2 mg/l). 

Within cages (WIC) site had the lowest zooplankton species number (19) compared to 
(DSC) (25) and (USC) (25), with rotifers having the highest number of species in all 
survey sites: (WC (9), DSC (13) and USC (10). Copepods were widely distributed in all 
sites compared to Rotifera and Cladocera; with Tropocyclops tenellus, Tropocyclops 
confinnis, Thermocyclops neglectus and Thermodiaptomus galeboides as the dominant 
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species. Fourth quarter (Novemebr 2011) numerical abundances and species richness 
were significantly higher across transects compared to those for May and September.  A 
slight difference in zooplankton abundance was observed between USC (495,556 ± 
48,307 ind.m-2) and WIC (453,810 ± 71,014 ind.m-2) which may be related to extension 
of the area with cages to cover the upstream site (USC). A non significant increase in 
numerical abundance was observed downstream. Similarly the November survey (4th 
quarter) had the highest species richness in both USC (19 ± 0.3) and DSC (17 ± 2) 
compared to earlier three quarters of 2011.  The 1st quarter high species richness (16 ± 
0.7) at WIC declined in subsequent samplings to depressed species richness and 
numerical abundance at this site compared to the other two sites (USC and DSC). 
Generally rotifers were dominant in terms of species richness, (39 – 59%) compared to 
copepods (29 – 37%) and Cladocera (10 – 24%). 

Twenty six (26) macro-invertebrate groups were recorded and as in previous surveys 
and  key components were mollusks (Bilvavia and Gastropoda), mayflies 
(Ephemeroptera), two-winged flies (Diptera) and caddis flies (Trichoptera). Diptera, had 
the highest diversity (10 taxa) as in the previous surveys. Distribution and abundance 
patterns followed a comparable trend to the previous surveys with the highest total 
mean densities (3137 & 2087) occurring at WIC. Dipterans and the gastropods 
constituted the most abundant taxa particularly at WIC with mean densities of 1275 and 
840 ind. m-2 respectively. Notably, the EPTs occurred only at USC and DSC and were 
absent at WIC.  

A total of 12 fish species (8 haplochromines (Nkejje) and 4 non-haplochromines), 
belonging to 5 families were recorded in the vicinity of the cages. Haplochromines 
dominated the catch contributing 49.6% of all the fishes caught. Eight species belonging 
to 7 genera of haplochromines were caught. Highest fish diversity 10species was 
observed from within the cages. Fish abundance was highest also within the cages 
(49.6%). Eight (8) species belonging to 7 genera of haplochromines were recognized 
during the survey. Highest fish species diversity (7 species) was recorded from within 
the cages (WIC) although the largest amount of fish (57%) was from downstream the 
cages (DSC). The most abundant haplochromines still belonged to the genus 
Astatotilapia (76.7%) followed by Psammochromis (11.7%) and Paralabidochromis 
(3.3%). Haplochromines registered the highest catch rates (25.8 and 300g by numbers 
and weight respectively). Overall mean rates during the period under review (November 
2011) were calculated at 8.5fish and 226g per net by numbers and weight respectively. 
Overall catch rates were higher than those calculated during the previous surveys (257 
cf 226g/net/night respectively). Increase in numbers was due to increased numbers of 
Synodontis afrofischeri common during this time of the year in Napoleon Gulf. 

The present observations on key environmental parameters indicate normal, expected 
conditions of water quality and within permissible limits recommended by NEMA. 
However persistent depressed zooplankton species richness and abundance together 
with absence of non-tolerant macro-benthos at WIC appear to suggest incipient impacts 
of the cage facility at the site. 
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1.0 Back ground  

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, 

northern Lake Victoria. The proprietors of the farm requested for technical assistance of 

NaFIRRI to undertake regular environment monitoring of the cage site as is mandatory 

under the NEMA conditions. As the SON is a key collaborator/client of the institute, 

NAFIRRI agreed to undertake the assignment subject to facilitation by the client. The 

institute agreed to conduct quarterly surveys of key environmental parameters at the 

site including selected physical-chemical and biological factors, nutrient status, column 

depth, water transparency and sedimentation. Samples and field measurements were 

to be taken at 3 sites: within and/or close to the fish cages (WIC), upstream (USC) and 

downstream (DSC) of the cages.  

The first environmental monitoring survey was undertaken in February 2011; the second 

in May 2011 and the third in September 2011. The surveys cover physical-chemical 

parameters, nutrient status, invertebrate and fish communities. The present report 

presents field observations made for the fourth quarter survey undertaken in November 

2011 and provides a scientific interpretation and discussion of the results with reference 

to possible impacts of the cage facilities to the water environment and the different 

aquatic biota at and around the cage site including natural fish communities. 

2.0 Study area 

Source of the Nile Fish Farm is a fish cage rearing facility located at Bugungu area at the 

western end of the Napoleon gulf in northern Lake Victoria (Fig. 1). The farm is a few 

kilometers south of the Source of the River Nile (hence the name of the fish farm!) and 

is presumably influenced by the headwaters of the River Nile as it flows downstream to 

the nearby Owen Falls and Nalubaale Dams.  The farm comprises a number of fish cages 

arranged in rows in a west-to-east formation, anchored by weights and buoyed by large 

rubber floaters. The water depth ranges from 3.2 to 8.3m with a mean depth of 4.7m. 

During the third and fourth quarters of 2011, the number of cages at the site has 

progressively increased and currently covers the USC site.   
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Figure 1. Map of the study area showing location of SON Fish Farm and study areas: 

USC- upstream of cages; WIC- within cages and DSC- downstream of cages, in northern 

Lake Victoria. 

3.0 Materials and methods 

3.1 Depth profiles and water transparency and GPS positions 

An Echo Sounder was used to determine the total depth at each field site. A black and 

white Secchi disc harnessed with a 1-metre marked rope was used to measure water 

column transparency. All in-situ measurements were made in triplicate for the purpose 

of assessing variation in each parameter at each sampling point. Coordinate locations 

for each site were determined with a GPS device, recorded and used to prepare a site 

locations map (Figure 1).  

3.2 Physical-chemical environment 

Physical-chemical parameters (water column temperature, dissolved oxygen, pH and 

conductivity) were measured in-situ with a CTD at each site and the data down-loaded 

on to a computer for subsequent analysis. 
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3.3 Nutrient status 

Water samples for the determination of nutrients and algae status were collected with a 

Van dorn sampler, placed in clean, labeled plastic bottles for laboratory analysis. Water 

samples for determination of dissolved nutrients i.e.  Soluble Reactive Phosphorus 

(SRP), Ammonia-nitrogen (NH3-N) and Nitrite-nitrogen (NO2-N) were filtered and 

analyzed by spectrophotometric methods following procedures by Stantoin et al. (1977). 

Water samples were also analyzed for total suspended solids (TSS).  

 3.4 Micro-invertebrates/zooplankton and Macro-invertebrates/macro-benthos  

Zooplankton samples were collected with a conical net of 0.24m diameter and 60 µm 

mesh. The filtered samples were placed in clean plastic bottles and fixed wit h 4% sugar 

formalin. In the laboratory samples were rinsed in tap water over a 50 µm Nitex mesh 

and diluted to a volume depending on the concentration of each sample. A series of 2, 

2, and 5 sub-samples were taken from a well agitated sample using a calibrated 

automatic bulb pipette, each introduced on to a plankton counting chamber and 

examined under an inverted microscope at x100 magnification. Individual organisms 

were taxonomically identified using taxonomic manuals by Boxshall & Braide 1991; 

Korinek 1999; Korovchinsky 1992; Koste 1978. Members of each species were 

enumerated and recorded. 

Generation of macro-benthos data involved taking sediment samples with a Ponar grab 

(open jaw area, 238cm2). Three hauls were taken from each sampling point. The bottom 

type and texture was described from the grabbed contents. Each sample hauls was 

concentrated placed in clean, labeled sample bottle, and preserved with 5% formalin. 

In the laboratory, each sample was rinsed with tap water and placed on a white plastic 

tray. Benthos were sorted from the sediment using forceps and individual taxa 

examined under a dissecting binocular microscope at x 400 magnification and 

taxonomically identified using identification manuals by Pennak (1953), Mandhal-barth, 

(1954) and Epler (1995). All taxa were recorded and individuals of each taxon 

enumerated. 

3.5 Fish community 

Three fleets of gill-nets comprising panels of mesh sizes 1” to 5.5” in 0.5” increments, 

and 6 to 8 in 1” increments were set overnight at USC, WIC and DSC. The nets were set 

between 1800hr to 1900hr on 21st, and removed between 0600hr and 0700hr the 

following day. 
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Fish species caught by different nets in each fleet were sorted and identified as in 

Greenwood (1966). Specimens of fishes not easily identifiable in the field especially the 

haplochromines were given field names, and preserved for more detailed laboratory 

taxonomic procedures as in Greenwood (1981). For each species, the number, total 

weight (g) and individual lengths (cm) of the fish were recorded. Fork length (FL) was 

measured for all fish species with forked caudal fins and Total Length (TL), for fishes 

with entire fins.  

Biometric data (Total and Standard length, body weight, sex and gonad maturity state, 

stomach fullness and fat content) was (were) recorded for individual fishes. Fish) 

stomachs were preserved for laboratory analysis of the contents as in Bagenal and 

Braun (1978). The fish were further examined for any infection (parasitic or bacterial) 

both on the surface and within the gut cavity. 

 4.0 Results and inferences 

4.1 Water column depth and transparency characteristics at the study site 

A graphical presentation of the total and Secchi depths at Source of the Nile cage 

culture sites as observed during the four sampling periods (November, September, May 

and February 2011) showed a slight variation in total depth at the three sites (USC, WIC 

and DSC). Upstream of the cages (USC) was the deepest site while WIC was the 

shallowest.  

 

Figure 2. Comparison of total depths (mean ± Stdev; n = 6 for USC and WC; n = 7 for 

DSC) across sampling dates in 2011. 

Water column depth (TD) ranged from 2.7 to 8.4m. Overall mean total depth ranged 

from 4.71 ± 1.6 in February to 4.82 ± 1.76m recorded in November. 
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Secchi depth (SD), a measure of water transparency based on suspended matter in 

water column varied from 0.87 to 1.93m (Fig.3). SD was comparably lower (<1m) across 

sites in November compared to other sampling times and varied within narrow limits 

between February and September. Average SD varied from 0.99 to 1.73m. 

 

 

Figure 3. Comparison of Secchi depths (mean ± Stdev; n = 9) across sampling sites 

and dates, 2011. 

SD was lowest at USC and highest at WC and DSC respectively. Such contrast in SD 

measurements could be partly attributed to the level of turbidity within the water 

column caused by suspended sediments in the water column capable of releasing 

nutrients that causes algal blooming (Mwebembezi et al, 2005). Also high phytoplankton 

biomass has a similar effect. Both phenomena cause lowering of the surface water 

clarity.  

Secchi Depth measurements across sampling months show that the water was clearer at 

DSC compared to WC and USC although such differences do not appear to be significant. 

Clearer water at WIC where fish feeds are added and where fecal matter from the caged 

fishes is presumably high is an indication of proper cage management and probably 

efficient flushing effect of water currents in the cage area as well as proper 

management of un-utilized feeds (BMP, 2004). At SON the floating fish feed although 

rich in organic matter and nutrient content are readily consumed by the fish and the 

remnants probably drift off downstream leaving clear water. Therefore, sedimentation 

or re suspension of sediment materials into the water column due to fish feeds could be 

minimal and this may explain higher than expected SD at WIC. It is notable that an area 
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where sedimentation has taken place a condition of anoxic sediment, with high 

sediment oxygen demand may be created (R.S.S. Wu R.S.S et al, 1994).  

4.2 Nutrient status 
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Figure  4. Soluble Reactive Phosphorus across study sites at SON cage area, November 

2011. 

Soluble reactive phosphorus concentrations generally varied within narrow limits 

(0.001-0.004 mg/l) across the three study sites and   progressive increased from USC 

through WIC to DSC (Fig. 4). Soluble reactive phosphorus (SRP) increased downstream  

(0.0147mg/l when compared to that upstream (0.01mg/l) probably through its release 

from bottom sediments (Wetzel 2001, Kisand & Noges, 2003)  although this trend does 

not appear to be significant. 

 

 

Figure 5. Nitrite-nitrogen across study sites at SON cage area, November 2011. 
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Nitrite nitrogen also varied within narrow limits (0.04-0.043 mg/l) but was significantly 

higher and comparable at USC and DSC in relation to WIC (Fig.5). The lower nitrite-

nitrogen levels within the cages could probably be due to denitrification by bacteria 

acting on any uneaten feeds (if any) and excreted products of fishes beneath the cages  

or due to the continuous recycling between the different forms within the system 

(Rabalais, 2002). 
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Figure 6. Ammonia-nitrogen across study sites at SON cage area, November 2011. 

Similarly, Ammonium-nitrogen (Fig. 6) varied within narrow limits but was highest at 

DSC (0.066mg/l) and lowest at WIC (0.058mg/l). The low ammonia-nitrogen within 

cages (WIC) was probably due assimilation by planktonic algae and cyanobacteria 

(Hargreaves, 1998; Bronmark & Hansson, 2005). 
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Figure 7. Total Suspended Solids across study sites at SON cage area, November 2011. 
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Total suspended solids (Fig. 7) were lower at WIC (0.2 mg/l) and DSC (0.4 mg/l) 

compared to USC (1.2 mg/l). High TSS upstream was probably due to erosion from the 

surrounding farm lands as observed elsewhere (Walmsley, 1980). 

According to Boyd (1996), the ammonia level of (0.01-0.05mg/l) is considered safe and 

nitrite levels of (1 or 2 mg/l) harmful to fish and other aquatic organisms. The 

permissible levels by NEMA are (ammonia - nitrogen: 10mg/l, nitrite-nitrogen:  2 – 

20mg/l, soluble phosphorus: 5.0mg/l and total suspended solids: 100mg/l) respectively. 

Therefore from the results above, the levels of the nutrients were below the maximum 

permissible limits. 

4.3 Zooplankton community 

Species richness and frequency of occurrence 

A total of 27 species were recorded in all sites sampled. Within cages (WIC) had the 

lowest species number (19) compared to 25 (DSC and (USC) , with rotifers having the 

highest number of species (Table 1) in all sites: (WIC (9), DSC (13) and USC (10). 

Copepods were widely distributed in all sites compared to Rotifera and Cladocera (Table 

1). Dominant Copepoda species were Tropocyclops tenellus, Tropocyclops confinnis, 

Thermocyclops neglectus and Thermodiaptomus galeboides exhibiting numerical 

densities of >10,000 ind.m-2 and with 100% frequency of occurrence in all sample sites. 

Rare copepods included Thermocyclops incisus and Mesocyclops sp. with numerical 

densities of <1000 ind.m-2 and sometime not recorded at all (Table 1). Dominant 

Cladocera were Ceriodaphnia cornuta, Moina micrura and Diaphanosoma excisum with 

relatively high frequent of occurrence (>60%) and numerical abundance (>1000 ind.m-2). 

Rare cladocerans were Chydorus sp. and Daphnia lumholtzi. Eight rotifer species 

(Keratella tropica, Lecane bulla, Brachionus angularis, Euclanis, Filinia opoliensis, K. 

cochlearis, Trichocerca cyclindrica and Sycheata sp.) were dominant exhibiting high 

frequency of occurrence (80-100%) in most and sites (Table 1). The foregoing trends 

were generally consistent over Q1 to Q4 of 2011. 
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Table 1: Zooplankton temporal distribution across transects, Q1-Q4 2011at SON cage 

area. Key: * = <1000, ** = >1000, *** = >10,000 ind.m-2 and A = absent 

  Feb-11 May-11 Sep-11 Nov-11 

Transects USC WC DSC USC WC DSC USC WC DSC USC WC DSC 

Copepoda                         

Thermocyclops incisus A A A * * ** A * A * A * 
Mesocyclops sp. ** * ** * A A * A * ** A ** 
Thermocyclops emini ** ** ** * * * ** ** ** ** ** A 
Thermodiaptomus 
galeboides 

*** *** ** *** ** ** ** ** ** *** ** ** 

Thermocyclops neglectus *** *** *** ** * *** ** ** ** *** ** *** 
Tropocyclops confinnis *** *** *** ** ** ** ** *** *** *** *** *** 
Tropocyclops tenellus *** *** *** *** *** *** *** *** *** *** *** *** 
Cladocera                         
Chydorus sp. * A A A A A A A A A A A 
Daphnia lumholtzi (helm)  A A * A A A * A A * A A 
Moina micrura * A * ** * ** ** * * ** A A 
Ceriodaphnia cornuta * ** * * * ** ** ** ** ** A * 
Bosmina longirostris ** ** * ** * ** ** * A ** ** ** 
Diaphanosoma excisum ** ** ** ** * ** * A A ** ** ** 
Rotifera                         
Ascomorpha sp. A A A A A A A * A A A A 
Asplanchna sp. A A A * A * * A A A A * 
Brachionus angularis ** ** ** ** ** * ** * ** ** ** ** 
B. budapestinensis A A A * A A A A A A A A 
B. calyciflorus A * ** A * * A A * ** ** ** 
B. falcatus * * A A A A A A A * * * 
B. forficula * A * A A A A A A A A * 
B. patulus A A A * A A A A A A A A 
Euclanis sp. ** * A * * * * ** * *** ** ** 
Filinia longiseta ** * ** * A A * A * ** ** ** 
F. opoliensis ** ** ** ** ** ** ** * A ** A A 
Hexathra A A * * * A * * A A A ** 
Keratella cochlearis  * * * * * A ** ** ** ** ** A 
K. tropica ** ** ** *** ** *** ** ** ** ** ** ** 
Lecane bulla ** A * ** ** ** ** ** ** *** *** *** 
Polyarthra vulgaris. * * A * * ** ** * * A A ** 
Synchaeta pectinata A * A A A A A * A A A A 
Synchaeta sp. * ** * *** ** ** ** * ** A A ** 
Trichocerca cylindrica ** ** ** ** ** ** ** * ** *** *** *** 

 

 
 

November (4th quarter) numerical abundances and species richness were significantly 

higher across sites compared to May and September (Fig. 1).  There was a slight 



13 
 

difference in abundance between USC (495,556 ± 48,307 ind.m-2) and WIC (453,810 ± 

71,014 ind.m-2) and this near similarity could have been due to extension of the area 

with cages to cover the upstream site (USC). A non significant increase in abundance 

was observed downstream (DSC). The November survey (4th quarter) had the highest 

species richness in both USC (19 ± 0.3) and DSC (17 ± 2) compared to other three 

quarters (Fig. 8). Though the 1st quarter showed highest species richness (16 ± 0.7) at 

WIC site, the trend in subsequent samplings shows a depressed species richness and 

numerical abundance at this site compared to the other two sites (USC and DSC) (Fig. 8). 

Notably, the 1st and 4th quarters exhibited significantly higher zooplankton densities in 

all transects compared to 2nd and 3rd quarters (Fig. 8) suggesting possible seasonality of 

abundance. 

 

Figure 8: Temporal data for abundance and species richness across transects (USC, 
WIC and DSC) at SON fish farm in Napoleon Gulf, northern Lake Victoria; February to 
November 2011. 

 

Generally, copepods were the dominant group in terms of relative densities (80% - 98%) 

compared to rotifers (1.4 – 18%) and cladocerans (0.3 – 1.7%). On the other hand 
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rotifers were dominant in terms of species richness, (39 – 59%) compared to copepods 

(29 – 37%) and Cladocera (10 – 24%) (Fig. 9).  
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Figure 9: Relative densities and species number across sampled dates at SON cage 
site in Napoleon Gulf, northern Lake Victoria, 2011. 

The November 2011 trends of zooplankton total densities do not deviate much from 

those of the previous quarters (February, May and September), but show an increase in 

abundance when compared to 2nd and 3rd quarters. This increase in abundance could 

have been a result of the extended heavy rainy season experienced during the fourth 

quarter (October to December) coupled with extension of cage area to cover the USC 

site. These phenomena may increase nutrient loading and to some extent promote 

eutrophication and pollution. In cage-culture, the solid wastes (uneaten food, feces and 

mucus) and soluble wastes (phosphorus and nitrogen compounds) are dispersed directly 

into the water; the amount of which will depend on the stocking density of fish, while 

rains accelerate surface run off from the hinterland that cause pollution and 

eutrophication (Lungayia et al. 2001).  

Eutrophic water bodies are commonly characterised with high phytoplankton 

productivity (algal blooms), fluctuations in pH, dissolved oxygen and conductivity levels, 

as well as a general decrease in aquatic biodiversity (Sekiranda et al., 2004, Tallberg et 

al., 1999, Cottenie et al., 2003, Hecky, 1993, Mazumder, 1994, Mugidde, 1993, 

Verschuren et al., 2002, Lungayia et al., 2001, Mavuti and Litterick, 1991). Such changes 

especially in phytoplankton composition and productivity, are associated with structural 

changes in the food web and may affect the quality and quantity of phytoplankton 

composition and biomass (Dodson et al., 2000, Mugidde, 2004, Mwebaza-Ndawula, 

1994, Tallberg et al., 1999, Cottingham, 1999), which may alter zooplankton size 

structure largely because most zooplankton species are largely algal herbivores 

(Gosselain et al., 1998, Gowen et al., 1992, Steiner, 2003).  

The slight increase of relative percentage composition of rotifers observed in the 4th 

quarter (Fig. 9), may represent ecosystem response to changes in nutrient status, 

resulting from sources discussed above. Dias et al. (2011) found higher abundances of 

zooplankton at reference sites compared to the sites with cages and only rotifers 

showed higher abundance near cages, this was attributed to the influence of availability 

of food around cages.  

The persistent depressed species richness and abundances at the WIC in comparison to  

upstream (USC) and downstream (DSC) sites, may imply incipient cage culture impacts 

on the zooplankton community. This is an area of operation where fish densities are 

high probably causing predation pressure and high ammonia and nitrite due to 

excretion (Mwebaza-Ndawula, 1994, Pace, 1986, Zanatta et al., 2010).  Observed rare 

organisms especially Thermocyclops incises,  Mesocyclops sp. and daphnids could be a 
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pointer to selective predation pressure (Brooks and Dodson, 1965) although these 

zooplankton species are known to be generally at low abundance in Lake Victoria.  

4.6  Macro-benthic community 

4.6.1 Composition 

The total number of taxa encountered from the three sampling areas (USC, WIC and 

DSC) over the four surveys of 2011 (February, May, September, and November) were 

24, 21, 26 and 27 respectively (Table 2) indicating minimal seasonal fluctuations. The 

macro-benthos comprised the following groups: Bivalvia and Gastropoda (Mollusca); 

Ephemeroptera (mayflies) Diptera (two-winged flies) and Trichoptera (caddis flies). 

Others were the   Hirudinea (leeches) and Oligochaeta (earth worms) together 

belonging to phylum Annelida (Table 2). 
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Table 2. Composition/occurrence of the individual taxa of macro-benthos in the 
sampled areas at the SON farm – February, May September, November 2011. Key: P = 
present 

Station USC WIC DSC 

  Feb. May Sep Nov Feb May Sep Nov Feb May Sep Nov 

Bivalvia                         

Byssanodonta 
parasitica P P   P P     P P   P   

Caelatura monceti               P       P 

Caelatura 
hauttecoeuri       P               P 

Corbicula africana P   P   P P P P   P P   

Aspatheria sp.      P       P           

Mutera sp.       P       P         

Gastropoda                         

Bellamyia unicolor P P P P P P P P P P P P 

Biomphalaria sp.           P P P         

Bulinus sp.               P   P P   

Gabbia sp. P       P   P P P P P P 

Melanoides sp. P P P P P P P P   P P P 

Anisus natalensis                     P   

Lentorbis junodi   P               P     

Ephemeroptera                         

Caenis sp. P P P P     P       P   

Povilla adusta P P   P         P P P P 

Leptophlebidae P                   P   

Heptageniidae                     P   

Tricorythodes sp.                 P       

Trichoptera                         

Leptoceridae P P   P         P       

Polycentropus sp. P P P P         P P P P 

Diptera                         

Ablabesmyia sp P P P   P   P P P P P   

Chironomus spp. P     P P P P P   P P P 

Clinotanypus sp.         P P P P   P P   

Cryptochironomus 
sp. P   P P     P           

Procladius sp.       P P     P     P   

Tanypus sp.         P   P P     P   

Tarnytarsus sp.     P P P   P P P P P P 

Chironomidae P P P P P       P   P P 

Ceratopogonidae         P P P P         

Chaoborus sp. P P P P P P P P       P 

Others                         

Caridina nilotica                 P       

Libellulidae               P          



18 
 

The following molluscan taxa: Byssanodonta prasitica and Corbicula africana (Bivalvia);  
Bellamya unicolor, Biomphalaria,  Bulinus sp, Gabbia humerosa, Melanoides tuberculata 
(Gastropoda) were common and recorded in all four quarters of 2011. 

Dipteran elements (Ablabesmyia sp., Chironomus sp., Clinotanypus sp, 
Cryptochironomus sp, Tanypus sp, Procladius sp, Tanytarsus sp., Chaoborus sp. and 
Chironomidae and Ceratopogonidae) maintained the highest diversity with 10 taxa in all  
except in the May (2nd quarter) survey.  

Ephemeropterans were composed of   2 spieces (Povilla adusta and Caenis sp.) in all 
surveys, but additional Leptophlebidae and Heptageniidae were encountered in 
September (3rd quarter) and Tricorythodes sp in February (1st quarter). Trichoptera was 
represented by two taxa (Polycentropus sp and Leptoceridae) in all the 4 quarters. 

 

 

 

 

 

 
 
 
 
 
 

Figure 10: Left to right; Percentage composition of broader groups of macrobenthos at 

SON cage farm for February, May September and November 2011  

4.6.2 Distribution and abundance 

The distribution and abundance of macro-benthos followed a comparable trend in all 

the four quarters with the highest total mean densities being recorded in the WIC (1639, 

3137, 2087, and 3165 ind. m-2 for September, May and February respectively) followed 

by the USC (873, 1989, 1611, 1555 ind. m-2) and lowest in the DSC with 327, 1029, 560 

and 1176 respectively for September, May and February (Figure 11). Dipterans and 

gastropods were the most abundant benthos, particularly at WIC with, mean densities 

of 1275 and 840 ind. m-2 respectively in September, a general trend observed in the 

other surveys (Figure 11).  
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 Figure 11: Composition & abundance of major macro-benthos taxa upstream cages, 

within cages and downstream cages ; L – R, February,  May  September & 

November-2011 

In all four sampling periods, there were no trichopterans recovered at WIC. It is noted 

also that there was a general reduction in the abundance of trichopteran larvae in the 

November (4th quarter) sampling compared to the February (1st quarter) and May (2nd 

quarter) results. The abundance of Annelids went up in USC and WIC to 490 ind. m-2 and 

462 ind. m-2 respectively from 238 and 490 ind. m-2 in May and 98 and 210 ind. m-2 

respectively. A decline of 7 ind. m-2 occurred in DSC down from 98 ind. m-2 and 56 ind. 

m-2 in May and February respectively (Fig. 11). 

The 4th quarter (November) registered 10 species of mollusks compared to 9, 8 and 5 in 

the 3rd 2nd and 1st quarters respectively (Table 2). The most abundant molluscan  

species were obtained at WIC (Fig. 3). In November and February B. unicolor was the 

most abundant mollusk species with 607 and 658 ind. m-2 respectively. In September, C. 

Africana (504 ind. m-2) was the dominant species at WIC along with M. tuberculata (532 

ind. m-2). M. tuberculata dominated the USC site in all the four surveys with 252, 140, 

154, and 154 ind. m-2 for November, in the three areas.  M. tuberculata was also 

exhibited cosmopolitan distribution in May and September, May and February 

respectively (Figure 11). Occurring in all the three areas and in all the surveys was B. 

unicolor.   B. unicolor, in addition to M. tuberculata, C. africana ,  B. parasitica and G. 

humerosa occurred in all the quarters (Figure 11). Biomphalaria and Bulinus were not 

limited to a particular area, for example, they were respectively found in WIC (28 ind. m-

2) and DSC (21 ind. m-2) during the 3rd surveys, but in the fourth survey had both. 
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       (a)                                 (b)                                      (c)                                                  (d) 

Figure 12: Composition and abundance of mollusks at the upstream of cages, within 

cages and downstream of cages in (a) February (b), May, (c) September and (d) 

November 2011. 

Diptera exhibited relatively higher taxonomic diversity and abundance at WIC. The 

November survey registered 6 taxa in USC, 8 in WIC and 4 in DSC areas. The September 

sampling exhibited 5 taxa in USC, 7 in WIC and 6 in DSC. In May, 3 taxa were recorded 

USC and 4 taxa in both WIC and DSC while in February, they were 5, 9 and 3 taxa in USC, 

WIC and DSC respectively (Table 2). Notably, both Ablabesmyia and Chaoborus occurred 

in all three sampling areas (Table 2). Chironomus sp.  remained the most abundant 

species at WIC, and  with the highest mean density of 966 ind. m-2 compared to 364 ind. 

m-2 in May and 317 ind. m-2 in February. The fourth quarter (November) survey 

registered the lowest density i.e. 117 ind. m-2. Chaoborus sp. the second abundant 

dipteran taxa, was concentrated at USC site for all the four quarters, achieving a high 

value of 616 ind. m-2 in September as was Chironomus sp. Nonetheless the density 

became quite low (271 ind. m-2) in the November sampling. In all, 10 taxa were recorded 

in November, September and, February and 7 in May. ind. m-2 ) (Table 1). The highest 

abundance was in WIC and the most abundant species being Chironomus sp. (Figure 13 

a, b and c) 
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a) b) 

c) d) 

Figure 13. Composition and abundance of dipteran larvae at the upstream cages, within cages 
and downstream cages – (a) February, (b) May, (c) September & (d) November, 2011. 
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For the EPTs, only Ephemeroptera and Trichoptera were found; with no Plecoptera 

recorded. Notably the ETPs were encountered at USC and DSC but  not at WIC [Fig. 14].  

 

 

 

 
 
 
 
 
 
Figure14: L- R, Composition & abundance of EPTs at the upstream cages, within cages 

and downstream cages – February, May, September & November. 2011 

 
Worms (annelids) were dominated by oligochaetes (Nais sp.) exhibiting, 462, 490, and 0 

ind. m-2 for USC, WIC and DSC respectively compared to 490, 238 and 84 ind. m-2 in the 

USC, WIC and DSC respectively during the 2nd and 210, 84, and 0 ind. m-2 respectively 

during the 1st quarter (Fig. 15). 

 
 
 
 
 
 
 
 
 
Figure 15: L – R, Composition & abundance of annelids and /or Caridina nilotica at the 

upstream cages, within cages and downstream cages –for February, May & September, 

2011. 

The overall total mean densities of macro-benthos remained highest in WIC (1639 ind. 

m-2  in  November, 2087 ind. m-2 in May  and ca 3100 ind. m-2 in Feb. and Sept). Overall 

lowest density estimates (327, 560, 1029 & 1176 ind. m-2 for November, May, 

September and February respectively) were recorded at  DSC. (Figure 16). 
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Figure 16: Total mean abundance of macro-benthos at the upstream cages, within cages 

and downstream cages; L – R, Feb-2011, May 2011 Sept. 2011 and Nov. 2011 

In general, dipteran larvae were the predominant taxon both in terms of diversity and 

numerical abundance and they remained consistently pronounced at the WIC site. Ten 

(10) dipteran taxa were recorded in each quarter except in February (7). Their relative 

abundance ranged from 19% to 40% of the total mean density of macro-benthos over 

the four quarters. Their concentration remained relatively high within the cage area 

(WIC) and largely contributed by the Chironomus sp. Mollusks similarly remained most 

concentrated in the WIC area with gastropods constituting  the second highest 

percentages of 27% 30% 20% and 39% (for February, May, September and November, 

respectively). Ephemeropterans had 12, 13, 13 and 3% for the 1st, 2nd, 3rd and 4th 

quarters respectively. Trichopterans fell within in the same range for the three quarters 

but notably obtained at USC and DSC. The EPTs notably, existed only in the USC and 

DSC, and were absent at WIC in all four quarters.  

 

4.7  Fish community 
 
4.7.1  Fish Catch composition 
 

A total of 12 fish species 8 haplochromines (Nkejje) and 4 non-haplochromines), 
belonging to 5 families were recorded in the vicinity of the cages (Table 3). 
Haplochromines dominated the catch contributing 49.6% of all the fishes caught.  Other 
fish species caught in order of numerical importance were Synodontis afrofischeri 
(Nkolongo) 41.3%, Lates niloticus (Mputa) 5.8%, Mormyrus kannume (Elephant snout 
fish: Kasulubana) 1.7%, and Clarias gariepinus (Male) 1.7%. Highest fish diversity 10 
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species was observed from within the cages (WIC) site. Fish abundance was highest also 
at WIC site (49.6%).  
 
  

Table 3. Catch rates (numbers) of fish species from SON FISH cages obtained 
during the four  quarters of 2011. 
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Sampling period     Q1 Q2 Q3 Q4 

Date of sampling     
Feb. 
2011 

May. 
2011 

 Sep. 
2011 

 Nov. 
2011 

Season     Dry Wet  Wet  Wet 

Family Species Site         

Centropomidae Lates niloticus USC 0.5 0.08  0.3  0.3 

    WIC 0.2 0.31  0.1  0.2 

    DSC 0.1 0.38  0  0.2 

    All  0.2 0.26  0.1  0.2 

       Characidae Brycinus jacksoni USC 0 0  0  0 

    WIC 0 0  0  0 

    DSC 0 0.75  0  0 

    All  0 0.25  0  0 

       Cichlidae Haplochromines USC 7.3 0.75  2.3  9.5 

    WIC 7 1.5  58.5  1.8 

    DSC 20.3 12.25  16.5  8.5 

    All  11.5 4.83  25.8  6.0 

         Oreochromis niloticus USC 0 0.08  0  0 

    WIC 0 0.15  0.5  0 

    DSC 0.1 0.08  0.1  0 

    All  0.03 0.1  0.2  0 

         Tilapia zillii USC 0.4 0  0  0 

    WIC 0 0  0.4  0 

    DSC 0.1 0  0.1  0 

    All  0.2 0  0.2  0 

      
0 

Clariidae Clarias alluaudi USC 0 0 0 0 

  
WIC 0 0 0.8 0 

  
DSC 0 0 0 0 

  
All  0 0 0.3 0 

       

 
Clarias gariepinus USC 0 0 0.1 0 

  
WIC 0 0 0 0 

  
DSC 0 0 0 0.2 

  
All  0 0 0.03 0.1 

       Mochokidae Synodontis afrofischeri USC 0.3 0 0   0.5 

    WIC 0 0 0   1203 

    DSC 0 0 0   0 

    All  0.1 0 0   5.0 

         Synodontis victoriae USC 0.3 0 0   0  
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 4.7.2 The haplochromines 

Eight (8) species belonging to 7 genera of haplochromines were rencountered during 

the fourth (November) survey (Table 3). Highest fish species diversity (7 species) was 

recorded from within the cages (WIC) although the largest amount of fish (57%) was 

from downstream the cages (DSC). The most abundant haplochromines still belonged to 

the genus Astatotilapia (76.7%) followed by Psammochromis (11.7%) and 

Paralabidochromis (3.3%). A number of these haplochromines such as 

Paralabidochromis and Mbipia) are associated with rocky or hard bottom substrates 

common in this area of the gulf. 

 

4.7.3 Catch rates / biomass estimates 

As a measure of standing biomass, catch rates i.e. catch per net per night was used to 

indicate relative abundance of fish species. To analyze gillnet performance; the nets and 

thus fish species were grouped into three categories. Category (A) consisted of fishes 

that grow to a small adult size and are caught by nets of up to 2.5” stretched mesh. 

Category (B) consisted of fish that could be retained by nets of up to 4.5” while category 

(C) was of large fish species capable of being caught in all the nets set. In terms of both 

numbers and weight, catch rates were highest within the cages (4.6, 382 respectively) 

(Table 4). Haplochromines recorded the highest rates (25.8 and 300g by numbers and 

weight respectively). Overall mean rates during the period under review (May 2011) 

were calculated at 8.5fish and 226g per net by numbers and weight respectively. 
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Table 4. Catch rates by weight ( g) of fish caught in SON FISH Q1 to Q4 2011 

Sampling period     Q1 Q2 Q3 Q4       

Date of sampling     
Feb. 
2011 

May. 
2011 

Sep. 
2011 

Nov. 
2011       

Season     Dry Wet Wet Wet       

Family Species Site     
  

      

Centropomidae Lates niloticus USC 118.9 1.38 138 2       

    WIC 17.8 126.3 1 5       

    DSC 3.7 8.0 0 8       

    All  46.8 45.2 46 5       

          Characidae Brycinus jacksoni USC 0 0 0 0       

    WIC 0 0 0 0       

    DSC 0 34.5 0 0       

    All  0 11.5 0 0       

          Cichlidae Haplochromines USC 96.5 19.0 35 9       

    WIC 70 10.5 520 71       

    DSC 411 243.5 345 90       

    All  192.5 91.0 300 66       

            Oreochromis niloticus USC 0 5.2 0 0       

    WIC 0 9.9 79 0       

    DSC 0.9 0.5 16 0       

    All  0.3 5.2 32 0       

            Tilapia zillii USC 38.3 0 0 0       

    WIC 0 0 3 0       

    DSC 2.3 0 12 0       

    All  13.5 0 5 0       

          Clariidae Clarias alluaudi USC 0 0 0 0 
   

  
WIC 0 0 17 0 

   

  
DSC 0 0 0 0 

   

  
All  0 0 6 0 

   
          

 
Clarias gariepinus USC 0 0 147 0 

   

  
WIC 0 0 0 0 
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DSC 0 0 0 308 

   

  
All  0 0 49 108 

   
          Mochokidae Synodontis afrofischeri USC 5 0 0 26       

    WIC 0 0 0 597       

    DSC 0 0 0 0       

    All  1.7 0 0 244       

            Synodontis victoriae USC 21.5 0 0 0       

    WIC 0 0 0 0       

    DSC 0 0 0 0       

    All  7.2 0 0 0       

          Mormyridae Mormyrus kannume USC 32.3 61.1 6 0       

    WIC 0 0 0 172       

    DSC 0 0 0 0       

    All  10.8 20.4 2 60       

          Overall Rates   USC 212.6 73.5 302 8       

    WIC 39.4 139.4 246 382       

    DSC 132.5 94.0 129 343       

    All  128.2 102.3 226 257       

          No of species 
recovered   USC 12 5 4 3       

    WIC 5 4 5 4       

    DSC 8 8 3 3       

    All  16 11 7 5       

          
  

      

 

 
Table 5. Percent contribution (by numbers) of haplochromine species from SON 
FISH cages obtained during the first two quarters of the survey. 

 
Sampling period     Q1 Q2 Q3 Q4 

Date of sampling     
Feb. 
2011 

May. 
2011 

Sep. 
2011 

Nov. 
2011 

Season     Dry Wet Wet Wet 

Genus Species Site 
    Astatoreochromis A.alluaudi USC 0 0 0 0 

    WIC 0 0 0 1.7 

    DSC 1.5 0 0.6 0 

    All sites 1.5 0 0.6 1.7 

Astatotilapia A. "thick lip" USC 3.6 0 0 0 
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    WIC 
 

0 0 0 

    DSC 
 

0 0 0 

    All sites 3.6 0 0 0 

  A. "pink anal" USC 
 

0 0 0 

    WIC 
 

0 0 0 

    DSC 
 

60.3 0 0 

    All sites 
 

60.3 0 0 

  Astatotilapia sp USC 12.3 0 0.9 28.3 

    WIC 6.5 8.6 68.3 1.7 

    DSC 42.3 15.5 5.1 46.7 

    All sites 60.9 24.1 74.3 76.7 

Lipochromis L. parvidens USC 0.7 0 0 0 

    WIC 0 0 0 0 

    DSC 0 1.7 0 0 

    All sites 0.7 1.7 0 0 

Lithochromis Lithochromis sp USC 0 0 0 0 

    WIC 0 1.7 0 0 

    DSC 0 0 0 0 

    All sites 0 1.7 0 0 

Mbipia M."blue" USC 0.7 0 0 0 

    WIC 0 0 0 0 

    DSC 0 0 0 0 

    All sites 0.7 0 0 0 

 
M. mbipi USC 0 0 1.8 0 

  
WIC 0 0 0 1.7 

  
DSC 0 0 0 0 

  
All sites 0 0 1.8 1.7 

Paralabidochromis P. "blackpara" USC 1.5 3.4 0 0 

    WIC 0.7 0 2.1 1.7 

    DSC 8.7 3.4 13.6 1.7 

    All sites 10.9 6.9 15.7 3.3 

 
P. victoriae USC 0 0 0 0 

  
WIC 0 0 0.3 0 

  
DSC 0 0 0 0 

  
All sites 0 0 0.3 0 

Psammochromis P. riponianus USC 0 1.7 0 3.3 

    WIC 2.2 0 0 0 

    DSC 4.4 0 0.3 8.3 

    All sites 6.5 1.7 0.3 11.7 
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Pyochromis Ptyochromis sp USC 0 0 0 0 

    WIC 0 0 0 0 

    DSC 2.2 0 0 0 

    All sites 2.2 0 0 0 

Pundamilia Pundamilia sp USC 0.7 0 0 0 

    WIC 10.9 0 0 0 

    DSC 0 0 0 0 

    All sites 11.6 0 0 0 

  P. macrocephala USC 1.5 0 0 0 

    WIC 0 0 0 0 

    DSC 0 0 0 0 

    All sites 1.5 0 0 0 

Xystichromis X. "earthquake" USC 0 0 0 0 

    WIC 0 0 0 0 

    DSC 0 3.4 0 0 

    All sites 0 3.4 0 0 

 
X. phytophagus USC 0 0 0 0 

  
WIC 0 0 0 0 

  
DSC 0 0 0.3 0 

  
All sites 0 0 0.3 0 

      
    Overall 

Contribution   USC 21 5.2 4.5 31.7 

    WIC 20.3 10.3 74.9 11.7 

    DSC 58.7 84.5 20.5 56.7 

    All sites 100 100 100 100 

      
    No of species 

recovered   USC 7 2 2 2 

    WIC 4 2 3 7 

    DSC 5 5 5 3 

    All sites 10 7 7 8 

      
     

4.7.4 Biology of common fish species 

Basic biology of common fish species caught from the cage area in all quarters sampled 

in 2011 is summarized in Table 6. Other than haplochromines the rest of fish species 

were in such low numbers that not much information can be inferred from the data. 
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Table 6. Basic biological parameters of fish species caught SON Fish site May 2011 

 Sampling period  Parameter Q1 Q2 Q3 Q4 

 Date of sampling   Feb. 2011 
May. 
2011 Sep. 2011 Nov. 2011 

Season   Dry Wet Wet Wet 

Species 
 

    
  Clarias alluaudi Size range (cm) 0 0 13.6 – 15.1 0 

 

%  mature 0 0 100 0 

 

Main food type 0 0 IR, FR 0 

 

Parasites found 0 0 Nil 0 

 

No. r examined 0 0 3 0 

      Clarias gariepinus Size range (cm) 0 0 61 58 

 

%  mature 0 0 Mature Mature 

 

Main food type 0 0 ODT, FR 
Stomach 

empty 

 

Parasites found 0 0 Nil Nil 

 

No. r examined 0 0 1 1 

      Lates niloticus Size range (cm) 10 - 45 9 - 36 9 - 51 11 - 69 

  %  mature 
All 

immature 
All 

immature 20 13 

 

Main food type FR FR 
Haps 73, FR 

27 
Fish (Haps), 

mollusks 

 

Parasites found Nil Nil Nil Nil 

  No. examined 9 9 5 8 

      Brycinus jacksoni Size range (cm) 0 13 - 15 0 0 

  %  mature 0 All mature 0 0 

 
Main food type 0 ODT, IR 0 0 

 
Parasites found 0 Nil 0 0 

  No. examined 0 3 0 0 

      Haplochromines Size range (cm) 7.0 – 12.4 7.4 – 12.5 6.7 – 13.6 8.7 – 18.6 

  %  mature 98 74 60 100 

 
Main food type IR IR IR 

Chironomi
d larvae 

 

Parasites found (% 
infection) 

Nematod
e 5 

Nematod
e 2 10 6 

  No. examined 59 43 48 16 

      Tilapia zillii Size range (cm) 9 - 20 0 7 – 17 0 

 
%  mature 75 0 25 0 

 
Main food type 

 
0 

 
0 

 
Parasites found 

 
0 

 
0 
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No. examined 4 0 4 0 

      Mormyrus 
kannume Size range (cm) 20 - 29 42 20 19 & 61 

 
%  mature 33 100 immature 50 

 
Main food type Povilla, IR 

Povilla, 
Chiro L IR Povilla 

 
Parasites found Nil Nil Nil Nil 

 
No. examined 3 1 1 2 

      Oreochromis 
niloticus Size range (cm) 9 7 - 17 7 - 28 0 

 
%  mature Immature 

All 
immature 

All 
immature 0 

 
Main food type Empty Empty Fish feeds 0 

 
Parasites found Nil Nil Nil 0 

 
No. examined 1 4 8 0 

      Synodontis 
afrofischeri Size range (cm) 10 0 0 9.2 -14.5 

 
%  Mature mature 0 0 100 

 
Main food type Empty 0 0 Mollusks 

 
Parasites found Nil 0 0 

Nematode 
7% 

 
No. examined 1 0 0 15 

      Synodontis 
victoriae Size range (cm) 18 0 0 0 

 
%  mature Mature 0 0 0 

 
Main food type Povilla 0 0 0 

 
Parasites found Nil 0 0 0 

 
No. examined 1 0 0 0 

 
 
Catch rates were higher than those calculated during the previous surveys (257 cf 

226g/net/night respectively). Increase in numbers was due to increased numbers of 

Synodontis afrofischeri common during this time of the year in Napoleon Gulf.  

While it may be too early to explain fish distribution at the sites sampled, it is 

worthwhile noting that there was least fish upstream (USC) and that fleets set within 

(WIC) and downstream (DSC) yielded most fish. Although stomach contents of the fishes 

examined do not clearly show any of the foods supplied/fed to the farmed fish, it may 

be presumed that remnants of this food is swept by currents downstream and probably 

attracting fish in this area.   
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5. Conclusions  

 

1. Sedimentation or re-suspension of sediment materials into the water column 

due to fish feeds appears to be minimal and this may explain higher than 

expected SD at WIC. There is either very minimal materials coming from the 

cages or if any then they are washed away by the water current. 

2. All the nutrient parameters measured during the survey were found to be well 

below levels considered to be dangerous to fish and other aquatic organisms as 

they found well below the maximum permissible limits recommended by NEMA 

and other workers. 

3. Persistent depressed zooplankton species richness and abundances at the WIC 

compared to upstream (USC) and downstream (DSC) may imply incipient cage 

culture impacts on the zooplankton community. 

4. The occurrence of tolerant macro-benthos at USC and DSC and the persistent 

absence of non-tolerant ones at WIC observed over the study period suggest 

favourable water conditions at USC and DSC compared to those at WIC.  

5. Current field observations on the fish community indicate still little or no effect 

of the fish cage facility on the wild population of fishes in this area of the lake. 

 

6. Recommendations 
 

1. The location of the original USC site needs to be reviewed because as the 
number of cages has increased especially during the third and fourth quarters of 
2011, this site has also come under the area covered by cages, as such the 
results from this site may not represent the original intention of an a site 
upstream of the cages. 

 
2. With addition of more cages at the site, and given the current observations 

indicating potential for impacts of the cage facility to the environment and some 

natural aquatic communities, regular environmental monitoring of the cage area 

remains a key requirement in order to keep track of possible development of 

undesirable impacts.  
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