Studies on the Transportation of Live Clams:

T. K.SRINIVASA GOPAL, C.V.N. RAO, P.A.PERIGREEN and T. K. GOVINDAN
Central Institute of Fisheries Technology, Cochin - 682029

Abstract

Live clams (Villorita cyprinoides) collected from their natural beds were packed in different ways like dry pack, tray pack, in oxygenated water (wet pack) and depurated samples in wet pack. It was found that the packaging in 1 kg lots in 200 gauge polythene bags with oxygen at a temperature of $20^{\circ} \mathrm{C}$ could keep them live for 4 days. In tray pack without oxygen and water they can be kept alive for 3 days at $20^{\circ} \mathrm{C}$. Temperature seems to be the critical factor in the transportation of live clams. At room temperature both dry and wet pack can be kept for 24 h only. Depuration technique does not appear to be useful in prolonging the storage life of clams in live condition as percentage mortality is more at 48 h both at $20^{\circ} \mathrm{C}$ and room temperature compared to the non-depurated samples.

Clams occur in appreciable quantities in different parts of the Indian coast, backwaters and estuaries. As per an estimate made by Sebastian (1970) about 2400 t of clam meat is available annually from the Vembanad Lake. Clam meat is rich in cogen (Chinnamma et al., 1970). The poorer protein and glyclasses of the coastal population only use them as food. Of late, there is demand for frozen clam meatp articularly in Japan (Anon, 1983) and also for live clams from Japan and Italy. The present paper reports a method developed by the authors for transporting live clams.

Materials and Methods

Clams (Villorita cyprinoides) were collected from Perumpadapu, in the Vembanad Lake. Affer washing, they were graded. In all the experiments the size grade of $46-48$ nos $/ \mathrm{kg}$ was used. 1 kg of clam was packed in a polythene bag (200 gauge, $30 \times 28 \mathrm{~cm}$) and put inside another polythene bag. 500 ml water collected from the same environment was added to the bag and oxygen was bubbled through it for one min. from an oxygen cylinder. The bags were then fastened with rubber

[^0]band and placed inside a waxed duplex carton of $34 \times 17 \times 4.5 \mathrm{~cm}$ in the horizontal position. Eighteen such duplex cartons were packed inside a master carton (5 ply corrugated fibre board) of the size $53 \times 35 \times 30 \mathrm{~cm}$ conforming to OAA packaging standards for wet shipments of live fish (Anon, 1980). The master carton should be of full overlap slotted container (FOL) where all the flaps are of same length. The master cartons were reinforced with two synthetic straps girthwise. In the tray pack, individual clams were put in moulded pulp trays in such a way that the clams were held flat with the shell opening horizontal. This helps the clam for holding the shell fluid while it breathes (Nicholas, 1978). After packing in trays of $50 \times 30 \mathrm{~cm}$, each tray was packed in a polythene bag with aeration holes and secured with a rubber band so that the clams were not displaced from their moulds. Six pulp tray packs were placed inside a 3 ply regular slotted master carton ($53 \times 35 \times 30 \mathrm{~cm}$). In dry pack the method followed is identical to that of wet-pack but without water in it. Depuration was carried out by keeping the clams in water from the habitat for 24 h before they were transported. All the master cartons were reinforced with two synthetic straps girthwise, provided two openings on the sides of the cartons upwards and kept in air conditioned room at $18-20^{\circ} \mathrm{C}$. For finding out the mortality at various temperatures, a humidity oven with adjustable temperature was used. Twenty clams
were removed periodically from the pack and the tip of a sharp scalpel introduced gently in between the shells at the free end opposite to the hinge to a few millimeters taking care not to damage the internal organs. Live clams would firmly close the shells thereby gripping the scalpel. The shell would temain agape in dead clams even on touching with a scalpel. The finished packs were subjected to a free drop from a height of 1 m allowing the impact on sides, edges and corners as per IS: 7028 (1973). To find out the yield of meat after every 24 h , about 1 kg of clam was boiled in 500 ml water for about 30 min and after cooling the meat was shucked and weighed. Acceptability studies were carried out with cooked meat at various intervals of storage.

Results and Discussivin

Table 1 indicates the effect of temperature on the mortality of clams in water (wet pack) flushed with oxygen. Temperature seems to be the critical factor for keeping the clams alive. At room temperature they were alive for 24 h only but at $18-20^{\circ} \mathrm{C}$ they remained alive for 96 h . However further lowering of temperature was detrimental and 100% mortality was observed after 24 h at 12.5 to $14^{\circ} \mathrm{C}$.

Table 2 shows the effect of depuration on the mortality of clams. Mortality was 50% in depurated samples after 48 h in wet pack kept at $18-20^{\circ} \mathrm{C}$ and it is desirable to transport them immediately after catch in wet or dry pack.

Table 1. Effect of temperature on the mortality of clams in wet pack fushed with oxygen

		Mortality $\%$			
	24 h	48 h	72 h	96 h	120 h
Room temperature	Nil	75	100		
$\left(27\right.$ to $\left.30^{\circ} \mathrm{C}\right)$					
23 to $25^{\circ} \mathrm{C}$	Nil	Nil	$18-20$	50	100
18 to $20^{\circ} \mathrm{C}$	Nil	Nil	Nil	Nil	80
12.5 to $14^{\circ} \mathrm{C}$	100				

Table 2. Effect of depuration (24 h) on the mortality of clams in wet pack

Mortality \%
$24 \mathrm{~h} \quad 48 \mathrm{~h} \quad 96 \mathrm{~h}$
18 to $20^{\circ} \mathrm{C}$
Nil 50
50
Room temperature
$80 \quad 100$

Table 3. Effect of dry pack on the mortality of clams at different temperatures and different modes of packing

Mode of packing and temperature of holding	Mortality \%				
Dry pack in polythene bag with air or without oxygen at room temperature (27 to $30^{\circ} \mathrm{C}$)	Nil	75-79	100	-	-
Dry pack with or without oxygen in polythene bags at 23 to $24^{\circ} \mathrm{C}$	Nill	Nil	90	100	-
Dry pack with or without oxygen in polythene bags at 18 to $20^{\circ} \mathrm{C}$	Nil	Nil	20	80	100
Tray pack without oxygen at 18 to $20^{\circ} \mathrm{C}$ with free ends upwards	Nil	Nil	Nil	15	83
Tray pack with aeration holes in polythene kept at 18 to $20^{\circ} \mathrm{C}$ in horizontal position	Nil	Nil	Nil	7.8	60
Tray pack with clams in downward position (clams in pulp trays with their free end downwards)	Nil	Nil	27	60	100

Vol. 22, 1985

Table 3 indicates the effect of dry pack on the mortality of clams at different temperatures and different modes of packing. Dry pack in polythene bag secured with rubber band can be kept only for a period of 48 h at $18-20^{\circ} \mathrm{C}$. Clams in moulded pulp tray pack with aeration holes can be kept for 3 days in good condition without any mortality and with minimum mortality at the end of 4 days. This may be due to retention of fluid within the shell in tray pack unlike in dry pack where it is difficult to adjust the position of clams in the horizontal position enabling the clams to retain the shell fluid. This is in conformity with that of Benett \& Viestans (quoted by Nicholas, 1978) who carried out the experiments by keeping the clams in horizontal position.

Results of the drop test along with the cost of packaging are presented in Table 4. The results indicate that 3 ply corrugated fibre board box (RSC) of $53 \times 35 \times 30 \mathrm{~cm}$ can safely accommodate six moulded pulp tray packs with a gross weight of 11 kg . For the wet pack, corrugated fibre board box (FOL) of the size $53 \times 35 \times 30 \mathrm{~cm}$ (5 ply) may be used. The container in wet pack should be of full overlap slotted type for export purposes to withstand the strain of transportation.

The cost of the packaging material per kg of clams is around Rs. 2.25 in wet pack and Rs. 2.40 for those in tray pack. The yields of the clam meat in all the packs were found to be 7.3 to 8%.

Table 4. Drop test, size of the bulk packaging and cost of the packaging material

Gross weight	Size and style of the CFB	Result of the test	Cost $/ \mathrm{kg}$ clams Rs
11.0	$53 \times 35 \times 30 \mathrm{~cm}$ $(3$ ply RSC $)$	No damage to	Rs clam. the Pulp tray, CFB board intact

Table 5. Specification of the master cartons.

Tests indicate that the material was quite acceptable upto 4 days in wet pack kept at $18-20^{\circ} \mathrm{C}$ and 3 days in moulded pulp tray pack kept at the same temperature with ventillation holes.

Table 5 indicates the specification for master cartons for use in live transportation of clams. These have been suggested based on the I.S.I. specifications for master carton for export of frozen seafoods and frog legs (IS: 6715, 1972).

The authors are grateful to the Director, Central Institute of Fisheries Technology, Cochin for permission to present the paper at the symposium.

References

Anon (1980) O. A. A. Packaging Standards for Wet Shipments p. 20 Orient Airlines Association, Metro Manila, Phillipines

Anon (1983) Statistics of Marine Products Exports, Marine Products Export Development Authority, Cochin

Chinnamma, P. L., Choudhuri, D. R. \& Pillai, V. K. (1970) Fish. Technol. 7, 137

IS: 6715 (1972) Indian Standard Specifications for Master Carton for Export of Frozen Seafoods and Froglegs, Indian Standards Intitution, New Delhi

IS: 7028 (1973) Performance Tests for Complete, Filled Transport Packages, Part IV - Vertical Impact Drop Test Indian Standards Institution, New Delhi

Nicholas, D. P. (1978) Food Packing, Noyes Data Corporation, Park Ridge, New Jersey, USA

Sebastian, M. I. (1970) Seafood Export J. 2, 25

[^0]: *Paper presented at the National Syposium on Food Packaging jointly organised by Association of Food Scientists and Technologists, CFTRI, Mysore, 17-18th January, 1985

