Further Investigations on the Relative Efficiency of Different Shaped Otter Boards

A. V. V. SATYANARAYANA, G. NARAYANAPPA and G. D. CHANDRAPAL*

Kakinada Research Centre of Central Institute of Fisheries Technology, Kakinada-533 003, Andhra Pradesh

Horizontal curved, vertical curved and V-shaped otter boards were studied to compare their relative efficiency under identical fishing conditions. The gear operated with V-shaped otter boards performed well followed by the gear fitted with horizontal curved boards. Vertical curved boards were found to be comparatively less efficient, but with slight modification, can be used advantageously for bottom and off bottom fishes. Fishing at various depths with horizontal curved and Vshaped otter boards at different scope ratios showed better performance of horizontal curved boards at a scope ratio of 1:6 and V-shaped otter boards at a scope ratio of 1:5.

The successful function of trawling gear depends on the type, size, shape and bridle attachment of the otter boards, which are the main net mouth opening devices. Flat rectangular boards having length, greater than that of breadth are universally employed. Studies to improve the otter boards to suit different boats and fishing conditions have been made by Yakoliev (1955), Mastrasov (1958 a, b), Suberkrub (1959), Sharfe (1959) a, b), Dickson (1959), Benyami (1959, 1964), Takayama & Koyama (1961), Hamuro & Ishii (1959, 1961), Dale & Moller (1963). In India Satyanarayana & Mukundan (1963), Mukundan et al. (1967), Deshpande et al. (1968, 1970) and Narayanappa (1968) attempted to study the relative efficiency of different otter boards.

In the present paper, the authors have attempted to compare the efficiency of some otter boards with that of horizontal curved types already proved to be efficient in their earlier studies.

Materials and Methods

Three different shaped otter boards, namely, horizontal curved, vertical curved and Vshaped as specified in Table 1 and figures 1, 2 & 3 were employed in this study.Vertical boards are based on the design of Suberkrub $(loc \ cit.)$ while that of V-shaped ones are based on the design of Captain Loo chi Ho of Taiwan, as reported by Dick Brett (1962). The three types of boards were operated in rotation with an 18.26 m two seam trawl net having 20 m single sweep wire system on each side. Fishing operations

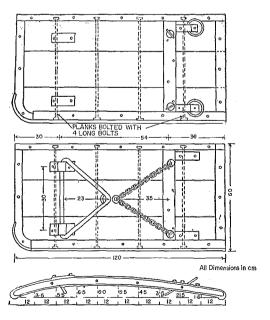


Fig. 1, Design details of horizontal curved otter board (120 x 60 cm).

^{*} Present address: Ministry of Food and Agriculture, Department of Agriculture, Krishi Bhavan, New Delhi-110 001.

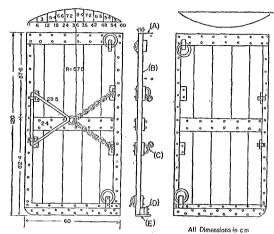


Fig 2. Design details of vertical curved otter board (120X60cm)

A-Circular iron plate; B-Iron strap; C-Shackles; D-Shoe and additional shoe plate; E-Circular bottom iron plate.

were carried out from 'Fishtech' No. 7 (12.76 m overall length wooden boat with 60 H. P. engine) off Kakinada during 1970 and 1971.

Table 1. Specification of otter board	Table 1.	Specification	of otter	boards
---	----------	---------------	----------	--------

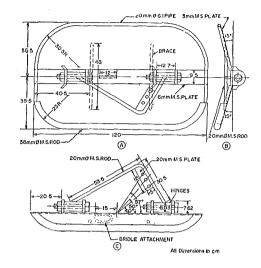


Fig. 3. Design details of V-shaped otter board

Results and Discussion

The details of fishing are presented in Table 2.

Type of board	Material	Length cm	Breadth cm	Area sq. m	Wt. in air kg	Wt. in water kg	Angle of attach- ment of bridle
Horizontal curved	Wood and iron	120	60	0.770	43.5	15.50	30°
Vertical curved	Wood and iron	121	65	0.780	48.5	21.00	28°
V- shaped	Iron	122	74	0.835	61.0	52.00	40–57°

Table 2. Details of fishing with the three types of otter boards

Type of otter board	Depth of operation m	Warp length m	No. of hauls	Towing time h	Average towing speed knots	Average spread between otter boards	Average warp tension kg	Catch/ haul/h kg
Horizontal curved	15–45	90–220	65	65	2	m 21.63	454.72	50.45
Vertical curved	15-45	90–220	65	65	2	22.74	459.62	42.98
V-shaped	15-45	90–220	65	65	2	20.99	468.92	52.85

Table 3. Analysis of variance

The data were analysed statistically and the analysis of variance presented in Tables 3, 4 and 5.

The horizontal curved and V-shaped steel otter boards found to be effective, were further studied to ascertain their behaviour at different scope ratios. These boards were operated at 15 m, 25 m and 35 m depth with scope ratios (Depth:Warp length) of 1:4, 1:5 and 1:6 keeping the fishing conditions constant and trawling speed at 2 knots. The results are presented in Table 6.

						Ca	tch					
		HC, V	/C, Vst				Н	IC & V(2	HC	& Vst	
Source	DF	SS	MS	F	DF	SS	MS	F	DF	SS	MS	\mathbf{F}
Total	194	19.8132			129	14,5355	••		129	12.4484		
Between hauls	64	12.6332	0.1974	3.77*	64	10.7255	0.1676	2.92*	64	9.5084	0.1486	3.35*
Between otter boards	2	0.4794	0.2397	4.58*	1	0.1455	0.1455	2.54*	1	0.0984	0.0984	2.22
Error	128	6.7006	0.0524		64	3.6645	0.0573		64	2.8416	0.0444	
HC–Hori	zontal	curved	VC-Ve	rtical cu	ved	Vst–V sha	aped steel					
**Signific	**Significance at 1% level (p <0.01)											

*Significance at 5% level (p <0.05)

Table 4. Analysis of variance

	Horizontal spread												
	HC, VC, Vst HC & VC							HC & Vst					
Source	DF	SS	MS	F	DF	SS	MS	F	DF	SS	MS	\mathbf{F}	
Total	185	12556,55	••	••	123	7967.82	••	••	123	7286.33	• •	••	
Between hauls	61	6622.74	107.57	2.71	61	5702.86	93,49	3.08**	61	4522.76	741.44	1.72**	
Between otter boards	2	1048.02	524.01	13.08**	1	410.31	410.31	13.05**	1	137.85	137.85	0.32	
Error	122	4885.79	40.05	• •	61	1854.64	30.40		61	2625.72	430.45	••	
HC-Horizontal curved VC-Vertical curved Vst-V shaped steel **Significance at 1% level (p < 0.01)													

It is seen that out of the three scope ratios the horizontal curved board had the maximum scope ratio 1:6 and that for V-shaped 1:5 with an exception at 15 m depth. V-shaped otter board caught more fish when compared to nets fitted with horizontal and vertical curved boards by 4.64 and 18.67% respectively. Table 3 shows that the difference between the catches is significant (p < 0.05).

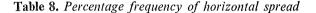
Table 2 shows that the net operated with

	Warp tension													
	H	IC, VC, Vst				HC &	VC		HC & Vst					
Source	DF	SS	MS	F	DF	SS	MS	F	DF	SS	MS	F		
Total	188	230855.7784			125	164818.8016	• •	••	125	165287.3016		•••		
Between hauls	62	133569.7784	2154.35	2.93**	62	117096.8016	1888.6581	2.49**	62	110915.3016	1788.9565	2.29**		
Between otter boards	2	6242.1276	3121.06	4.25**	1	748.0079	748.0079	0.99	1	6062.5079	6062.5079	7.78**		
Error	124	91043.3724	734.22		62	46973.9921	757.6450		62	48309.4921	779.1854			
		HC-Horizon	tal curved			VC-Verti	cal curved	Vst	-V sh	aped steel				
**Signifi	cance	at 1 % level (p	< 0.01)											

Table 5.Analysts of variance

 Table 6. Catch per hour (kg) of horizontal curved and V-shaped steel otter boards at different scope ratios

Depth (m)		15			25			35	
Scope ratio	1:4	1:5	1:6	1:4	1:5	1:6	1:4	1:5	1:6
Horizontal curved	7.0	26,5	39.0	12.0	29.0	36.0	13.0	37.0	92.00
V-shaped steel	16.0	14.0	10.1	48.5	59.3	46.3	64.8	100.0	84.00


 Table 7. Percentage composition of catch

	Prawns big	Prawns small	Lacta- rius sp. & Caranx sp.				Soles	Rays & Skates	Saurida tumbil		
Horizontal curved	1.10	1.92	9.85	13.25	25.25	10.95	6.75	11.37	14.96	4.60	3,299.25
Vertical curved	1.29	1.04	9.35	15.82	26.65	14.25	7.70	8.44	12.76	2.70	2,794.00
V-shaped	1.15	2.52	12.75	9.18	22.06	12.15	8.35	12.44	15.53	3.87	3,435.50

The percentage composition of catch has been worked out as shown in Table 7.

Examination of Table 7 reveals that there is no appreciable difference in the catch composition. However, it is interesting to note that the percentages of off bottom fishes are slightly more in the net with vertical curved boards. This suggests its use for both bottom as well as off bottom fishes, with minor variation in fishing techniques even though these boards are intended for mid water trawling. The analysis of variance with respect to horizontal spread (Table 4) indicates that the variation between the three otter boards is significant (p < 0.01), the average spreads being at 21.63m, 22.74m and 20.99m. The differences in spread between horizontal curved and vertical curved boards also exhibited high significance (p < 0.01), whereas the difference between horizontal curved and V-shaped doors, is not found to be significant. The average horizontal spread of the trawl mouth (Table 2) shows vertical curved otter boards developed more mouth opening horizontally but with less catch rate. Hence a further attempt was made to correlate the catch rate with horizontal opening of the net in each case. The percentage frequency of spread has been worked out and presented in Table 8. Figure 4 shows the corresponding catch per trawling hour.

Ranges of hori- zontal spread m	Horizontal curved otter board	% Frequency Vertical curved otter board	V-shaped steel otter board
15.5–17.0	1.6	3.2	3.2
17.1–18.5	9.5	3.2	14.3
18.6–20.0	11.1	6.5	14.3
20.1–21.5	25.4	15.8	31.8
21.6-23.0	30.2	23.4	15.8
23.1–24.5	14.3	30.1	14.3
24.6-26.0	7.9	9.8	6.3
26.1–27.5	•••	4.8	
27.6–29.0		1.6	
29.1–30.5		1.6	••

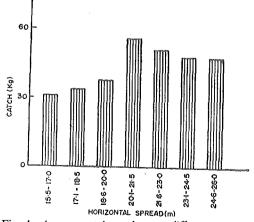
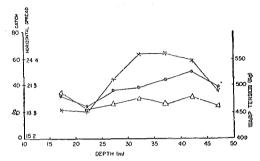
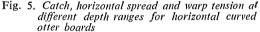
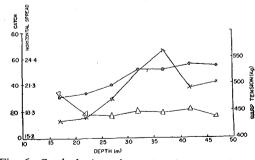




Fig. 4. Average catch per hour at different ranges of horizontal opening of the net

Table 8 shows that V-shaped board gave more frequency in the spread range of 20.1-21.5 m which in turn gave the highest catch rate as could be correlated with Fig. 2. Similarly the horizontal curved boards gave maximum frequency of horizontal spread at the ranges of 21.6-23.0 m which gave the catch rate next to V-shaped boards.

Horizontal spread of each otter board at various depths between 15 to 50m together with corresponding catch rate and warp tension are shown in figures 5,6 and 7. These figures show that good catches were obtained, when the gears were operated between 30 to 40 m depths. The horizontal spread was also more at these depths. Within these depth ranges, it could be seen that the horizontal spread and catch of gear with V-shaped doors were more, followed by rectangular curved doors.



X-X Catch

●--● Horizontal spread

▷---> Warp tension

Comparatively higher warp tension at lower depths (Figs. 5, 6 & 7) may be due to more bottom friction which in turn reduces the horizontal spread. At higher depths the tension appears to have been stabilised at 455, 450 and 475 kg for each of the otter boards. The variation in tension between gears is significant (p < 0.01, Table 5) and their averages worked out to be 454.72, 459.62 and 468.92 kg respectively. It is also seen that warp tension between horizontal

- Fig. 6. Catch, horizontal spread and warp tension at different depth ranges for V-shaped steel otter board.
 - X-X Catch
 - ●--● Horizontal spread
 - →→ Warp tension

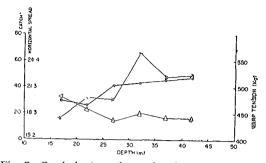


Fig. 7. Catch, horizontal spread and warp tension at different depth ranges for vertical curved otter board.

X-X Catch

●--● Horizontal spread

 $\triangle - \triangle$ Warp tension

and vertical curved boards is not significant whereas warp tension between horizontal curved and V-shaped boards is significant, (p < 0.01, Table 5).

The authors are thankful to Shri G. K. Kuriyan, Director, Central Institute of Fisheries Technology, for his guidance and suggestions during the course of the study and critical review of the paper. They are indebted to Shri P. Srinivasa Rao, Scientist, for the help in statistical analysis.

References

- Benyami, M. (1959) Modern Fishing Gear of the World (Kristjonsson, H. Ed.), p. 213, Fishing News (Books) Ltd., London
- Benyami, M. (1964) Proc. Gen. Fish. Coun. Medit. 7, 103
- Brett, D. (1962) Wld Fishg. 11. 43
- Dale, P. & Moller, S. (1963) Modern Fishing Gear of the World (Kristjonsson, H. Ed.), p. 482, Fishing News (Books) Ltd., London
- Deshpande, S. D., Sivan, T. M. & Rama Rao, S. V. S. (1970) Fish .Technol. 7, 38 Deshpande, S.D., Rama Rao, S. V. S. & Kartha, K. N. (1968) Indo Pac. Fish. Coun. Symp. On Demersal Fisheries, Australia, 14-25
- Dickson, W. (1959) Modern Fishing Gear of the World (Kristjonsson, H. Ed.), p. 166, Fishing News (Books) Ltd., London
- Hamuro, C & Ishii, K. (1959) Modern Fishing Gear of the World (Kristjonsson, H. Ed.), p. 234, Fishing News (Books) Ltd., London

- Hamuro, C. & Ishii, K. (1961) Scientific Report 3. p.12, Fishing Boat Laboratory, Ministry of Forestry and Agriculture, Tokyo, Japan
- Mastrasov, I. R. (1958 a) Rybnoe Khozyaistyo, Moscow. 34, 36 (In Russian)
- Mastrasov, I. R. (1958b) Rybnoe Khozyaistyo, Moscow. 34, 40 (In Russian)
- Mukundan, M., Satyanarayana, A. V. V. & Krishna Iyer, H. (1967) Fish. Technol. 4, 53
- Narayanappa, G. (1968) Fish. Technol. 5, 15

- Satyanarayana, A. V. V. & Mukundan, M. (1963) Indian J. Fish. 10, 11
- Sharfe, J. (1959 a) Modern Fishing Gear of the World (Kristjonsson, H. Ed.) p. 245, Fishing News (Books) Ltd., London
- Sharfe. J. (1959 b) Stud. Rev. Fish. Coun. Medit. 6, 1
- Suberkrub, F. (1959) Modern Fishing Gear of the World (Kristjonsson, H. Ed.) p. 259, Fishing News (Books) Ltd., London
- Takayama, S. & Koyama, T. (1961) Bull. Tokai reg. Fish. Res. Lab. 31, 297
- Yakoliev, A. I. (1955) Trudy, VNIRO, Moscow. 30, 61 (In Russian)