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Abstract

This paper deals with the problem of robust and reliable H, control design for linear
uncertain time-delay systems with time-varying norm-bounded parameter uncertainty,
and also with actuator failures among a prespecified subset of actuators. A state feed-
back control design is presented that stabilizes the plant and guarantees an Hy,-norm
bound constraint on attenuation of the augmented disturbances, including failure sig-
nals, for all admissible uncertainties as well as actuator failures. It is shown that,
the existence of the desired controllers is related to the positive definite solution of
a parameter-dependent Riccati-like matrix equation, whose solving algorithm is also
discussed in detail. Two illustrative examples are provided to demonstrate the appli-
cability of the proposed method.
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1 Introduction

In the past two decades, significant advances have been made in the H., control since the
original work in [1]. The standard Hy, control problem was completely solved in [2] for
linear systems by deriving simple state-space formulas for all controllers. Furthermore, in
order to improve the performance robustness against parameter uncertainty, the so-called
robust H,, control problem was extensively studied for both linear uncertain continuous-
and discrete-time systems, see for example [3-9]. On the other hand, since the inherent time
delays and parameter uncertainty contained in the dynamical behavior of many physical
processes are unavoided [10], the H, control problem as well as the robust stabilization
problem for time-delay systems have recently received increasing attention, and various
related work on these two issues has been reported, see, respectively, [11-18]. Also, the
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robust H,, state feedback control for linear systems with both state delay and parameter
uncertainty was considered in [19].

However, although the robust and/or Hy, controller design for time-delay systems have
well been developed, these control designs may result in unsatisfactory control system
performance, or even instability, in the event of control component failures (i.e., actuator
or sensor outages), since failures of control components often occur in real world. In
practical applications, it is always necessary to design controllers that achieve desired
performance requirements, not only when the system is operating properly, but also in
the presence of certain system measurement or control input failures. This motivated the
study of the so-called reliable control, see for example [20-22].

Generally speaking, in addition to the basic stability, a good engineering control system
should possess multiple expected performances, such as robustness to modeling error,
reliability against sensor and actuator failures, disturbance attenuation property, etc. Re-
cently, the problems of H., reliable as well as robust reliable controller design have begun
to attract much attention. [23] presented reliable centralized and decentralized control
design methodologies to achieve both stability and H., disturbance attenuation, but did
not tackle the robustness issue. [24] proposed a reliable design approach for parameter
uncertain systems, and gave the simulation results in a flight control system, but the sys-
tem under study was assumed to be delay-free. [25] extended the results of [23] to the
state delayed systems, but still did not take the system uncertainty into account. More
recently, the robust reliable H, control for linear systems with parameter uncertainty and
actuator failure was investigated by [26], but the influence of time-delay was unfortunately
not considered. In [27-28], the reliable control problems were investigated for a class of
nonlinear deterministic and stochastic time-delay systems, respectively. However, the H,
norm restriction, which reflects the disturbance attenuation behavior, was not dealt with
in [27-28]. As a summary, in the existing results concerning reliable control, either the
robustness issue against parameter uncertainties, or the Ho, constraint on the disturbance
attenuation, or the state delay feature of the system under consideration, has not been
addressed.

To the authors’ best knowledge, so far, there have been very few papers focusing on the
robust reliable Ho, control design problem for uncertain state-delayed systems. That
is, the problem for simultaneous realization of robustness, H., performance, reliability
for parameter uncertain time-delay control systems is still open, owing to its complexity.
This situation motivates the investigation in the present paper on the multiobjective H,
reliable control for uncertain linear state delayed systems.

This paper focuses on the problem of robust H reliable control design for linear systems
with state delay and parameter uncertainty. The goal of this problem is to design the
state feedback controller such that, for all admissible uncertainties as well as actuator
failures, the plant is robustly stabilized and the prescribed H,-norm bound constraint on
disturbance attenuation is guaranteed, simultaneously. It is assumed that, the parame-
ter uncertainties are norm-bounded and the actuator failures occur among a prespecified
subset of actuators. A simple, effective, modified algebraic Riccati equation approach



is developed to solve the addressed problem. The resulting time-delay control systems
are reliable in that they provide guaranteed robust stability and H., performance not
only when all control components are operational, but also in case of actuator failures.
two illustrative examples are presented to demonstrate the applicability of the proposed
method.

The rest of this paper is organized as follows. In Section 2 the robust H, reliable state
feedback control problem is formulated for a class of linear uncertain time-delay systems.
In Section 3, the analysis results are first given for an uncertain time-delay system to be
robustly stable with prescribed H, performance constraint, in the presence of possible
actuator failures. Then, the corresponding synthesis results are established. It is shown
that, the existence of the desired controllers, which guarantee both the reliability and the
H, disturbance attenuation level for the uncertain state delayed system, is closely related
to the positive definite solution to a class of modified Riccati equations. Furthermore,
the numerical algorithm on such class of modified Riccati equations are discussed. Two
simulation examples are given in Section 4 to illustrate the usefulness of the proposed
theory, and finally, some concluding remarks are drawn in Section 5.

Notation. The notations in this paper are quite standard. R" and R"™ ™ denote, re-
spectively, the n dimensional Euclidean space and the set of all n X m real matrices. The
superscript “T” denotes the transpose and the notation X > Y (respectively, X > Y)
where X and Y are symmetric matrices, means that X — Y is positive semi-definite (re-
spectively, positive definite). I is the identity matrix with compatible dimension. L2[0, c0)
is the space of square integrable vector over [0,00). For a given transfer function 7'(s),
the Ho, norm of T'(s) is defined as ||T'(s)||oc = SUP,er Omax[T (jw)] where omax[-] denotes
the largest singular value of [-]. The capital letters are used to represent matrices, while
vector variables are described in bold faces. Sometimes, the arguments of a function will

be omitted in the analysis when no confusion can arise.

2 Problem formulation and preliminaries

Consider a linear continuous-time uncertain state delayed system represented by

&(t) = (A+AA)z(t)+ (Ag+ AAgx(t — d) + Bu(t) + Dw(t), (2.1)
z(t) = (), te[—d,0], (2.2)
y(t) = Cz(), (2.3)

where z(t) € R" is the state, u(t) € R™ is the control input, w(t) € RP is the square-
integrable exogenous disturbance, y(t) € R is the measured output. A, Aq, B,D,C are
known constant matrices with appropriate dimensions, d > 0 denotes the unknown real
state delay, ¢(t) is a continuous vector valued initial function. AA and AA, are real
valued matrix functions representing norm-bounded parameter uncertainties and satisfy

AA A4 } - M[ =N EuNy | (2.4)



where 21 € R**J and Zy € R/, which may be time-varying, are real uncertain matrices
with Lebesgue measurable elements and meet

(1]

TE1 <1, 25 <1, (2.5)

and M, N1, No, which denote the structure of the uncertainties, are fixed matrices with
appropriate dimensions.

The uncertainties AA, AAy are said to be admissible if both (2.4) and (2.5) are satisfied.

We now consider the reliability with respect to actuator failures. In general, the actuators
of a control system can be classified into two selected subsets. That is, the actuators
susceptible to failures and the actuators robust to failures. The first class of actuators is
denoted as © C {1,2,--- ,m} and is possible to fail, while the second class of actuators,
which is essential to stabilize a given system, is therefore denoted as Q C {1,2,--- ,m}—Q,
and is assumed never to fail.

Introduce the decomposition
B = Bq + Bg, (26)

where B means the control matrix associated with the set €2, and Bg denotes the control
matrix associated with the complementary subset of control inputs, i.e, Bo and Bg are
generated by zeroing out the columns corresponding to 2 and €2 respectively. Furthermore,
let w C € correspond to a particular subset of the susceptible actuators that actually fail,
we adopt the following notation that will be used in the derivation of the main result

B =D, + Bs, (2.7)

where B, and B have meanings analogous to those of B and Bg.

To this end, the purpose of this paper can be stated as designing the fixed state feedback
controller

u(t) = Fa(t) (2.8)

that stabilizes the linear time-delay system (2.1)-(2.3) with a given H.-norm constraint on
disturbance attenuation, for all admissible uncertainties and all actuator failures occurred
within the prespecified subset 2.

3 Main results and proofs

Applying the state feedback control law (2.8) to the system (2.1)-(2.3), we obtain the
closed-loop system

z(t) = (A+AA+ BF)z(t) + (Ag+ AAg)z(t — d) + Dw(t), (3.1)
y(t) = Cz(t). (3.2)

The following lemmas will be essentially used in the proof of the main results.



Lemma 3.1 (see [29]) For an arbitrary positive scalar 1 > 0 and a positive definite matriz
P > 0, we have
(AA)TP + P(AA) < eePMMTP + 7' NI N;. (3.3)

Lemma 3.2 (see [29]) Let a positive scalar €2 > 0 and a positive definite matriz Q > 0 be
such that 52N2Q*1N2T < I. Then the following inequality holds

(Aq+ AA)Q M (Ag+ AAY)" < AQ7 1A}

+AQ T NS (651 T — NoQ7' NI ) ' Ny QM AT + et MM (3.4)
Lemma 3.3 The closed-loop system (3.1)-(3.2) is asymptotically stable for all time-delay
d > 0 if there exist positive definite matrices P > 0 and Q > 0 which satisfy the following
inequality:
(A+ AA+BF)'P+ P(A+ AA+ BF)
+P(Ag+AA)Q Ay + AAY"P+Q <0 (3.5)

Proof: Choose the Lyapunov function candidate

t
Y (z(t) := 2T (t) Px(t) —|—/ z7(s)Qx(s)ds (3.6)
t—d
where P is the positive definite solution to the inequality (3.5).

For notation convenience, we define
A=A+ AA+BF, A;:=A+AA;, C=C, D=D, w=w. (3.7)

The corresponding Lyapunov derivative along a given trajectory is

T

dy (z(t)) | =z(t) ATP+PA+PA;+Q PAy| | z(t) (3.8)
dt |zt —d) ATp Q| |zt—d)|’ '
Note that the matrix in (3.8) is negative definite if the inequality
AP+ PA+ PAQ7'ATP+Q <0 (3.9)
is satisfied. This completes the proof of this lemma. O

Remark 3.1 Lemma 3.3 provides a delay independent stability criteria which may be
suitable for the case when the time-delay is unknown.

Next, sufficient conditions under which the controller (2.8) guarantees the Hy norm con-
straint and simultaneously stabilizes the closed-loop system are given in the following
theorem.



Theorem 3.1 Given the Hy-norm constraint v > 0 and a positive definite matriz (@ > 0.
If there exists a positive definite matriz P such that the inequality

(A+AA+ BF)'P+ P(A+ AA+ BF)
+P(Ag+ AA)Q (A + AAY)TP
+Q+CTC +~47?PDD"P <0 (3.10)

is satisfied, then the closed-loop system (3.1)-(3.2), i.e.,

z(t) = A=z(t)+ Agz(t —d) + D(t), (3.11)
yt) = Cz(t), (3.12)

is asymptotically stable, and the transfer function from the disturbance input to the mea-
sured output

Tyw(s) = C(sI — A — Age™)~'D
satisfies the constraint | Tyg(s)|lec < 7y for all d > 0.

Proof: See the Appendix. O

Since the actuators play a role in transmitting the controller output to the plant, the
significance of possible actuator failures is considered now. Without loss of generality, the
transfer function of an actuator is assumed to be 1. Generally, the output signals of faulty
actuators may greatly affect the system behavior. As these signals act on the system in
unexpected manner, they are considered as disturbances too. Like [26], in this paper, the
output of faulty actuators is assumed to be any arbitrary energy-bound signal (that is,
the output of a failed actuator belongs to Ls[0,00) and acts on the system as disturbance

input). We denote w. = [w” (t) v]

L))" where v,(t) is the disturbance contribution from

the actuators in the subset w (w C 2) which actually fail and hence cause extra/unexpected
disturbance signals. Note that the transfer function of the resulting closed-loop system
from the disturbance signal w.(¢) to the measured output y(t) is :

Tyw, = C[sI — (A + BoF + AA) — (A, + AA)e ) [D B,

The above discussion motivates the major goal of designing a feedback controller that
guarantees satisfactory closed-loop behavior even when there are actuator failures in the
prespecified subset of susceptible actuators, and also simultaneously meets the H,-norm
constraint below a given level while maintaining the stability of the closed-loop system.

We now define the following modified Riccati equation:
ATP 4+ PA+ POP +e7'NIN] +CTC +Q + Q1 =0, (3.13)
where

© 1= —e5'BaBL + v ?BoBd + AqQ ' A
+ AgQ INT (e T — NoQ *NT) INoQ 1AL + (61 + e, HYMMT + 4 2DDT.

We are ready to give our main results as follows.



Theorem 3.2 Given the required Hso-norm constraint v > 0. If there exist appropriate
positive scalars e1 > 0, €9 > 0, e3 > 0 and positive definite matrices Q > 0, Q1 > 0 such
that I — 52NQQ*1N2T > 0 and the modified Riccati equation (3.13) has a positive definite
solution P > 0, then the state feedback law

u(t) = Fz(t), F=—-05¢'BTP (3.14)

stabilizes the uncertain time-delay system (2.1)-(2.3), independent of the delay d, and
simultaneously satisfies the Hqo-norm constraint below the given level v for all admissible
uncertainties and possible actuator failures corresponding to w C (2.

Proof: It follows from (2.7) and (3.14) that

BF = (Bg + B,)[~0.5¢5 ' (By + B.,)" P]
= —(0.5¢3 ' By BLP + 0.5¢; ' B, BI P).

Define
Vp = —0.5e5 ' ByBL P, v, :=—0.5¢; ' B,BLP.
Applying the control law (3.14) to the system (2.1)-(2.2) yields the closed-loop system
z(t) = Acx(t) + A1z(t — d) + Dow,(t) (3.15)
y(t) = Cexz(t) (3.16)
where
Ac=A+vs +AA=A—05e; By BLP + AA,
Al :Ad+AAda CC:C, DC:[D Bw];

w(t)

¢~ v,z (1)

] , Vw(t) = v, Px(t).

From Lemma 3.1 and Lemma 3.2, we obtain the following two inequalities:
ATP 4+ PA, = ATP + PA—¢5'PB,BIP + (AA)TP + P(AA)
< A"P+ PA+ P(—e3'BzBL + eyMM")P + ¢, *N;N{ (3.17)
PAQ 'ATP = P(Ag + AA)Q Y(Ag+ AAy)P
< Pl[AGQ AL 4+ AgQ ' NT (651 T — NoQ7'NT) I NoQ 7P AT + e ' MMTIP. (3.18)
Also, it is easy to see that

crc,=ctc, ~*pp.DIpP=~2PDDT + B,BL)P. (3.19)

From the definitions of B,,, By, Bq and Bg, it is clear that the relationships

BoB{, = B,B! + Bq_,B{,_,,, BqB& = ByB. — Ba_,Bh_,,



are true. This leads to

B,Bl < BqoB{,, BzBl > BgB}. (3.20)

From relations (3.17)-(3.20) and the modified Riccati equation (3.13), we have

AP+ PA. +PAQ ' ATP+Q+CTC. +~?PD.DI'P
<ATP+ PA+ P(—e;' BBl +eiMM")P + ¢, ' N\ N}
+ P[AQ AT + AyQ ' NT (51 — NoQ ' NI I No,@ 1 AT
+e, ' MMTIP+Q+CTC +~72P(DD" + B,B.)P
<ATP + PA+ P(—e;'BoaBL +e1MMT)P + ¢ ' N{NT
+ P[AgQ AL + AyQ 7 NS (51T — NoQ 7' Ny ) I N,Q AL
+ e, 'MMT|P +Q+ CTC +~2P(DDT 4 BoBL)P
=ATP + PA+ POP+¢7'NN] +CTC+Q =-Q <0. (3.21)

Thus, the proof of this theorem is immediately completed from Theorem 3.1. O

Remark 3.2 Theorem 3.2 shows that the mixed robustness, H,,-norm upper bound of
closed-loop transfer function and reliability can be guaranteed when a positive definite
solution P to the algebraic Riccati equation (3.13) is known to exist. When there is no
actuator failure, i.e, Q = ), Theorem 3.2 generalizes the result of [19], and when there is
no time-delay in the system state equation, Theorem 3.2 includes the result of [26] as a
special case.

Remark 3.3 Clearly, it is important to check the existence of a positive definite solution
to (3.13). When the symmetric matrix © is nonnegative definite, (3.13) is a generalized
algebraic Riccati equation, and the discussion on numerical solution to such a parameter-
dependent Riccati equation can be found in many papers, see for example [30-31]. The
investigation of the case for ©® > 0 is performed in the following theorem which gives the
existence condition of an expected positive definite solution to (3.13). It should be pointed
out that ©® > 0 means that the system matrix A must be stable.

Theorem 3.3 Consider the algebraic matriz equation (3.13) with © > 0. There ezists a
positive definite solution P > 0 to (3.13) if and only if

IM:=A"07'A— (e,'N\N] +CTC+Q+ Q) >0. (3.22)
Furthermore, in this case, the desired solutions can be expressed as
P=TvO /2 _ATe! (3.23)

where T € R™™ s the square root of T = ATO 1A — (e, "N\ N{ 4+ CTC + Q + @1),
V € R**"™ s an arbitrary orthogonal matriz.



Proof: We can rewrite (3.13) as
(PO/2 4 ATO=1/2)(PO'/? + ATQ~1/2)T
=ATO A~ (e7'NNT +CTC+Q+Q1) >0 (3.24)

and the first conclusion of this theorem follows immediately. Moreover, take the square
root of I, i.e.

TTT =T = ATO'A— (¢ 'N\N] +CTC+Q+Q1), T eRY™™,

Equation (3.13) is then equivalent to
(POY2 4+ ATO 12) (P2 + ATO /)T = 77T, (3.25)
or
POV2 4 AT~ 2 =TV (3.26)

where V' € R"*™ is an arbitrary orthogonal matrix. The expression (3.23) can be directly
derived from (3.26). This finishes the proof. O

Remark 3.4 It is apparent from the above results that there exists much freedom con-
tained in the design steps, such as the choices of appropriate 1, €9, €3, @, Q1. This design
freedom may be exploited to achieve other desired closed-loop properties, such as low-
energy control input requirement and good transient behavior. This will be the subject of
further studies.

4 Numerical examples

In this section two numerical examples together with the corresponding simulation results
are given to illustrate the applicability of the proposed design approach.

Example 1: Consider the uncertain delay linear system (2.1)-(2.3) with the following
data

4 01 —05 002 0 001
A=1-02 2 02|, Ag=]001 -002 0 |,
1 —02 —6 —0.01 —0.02 —0.5
(2 01 1 Lo s
B=|0 4 01, C=]|, . 1]
02 0 01 ‘
(1 0 0 002 0 0
D=1010|, M=|0 001 0],
0 0 1 0 0 05
006 0 0 004 0 0
N=|0 004 01|, Ny=|0 004 o0 |,
0 0 0.03 0 0 004

2, = diag{0.1,0.1,0.2}, E, = diag{0.2,0.1,0.4}.



Since the set of the eigenvalues of A is {3.9395, —5.9447,2.0052}, A is unstable. We
now give the following system parameters: the time-delays for the first, second and third
states are 1.5 second, 2.5 second and 5 second, respectively; the initial (state) conditions
are z(tp) = [20.5 — 10 — 25]T; the H,,-norm constraint is v = 0.59; Q = {3}; and the
disturbance inputs are sine waves with unit intensities.

For Q = {3}, we have

2 01 0 0 0 1
Ba=|0 4 0|, Bo=1]0 0 0.1},
02 0 0 0 0 0.1
Set 1 =0.01 , g9 =1, e3 = 1.3333 and
01 0 0 0.1 0 0
Q=10 01 0], @=[0 01 0
0 0 0.1 0 0 0.1

such that I — eo No@Q ' NJ > 0 is met. The symmetric matrix © and the positive definite
solution P to the modified Riccati equation (3.13) are obtained, respectively, as follows

—0.1290 —0.0148 —0.0615 67.1897 0.9567 —3.3591
© = |—-0.0148 —11.8512 0.0375 |, P = | 0.9567 0.4593 0.0169
—0.0615  0.0375 2.7972 —3.3591 0.0169 0.3015

From (3.14), the required feedback control law is obtained by

—50.1403 —0.7188 2.4967
u(t) = Fz(t), F=|-3.9546 —0.7248 0.1006
—25.1060 —0.3766 1.2477

We now discuss the following two cases.

e Case 1: There are no actuator failures (i.e., all actuators are normal).

e Case 2: There is a failure of the third actuator (i.e., an actuator failure corresponding
to w C Q = {3} occurs).

The simulation (state response) results for the closed-loop system in case 1 and case 2 are
shown in Fig. 1 and Fig. 2.

Next, we set v = 0.75. In this case, the following new results are obtained:

7.1181 0.1525 —0.1466 —5.3276 —0.1186  0.1007
P =] 0.1525 0.4453 0.0567 |, F = [—0.4957 —-0.6737 —0.0795
—0.1466 0.0567 0.1238 —2.6695 —0.0760 0.0482

10
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Figure 1: z1 (solid), z9 (point), z3 (dashed).
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Figure 2: z1 (solid), z9 (point), z3 (dashed).
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Case3: Responses of the States to Initial Conditions
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Case4: Responses of the States to Initial Conditions
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Also, case 3 is associated with the the normal situation, and case 4 corresponds to the
failure of the third actuator. Simulation results for these two cases are displayed in Fig. 3
and Fig. 4.

It can be seen from the numerical simulation results that all our goals are well achieves.

Example 2: Consider the uncertain delay linear system (2.1)-(2.3)with system parameters
being given as follows:

5 —01 05 —0.02 0 0.01
A=102 -2 —02|, Ag=]001 —002 o0 |,
1 02 =07 —0.01 —0.02 —0.05
[6 01 1 -
1 2
B=|0 4 01|, C=|, 005 01 :
02 10 0.1 ‘ 1
(01 0 002 0 0]
D=|0o 2|, Mm=|0 001 0],
3 01 0 0 05
006 0 0| 004 0 0
N=|0 004 0|, Ng=|0 004 0 |,
0 0 0.03] 0 0 0.04
01 0 0] 02 0 0
= =10 01 0|, S=|0 01 0
0 0 0.2 0 0 04

The time delays for the first, second and third states are set as 1 second, 2 second and
3 second, respectively; the initial (state) conditions are z(tg) = [50 — 25 10]T; the H,
norm constraint is v = 0.7; and the set of actuators susceptible to failures is Q = {3}.
Therefore, we have

6 0.1 0 00 1
Ba=1|0 4 0|, Ba=|0 0 0.1],
0.2 10 0 0 0 0.1

Setting e1 = .01 , g9 = 1, e3 = 1.3333, @ = @1 = 0.113, we obtain the symmetric matrix
©, and the positive definite solution P to the modified Riccati equation (3.13) as follows:

—24.9408 —0.0980 —1.3877 0.2637 0.0498  0.0942
O =|-0.0980 —3.8111 —29.5684(, P = [0.0498 0.1270 —0.0047
—1.3877 —29.5684 —74.5225 0.0942 —0.0047 0.1182
Hence, the desired state feedback gain matrix is calculated by:
—-0.6004 —0.1117 -0.2209
u(t) = Fz(t), F = |-04380 —0.1747 —0.4397
—0.1043 —-0.0233 —0.0396

13



Again, we discuss the following two cases, that is, the case when all actuators are normal
and the case when there is a failure for the third actuator. The simulation (state response)
results of the closed-loop system for these two cases are depicted, respectively, in Fig. 5
and Fig. 6, which verify our theoretical results.

Remark 4.1 In this paper, we actually consider a multiobjective control (sub-optimal)
problem. That is, for a class of linear uncertain time-delay systems, we want the controlled
systems to have expected reliability and disturbance rejection attenuation level, for all
admissible parameter uncertainties and all possible actuator failures. As can be seen in
the numerical examples, the desired solution set, if not empty, must be very large. In
other words, as long as a state feedback gain could make the corresponding closed-loop
system satisfy prespecified multiple objectives, it will belong to the desired solution set.

Case5: Responses of the States to Initial Conditions
50 T T T

40 N

30 N

201 B

10 B

Amplitude

-10}+ -

-30 I I I I I
0 1 2 3 4 5 6

time (second)

Figure 5: x1 (solid), zo (point), z3 (dashed).

5 Conclusion

A design approach for robust reliable H,, state feedback control of linear systems with
state delay and parameter uncertainty has been presented. Based on a positive definite
solution to a modified parameter-dependent Riccati equation, the proposed robust reliable
H, state feedback controller guarantees robust stability and robust H,, performance for
uncertain time-delay systems, independent of the time delay, not only when all control
components are operational, but also in case of actuator failures occurred within the
prescribed set of susceptible actuators. The contribution of this paper, which can be
summarized as follows, is twofold:

14



Case6: Responses of the States to Initial Conditions
50 T T T
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Figure 6: z; (solid), z2 (point), =3 (dashed).

e Previous results on robust control and robust H,, control for time-delay systems
have been extended to the case in which an actuator failure is allowed.

¢ A modified algebraic Riccati equation approach has been developed to deal with the
addressed design problem. Numerical algorithm on this kind of algebraic Riccati
equations has also been discussed.

Two simulation examples have shown that the present design approach is both simple and
effective.
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7 Appendix (Proof of Theorem 3.1)

Proof: From Lemma 3.3, a controller which satisfies the inequality (3.10) stabilizes the
state delayed system (2.1)-(2.3) for all d > 0.
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Define the matrix Y as follows

_ _ _ _ o 1 _ _
Y=—(A"P+PA+PAQ'AJP+Q+C"C+ —=PDD"P).
gl

Then, we have

_ _ _ _ o 1 - _
ATP+PA+PAQ 'AJP+Q+C"C+ PDD"P+7Y =0
Y

and
(—jod — AT — 7% ATVP + P(jal — A — e 794 4,)
_PAQATP—Q-T—CTC - 71—2PDDTP
= —JYATP — e I*pA, (7.1)
for all a« € R

Next, we define the following matrices:

U(ja): = Q4+ PAQ TATP — ATpeiod — pAeIod
= [PAge™ = QIQ7[Ag P’ — Q)
V(ija): = (joI —A— Age 7od)~1

for all « € R

Note that U(jo) is nonnegative definite from the definition. Using the matrices U(ja)
and V (ja), we can rewrite (7.1) as

o 1 - _
(VT (=ja))™'P + PV (ja) = U(jo) = T = CTC - ?PDDTP =0 (7.2)
or
. . 1 N .
PV(ja) + V' (—ja)P — 7—2VT(—ga)PDDTPV(]a)
=V (—ja)[U(ja) + T + CT OV (ja) (7.3)
This implies that
DTPV(ja)D + D"V (—ja)PD — %DTVT(—ja)PDDTPVT(ja)D — T
gl
=1 + D"V (—ja)|[U(ja) + T + CTC|V (ja)D (7.4)
and
1 _ = - -
—2 (11 = D' PV(=ja)D)" ("I = D' PV (jo) D)
= I+ D"V (—ja)[U(jo) + Y|V (ja)D
1 - AT AN
+ ?DTVT(—]a)CTCV(ja)D. (7.5)
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for all « € R.

The left hand side of equation (7.5) is non-positive definite and

Hence

_ ) ) = 1 ) )
21+ D"V(—ja)[U(ja) + Y]V (ja) D + ;Tfm(—Ja)Tym(Ja) <0 (7.6)
and
Ty (—ja)Tys (jo) < v* —yDTVT(—ja)[U(jer) + Y|V (ja)D < I (7.7)
for all @ € R, that is, [|Tya|lc < 7- O
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