AN ASSESSMENT OF THE STOCK OF SCAD AND MACKEREL AT SOFALA BANK AND BOA PAZ,

 MOZAMBIQUEby

Hensik Gislason
and

Maria Imelda Sousa

SUMMARY

1. INTRODUCTION
2. THE FISHERY
2.1. Fleet
2.2. Landing
2.3. Total effort and catch per unit of effort
2.4. Species composition of the catch
3. SURVEYS
4. SOFALA BANK
```
    4.1. Indian scad, Decapterus russelli
            4.1.1. Catch per hour in numbers at length
            4.1.2. Total mortality
            4.1.3. Fishing mortality
            4.1.4. Stock size and biomass
            4.1.5. Yield per recruit and biomass per recruit
```

 4.2. Layang scad, Decapterus macrosoma
 4.2.1. Catch per hour in numbers at length
 4.2.2. Total mortality
 4.2.3. Fishing mortality
 4.2.4. Stock and size biomass
 4.2.5. Yield per recruit and biomass per recruit
 4.3. Indian mackerel, Rastrelliger kanagurta
 4.3.1. Catch per hour in numbers at length
 4.3.2. Total mortality
 4.3.3. Fishing mortality
 4.3.4. Stock size and biomass
 4.3.5. Yield per recruit and biomass per recruit
 5. BOA PAZ
5.1. Indian scad, Decapterus russelli
5.1.1. Catch per hour in numbers at length
5.1.2. Total mortality
5.1.3. Fishing mortality

5.1.4. Stock size and biomass

5.1.5. Yield per recruit and biomass per recruit

6. DISCUSSIOR

7. MAIN CONCLUSIONS AND RECOMMENDATIONS
7.1. Conclusions
7.2. Recommendations

8. REFERENCES

ANNEX 1 Tables
ANNEX 2

1. INTRODUCTION

The fishery for scad and mackerel along the coast of Mozambique began as a licensed fishery in 1977.

In 1980, MOSOPESCA, a joint venture between Mozambique and the Soviet Union was formed and the licensed fishery ceased. MOSOPESCA started fishing with four vessels, but since 1984 the number of vessels has gradually been increased and at the end of 1985 a total of seven vessels were in operations.

The fishery takes place at Sofala Bank and Boa Paz, Fig. 1.

Fig. 1 Fishing areas at Sofala Bank and Boa Paz.

In 1985 the total catch amounted to 7200 tonnes of which app. 60% consisted of scad and mackerel. Except for mackerel which can be found in the bycatch of the fishery for shallow water shrimps no other fishery exploits these resources.

A preliminary assessment was made by Borges et al. (1984). Their main conclusion was that the fishery could be expanded gradually in the future.

This report contains an updated assessment based mainly on information collected from July 1984 to May 1986.

2. THE FISHERY

2.1. Fleet

The fleet of MOSOPESCA consists of seven vessels of the SRTM type (GRT 2910 total length 60 m). Five of the vessels have engines of app. 1000 hp ; the remaining two, "Baical" and "Bilibiza", which started fishing in December 1984 and November 1985, respectively, have engines of app. 1200 hp.

2.2. Landings

The annual and monthly landings as reported by the company and as estimated from the logbooks of the licensed vessels are given in table 1 and tables 1.1 and 1.2. (Annex 1).

The total annual catch reached a peak of 17000 tonnes in 1978 and decreased thereafter to a level of between 5000 and 7000 tonnes. Sofala Bank is generally the most important fishing area, except for October when most of the vessels are fishing at Boa. Paz.

Table 1 Annual landings (tonnes) of the trawl fishery for scad and mackerel at Sofala Bank and Boa Paz

Year	Sofala Bank	Boa Paz	Total
1977	850	1950	2801
1978	13478	3431	16909
1979	8897	29	8926
1980	3907	1342	5249
1981	4973	1893	6866
1982	2673	3226	5899
1983	5907	1259	7166
1984	3546	2143	5599
1985	4295	3039	7334

2.3. Total effort and catch per unit of effort

The total annual number of fishing hours was estimated from the logbooks and divided into the catch in order to give the average per fishing hour, Table 2.

Table 2 Total catch (tonnes), total number of hours fishing (SRTM trawling) and catch per hour fishing at Sofala Bank and Boa Paz

Sofala Bank			Boa Paz			
Year	Total catch (tonnes)	Fishing hours	Tonnes hours	Total catch (tonnes)	Fishing hours	Tonnes hours
1977	850	.1835	.46		1950	2991
1978	13478	25022	.54	3431	7933	.65
1979	8897	22686	.39	29	134	.22
1980	3907	4667	.84	1342	1321	1.02
1981	4973	6308	.79	1893	2470	.77
1982	2673	3301	.81	3226	4862	.66
1983	5907	6501	.91	1259	2033	.62
1984	3546	4184	.85	2143	2881	.74
1985	4295	7128	.60	3039	5301	.57

On Sofala Bank the catch per hour has remained more or less constant from 1980 onwards, while a decrease from a very high value in 1980 to a level below that of Sofala Bank can be observed at Boa Paz.

As the two new SRTM vessels are different from the old ones in terms of horsepowers it was necessary to correct the number of fishing hours for differences in fishing power. This was done by making linear regressions (forced through zero) of the monthly catch per fishing hour of different vessels. By use of these regressions, Table 1.3 (Annex 1), the monthly fishing hours of each vessel was converted into "Baical" hours and summed to give a total yearly figure of standardized effort.

2.4. Species compositon of the catch

The catch is sorted into commercial categories onboard the vessels and landed frozen in Maputo harbour in cartoon boxes of 30 Kg . each containing three separate blocks of fish. Each landing consists of app. 200 tonnes of fish.

The catches are sampled in Maputo harbour by assitents from IIP.

The total catch is first split into fishing areas and categories by combining the area information of the logbooks with information on the daily catch of different categories recorded by the fish technologist, the person responsible for packing and freezing the fish at sea. A total of 20 boxes are then selected at random, distributed on the different category/area combinations in proportion to the relative landing of that category/area. From each box one block of fish is thawed up and analysed for species composition. If possible the lengths of 20 individuals of each of the most important species of scad: Decapterus russelli, D. macrosoma, S. crumenophthalmus and T. trachurus, and indian mackerel: Rastrellinger kanagurta are measured to the nearest $0,5 \mathrm{~cm}$ below.

The percentage species composition of the catch at Sofala Bank and Boa Paz are shown in Table 3.

The most important species in both areas is indian scad, Decapterus russelli. At Sofala Bank, layang scad Decapterus macrosoma and indian mackerel, Rastrelliger kanagurta, are also of importance. At Boa Paz they are replaced by horse mackerel, Trachurus trachurus and by Scomber japonicus.

Table 3 - Average percentage species composition of the catch at Sofala Bank and Boa Paz in 1985

	Sofala Bank	Boa Paz
Decapterus russelli	37.8	45.2
Decapterus macrosoma	10.0	0.7
Rastrelliger $\frac{\text { kanagurta }}{\text { Caranx malabaricus }}$	10.0	2.7
Sphyraena spp	2.7	2.2
Scomber japonicus	3.7	4.2
Trachurus trachurus	+	5.7
Other pelagics	-	6.3
PELAGICS	4.6	17.4
Upeneus spp	68.8	84.4
Nemipterus delagoae	11.9	2.6
Saurida undosquamis	2.7	0.5
Other demersals	10.9	5.0
DEMERSALS	5.1	6.4

Among the demersal species particularly goatfishes, Upeneus spp, and lizardfish, Saurida undosquamis, are common.

The variations in the species composition during the year are illustrated by Figs. 2 and 3.

At Sofala Bank the percentage of D. russelli reached high values from August to November 1985. The percentage of other small pelagic species remained more or less constant, while the demersals were most abundant from April to July.

At Boa Paz the percentage of D. russelli was high from January to March 1985 and again in the end of the year from November to December. The percentage of other small pelagic species, mainly I. trachurus and S. japonicus, was high from July to December 1984 and from July to October 1985. The demersal species remained more or less constant during the period.

Fig. 2 Sofal Bank. Species composition of catch.

Fig. 3 Boa Paz. Species composition of catch.

The catch per unit of effort of the most important species was estimated by applying the percentage species composition to the catch per standardized fishing hours, Tables 1.4 to 1.8 (Annex 1).

3. SURVEYS

In May/June 1984 and December 1984/January 1985 the Soviet research vessel "Nauka" made two stratified random bottom trawl surveys for scad and mackerel (Gislason \& Sousa, in press).

The area between $16^{\circ} 00^{\prime} \mathrm{S}$ and $26^{\circ} 30^{\prime} \mathrm{S}$ was divided into 13 strata in the depth range from 20 to 200 m . The fishing areas at Sofala Bank and Boa Paz were chosen as separate strata in order to allow comparison between the catch rate of "Nauka" and the commercial vessels. Each strata was subdivided into a number of substrata from which fishing positions were selected at random.

During the survey in May/June 1984 the strata from the north of Sofala Bank down to Maputo were covered. In the December 1984/January 1985 survey only the part of Sofala Bank south of the mouth of the Zambezi river was covered.

The biomass of scad and mackerel was estimated by the "swept area" method assuming the catchability coefficient to be one, Table 4. This will most likely result in underestimates of biomass.

Table 4 Average biomass estimated during the bottom trawl surveys of "Nauka" in May-June 1984 and December-January 1985.

Abstract

4. SOFALA BANK 4.1. Indian scad, Decapterus russelli 4.1.1 Catch per hour in numbers at length.

The catch per hour in numbers at length is shown in Table 1.9 (Annex 1)

Recruitment is taking place in the first half of the year. From October 1985 to march 1986 large fish ($\geqslant 19 \mathrm{~cm}$) entered the fishery.

4.1.2. Total mortalily

The total yearly mortality was estimated from the total yearly eatch in numbers at lenght in 1985 by the "catch curve" method as described by Sparre (1985). The growth parameters used for estimating the time spent in each size class were taken from Sousa (in press) ($L \infty=27.9 \mathrm{~cm} ., K=0.56$ year -1). Total mortality, Z, was estimated to 4.9 from the slope of the curve.

Because of the extended period of recruitment to the fishery and the migrations of large fish away from the fishing area no attempt was made to estimate the total mortality directly from the drop in the total monthly catch in numbers per hour.

4.1.3. Fishing mortality

The fishing mortality was estimated by the "swept area" method and corrected for the tendency of the commercial trawlers to fish in areas of high concentrations by comparing their average catch rate with the catch rate obtained during the stratified random survey of "Nauka" from December 1984 to January 1985 (Gislason \& Sousa, in prep.), Table 1.10 (Annex 1).

As the maximum catch in numbers per hour of the commercial vessels was found in the length from 15 to 16.5 cm it was assumed that fish within this length range was fully recruited to the fishery and had not yet started to migrate. away from the fishing area.

Assuming the catchability coefficient to be 1.0 and dividing the numbers
per n^{2} in this size range estimated from the catch per hour of the commercial vessels with the numbers per n^{2} estimated by "Nauka" it was found that the commercial vessels were 8.78 times more efficient than "Nauka".

The yearly fishing mortality was then estimated by calculating the total area swept by the commercial vessels in 1985, multiplying with 8.78 and dividing by the size of the total area covered on Sofala Bank during the survey of "Nauka" ($5675 \mathrm{~nm}^{2}$). The resulting fishing mortality of fish in the length range from 15 to 16.5 cm was 0.35 year $^{-1}$.

4.1.4. Stock size and biomass

The stock size was estimated by Virtual Population Analysis (VPA, see appendix 1) from the catch in numbers at length in 1985 assuming the stock to be in equilibrium (Sparre, 1985), Tables 1.11 and 1.12 (Annex 1).

Two values of natural mortality, M were used. One, $M=1.2$ year -1 was derived by the formula of Pauly $(1980, b)$ assuming an average sea temperature of $25^{\circ} \mathrm{C}$. The other was estimated by the "catch curve" method from the catch in numbers at length at Boa Paz, see ch. 5.1.2.

The calculation were initiated by using the value of fishing mortality estimated for the length group from 15 to 15.6 cm to calculate the total number of fish which had passed through the lower and upper limit to the length group during the year (N_{L}) . After calculating these numbers the VPA equations were used to go forwards and backwards in length and time. Finally the average number of fish present in each length during the year ($N_{y e a r l y}$) was estimated by dividing the catch in numbers with the estimated yearly fishing mortality.

As assumed the fishing mortality reached maximum values for the length group from 15 to 16.5 cm and decreased rapidly for both smaller and large fish.

The average biomass was calculated by multiplying $N_{\text {yearly }}$ with the weight of one individual estimated by inserting the average length into the length weight relationship given by Borges et al (1984). The results were 19200 tonnes and 14500 tonnes for the two values of M. During the two surveys of "Nauka" the biomass in the same area was estimated to 11300 and 12900 tonnes, respectively.

4.1.5. Yield per recruit and biomass per recruit

The yield and biomass per recruit was calculated with the exploitation pattern estimated by the VPA and with individual weights estimated from the length weight relationship. The length and first recruitment was set to 10.5 cm .

The results are given in Table 5 for two values of M. All yield, eatch per unit of effort and biomass values are expressed relative to the present situation.

As shown by the Table a doubling of the effort will lead to a increase in yield per recruit of between 85 and 86% depending on the value of M assumed This corresponds to a reduction in the catch per unit of effort of between 7 and 8% and to a drop in the biomass of app. 7%.

Table 5 Decapterus russelli. Sofala Bank, Yield per recruit (Y/R), catch per unit of effort per recruit (cpue) and biomass per recruit (B / R) relative to the present level of fishing mortality. ($\mathrm{F}_{\max }=0.35$ year -1) for two values of natural mortality. ($M=1.2$ year $-1, M=2.3$ year -1)

$F_{\text {max }}$	$M=1.2$			$M=2.3$		
	Y / R	cpue	B/R	Y/R	cpue	B/R
0.20	0,59	1.04	1.05	0.59	1.04	1.03
0.35	1.00	1.00	1.00	1.00	1.00	1.00
0.40	1.13	0.99	0.98	1.13	0.99	0.99
0.50	1.38	0.97	0.95	1.38	0.97	0.97
0.70	1.85	0.92	0.90	1.86	0.93	0.93
1.75	3.68	0.74	0.66	3.76	0.75	0.79

4.2. Layang scad, Decapterus macrosoma

4.2.1. Catch per hour in numbers at length

The catch per hour in numbers at lenght is given in Table 1.13.

Recruitment seems to take place along most of the year. Large fish ($\geqslant 20 \mathrm{~cm}$) were found from January to July 1985 and from December 1985 onwards. In the
period from August to November they seem to have migrated out of the fishing area.
4.2.2 Total mortality

Because of the extended recruitment period and the migrations in and out of the fishing area no attempt was made to estimate the total mortality from the catch per hour in numbers at length.

4.2.3. Fishing mortality

The fishing mortality was estimated by the "swept area" method in the same way as for D. russelli, Table 1.14 (Annex 1).

The highest catch per hour in numbers at length occurred in the length range from 17 to 18.5 cm . Comparing the number of fish per square nautical mile estimated from the average catch in numbers of the commercial vessels with the results of "Nauka", the commercial vessels were found to be 12.17 times more efficient than "Nauka". The fishing mortality was hence estimated to 0.49 year $^{-1}$.
4.2.4. Stock size and biomass

As for D. russelli the average stock size and biomass was estimated by VPA, using the total catch in 1985 and the above estimated fishing mortality of the maximum exploited length group to start the calculations, Table 1.15 (Annex 1).

The natural mortality, M was derived from Pauly (1980,b) using and average sea temperature of $25^{\circ} \mathrm{C}$ and growth parameters ($L \infty=27.4 \mathrm{~cm} \mathrm{~K}=0.43$ Year $^{-1}$) and length weight relationship from Borges et al (1984).

The total biomass in the size range from 11 to 24.5 cm was estimated to 2600 tonnes, which is quite comparable to the total biomass figures of 2300 and 2600 tonnes obtained during the surveys of "Nauka" in the southern part of Sofala Bank.

4.2.5. Yield per recruit and biomass per recruit

The yield per recruit, Table 6, was calculated in the same way as for D. russelli

A doubling of the fishing effort will result in a 68% increase in the yield per recruit and a 16% decrease in the catch per fishing hour.

Table 6 D. macrosoma. Sofala Bank. Yield per recruit (Y/R), catch per unit of effort per recruit (cpue) and biomass per recruit (B / R) relative to the present level of fishing mortality ($F_{\max }=0.49$ year -1). $M=1.0$ year -1 . Length at first recruitment, 11 cm .

$F_{\max }$	Y / R	cpue	B / R
0.28	0.62	1.08	1.08
0.49	1.00	1.00	1.00
0.56	1.11	1.97	0.98
0.70	1.32	0.93	0.93
0.98	1.68	0.84	0.85
2.45	2.07	0.53	0.61

4.3. Indian mackerel, Rastrelliger kanagurta

Besides being caught in the fishery for scad and mackerel Indian mackerel is caught as by-catch in the fishery for shallow water shrimp in Sofala Bank. In 1982 this bycatch amounted to 200 tonnes (Gislason \& Sousa, 1985). This negligeable figure, which can be assumed to be similar in 1985, was not considered in the present assessment.

4.3.1. Catch per hour in numbers at length

Table 1.16 (Annex 1) shows the catch per hour in numbers at length.

Recruitmemt takes place in the first half of the year. The large fish ($\geqslant 19 \mathrm{~cm}$) is most abundant from December to April and from July to September.

Fish above 23 cm are only rarely caught.

4.3.2. Total mortality

The total mortality was estimated to 1.0 year ${ }^{-1}$ by the "matched samples" method (Sousa, in press) from the catch per hour in numbers at length of the one year old fish in March and April 1985, Fig 4. The growth parameters were taken from Sousa \& Gislason (1985).

Fig. 4 Rastrelliger kanagurta. "Matched samples" method. Catch in numbers per hour at length and fitted normal distributions.

4.3.3. Fishing mortality

The fishing mortality was estimated to 0.30 year ${ }^{-1}$ by the "swept area" method. The highest catch in numbers occured in the length range from 19.5 to 21 cm . The commercial vessels were found to be 7.43 times more efficient than "Nauka", Table 1.17 (Annex 1).

4.3.4. Stock size and biomass

The VPA was run with two values of M, Tables 1.18 and 1.19 (Annex 1). One value ($M=1.4$) was derived by the formula of Pauly (1984). For the other ($M=1.0$) the value of total mortality estimated by the "matched samples" method was used.

By use of the length weight relationship from Borges et al (1984) the total biomass of R. kanagurta was estimated to 4200 and 4100 tonnes, respectively. During the surveys of "Nauka" the total biomass in the area south of the Zambezi river was estimated to 7800 tonnes and 3400 tonnes.
4.3.5. Yield per recruit and biomass per recruit

The yield per recruit, Table 7, show that a doubling of the fishing effort will increase the yield per recruit by 81% for both values of M and reduce the catch per unit of effort with app. 10\%.

Table 7 R. kanagurta. Sofala Bank. Yield per recruit (Y/R), catch per unit of effort (cpue) and biomass per recruit (B / R) relative to the present level of fishing mortality ($\mathrm{F}_{\max }=0.30$ year -1) for two values of natural mortality ($M=1.0$ year $-1, M=1.4$ year -1)

$F_{\max }$	$M=1.0$			$M=1.4$		
		Y / R	cpue	B / R	Y / R	cpue
0.17	0.60	1.05	1.05	0.60	1.04	1.04
0.30	1.00	1.00	1.00	1.00	1.00	1.00
0.34	1.13	0.99	0.98	1.13	0.99	0.98
0.43	1.37	0.96	0.95	1.37	0.96	0.96
0.60	1.81	0.90	0.90	1.81	0.91	0.92
1.50	3.40	0.68	0.68	3.47	0.69	0.75

5. BOA PAZ
5.1. Indian scad, Decapterus russelli
5.1.1. Catch per hour in numbers at length

The catch per hour in numbers at length is given in Table 1.20 (Annex 1). As at Sofala Bank the main recruitment takes place in the first half of the year. Large fish ($\geqslant 21 \mathrm{~cm}$) were abundant in the catch from February to June and again from November to December. The fish are in general much larger than at Sofala Bank.
5.1.2. Total mortality

The total mortality was estimated by the "catch curve" method (Sparre, 1985), Table 1.21. (Annex 1) and Fig. 5. Only data from March and April, the time when most of the large individuals are present were considered. For fish in the lenght range from 20 to 24.5 cm the total mortality was estimated to 2.3 year ${ }^{-1}$.

Fig. $5 \frac{\text { D. }}{\text { April } 1985 .}$ Boa Paz. "Catch curve" method. Data from March and

5.1.3. Fishing mortality

The fishing mortality was estimated to 0.41 year-1 for the length range from 16.5 to 18 cm by the "swept area" method, Table 1.22 (Annex 1). The commercial vessels were on average 11.64 times more efficient than "Nauka" during its 1984 May/June servey.

5.1.4. Stock size and biomass

The VPA was run with the same two values of M and the same growth parameters as used for D. russelli at Sofala Bank, Table 1.23 and 1.24 (Annex 1).

The average biomass in the length range from 10.5 to 27 cm was estimated to be 12000 and 9600 tonnes, respectively. During the survey of "Nauka" in May/June 1984 the biomass at Boa Paz was estimated to 4000 tonnes. The discrepancy between the biomass figures from the VPA and from the survey may be explained by our high value of catchability coefficient, thus, if we have used 0.5 (as suggested by D. Pauly) the survey estimate would be 8000 tonnes, rather close to the VPA estimate.
5.1.5. Yield per recruit and biomass per recruit

The yield per recruit and biomass per recruit, Table 8, were estimated with the same exploitation patterns as used in the VPA's.

A doubling of the present effort will result in a 75% increase in yield per recruit corresponding to a 12% decrease in catch per fishing hour for both values of M.

Table 8 Decapterus russelli. Boa Paz. Yield per recruit (Y/R), catch per unit of effort per recruit (cpue) and biomass per recruit (B/R) relative to the present level of fishing mortality ($F \max =0.41$ year -1) for two values of natural mortality ($M=1.2$ year $-1, M=2.3$ year -1). Length at recruitment, 10.5 cm .

	$M=1.2$			$M=2.3$		
$F_{\max }$	Y / R	cpue	B / R	Y / R	cpue	B / R
0.23	0.61	1.06	1.07	1.61	1.06	1.04
0.41	1.00	1.00	1.00	1.00	1.00	1.00
0.47	1.12	0.98	0.98	1.12	0.98	0.99
0.59	1.35	0.94	0.94	1.35	0.94	0.97
0.82	1.75	0.88	0.86	1.75	0.88	0.93
2.05	3.07	0.61	0.60	3.09	0.62	0.81

6. DISCUSSION

The migrations of fish in andout of the fishing areas constitute the main problem for making an assessment of the stocks of scad and mackerel at Sofala Bank and Boa Paz.

These migrations, which were assumed by Borges et al (1984), seem now to have been confirmed by the variations in the catch per fishing hour over the year. For D. russelli and I. trachurus the fishing area at Sofala Bank and at Boa Paz seem to be part of the spawning area (Borges et al, 1984) and the migrations of large fish to be spawning migrations. For R. kanagurta and D. macrom soma the picture is more unclear.

Nothing is at present known about the extent of these migrations. In the present assessment, it has been assumed that the stocks at Sofala Bank and Boa Paz are separated so that no fish migrate from Sofala Bank to Boa Paz or the opposite. This assumption remains to be proved.

The migrations make it very difficult to obtain reliable estimates of total and natural mortality. Only in one case was it possible to use the "matched samples" method of Sousa (in press) to connect normally distributed components of the size spectrum by growth curves and estimate total mortality from the drop in the numbers caught per fishing hour. Fortunately, however, the yield per recruit and biomass per recruit do not depend very much on the value of natural mortality assumed.

Because of these and other uncertainties it was decided to use estimates of fishing mortality and stock size which most likely would lead to an oaverstimation of the effect of the present fishery. When using the "swept area" method to estimate the fishing mortality at Sofala Bank it was implicitly assumed that the whole population was found south of the mouth of the ambezi river. In addition the catchability coefficient was assumed to be one. Both of theses assumptions probably leads to overestimates of the fishing mortality and hence to underestimates of stock size.

Even so the effect of the present fishery is negligeable compared with the natural mortality and average stock size. A doubling of the fishing mortality corresponding to a doubling of the number of fishing hours will thus,
depending on the species only lead to a 7 to 16% reduction in the average catch per fishing hour. It can thus be concluded that the fishery for scad and mackerel may by expanded gradually in the future without endangering the stock, the same conclusion as reached by Borges et al (1984).

The catch predictions presented in this report in the form of yield and biomass per recruit calculations have all been long term predictions of average conditions. They can not be transformed into predictions of actual yield and biomass without some knowledge of the future recruitment.

From time to other the fishing sector has expressed a wish to have short term predictions of the catch of the following year.

For short lived species like scad and mackerel a short term prediction will also depend heavily on estimates of recruitment. However, prediction just one year ahead it may be possible to obtain an estimate of the number of recruits of e.g. D. russelli supposed to enter the fishery in the first half of the following year from a special yearly recruitment survey. Such a survey will give a relative index of recruitment which afterwards has to be related to the total number of recruits (estimated for instance by VPA) before it can be used in the predictions.

Short term predictions of catch depend, however, also on predicting the fishing mortality. As the fleet at present only consists of 7 vessels of which the majority are old and need frequent repairs, the total number of fishing hours show big changes from year to year. Before the fleet has grown to a size where the total number of fishing hours does not depend so much on the breakdown of single vessels it will be almost impossible to make reliable catch predictions.

In 1985 the fishing company, MOSOPESCA, complained about low catch rates in the first half of the year. Unfortunately, no data on species composition is available from the first half of 1984 , but comparing the average catch per standardized fishing hour in January to April 1985 with that of the same period in 1986 a significant (95% level) difference was found. The average of 1986 was 106 Kg above that of 1985. Dividing the catch into pelagics and demersals the catch rate of the pelagics showed a small and insignificant decrease, while the demersals increased significantly by 110 Kg per hour.

The difference between 1985 and 1986 is thus due to the demersals and not to pelagics, which again may indicate that more effort should be put into studying the demersal species caught in the fishery for scad and mackerel.

7. MAIN CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions

7.1.1. The fishery for scad and mackerel can be increased gradually in the future.
7.1.2. The variations in the number of fishing hours from year to year and the lack of suitable recruitment indices make it impossible to make reliable short term predictions at present.
7.1.3. The low average catch rate obtained in the first four months of 1985 compared to the same period in 1986 was due to a significantly lower catch rate of demersal species.

7.2. Recommendations

7.2.1. The stratified random trawl surveys for scad and mackerel should be continued in order to give yearly estimates of fishing mortality.
7.2.2. Sampling of the catch should be continued at the present level.
7.2.3. The possibility for differentiating the stocks of scad and mackerel by means of meristic characters should be investigated.
7.2.4. The identification of T. trachurus should be verified.
7.2.5. Whenever possible indices of recruitment to the stocks of scad and mackerel should be examined.
7.2.6. The growth, mortality and stock size of the most important demersal species should be investigated.

8. REFERENCES

BORGES, F., H. GISLASCN and M.I. SOUSA - A preliminary assessment of the scad 1984 and mackerel stocks at Sofala Bank, Mozambique. Rev.Inv. Pesq. (12) : 37-107.

GISLASCN, H. and M.I. SOUSA - Results of the stratified random bottom trawl surveys of "Nauka" for scad anc mackerel. Small pelagic fish. May-June 1984 and December-January 1985. Unpublished manuscript.

GISLASON, H. and M.I. SOUSA - Biology, stock size and catch of small pelagic 1985 fish along the coast of Mozambique. Rev. Inv. Pesq. (13) : : 27-82.

SOUSA, M.I. and H. GISLASON - Reproduction, age and growth of the Indian 1985 mackerel, Rastrelliger kanagurta (Cuvier, 1816) from Sofala Bank, Mozambique. Rev. Inv. Pesq. (14) 1: 28.

SCUSA, M.I. - Effects of bias caused by migrations on the estimation of growth and mortality of the Indian scad, Decapterus russelli (Ruppell, 1828). (in press).

SPARRE, P. - Introdliction to tropical fish stock assessment. FAO/Government 1985 Cooperative Programme. FI : GCP/INT/392/DEN, MANUAL 1.

PAULY, D. - Fish population dynamics in tropical waters : a manual for use 1984 with programmable calculators. ICLARM Studies and Reviews, 8.
Table 1.1 - Monthly catch (tonnes) of the trawl fishery for scad and mackerel at Sofala Bank

Yonth	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
JAN		1056	1155	44	747	507	995	864	765	825
FEB		717	1121	410	396	216	699	842	264	738
MAR		230	1196	282	41	232	613	291	182	766
APR		1210	927	89	242	135	684	152	427	604
MAY		1914	857	226	539	-	392	275	176	819
JUN		2313	875	607	464	50	423	98	259	
JUL		516	1331	617	515	598	615	154	432	
AUG		459	742	428	753	288	451	334	593	
SEP	121	1687	347	487	585	274	39	40	406	
OCT	-	1241	-	365	249	-	-	-	22	
NOV	-	1195	-	215	22	-	260	91	92	
DEC	730	949	346	137	420	373	738	405	677	
TOTAL	851	13478	8897	3907	4973	2673	5907	3546	4295	

Table 1.2 - Monthly catch (tonnes) of the trawl fishery for scad and mackerel at Boa Paz

	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
JAN		2	-	-	9	129	75	7	111	36
FEB		-	-	-	214	230	109	-	304	73
MAR		-	-	69	629	219	61	40	199	-
APR		2	-	139	58	156	44	-	262	84
MAY		-	-	126	5	142	140	74	223	83
JUN		-	1	-	-	405	8	321	117	
JUL		1940	27	-	33	287	-	255	87	
AUG		1422	-	205	84	273	11	51	123	
SEP	39	5	-	-	118	107	346	119	326	
OCT	937	33	-	40	195	699	385	661	758	
NOV	917	11	-	409	463	310	81	398	468	
DEC	57	16	1	354	85	269	-	217	61	
TOTAL	1950	3431	29	1342	1893	3226	1259	2143	3039	

Table 1.3 - Relative fishing power of individual SRTM vessels, July 19840 -May 1986

Sorala Bank

Vessel $1=0.7663 \times \mathrm{A}$	$\mathrm{n}=11$
Vessel $2=0.8178 \times \mathrm{A}$	$\mathrm{n}=10$
Vessel 3 $=0.5526 \times \mathrm{A}$	$\mathrm{n}=1$
Vessel $4=0.8702 \times \mathrm{A}$	$\mathrm{n}=10$
Vessel $5=0.8312 \times \mathrm{A}$	$\mathrm{n}=10$
Vessel $6=1.0056 \times \mathrm{A}$	$\mathrm{n}=6$

Boa Paz

Vessel $1=1.1092 \times B$	$n=8$
Vessel $2=0.7453 \times B$	$n=8$
Vessel $3=0.6533 \times B$	$n=2$
Vessel $4=0.7786 \times B$	$n=6$
Vessel $5=1.3205 \times B$	$n=10$
Vessel $6=1.3910 \times B$	$n=2$

A and $B-S t a n d a r d$ vessels
for scad and mackerel at Sofala Bank, July-December, 1984
Table 1.4 - Catch per unit of effort ($\mathrm{kg} / \mathrm{stand}$. fishing hour) of species caught in the trawl fishery

andj TVLOL		0 $\stackrel{\circ}{2}$ $\stackrel{\sim}{\sim}$	\cdots		$\stackrel{\circ}{-}$
VI	$\stackrel{10}{\sim}$	in		+	
	$\underset{\sim}{N}$	$\stackrel{\infty}{\infty}$	$\bar{\sigma}$	$\underset{\sim}{\top}$	$\stackrel{\sim}{\sim}$
STEsdauap day70	\bigcirc	$\stackrel{1}{m}$	玉	$\underset{\sim}{\sim}$	\cdots
stuenbsopun ${ }^{\text {S }}$		$\underset{\infty}{\square}$	$\underset{\sim}{\bar{N}}$	\bigcirc	\cdots
$\overline{\text { stsueteqeu }}$ - ${ }_{\text {d }}$	-				
$\overline{\text { arosetap }} \overline{\mathrm{N}}$	앙	\approx	$\stackrel{9}{3}$	in	\sim
$\overline{\text { Tsesuaq }} \cdot \bar{n}$	in	N	$\stackrel{\varrho}{\circ}$	$\stackrel{ \pm}{\sim}$	0
$\overline{\text { sn7e77! }} \cdot \bar{\Omega}$	\bar{m}	N	∞		$\stackrel{\sim}{\sim}$
	N-	$\stackrel{m}{\underset{\sim}{\circ}}$	$\stackrel{\stackrel{1}{m}}{\underset{m}{2}}$	F	$\stackrel{m}{\infty}$
oţgetad dayzo	a	\pm	m	n	
- ds EuəruKपds	\pm	N	0	$\stackrel{1}{m}$	$\bar{\sim}$
$\overline{\text { eotpuț }}$ ' \bar{V}	+		\bigcirc		N
- ds $\overline{\text { ettoutpues }}$	$\stackrel{\infty}{N}$				
$\overline{\text { eqnoe }} \cdot \bar{d}$					N
Snotiratew•亏	$\stackrel{\sim}{\sim}$	N	$\underset{\sim}{\sim}$	\bar{N}	F
$\overline{\text { Eqanseuex }} \cdot \bar{d}$	$\underset{\sim}{\infty}$	으N	${ }_{m}$	N	$\stackrel{\infty}{\circ}$
- $\overline{474 \text { douaunso }} \overline{\text { S }}$	\bigcirc	윽	$\stackrel{N}{\sim}$		
$\overline{\text { emosodoem }} \cdot \overline{0}$	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{-}$	-	\%	N
$\overline{\text { TTTTassn }}{ }^{\circ} \overline{0}$	$\stackrel{9}{\sim}$	$\stackrel{\infty}{\infty}$	$\stackrel{-}{\square}$	응	F
पวU0W	$\stackrel{-1}{3}$	${ }^{00}$	$\begin{aligned} & \stackrel{a}{0}_{\mathrm{C}}^{\circ} \end{aligned}$?	O

əndว TVLOL	$\underset{\sim}{m}$ ¢	－	¢	$\stackrel{\circ}{\circ}$	$\underset{\sim}{\infty}$	$\stackrel{m}{\square}$	coro	$\stackrel{\sim}{\infty}$	$\stackrel{-}{5}$	－	응
1	－		d	－	＋			n	m	－	＋
7VS ¢ ¢ Wa	응 응	$\stackrel{\sim}{\sim}$	$\stackrel{9}{\text { a }}$		合				$\stackrel{\circ}{m}$	∞	N
	$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$	N			$=$		N	¢	$\stackrel{\sim}{\sim}$		
$\overline{\text { sfuenbsopun }} \cdot \overline{\text { S }}$	¢ m m	～			N			$\underset{\infty}{ }$	$\stackrel{\sim}{0}$	$\stackrel{N}{N}$	
$\overline{\text { BTsuarezeu }} \overline{\text { d }}$	N	N	m	－	＋	＋	＋	＋	＋	－	N
$\overline{\text { arogerap }} \overline{\mathrm{N}}$	\cdots		\mp	은	\cdots	\bar{m}	N	$\stackrel{\infty}{\sim}$	$\stackrel{m}{\square}$	$+$	
$\overline{\text { ¢¢Esuaq }}$－ \bar{n}	m	M	$\stackrel{\sim}{\infty}$	\pm	$\stackrel{\sim}{\sim}$	®	\pm	\bigcirc	\sim	－	읏
$\overline{\operatorname{6n3} 8275} \cdot \overline{0}$	$\stackrel{\sim}{\sim}$	\cong			$\underset{\sim}{ \pm}$	끙	－5	은	N	N	$\stackrel{10}{\sim}$
OITVTad	N	$\stackrel{\sim}{\sim}$	－	$\underset{\sim}{\text { ¢ }}$	$\frac{\square}{m}$	$\bar{\sim}$	$\stackrel{\text { ® }}{\stackrel{\circ}{=}}$	$\stackrel{3}{3}$	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{\square}$	N
วthetad xay	$\cdots \quad-$	－	－	\bigcirc	$=$	응	$\stackrel{\sim}{\sim}$	\sim	ω	in	\bar{m}
－ds EuabsKपdS	$\cdots \pm$	$\overrightarrow{\mathrm{m}}$	$\stackrel{\sim}{\sim}$	\checkmark	m	m	¢	m	N	$\stackrel{\circ}{\circ}$	5
$\overline{\text { EOFPUF }} \cdot \overline{\mathrm{V}}$	«		＋	－	－	m	Γ	－	－	∞	－
－ds $\overline{\text { ETfautpurs }}$			Γ			च	m	N	\sim	$\stackrel{\sim}{\sim}$	＋
$\overline{\text { eqnoe }}$－ $\bar{\square}$	－－	－	＋	\sim	＋	－	은	7	m	\pm	＋
snofreqetem．		\cong	∞	N	$=$	N	$\stackrel{n}{\aleph}$	안	N	∞	$\stackrel{\infty}{\square}$
	$\stackrel{\infty}{m}$－	$\stackrel{\sim}{m}$	$\stackrel{\text { ¢ }}{\sim}$		N		\cdots	8	$\stackrel{\sim}{6}$	－	\％
	m－	$=$	$\stackrel{10}{m}$	\cong	＝	은	∞	or		\approx	\pm
еш0sosjew ${ }_{\text {a }}$	か	～	示	$\underset{\sim}{\boldsymbol{m}}$	－	$\stackrel{7}{6}$	$\stackrel{\infty}{\sim}$	F	ํ	\cdots	\cdots
$\overline{\text { Iftressnd }} \cdot \bar{d}$	－	음	$\stackrel{\text { N }}{\sim}$	N	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\text { n }}{\text { n }}$	$\stackrel{\sim}{\text { i }}$	$\stackrel{\text { ar }}{\substack{\infty \\ \sim}}$		$\stackrel{\sim}{\sim}$	\cdots
49u0w		崖	台	㐫	5	$\stackrel{3}{3}$	${ }_{3}^{60}$	这	岁	号	－

Table 1.6 - Catch per unit of effort ($\mathrm{kg} / \mathrm{stand}$. fishing hour) of species caught in the trawl

ənd TVLOL	ก	-	$\underset{\infty}{\text { N }}$	-
I	m	N	\sim	n
	N	へ	$\stackrel{\sim}{\sim}$	\cdots
โesxəməp גач70			\bigcirc	
$\overline{\text { sTwenbsopun }}$ - \bar{S}	\bigcirc	in	ก	\bigcirc
$\overline{\text { sfsuateque }} \cdot \bar{d}$	~	$\bar{\sim}$	N	
$\overline{\text { әовеtap. }}$. \bar{N}	$\stackrel{7}{\mathrm{~m}}$	$\stackrel{\sim}{\sim}$	$\bar{\square}$	$\stackrel{m}{\square}$
$\overline{\text { ¢̧esuaq }}$ - $\overline{\mathrm{n}}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{N}$	$\stackrel{\text { M }}{ }$	N
	\approx	$\stackrel{\sim}{i}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$
OIOVTad	$\underset{\sim}{\circ}$	No	N	$\stackrel{\sim}{m}$
- ds $\overline{\text { eupersKuds }}$	\cdots		$\stackrel{\sim}{N}$	m
हот̧put $\cdot \bar{\forall}$	\bigcirc		\mp	\bigcirc
-de $\overline{\text { Ettautpres }}$	+	\pm	m	∞
$\overline{\text { eqnoe }} \bar{\square}$			+	च
snoṭueqeteu $\cdot \overline{0}$	$\stackrel{\sim}{-}$	-	∞	\pm
$\overline{\text { equngeuey }} \cdot \bar{y}$	$\stackrel{n}{m}$		-	\bigcirc
- प7чdouamndo $\cdot \overline{\text { S }}$	\cong	\bar{F}	$\stackrel{\infty}{\sim}$	∞
$\overline{\text { emosoxoeul }} \bar{\square}$	∞	을	$\stackrel{1 n}{\sim}$	\cdots
$\overline{\text { frtiossnu }}$ - $\overline{0}$	Г		$\stackrel{\infty}{\sim}$	$\stackrel{\square}{N}$
47u0w	$\stackrel{5}{3}$	¢	䄰)

Table 1.7 - Catch per unit of effort ($\mathrm{kg} / \mathrm{stand}$. fishing hour) of species caught in the trawl fishery

and ${ }^{\text {a }}$ TVIOL	$\stackrel{-}{\circ}$	No	$\underset{\infty}{ \pm}$	$\stackrel{N}{m}$	$\stackrel{7}{6}$	$\stackrel{\infty}{\text { in }}$
VI	m					
TVS \& \% Wa	$\stackrel{\square}{\square}$	\bigcirc	$\stackrel{i n}{i n}$	亏	m	\cdots
stesuəwวр גəч70	$\stackrel{\odot}{\sim}$	$\stackrel{\infty}{\sim}$! n	\bigcirc	∞	N
$\overline{\text { stuenbsopun }} \cdot \overline{\text { S }}$	∞	\bigcirc	ㅇ	or	∞	\bar{m}
$\overline{\text { OREDEATTO. }} \overline{\text { d }}$	$\stackrel{\leftarrow}{6}$	$\stackrel{N}{m}$	\cdots	$\stackrel{N}{m}$	-	F
$\overline{\text { stsuateque }} \cdot \bar{d}$	\bigcirc	F	$\stackrel{m}{m}$	or	च	r
$\overline{\text { วeogetop }} \cdot \overline{\mathrm{N}}$	F-		N		-	\sim
Tsesuaq*			Γ	+	च	-
$\overline{\operatorname{sn7e77ta}} \cdot \bar{n}$	$\stackrel{\sim}{\sim}$			\pm	i	m
อ I ¢ \% 日 d	는	$\underset{\sim}{m}$	$\stackrel{\square}{\square}$	ㄷুㅇ	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\underset{\sim}{m}$
sotsetad dey70	$\stackrel{\sim}{\sim}$	\cdots	\ddagger	in		-
- ds eureukyds	$\stackrel{\infty}{\sim}$	응	0	$\stackrel{1}{6}$	N	$\stackrel{\sim}{m}$
$\overline{\text { EOTPUT }}$ • \bar{v}	$\stackrel{\square}{-}$	\cdots	त	∞	m	\cdots
- ds ETtautpues	N	$\underset{\sim}{m}$	\approx	$\stackrel{\infty}{\mp}$	$\stackrel{\infty}{\circ}$	98
eqnoe ${ }^{\circ}$	-			N		
snotueqetem ${ }^{\text {a }}$	N	앗	$\stackrel{\sim}{\sim}$	∞	\bullet	$\stackrel{1}{\square}$
$\overline{\text { equnseuey }} \cdot \bar{y}$	$\stackrel{i n}{\sim}$	0	\sim	\bigcirc	\sim	च
snoṭuode! " \bar{s}	F	a	O	N	$\underset{\sim}{7}$	\cdots
$\overline{\text { snanyoed. }} \cdot \overline{\text { d }}$	$\stackrel{10}{\circ}$	$\stackrel{m}{n}$	$\begin{aligned} & \text { on } \\ & \underset{\sim}{N} \end{aligned}$	$\bar{\infty}_{\mathrm{m}}$	$\stackrel{\text { Nก }}{\sim}$	$\stackrel{\infty}{n}$
	N	\sim	\cdots	or	$\stackrel{\square}{-}$	$\stackrel{1}{\square}$
$\overline{\text { Eu0s0doem }} \cdot \overline{\bar{d}}$	N	+			σ	m
$\overline{\operatorname{TrTT} \operatorname{cossn}^{\circ}} \overline{\mathrm{a}}$	$\stackrel{\infty}{\infty}$	$\stackrel{n}{n}$	$\stackrel{\infty}{N}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{1}{N}$
47u0w	$\stackrel{5}{5}$	${ }^{60}$	$\stackrel{\text { Q }}{\sim}$	د	B	 $\stackrel{\otimes}{\circ}$

Table 1.8 －Catch per unit of effort（ $\mathrm{kg} / \mathrm{stand}$ ．fishing hour）of species caught in the trawl fishery

and ${ }^{\text {a }}$ TVIOL	－	$\stackrel{\square}{\square}$	in	$\begin{aligned} & \text { o } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \text { in } \end{aligned}$	$\frac{0}{6}$	$\begin{aligned} & \infty \\ & \underset{\infty}{\infty} \end{aligned}$	－	$\underset{\sim}{\stackrel{1}{0}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\sim}{\circ}$	or $\stackrel{\circ}{\sim}$
I	\because	\sim	0	\bigcirc	$\stackrel{1}{\sim}$	เก	7	∞	∞	N	－	－
TVS\＆${ }^{\text {¢ W a }}$	in	$\stackrel{\ln }{\underset{\sim}{m}}$	\cdots	$\stackrel{\overbrace{}}{\circ}$	m	∞	$\stackrel{\circ}{\mathrm{m}}$	$\stackrel{-}{\sim}$	요	す	∞	N
Tesuวuวp «ə470		앙	m	\pm	$\stackrel{m}{m}$	m	응	⿺𠃊⿳⺈冂冖几	\cdots	앙	$\stackrel{\square}{\square}$	5
$\overline{\text { วeวventto }}$－ \bar{d}				∞	เn	m		\bigcirc	F	\bigcirc	\cdots	
$\overline{\text { Tsesuaq }} \overline{\mathrm{n}}$	－	10	\bigcirc	เก	∞		N	∞	or	\sim	N	－
$\overline{\operatorname{snze77TA}} \cdot \bar{\Omega}$	¢	\pm	\bigcirc	$\stackrel{n}{\sim}$	in	$\stackrel{\sim}{\sim}$	F	$\stackrel{-}{-}$	\ddagger	$\stackrel{-}{\sim}$	$\stackrel{\sim}{\sim}$	\sim
$\overline{\text { sfautetefeu }}$－${ }^{\text {d }}$	－	－	∞	\ldots	5	0	F	\bigcirc	\pm	$\stackrel{\sim}{\sim}$	च	－
$\overline{\text { spuenbsopun }} \cdot \overline{\text { S }}$	∞	\bigcirc	¢	$\underset{\sim}{\sim}$	5	\cdots	$\stackrel{\infty}{m}$	$\stackrel{\sim}{\circ}$	$\underset{\sim}{\operatorname{Ln}}$	\cdots	$\stackrel{\sim}{\sim}$	안
$\overline{\text { 2rogetep }} \cdot \overline{\mathrm{N}}$		\sim	N	\sim	m	－	∞	N	m	N	m	－
	$\stackrel{\text { Ln }}{\substack{\text { N } \\ \sim}}$	$\stackrel{m}{m}$	$\stackrel{\bigcirc}{\odot}$	$\begin{aligned} & \text { o } \\ & \text { in } \end{aligned}$	$\underset{\sim}{\circ}$	$\underset{\sim}{\square}$	$\begin{aligned} & \text { in } \\ & \stackrel{0}{0} \end{aligned}$	$\underset{m}{\underset{m}{n}}$	$\begin{aligned} & \stackrel{n}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\sim}$	$\frac{\circ}{6}$	$\stackrel{0}{\sim}$
oţetod day70	$\stackrel{-}{\sim}$	N	\sim	안	เn	$\bar{\sim}$	N	N	$1 \sim$	N	∞	\bigcirc
－dds $\overline{\text { euaruKपdS }}$	च	$\stackrel{N}{m}$	\bar{m}	$\underset{\sim}{\sim}$	\bar{N}	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	－	$\stackrel{\infty}{\sim}$	\bullet	$\stackrel{7}{\sim}$	앙	\pm
－dds etrautpdes	$\stackrel{n}{\sim}$	$\stackrel{\ln }{N}$	$\stackrel{\sim}{\sim}$	in	$\underset{6}{n}$	\％	N	\cdots	เก	은	\bar{m}	－
$\overline{\text { eqnoe }} \cdot \bar{d}$	n	m	m	N	■	\bigcirc	5	\bigcirc	\cdots	앙	$\stackrel{1}{ }$	\ddagger
$\overline{\text { equngeuey }} \cdot \bar{d}$	\bigcirc	∞	m	～ี	$\stackrel{\square}{7}$	N	示	\bigcirc	N	$\stackrel{m}{r}$	m	
$\overline{\text { snotuode！}} \cdot \overline{\mathrm{s}}$	$\stackrel{N}{N}$	\cdots	m	on	\mp		$\underset{\sim}{0}$	\cdots	$\stackrel{i n}{\sim}$	$\stackrel{\infty}{\circ}$	$\stackrel{n}{n}$	N
stanyoexp $\cdot \bar{d}$		$\stackrel{m}{\square}$	N	\bigcirc	\cdots	m	$\stackrel{-}{m}$	8	on	$\stackrel{\sim}{\sim}$	on	
$\overline{\text { snotaeqetem }} \cdot \overline{0}$		$\stackrel{\sim}{\sim}$	m	\bigcirc	∞	N	¢	J	$\stackrel{\sim}{\sim}$	$\stackrel{n}{\sim}$	$\stackrel{15}{\sim}$	\approx
－$\overline{474 \text { doueunso }} \cdot \overline{\mathrm{S}}$	응	\exists	m	$\stackrel{\sim}{\sim}$	\checkmark	1 ก	안	N	\sim	$\stackrel{\sim}{\sim}$	$\stackrel{\bigcirc}{-}$	L
$\overline{\text { euosounem }}$－${ }_{\text {d }}$	9	\cdots	\bigcirc	∞	\cong		！	เก	－	N	F	\sim
$\overline{\text { FTTTassns．}} \cdot \overline{\mathrm{a}}$	$\stackrel{\square}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{\sim}$	\bigcirc	$\underset{\infty}{7}$	$\stackrel{\bullet}{\approx}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\underset{\sim}{2}}$	o ∞ m	O O	$\stackrel{\circ}{\infty}$
47U0W	$\stackrel{\text { E }}{\sim}$	－	$\stackrel{\leftarrow}{\text { ¢ }}$	$\stackrel{\text { a }}{\substack{\text { c }}}$	$\underset{\sim}{\text { m }}$	5	3	2	－	－	？	O

Table 1.9 －D．russelli．Sofala Bank．Catch in numbers at length per standard fishing hour

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\sim}{7} \end{aligned}$	台		$\begin{gathered} \stackrel{o}{\mathbf{j}} \\ \underset{m}{2} \end{gathered}$	은	$\stackrel{\sim}{\circ}$
	${ }_{\text {m }} \times$		$\begin{aligned} & \text { n } \\ & \text { 合 } \end{aligned}$	$\frac{\circ}{\mathrm{m}}$	弪
	－	はのロ	$\begin{aligned} & \infty \\ & \infty \\ & \hline 8 \end{aligned}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{9}{\square}$
	${ }^{5}$	 	$\begin{aligned} & \text { N} \\ & \text { oे } \\ & \text { on } \end{aligned}$	－	$\stackrel{\square}{\square}$
$\begin{aligned} & \text { n } \\ & \underset{\sim}{\circ} \\ & \end{aligned}$	－	\cdots m	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \mathbf{o} \end{aligned}$	$\stackrel{\sim}{N}$	$\stackrel{\bigcirc}{\infty}$
	：		$\underset{\underset{\sim}{m}}{\stackrel{-}{m}}$	$\stackrel{\sim}{N}$	$\stackrel{\square}{\square}$
	－	 	$\stackrel{\sim}{\circ}$	$\underset{i}{\Gamma}$	$\stackrel{\sim}{m}$
	菏	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \bar{\sim} \\ & \stackrel{N}{N} \end{aligned}$	$\underset{\substack{m \\ \underset{\sim}{\infty} \\ \hline}}{ }$	－
	8		$\begin{aligned} & \infty \\ & \stackrel{\circ}{\infty} \end{aligned}$	$\stackrel{n}{\mathrm{~m}}$	－
	$\stackrel{7}{3}$		$\begin{aligned} & \frac{7}{\square} \\ & \hline \end{aligned}$	9	－
	5		$\begin{aligned} & 8 \\ & 8 \\ & \infty \\ & \hdashline \end{aligned}$	$\stackrel{\square}{\square}$	$\underset{\sim}{7}$
		 	$\underset{i n}{\stackrel{e}{n}}$	N	$\stackrel{\sim}{\sim}$
	受		$\begin{aligned} & \underset{\sim}{7} \\ & \cdots \end{aligned}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\text { a }}$
	\％		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \sim \end{aligned}$	$\stackrel{\circ}{-}$	－
	－	 	$\begin{aligned} & 0 \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\sim}{m}$	$\stackrel{m}{m}$
	宕		$\begin{aligned} & 0 \\ & 7 \\ & \hline 0 \end{aligned}$	㐫	$\xrightarrow{\sim}$
$\stackrel{\text { a }}{\sim}$	－		$\xrightarrow[\sim]{\sim}$	$\stackrel{\infty}{\text { in }}$	通
	E			5 5 5 80 80	－

Table $1.10-$ D. russelli. Sofala Bank. Estimation of Sishing mortality

cm	Commercial vessels (cV)				Nauka (N)		$\frac{\mathrm{NQ} . / \mathrm{nm}^{2}(\mathrm{CV})}{\mathrm{NQ} . / \mathrm{nm} 2(\mathrm{~N})}$
	Dec/84	Jan/85	Average	N8. $/ \mathrm{nm}^{2}$	$\begin{aligned} & \mathrm{Dec} / 84- \\ & \mathrm{Jan} / 85 \end{aligned}$	N8. /nm2	
7							
. 5					4	88.	
8					-	-	
. 5					-	-	
9					-	-	
. 5					1	22	
10					4	88	
. 5					12	265	
11					22	485	
. 5					20	441	
12					20	441	
.5					13	287	
13					10	220	
. 5		47	24	654	34	750	0.87
14		144	72	1961	55	1213	1.62
. 5	238	740	489	13318	248	5468	2.44
15	2375	1053	1714	46681	330	72767	6.42
. 5	3208	1545	2377	64738 , 167033	450	$9921\} 19027$	6.53
16	2849	1234	2042	65614	208	4586	12.13
. 5	1307	961	1134	30885	205	4520	6.83
17	1430	290	860	23422	157	3461	6.77
. 5	718	291	505	13754	130	2866	4.80
18	238	59	149	4058	91	2006	2.02
. 5		46	23	626	92	2028	0.31
19		-	-	-	35	772	-
. 5		6	3	82	20	441	0.19
20					4	88	
. 5					2	44	
21					-	-	
. 5					-	+	

Total fishing hours $=6168$
Total area $=5675 \mathrm{~nm}^{2}$

Table 1.11 - D. russelli. Sofala Bank. Virtual population analysis.

$$
\begin{aligned}
& L \infty=27.9 \mathrm{~cm}, K=0.56 \text { year }^{-1} M=1.2 \text { year }^{-1} \\
& F_{15}=16.5=0.35 \text { year }
\end{aligned}
$$

Table 1.12 - D. russelli. Sofala Bank. Virtual population analysis. $L \infty=27.9 \mathrm{~cm}, K=.56$ year $^{-1}, M=2.30$ year $^{-1}$, $F_{15}-16.5=0.35$ year $^{-1}$.

Table 1.13 - D. macrossoma. Sofala Bank. Catch in numbers at length per standard fishing hour

Table. 1.14 - D. macrosoma. Sofala Bank. Estimation of fisting mortality

cm	Commercial vessels (CV)				Nauka (N)		$\frac{\text { No. } / \mathrm{nm}^{2} \text { (CV) }}{\mathrm{NQ} . \mathrm{nm}^{2}(\mathrm{~N})}$
	Dec/84	Jan/85	Average	NQ. $/ \mathrm{nm}^{2}$	$\begin{aligned} & \mathrm{Dec} / 84- \\ & \mathrm{Jan} / 85 \end{aligned}$	NQ. $/ \mathrm{nm}^{2}$	
12							
. 5					+	+	
13					2	44	
. 5		1	1	27	4	88	0.31
14		2	1	27	7	154	0.18
. 5		2	1	27	21	463	0.06
15		5	3	82	15	331	0.25
. 5		16	8	216	12	265	0.85
16	115	36	76	2070	11	243	8.52
. 5	288	126	207	5638	24	529	10.66
17	230	173	202	5502	26	573	9.60
. 5	258	468	363	9886324403	36	$794\} 2006$	12.45
18	258	404	331	9015	29	639	14.11
. 5	27	322	175	4766	26	573	8.32
19	27		58	1580	9	198	7.98
. 5		33	17	463	5	110	4.21
20		4	2	54	1	22	2.46
. 5		2	1	27	+	1	27.00

```
Total fishing hours = 6168
Total area = 5675 nm
```

Table 1.15 - D. macresoma. Sofala Bank. Virtual population analysis.
$L \infty=27.4 \mathrm{~cm} ., k=0.43$ year $^{-1}, M=1.0$ year $^{-1}$,
$F_{17-18.5}=0.49^{-1}$

Table 1.16 －R．kanagurta．Sorala Bank．Catch in numbers at lengtm per standard fishing hour

$\stackrel{\square}{\circ}$	高	N $\operatorname{nonincio~m~}$	안	－	m
	$\stackrel{\text { cis }}{\text { cis }}$		砍	$\stackrel{\square}{\infty}$	志
	¢		$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{y}{=} \end{aligned}$	\cong	
	$\stackrel{\text { cid }}{\sim}$		$\begin{aligned} & \infty \\ & \infty \\ & \\ & \hline \end{aligned}$	$\stackrel{n}{m}$	$\stackrel{\square}{\square}$
$\begin{aligned} & \text { n } \\ & \underset{\sim}{\infty} \end{aligned}$	－		$\stackrel{\infty}{\stackrel{\infty}{=}}$	$\stackrel{\sim}{\circ}$	$\underset{\infty}{\square}$
	$\stackrel{3}{\circ}$		$\underset{\approx}{\cong}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\circ}$
	－		∞	$\stackrel{\square}{\square}$	\％
	¢		$\stackrel{N}{\underset{\sim}{0}}$	8	$\underset{\sim}{\aleph}$
	$\stackrel{3}{4}$		$\underset{\infty}{\underset{\infty}{\underset{\sim}{2}}}$	$\stackrel{m}{\sim}$	－
	－		$\stackrel{\circ}{\circ}$	En	－
	䂞		능	ก	3
	$\stackrel{\text { m }}{\substack{\text { m }}}$		$\begin{gathered} m \\ i n \end{gathered}$	$\stackrel{\square}{7}$	$\stackrel{\sim}{\sim}$
	$\stackrel{\text { a }}{\substack{\text { a } \\ 4 \\ \hline}}$		$\stackrel{\rightharpoonup}{0}$	$\stackrel{\sim}{\square}$	$\underset{\sim}{\text { a }}$
	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$		$\begin{aligned} & m \\ & \infty \\ & \end{aligned}$	$\stackrel{\square}{m}$	$\stackrel{\square}{\mathrm{m}}$
	$c004$		$\stackrel{9}{5}$	8	$\stackrel{m}{m}$
	$\stackrel{¢}{\square}$		寿	\％	O
－	$\stackrel{0}{\circ}$	NTN M M	$\stackrel{+}{\square}$	\％	in
	S				告

Table 1.17 - R. kanagurta. Sofala Bank. Estimation of fishing mortality

	z	
$\begin{aligned} & \text { z } \\ & \text { 坒 } \\ & \text { zun } \end{aligned}$	N	
$\begin{aligned} & \hat{U} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & H \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	等	
	0 0 0 0 0 0 0 8	- min
	$\underset{\sim}{\text { ¢ }}$	- N \sim N M N
		N ${ }^{\text {N }}$ N
	E	

Total fishing hours $=6168$
Total area $=5675 \mathrm{~mm}^{2}$

Table $1.18=\underline{\text { R }}$. kanagurta. Sofala Bank. Virtual population analysis.
$L \infty=27.8 \mathrm{~cm}, K=0.75$ year $^{-1}, M=1.0$ year $^{-1}$,

Table $1.19=$ R. kanagurta. Sofala Bank. Virtual population analysis.

$$
L \infty=27.8 \mathrm{~cm}, K=0.75 \text { year }^{-1}, M=1.4 \text { year }^{-1},
$$

Table 1.20 －D．russelli．Boa Paz．Catch in numbers at length per standard fishing hour

				－	
$\underset{\underset{\sim}{\infty}}{\substack{\text { ® } \\ \hline}}$	$\stackrel{\text { ® }}{\stackrel{\circ}{\square}}$			N	$\stackrel{\square}{\square}$
	$\stackrel{3}{2}$		$\begin{aligned} & \text { ت̈ } \\ & \text { © } \end{aligned}$	$\bar{\pi}$	$\underset{\sim}{\sim}$
	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{ }$	 	$\begin{aligned} & \stackrel{7}{6} \\ & 6 \end{aligned}$	$\frac{m}{5}$	－
	$\stackrel{8}{0}$	 	$\stackrel{\circ}{i}$	$\underset{\sim}{\underset{\sim}{J}}$	硈
	$\stackrel{80}{3}$	তのল্Nom No	$\begin{aligned} & \text { N } \\ & \stackrel{n}{N} \end{aligned}$	$\stackrel{\Gamma}{N}$	$\stackrel{\sim}{N}$
	$\stackrel{7}{3}$		$\begin{aligned} & \bar{o} \\ & \bar{m} \end{aligned}$	$\stackrel{\text { nin }}{\text {－}}$	$\stackrel{\square}{\square}$
	䂞	か®	$\begin{aligned} & \text { n } \\ & \end{aligned}$	$\stackrel{\square}{\square}$	\square
	容		$\begin{aligned} & \text { 合 } \\ & \hline \end{aligned}$	$\overline{\bar{\sim}}$	욱
	家		$\begin{aligned} & \underset{\sim}{\sim} \\ & =\sim \end{aligned}$	\bar{m}	$\stackrel{\square}{\sim}$
	$\underset{\text { ¢ }}{\text { ¢ }}$		$\begin{array}{\|l} \text { İ } \\ \text { in } \end{array}$	$\stackrel{5}{m}$	－
	令		$\begin{aligned} & \dot{N} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \stackrel{\circ}{\circ} \end{aligned}$	－
	$\stackrel{\text { E }}{3}$	Ni	$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{7}{5} \end{aligned}$	$\bar{\infty}$	$\underset{\infty}{\text { ¢ }}$
哭	－		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \sim \end{aligned}$	¢	$\stackrel{\sim}{\sim}$
8				¢	－

Table 1.21 - D. russelli. Boa Paz. Worksheet for estimating Z from a catch curve. Length composition from commercial vessels, March-April 1985

$\begin{aligned} & \text { Length } \\ & (\mathrm{cm}) \end{aligned}$	Sum of Catch per hour C	$\begin{aligned} & \text { Age (L,) } \\ & \text { t } \\ & \text { (years) } \end{aligned}$	Δt	$t \frac{\left(L+L^{2}\right.}{}$	$\ln \left(\frac{c}{\Delta t}\right)$	$\left\lvert\, \begin{aligned} & Z \\ & \left(\text { years }^{1}\right) \end{aligned}\right.$
13	11	1.300	. 061	1.331	5.195	
13.5	11	1.361	. 063	1.393	5.163	
14	35	1.424	. 066	1.457	6.273	
14.5	113	1.490	. 067	1.524	7.430	
15	321	1.557	. 071	1.593	8.417	
15.5	614	1.628	. 074	1.665	9.024	
16	1021	1.702	. 076	1.740	9.506	
16.5	1629	1.778	. 080	1.818	9.929	
17	1519	1.858	. 084	1.900	9.803	
17.5	1517	1.942	. 088	1.986	9.755	
18	775	2.030	. 093	2.077	9.028	
18.5	729	2.123	. 097	2.172	8.925	
19	534	2.220	. 104	2.272	8.544	
19.5	318	2.324	. 109	2.379	7.978	
20	138	2.433	. 117	2.492	7.073	2.8
20.5	173	2.550	. 125	2.613	7.233	
21	110	2.675	.134	2.742	6.710	
21.5	138	2.809	. 145	2.882	6.858	
22	137	2.954	. 159	3.034	6.759	2.3
22.5	49	3.113	. 173	3.200	5.646	
23	66	3.286	. 192	3.382	5.840	
23.5	20	3.478	. 216	3.586	4.528	
24	19	3.694	. 245	3.817	4.351	1
24.5	8	3.939	. 284	4.081	3.338	
25	-	4.223	. 338	4.392	-	
25.5	11	4.561	. 417	4.770	3.273	
26		4.978				

Table 1.22 - D. russelli. Boa Paz. Estimation of fishing mortality

cm	Com. vessels (CV)		Nauka (N)		$\frac{\mathrm{No} \cdot / \mathrm{nm}^{2}(\mathrm{CV})}{\mathrm{No}_{0} / \mathrm{nm}^{2}(\mathrm{~N})}$
	Jun/84	No. $/ \mathrm{nm}^{2}$	May-June/84	No. $/ \mathrm{nm}^{2}$	
13	12	327			
. 5	12	327			
14	52	1416			
. 5	267	7272			
15	365	9941	3	66	150.6
. 5	748	20372	6	132	154.3
16	267	7272	28	617	11.8
. 5	690	18792	56	1235	16.2
17	1032	$28107\} 63649$	91	2006 ¢ 5468	14.0
. 5	615	16750	101	2227	7.5
18	487	13264	65	1433	9.3
. 5	487	13264	32	706	18.8
19	377	10268	34	750	13.7
. 5	371	10104	16	353	28.6
20	273	7435	18	397	18.7
. 5	145	3949	8	176	22.4
21	209	5692	12	265	21.5
. 5	162	4412	7	154	28.6
22	145	3949	11	243	16.3
. 5	29	790	7	154	5.1
23	116	3159	5	110	28.7
. 5	41	1117	-	-	-
24	-	-	-	-	-
. 5	-	-	1	22	-
25	-	-			
. 5	12	327			

Total fishing hours $=2164$
Total area $=2225$

Table 1.23 - D. russelli. Boa Paz. Virtual population analysis $L \infty=27.9 \mathrm{~cm}, K=0.56$ year $^{-1}, M=1.2$ year $^{-1}$, $F_{16.5-18 \mathrm{~cm}}=0.41$ year $^{-1}$

cm	$\underset{\text { years }}{\triangle t}$	Catch in	bers	F	$\begin{array}{r} N\left(L_{1}\right) \\ \left(\times 10^{-6}\right) \\ \hline \end{array}$	$\overline{\mathrm{N}}$ yearly
13		40			219	
14	0.1964	54 137	535	0.0140		38
		344	535	0.0140	172	38
15		9867				
	0.2207	1649 \}	5813	0.1770		33
16		3178			127	
		34967				
17	0.2519	$3825\}$	10807	0.41		26
		3486			85	
18		2770				
	0.2934	1771 \}	6064	0.3012		20
19		1523			55	
		856				
20	0.3513	662 \}	1785	0.1162		15
		267			34	
21		2987				
	0.4377	$178\}$	664	0.0573		12
22		188			20	
		$57\}$				
23	0.5811	$87\}$	172	0.0208		8
		28			10	
24		$22)$				
	0.8670	$5\}$	27	0.0051		5
25		-			3	
26	1.7515	4		0.0028		2
	-	${ }^{3}$		0.0028	+	2
27		3				
Average biomass ($10.5-27 \mathrm{~cm}$) ~ 12000 tonnes						

Table 1.24 - D. russelli. Boa Paz. Virtual population analysis. $L \infty=27.9 \mathrm{~cm}, K=0.56$ year $^{-1}, M=2.3$ year $^{-1}$, $\mathrm{F}_{16.5-18 \mathrm{~cm}}=0.41$ year $^{-1}$ 。

cm	years	Catch in numbers$\left(\times 10^{-3}\right)$		F	$\begin{aligned} & N\left(L_{1}\right) \\ & \left(\times 10^{-6}\right) \end{aligned}$	$\overline{\mathrm{N}}$ yearly	
13	$\left\{\begin{array}{l}0.1964 \\ 0.2207 \\ 0.0\end{array}\right\} \begin{aligned} & 0.2519 \\ & 0.2934 \\ & 0.3513\end{aligned}$				389		
14				0.0087		61	
				247			
15					42		
				0.1377		144	
17							
				0.41	26		
18							
				0.4108		15	
19					33		
20				0.2330		8	
					14		
21							
				0.1839		4	
22					5		
23				0.1209	1	1	
				0.1209	1	1	
24							
				0.0656	+	+	
25							
26							
26				0.1196	+	+	
27							
	biomas	$(10.5-27$	m) ~		600 ton		

A. Y / R AND B / R 。

The programme estimates Y / R and B / R by summing up the Y / R and B / R of 9 consecutive length groups, ie. by solving:

and
$B / R=\sum_{i=1}^{9} W_{i} * N_{i} *\left(1-\exp \left(-Z_{i} L_{i}\right)\right) / Z_{i}$
where

$$
\begin{aligned}
W_{i} & =a *\left(L_{i}+/ L / 2\right)^{b} \\
Z_{i} & =M+F_{i} \\
F_{i} & =E_{i}^{*} \operatorname{FMAX} \\
L_{i} & =(1 / R) * \ln \left(\left(L-L_{i}\right) /\left(L-\left(L_{i}+/ L\right)\right)\right) \\
N_{i} & =N_{i-1} * \exp \left(-Z / t_{i}\right)
\end{aligned}
$$

The Eollowing input must be available and in placed in the correct registers:

Parameter	Description	Register
M	Natural mortality	0
L_{1}	Length at recruitment	1
\underline{L}	Width of length intervals	2
L	par. in vBert. growth eq	3
K	- \quad - \quad - \quad - ${ }^{\text {- }}$	4

a	Factor in $\mathrm{L}-\mathrm{W}$ relationship	5	
b	Exponent in L-W relationship		
$E_{1} \text { to } E_{9}$	Relative exploitation pattern	S_{1}	S
FMAX	Fishing mort. of Max exploited length group		

In addition the number of recruits must be entered into the program starting at line 3 .
If X / R and B / R figures are wanted a 1.0 should be inserted. If total yield and biomas figures are wanted the actual number of recruits must be inserted here.

The program is run by presing $d->A$.
The output consists of $\operatorname{EMAX}, \mathrm{Y} / \mathrm{R}$ and B / R.
B. VPA.

The VPA programme consists of 3 subprogrammes: One for initializing the calculations (LBLB B), another for going backwards in size (and time) (LBLB D) and one for going Eorwards in size (and time) (LBLB C). The two latter programmes are iterative, ie. the user has to run them several times until the resulting fishing mortality has stabilized.

Programme B is used when the Eishing mortality and catch of a length interval are known. It determines the numbers passing through the lower and upper limit of the interval by:
$N\left(L_{1}\right)=\left(C_{1} / F_{1}\right) * Z_{1} /\left(1-\exp \left(-Z_{1} / t_{1}\right)\right)$
and
$\mathbb{N}\left(L_{2}\right)=\mathbb{N}\left(L_{1}\right) * \exp \left(-Z_{1} / L t_{1}\right)$
where C is catch, F fishing mortility, z total mortality and /t the time required to grow through the length interval.

Programme C uses $N(L$, to go forwards in time by:
$F\left(L_{2}\right)=C_{2}^{*} Z_{2} /\left(N\left(L_{2}\right) *\left(1-\exp \left(Z_{2} / t_{2}\right)\right)\right.$
and
$\mathbb{N}\left(L_{3}\right)=\mathbb{N}\left(L_{2}\right) * \exp \left(-Z_{2} / L_{2}\right)$
it displays $L_{2}, F\left(L_{2}\right), N\left(L_{2}\right), N\left(L_{3}\right), N$ year \quad (the average number present in the time period (eg. year) from which the catch data are taken) and C/F.

Programme D uses $N(L$, , to go backwards in time by:
$F\left(L_{0}\right)=C_{0}^{*} Z_{0} /\left(N\left(L_{1}\right) *\left(\exp \left(Z_{0} / t_{0}\right)-1\right)\right)$
and
$N\left(L_{0}\right)=N\left(L_{1}\right) * \exp \left(Z_{0} \leq t_{0}\right)$


```
In all 3 programmes z and /t are calculated by:
Z = M + E i
```


The input for the progeammes is the following:

Parameter	Description	Register
\mathbb{N}	Number at the lower (prog. C) or upper (prog. D) limit of length interval	0
E	Initial Fishing mortality	1
M	Natural mortality	2
C	Catch in numbess at length	3
L	vBer. growth param.	5
L	Lower (prog. C) or upper (prog.D) limit of lengeh interval.	6
\underline{L}	Width of length interval	7
K	vBer. growth param.	8

In additon to the above output $\angle t$ is kept in reg. 9..

