STATE OF THE STOCKS OF SHALLOW WATER PRAWNS AT SOFALA BANK
by

Øyvind Ulltang
Institute of Marine Research,
Bergen, Norway
and

Lilia Brinca and Lizette Sousa Instituto de Investigacao Pesquiera, Maputo, Mozambique

1. INTRODUCTION

In 1977 a first preliminary assessment of the shallow water prawn stocks at Sofala Bank was made (Ulltang \& al., 1980).

Using additional data from 1977-1982, the first assessment was updated in 1980 (Ulltang, 1980) and in 1983 (Ulltang \& al., 1983).

The present report includes the detailed description of data and explanations of the methods used in the last assessment. Data from 1983, which were not available during the last assessment, are also included in the present report.

2. THE FISHERY

Reported or estimated total catches for the years 1974-1983 are given in Table 1 and Figure 1 A.

Table 1. Total catches (tonnes) of shallow water shrimp at Sofala Bank 1974-1983. Values in brackets indicate estimated catches.

Year	Mozambique	Foreign fleets	Total
1974	$(6000-7000)$	$(4000-5000)$	$(10000-12000)$
1975	$(6000-7000)$	$(4000-5000)$	$(10000-12000)$
1976	$(6000-7000)$	(5000)	$(11000-12000)$
1977	(5000)	4541	(9500)
1978	4732	4868	9600
1979	4182	4596	8778
1980	6925	1082	8007
1981	8581	796	9377
1982	6117	1791	7908
1983	6134	1967	8101

During the period 1980-1983 two important changes occurred in the fleets of the joint-venture enterprises. Firstly, the Efripel fleet almost doubled, and this increased the effective total fishing effort by about 33% compared to the 1979 level. Secondly, in 1980 a joint-venture company with spain was founded, and most of the Spanish fleet working under licence was incorporated in the national fleet. As licenced vessels

Fig. 1. A) Total catches for the period 1974-1983;
B) Annual mean catch per hour for Efripel fleet (type Vega); C) Total fishing effort in Efripel trawling hours units during 1977-1983.
they had earlier not been allowed to work inside the 12 miles limit, while as a joint venture a high number of vessels were allowed to work very near the shore.
3. CATCH AND EFFORT DATA

As for the years 1974-1979, logbook data giving detailed information on catch and effort were available from the trawlers of the enterprise Efripel for the period 1980-1983.

Table 1.1 (Annex 1) includes data on total catch of the Efripel trawlers, the catch of the various species and hours of trawling for the period 1980-1983.

Number of trawl hauls taken in the various squares in 1980, 19811982 and 1983 are shown on Figures 1.1. to 1.4 (Annex 1). As in the previous years, the main fishing areas are Pebane and the area between Quelimane and the delta of the Zambezi River. However, comparing with the years 1974-1979, during the period 1980-1983 a more important part of the fishing effort was carried out all over the coast, between $16^{\circ} 40^{\prime} \mathrm{S}$ and $19^{\circ} 30^{\prime} \mathrm{S}$ 。 Most probably this is related with the decrease in the catch rates observed during the last period of years.

Annual mean catch per hour for the whole period 1974-1983 for the Efripel trawlers (type Vega) is shown in Fig. $1 B$ and in the following table.

Year	74	75	76	77	78	79	80	81	82	83
Kg / h	63	52	90	93	86	64	58	64	51	39

Catch per hour of trawling was at a high level during the years 1976-1978 but has since declined and reached its lowest value in 1983. The fluctuation in total catch per hour is mainly caused by fluctuations in the catches of the species P. indicus (Fig. 2). As pointed out by Ulltang (1980) catch rates and total catches seem to be very dependent on variation in recruitment of this species.

Fig. 2. Comparison between mean annual catch per hour of trawling of Total shrimp and P. indicus.

By dividing total catches by catch per hour of the Efripel trawlers, total fishing effort (in Efripel trawling hours units) can be estimated. The result is given below and in Fig. 1 C. The years 1974-1976 have not been included because of the large uncertainties in figures for total catches for these years.

Year	1977	1978	1979	1980	1981	1982	1983
Fishing effort	102	112	137	138	147	155	205
$(1000$ hours trawling $)$							

4. BIOMASS ESTIMATES

Mean annual biomasses for 1980-1983 were estimated by the "Swept area" method using catch per hour of the Efripel trawlers (type Vega).

Table 1.2 (Annex 1) includes data of total catch, catch of the various species and hours of trawling splitted by area and depth strata. The strata boundaries are shown in Fig. 1.5 (Annex 1).

Biomass was estimated for each strata (Annex 1, Table 1.3).

It is possible that biomass may be over-estimated by using the "Swept area" method, since it is known that the fishing fleet often is concentrated in rather small areasp and the catch rates in these areas may not be representative for the large stratum area。 Stratified random trawl surveys by R/V "Dr。 Fridtjof Nansen" conducted in October-November 1980 and September 1982 resulted in 44% and 14% lower estimates than those obtained by using Efripel catch rates from the same strata during the same periods. However, the trawl used by the research vessel may have a lower efficiency in catching shrimp than the commercial shrimp trawl, and in the "swept area" calculations 100% catching efficiency was assumed.

The estimates derived from the Efripel data were therefore used as the best available estimates of mean annual biomass, correcting for the part of the biomass outside the strata covered by the Efripel trawlers. The correction was made using data from trawl surveys carried out in Sofala Bank in 1980, 1982 and 1983 (Table 1.4, Annex 1).

The following table shows the results obtained.

Table 2. Mean annual biomass (tonnes) based on Efripel catch per hour corrected for biomass outside the fishing area.

Year	Mean annual biomass of the fishing areas B, C and D	Time of the survey	Correcting factor	Corrected biomass
1980	3449	Oct-Nov	0.66	5226
1981	3637	-	$0.67 *$	5428
1982	2803	Sep	0.68	4122
1983	2312	May - Jun	0.67	3451

[^0]It should, however, be stressed that there are two factors which could lead to substancial errors in the estimates. A lower efficiency in catching shrimp present in the area covered by the trawl than the 100% assumed, would result in underestimating the abundance. Non-random fishing searching for the best concentrations would have the opposite effect. Both factors are probably present.
5. ESTIMATION OF MORTALITY

Total mortality (Z), fishing mortality (F) and natural mor= tality (M) for P. indicus were estimated using two different approaches:

1) The use of catch per effort data (Ulltang, 1980)
2) Cohort analysis (Jones and Zalinge, 1981)
5.1. The use of C.p.u.e. data

Total mortality (Z) was estimated from the variation with time of number caught per hour of trawling.

The method is based on the assumption that changes in number caught per hour reflect changes in abundance and not changes in availability.

For a period of no recruitment, the mean monthly mortality during the period may be estimated as the slope of the regression line of \ln (catch/hour) against time.

Fig. 3 indicates that almost no recruitment occurred during the following periods: 1980 - June to September, 1981 - June to October, 1982 - June to August and 1983 - June to August.

The regression lines of \ln (catch/hour) against month during these periods (Fig. 4), starting with the last month of recruitment, gave estimates of Z as shown in Table 3 .

Table 3. Mean monthly total mortality of P. indicus.

Year	Z (monthly)
1980	0.37
1981	0.29
1982	0.37
1983	0.37

Fig. 3. P. indicus. Number caught of the various length groups per hour trawling plotted against month for the period 1980-1983.

Table 4 gives the mean monthly fishing mortality for the years 1980-1983, estimated by dividing annual catch by mean annual biomass.

Table 4. Mean monthly fishing mortalities computed from total annual catches and mean annual biomasses.

Year	Total annual catch (tonnes)	Mean annual biomass (tonnes)	$F_{\text {monthly }}$
1980	8	007	5226
1981	9	377	5428
1982	7908	4	122
1983	8	3	451

Natural mortality (M) was then calculated by subtracting fishing mortality from total mortality.

Fig. 4. P. indicus. Regression of the logarithm of total number caught per hour of trawling plotted against month.

The results obtained by the c.p.u.e. method for the years 1977-1983 are summarized below. The values for 1977-1979 are taken from Ulltang (1980)。

Table 5. Estimates of monthly Z, F and M for P. indicus during 1980-1983.

Year	$Z \underline{\text { (P. indicus) }}$	F	$M(\underline{\text { P. indicus) }}$
1977	0.27 (Apr-Aug)	0.09	0.18
1978	0.39 (Jun-Sep)	0.10	0.29
1979	0.51 (Apr-Jul)	0.12	0.39
1980	0.37 (May-Sep)	0.13	0.24
1981	0.29 (May-0ct)	0.14	0.15
1982	0.37 (May-Aug)	0.16	0.21
1983	0.37 (May-Aug)	0.20	0.17

The results suggest that M is lower than assumed in earlier reports. The mean M as estimated above for the years 1977-1983 is 0.23 , while a value of 0.3 was assumed earlier. As a result of the increasing fishing effort, monthly F has increased from a level of about 0.1 in 1977-78 to about 0.2 in 1983.

A check on the results above was made by carrying out a cohort analysis.

5.2. Length cohort analysis

The method of Jones and van Zalinge (1981) was applied to an annual frequency distribution of length, assuming that recruitment occurs annually, each year-class making its first appearance in the fishery about September-October and becoming reduced to negligible numbers one year after. Therefore length data from September ' 81 to August ' 82 is believed to relate to the catches of a cohort through the course of its entire life。

The method was applied using growth parameters from Madagascar, and an input value of $F / Z_{1}=0.5$ based on the results in the previous section. Tables 1.6 and 1.7 (Annex 1) give the worksheets for applying the method.

Some few individuals have been caught with length greater than the value used for L_{∞}. These numbers were not used in the calculations. The resulting errors in the estimates will be negligible and will only affect the largest size groups.

Estimates of F and Z were obtained for females of carapace length ranging from 29-39 mm. For the smallest individuals the mortality estimates tend to be quite small since these are incompletely recruited to the fishing gear. Estimates obtained for sizes bigger than 39 mm were not considered because the estimates obtained for larger individuals are more dependent on the input value of F / Z and therefore less reliable than the ones obtained for smaller individuals.

Resulting mean monthly F during the period september 1981August 1982 was estimated as 0.16 , assuming $M=0.18$, or 0.13 , assuming $M=0.23$. $M=0.18$ is the mean for $1981-82$ as estimated in Table 5.

Assuming $M=0.18$ the estimated F-value by the cohort analysis is very similar to those resulting from the c.p.u.e. method for 1981-1982.

Yield per recruit curves for P. indicus were estimated for the two alternative values of $M(0.18$ and 0.23$)$. The curves are shown in Fig. 5.

6. CONCLUSIONS

Ulltang (1980) recommended that fishing effort should not increase to more than 33% over the 1979 level, this corresponding to an increase in fishing mortality to 0.16. A further increase should not be allowed before data on effects on the stocks of fishing at that level become available.

The present analysis indicates that fishing mortality reached the level of 0.16 in 1982 and increased further to 0.2 in 1983. With the new estimates of natural mortality, this level of F

Fig. 5. P. indicus. Yield per recruit (Y / R) plotted against fishing mortality (F) for natural mortality $(\mathrm{M})=0.18$ and 0.23 .
corresponds to a level of fishing effort near the optimum level from yield per recruit considerations. $F_{0.1}$ has now been estimated to about $0.2(M=0.18)$ or $0.3(M=0.23)$.

The main factor causing the annual fluctuations in catch per unit of effort seems to be fluctuations in recruitment of $P_{\text {. }}$ indicus. It has not yet been possible to demonstrate any relationship between spawning stock and resulting recruitment for this species. A longer time series would be needed for demonstrating a relationship if it existed. But even assuming that there are no strong relationship between spawning stock and resulting recruitment, the gains in yield which could be expected from a further increase in fishing mortality would be very moderate, especially when compared to the corresponding decrease in catch per hour trawling. For example, assuming $\mathrm{M}=0.18$, an increase in fishing mortality from 0.16 to 0.20 increases yield by about 7%, while mean annual biomass and thereby catch per hour trawling decreases by 14\%. If recruitment is decreasing with decreasing spawning stock size, the gain in yield is lower than 7% or even negative, while biomass and catch per hour trawling decrease by more than 14%.

Taking into account both the uncertainties which exist in the yield per recruit studies (i.e. uncertainties in the value of growth parameters and natural mortality) and the low recruitment of P. indicus the last five years, it is adviced not to allow a further increase in fishing mortality. Instead, one should try to keep F at a level not higher than that estimated for 1982.

There are in principle two different ways of controlling fishing mortality. It can either be controlled by directly limiting fishing effort (for example by limiting the number of vessels participating in the fishery) or by setting catch quotas.

Concerning the first approach, one problem is how to control the effective fishing effort by for example taking fully into account the effectiveness of the vessels when a new one is substituting an old one.

The main difficulty with the second approach is that the catch corresponding to a certain F-level is dependent on recruitment.

This could to some extent be overcome if catch quotas for a year were not finally decided before some indications of recruitment were available。

In Fig. 6 is shown the relationship between catch per hour during January-March and the whole year for the EFRIPEL trawlers, indicating that the abundance during the first three months is a good indicator of the abundance for the year as a whole.

Fig. 6. EFRIPEL trawlers. Mean catch per hour (kg) during the whole year plotted against mean catch per hour during January-March.

An index of recruitment was calculated for each year during the period 1977-1983 by dividing total yield by the yield per recruit for P. indicus corresponding to the fishing mortality estimated for the year in question. These indices were plotted against mean catch per hour trawling for the EFRIPEL trawlers during January-March each year. The results are shown in Fig. 7 ($M=0.18$) and Fig。 8 ($M=0.23$). There is a strong correlation, again indicating that the abundance of shrimp during the first

Fig. 7. Index of recruitment (R) plotted against mean catch per hour (c / h) during January-March. $M=0.18$.
three month of the year is a good indicator of the total recruitment that year.

The estimated regression lines in Figs. 7-8 can be used to estimate total annual catch corresponding to a certain F-level when mean catch per hour during January-March is known. For each mean catch per hour a corresponding index of recruitment can be calculated. By multiplying this index with yield per recruit of P. indicus for the F level decided, the total catch can be predicted. In Table 6 are shown as an example resulting catches for some selected F-values for five different levels of mean catch per hour during January-March (covering the range which has been observed 1977-1983).

Fig. 8. Index of recruitment (R) plotted against mean catch per hour (c / h) during January-March. $M=0.23$.

Because of the large fluctuations in recruitment, it is advisable not to set the final catch quota before some indications of recruitment are available, and the procedure suggested above for calculating total catches would make it possible to take the final decision in April after for example having set a preliminary quota (at a rather low level) earlier.

It is not possible to estimate natural mortality with any high precision, but the two values used should indicate the likely range. It is advisable for the moment to base management considerations on $M=0.18$. This value is appreciably lower than

Table 6. Predicted annual catches (tonnes) corresponding to various values of mean catch per hour (kg) of the EFRIPEL trawlers (type VEGA) during January-March and selected values of monthly fishing mortality (F).

Mean catch per hour	F			$\mathrm{M}=0.18$
	0.12	0.14	0.16	0.20
40	6275	6713	7072	7616
60	7541	8067	8499	9151
80	8809	9424	9928	10690
100	10077	10781	11358	12230
120	11346	12138	12787	13769
	F			$\mathrm{M}=0.23$
Mean catch per hour	0.12	0.14	0.16	0.20
40	5999	6495	6916	7586
60	7399	8010	8530	9356
80	8797	9525	10143	11125
100	10197	11039	11755	12894
120	11594	12553	13368	14662

the value assumed earlier, and has the effect of decreasing estimated gains in yield by increasing fishing effort. Therefore, the estimated limits which the yield will vary between at $\mathrm{F}=0.16$ is somewhat lower than those given by Ulltang (1980).

As pointed out in earlier reports, the fact that yield per recruit curves were not available for other species than P. indicus introduces an extra uncertainty into the assessment. However, because of the large contribution to the catches from this species, it was found justifiable to apply the conclusions based on Y / R for this species to the whole population of shallow water prawns at Sofala Bank.

REFERENCES

Jones, R. and van Zalinge, N.P. 1981. Estimates of mortality rate and population size for shrimp in Kuwait waters. Kuwait Bulletin of Marine Science, (2): 273-288.

Ulltang, Ø. 1980. Stock assessment study of the resources of shrimp and lobster off Mocambique. Report to FAO from a consultant stay in Mocambique.

Ulltang, Ø., Brinca, L. and Silva, C. 1980. A preliminary assessment of the shallow water prawn stocks off Mocambiqe, North of Beira. Revista de Investigacao Pesqueira, Serv. de Invest. Pesq., Maputo (No. 1) 69 pp.

Ulltang, Ø., Brinca, L. and Sousa, L. 1983. state of the stocks of shallow water prawns at Sofala Bank. Summary of assessment and management considerations. $8 \mathrm{pp}$.1 tab, 4 figs. [Mimeo.]

A N NEX 1

Table 1.1 Catch and effort data for the EFRIPEL trawlers (type VEGA), 1980-1983.

Year Month	$\begin{gathered} \text { P. } \\ \text { indicus } \end{gathered}$	M. monoceros			P. latisulcatus	Total catch		Hours of trawling	Catch/ hour
			P. japonicus	P. monodon					
1980									
Jan	29716	26986	598	4276			61576	1022.43	60.23
Feb	97028	26446	148	23222			146844	2029.74	72.34
Mar	50462	62840	6682	6744	96		126824	2586.95	49.02
Apr	124814	56046	2946	5240	66		189112	2611.14	72.43
May	112416	89516	2382	4778	356		209448	2539.60	82.47
Jun	98140	75746	3110	2450	20		179466	2608.23	68.82
Jul	67404	94818	8730	10346	120		181418	2888.73	62.80
Aug	87686	88900	11038	4646	104		192374	4189.62	45.90
Sep	57136	84716	5400	4800	8		152060	3549.28	42.85
Oct	66290	97974	2868	11618			178750	3395.76	52.61
Nov	65460	107764	1646	14630	100		189600	3627.52	52.27
Dec	95198	88614	446	18008			202266	3582.20	56.46
Total	951750	900366	45994	110758	870	2	009738	34631.20	58.03

1982														
Jan	96	454	90	606	1	170	7	908	4	196	142	3	354.95	58.48
Feb	97	164	78	712	4	728	5	702	-	186	306	2	851.59	65.33
Mar	112	968	131	216	7	368	5	782	404	257	738	3	188.71	80.82
Apr	149	856	141	812	6	596	4	064	326	302	654	3	913.26	77.35
May	139	972	85	234	2	662	3	408	80	231	356	3	869.60	59.80
Jun	93	498	91	996	3	728	18	604	274	208	100	3	851.99	54.03
Jul	73	308	98	662	7	042	10	694	214	189	920	3	975.86	47.75
Aug	67	580	91	262	7	998	10	646	274	177	760	4	539.46	39.14
Sep	50	522	66	128	10	366	7	618	850	135	484	4	413.01	30.69
Oct	50	462	37	722		894	5	978	48	95	104	3	709.61	25.65
Nov	28	616	80	800		800	2	588	-	112	804	2	995.33	37.66
Dec	72	844	67	926		816	6	994	40	148	620	3	254.07	45.68
Total	1033	244	1	062076	54	168	89	986	2	514	2	241	988	43

Table 1.1 (contd)

Year Month	$\begin{gathered} \text { P. } \\ \text { indicus } \end{gathered}$	M. monoceros	Catch (kg)		P. latisulcatus	Total catch		Hours of trawling	Catch/ hour
			japonicus	P. monodon					
1983									
Jan	68470	51440	3322	18614	20		141866	2609.58	54.35
Feb	90400	64302	4598	7422	246		166968	3584.72	46.58
Mar	113604	68068	2254	24014	352		208292	4661.65	44.69
Apr	113718	78096	7474	6972	254		206514	4768.90	43.30
May	128102	78432	1608	15678	124		223944	4549.06	49.23
Jun	64762	44080	1574	16086	726		127228	3137.35	40.55
Jul	17420	16684	2440	2710	212		39466	1099.63	35.91
Aug	39270	37458	10366	4796	926		92816	3337.82	27.82
Sep	56336	22582	1756	7100	146		87920	2768.66	31.75
Oct	46264	32302	13096	7948	1432		101042	3581.69	28.20
Nov	78088	50742	302	20510	26		149668	4379.64	34.18
Dec	73524	59756	1456	8230	44		143010	4331.16	33.03
Total	889958	603942	50246	140080	4508	1	688734	42809.86	39.45

Table 1.2 Catch and effort data of the EFRIPEL trawlers (type VEGA) for strata B, C, D and E, 1980-1983.

Area	Depth (m)	$\begin{gathered} \text { P. } \\ \text { indicus } \end{gathered}$	M. monoceros	jch	$\begin{gathered} \text { (kg } \\ \text { P. } \\ \text { onic } \end{gathered}$		P. nodon	P. latisulcatus	Total	catch		urs of awling
1980												
B	5-15	38290	8894		66	4	404		51			607.58
B	15-25	12558	5112		248		358		19	276		260.21
	5-15	113526	24856		504				187	994	2	947.14
	15-25	122452	100936	4	216	16	224	62	243	890	4	665.42
C	25-35	111454	159294	18	408	12	936	262	302	354	5	599.19
	35-45	49590	100356	9	592	8	636	290	168	464	2	972.40
	45-55	8102	26762		980	3	134		38	978		568.60
	5-15	6480	3506		248	1	218		11	452		232.98
D	15-25	274424	262478	6	334	8		20	551	736	9	789.14
D	25-35	101328	125148	4	060	2		232	233	616	4	004.35
	35-45	8004	20300		328		322		28	954		413.73
F	15-25	94810	56128	1	174	1	612		153	724	2	312.78
\pm	25-35	10010	4822		16		72		14	920		210.50

1981

B	$5-15$	32	008	16	212		194	2	830		51	244
	$15-25$	18	784	19	082		114	1	988		39	968

1982

Table 1.2 (contd)

Area	Depth (m)	$\begin{gathered} \text { P. } \\ \text { indicus } \end{gathered}$	M. monoceros	$\begin{gathered} \text { Catch }(\mathrm{kg}) \\ \text { P. } \\ \text { japonicus } \end{gathered}$	P. monodon	P. latisulcatus	Total catch	Hours of trawling
1983								
B	5-15	59380	26142	64	10584	46	96216	1885.91
	15-25	8632	4180	32	1474	24	14342	396.05
C	5-15	163372	35416	1390	73782	134	274094	6581.83
	15-25	194024	136504	6934	21398	564	359424	10031.25
	25-35	111896	123828	28066	10258	1108	275156	7122.35
	35-45	12092	33788	8174	2366	1912	58332	1509.15
	45-55	84	474	114	22	26	720	29.49
D	5-15	34566	17814	286	6420	54	59140	1507.62
	15-25	239272	148920	2760	10660	286	401898	10185.48
	25-35	52724	68622	2344	2786	354	126830	2980.43
	35-45	362	1526		58		1946	45.05
E	5-15	182	274		50		506	15.41
	15-25	13038	6346	82	222		19688	505.35
	25-35	334	108				442	11.99
F	15-25							2.50

Table 1.3 Biomass estimates based on EFRIPEL catch per hour of trawling. (Strata B, C and D). Swept area during one hour of trawling $=3 \times 1.852 \times 0.017 \times 2 \mathrm{~km}$.

Strata	Depth	Area	$\left(\mathrm{km}{ }^{2}\right)$	kg/h	$\begin{array}{r} 1980 \\ \text { Biomass } \end{array}$	(tonnes)	kg/h	$\begin{array}{r} 1981 \\ \text { Biomass } \end{array}$	(tonnes)	kg/h	$\begin{array}{r} 1982 \\ \text { Biomass } \end{array}$	(tonnes)	kg/h	$\begin{array}{r} 1983 \\ \text { Biomass } \end{array}$	(tonnes)
B	5-15		223	85.02	100	482	67.60	80	464	44.37	52	242	51.02	60	247
	15-25		974	74.08	382		74.45	384		36.79	190		36.21	187	
C	5-15		063	63.79	359	1050	65.05	366	1236	44.96	253	883	41.64	234	713
	15-25		235	52.27	342		67.98	444		40.76	266		35.83	234	
	25-35		707	54.00	202		69.97	262		54.35	203		38.63	145	
	35-45		490	56.68	147		63.15	164		62.06	161		38.65	100	
D	5-15	1	070	49.15	278	1917	61.69	349	1937	50.03	283	1678	39.23	222	1352
	15-25	1	537	56.36	459		55.82	454		49.69	404		39.46	321	
	25-35	2	336	58.34	721		58.93	729		52.27	646		42.55	526	
	35-45	1	238	69.98	459		61.81	405		52.63	345		43.20	283	
Total		10	873		3449			3637			2803			2312	

Table 1.4 Biomass estimates from trawl surveys at Sofala Bank.

Strata	: Biomass (tonnes)			
1	46	2	17	
2		104	33	34
3		729	197	243
4		583	142	1169
Sub total	2046	1416	372	1446
5		0 (a)	117	514
6		228	-	200
Sub total	933	651 (a)	-	714
Total	3025	2069 (a)	-	2160

(a) The total biomass estimate was corrected comparing the results of "Dr Fridtjof Nansen" survey with the results obtained in another vessel - "S. Rybak" - surveying the same area at the same time. This was made because Stratum 5 seemed to need a further stratification.

Table 1.5 P. indicus. Number caught per hour of trawling by length group, 1980-1983.

Month	<11.5	11.5-12.5	$\begin{array}{r} \text { Total } \\ 12.5-13.5 \end{array}$	$\begin{gathered} \text { length (cm) } \\ 13.5-14.5 \end{gathered}$	14.5-15.5	$\geqslant 15.5$	Total
1980							
Jan	123	600	350	318	170	78	1639
Feb	116	778	732	549	357	86	2618
Mar	21	165	216	290	178	66	936
Apr	65	277	227	489	453	412	1923
May	99	441	355	463	327	328	2013
Jun	22	161	225	356	277	390	1431
Jul	1	17	57	149	144	343	7.11
Aug	2	12	33	99	136	325	607
Sep	2	16	36	82	115	233	484
Oct	13	106	119	157	184	178	757
Nov	51	170	147	166	145	133	812
Dec	301	324	179	189	175	207	1375
1981							
Jan	287	408	345	395	278	188	1901
Feb	217	333	271	352	260	156	1589
Mar	127	248	253	379	391	459	1857
Apr	88	157	229	443	513	581	2011
May	51	128	160	470	487	605	1901
Jun	19	79	125	317	382	580	1502
Jul	4	24	52	176	210	463	929
Aug		19	54	213	249	469	1004
Sep	4	35	54	120	166	294	673
Oct	6	28	39	75	97	161	406
Nov	23	53	54	106	130	167	533
Dec	69	74	51	89	99	150	532
1982							
Jan	290	289	178	221	224	232	1434
Feb	390	429	236	261	256	235	1807
Mar	64	110	128	301	387	389	1379
Apr	262	283	196	305	365	338	1749
May	77	161	174	281	332	403	1428
Jun	14	50	80	172	229	314	859
Jul	5	19	40	92	160	283	599
Aug	8	11	27	67	117	240	470
Sep	8	27	41	74	110	145	405
Oct	9	52	72	94	140	147	514
Nov	28	68	59	70	71	100	396
Dec	331	316	206	160	157	122	1292
1983							
Jan	124	251	284	251	243	147	1300
Feb	181	268	229	227	210	134	1299
Mar	138	348	316	262	181	83	1328
Apr	42	136	194	279	240	166	1057
May	57	123	136	241	283	301	1141
Jun	14	47	71	160	225	247	764
Jul	2	11	19	65	107	278	482
Aug	2	14	21	66	95	182	380
Sep	9	81	95	130	177	246	738
Oct	3	45	72	86	126	145	477
Nov	122	139	137	147	130	151	826
Dec	195	248	125	136	100	112	916

Table 1.6 Cohort analysis for females; Cohort September'81 - August'82; $\mathrm{L}_{\infty}=48.2$, $\mathrm{K}=0.21$, $\mathrm{M}=0.18$

Carapace length (L)	$\frac{48.2-\mathrm{L} 1}{48.2-\mathrm{L} 2}$	A X	$X=A .$	$\begin{gathered} \text { No. caught } \\ \times 10^{6} \end{gathered}$	Cohor x 10	F/Z	$\mathrm{F}_{\text {monthly }}$	$\mathrm{z}_{\text {monthly }}$
51				0.03 a)				
49				0.15 a)				
47				0.29	0.58	(0.5)		
45	2.667	1.523	(1.231) b)	0.61	1.63	0.58	0.25	0.43
43	1.625	1.231		1.34	4.12	0.54	0.21	0.39
41	1.385	1.150		2.03	7.78	0.55	0.22	0.40
39	1.278	1.111		2.27	12.12	0.52	0.20	0.38
37	1.217	1.088		2.10	16.63	0.477	$0.16]$	0.34
35	1.179	1.073		2.38	21.70	0.47	0.16	0.34
33	1.152	1.062		2.56	27.19	0.47	0.16	0.34
31	1.132	1.054		2.89	33.25	0.48]	0.17	0.35
29	1.116	1.048		2.09	38.71	0.38	0.11	0.29
27	1.104	1.043		1.55	43.73	0.31	0.08	0.26
25	1.094	1.039		1.17	48.42	0.25	0.06	0.24
23	1.086	1.036		0.61	52.60	0.15	0.03	0.21
21	1.079	1.033		0.34	56.48	0.09	0.02	0.20
19	1.074	1.031		0.04	60.08	0.01	0.002	0.18

a) Values not used ($L>L_{\infty}$)
b) Value used in preference to 1.523

Table 1.7 Cohort analysis for females; Cohort September'81 - August'82; $\mathrm{L}_{\infty}=48.2$, $\mathrm{K}=0.21$, $\mathrm{M}=0.23$

Carapace length (L)	$\frac{48.2-\mathrm{L} 1}{48.2-\mathrm{L} 2}$	$=A \quad X=A$	$\begin{gathered} \text { No. caught } \\ \times 10^{6} \end{gathered}$	$\begin{aligned} & \text { Cohort no. } \\ & \times 10^{6} \end{aligned}$	F / Z	$\mathrm{F}_{\text {monthly }}$	$\mathrm{Z}_{\text {monthly }}$
51			0.03 a)				
49			0.15 a)				
47			0.29	0.58	(0.5)		
45	2.667	1.711 (1.305) b)	0.61	1.78	0.51	0.24	0.47
43	1.625	1.305	1.34	4.78	0.45	0.19	0.42
41	1.385	1.195	2.03	9.25	0.45	0.19	0.42
39	1.278	1.144	2.27	14.70	0.42	0.17	0.40
37	1.217	1.114	2.10	20.58	0.367	0.13]	0.367
35	1.179	1.094	2.38	27.23	0.36	0.13	0.36
33	1.152	1.081	2.56	34.59	0.35	0.12	0.35
31	1.132	1.070	2.89	42.69	0.36	0.13	0.36
29	1.116	1.062	2.09	50.37	0.27	0.09	0.32
27	1.104	1.056	1.55	57.81	0.21	0.06	0.29
25	1.094	1.050	1.17	64.96	0.16	0.04	0.27
23	1.086	1.046	0.61	71.71	0.09	0.02	0.25
21	1.079	1.043	0.34	78.36	0.05	0.01	0.24
19	1.074	1.040	0.04	84.80	0.006	0.001	0.23

a) Values not used (L> L_{∞})
b) Value used in preference to 1.711

Figure l.l

Figure 1.5 Strata boundaries of the commercial fishing (dotted line) and of the fishing surveys (full-line).

[^0]: * No survey was made in 1981. Correcting factor computed as the mean of 1980 and 1982 factors.

